
Journal of Cloud Computing:
Advances, Systems and Applications

Nelson et al. Journal of Cloud Computing: Advances, Systems

and Applications (2020) 9:44

https://doi.org/10.1186/s13677-020-00191-w

RESEARCH Open Access

Parallel acceleration of CPU and GPU
range queries over large data sets
Mitchell Nelson1†, Zachary Sorenson1†, Joseph M. Myre1†, Jason Sawin1*† and David Chiu2†

Abstract

Data management systems commonly use bitmap indices to increase the efficiency of querying scientific data.

Bitmaps are usually highly compressible and can be queried directly using fast hardware-supported bitwise logical

operations. The processing of bitmap queries is inherently parallel in structure, which suggests they could benefit from

concurrent computer systems. In particular, bitmap-range queries offer a highly parallel computational problem, and

the hardware features of graphics processing units (GPUs) offer an alluring platform for accelerating their execution.

In this paper, we present four GPU algorithms and two CPU-based algorithms for the parallel execution of bitmap-

range queries. We show that in 98.8% of our tests, using real and synthetic data, the GPU algorithms greatly outperform

the parallel CPU algorithms. For these tests, the GPU algorithms provide up to 54.1× speedup and an average

speedup of 11.5× over the parallel CPU algorithms. In addition to enhancing performance, augmenting traditional

bitmap query systems with GPUs to offload bitmap query processing allows the CPU to process other requests.

Keywords: Bitmap indices, WAH compression, Range queries, GPU

Introduction
Contemporary applications are generating a staggering

amount of data. For example, the Square Kilometre Array

Pathfinders are a collection of radio telescopes can gen-

erate 70 PB per year [1]. Efficient querying of massive

data repositories relies on advanced indexing techniques

that can make full use of modern computing hardware.

Though many indexing options exist, bitmap indices in

particular are commonly used for read-only scientific data

[2, 3]. A bitmap index produces a coarse representation of

the data in the form of a binary matrix. This representa-

tion has two significant advantages: it can be compressed

using run-length encoding and it can be queried directly

using fast primitive CPU logic operations. This paper

explores algorithmic designs that enable common bitmap-

index queries to execute on computational accelerators,

graphics processing units (GPUs), in particular.

*Correspondence: jason.sawin@stthomas.edu
†Mitchell Nelson, Zachary Sorenson, Joseph M. Myre, Jason Sawin and David

Chiu contributed equally to this work.
1Department of Computer and Information Sciences, University of St. Thomas,

2115 Summit Ave., 55105 Saint Paul, Minnesota, USA

Full list of author information is available at the end of the article

A bitmap index is created by discretizing a relation’s

attributes into a series of bins that represent either value

ranges or distinct values. Consider the example shown

in Table 1. The Produce relation records the quantity of

particular fruits available at a market. A potential bitmap

index that could be built from Produce is shown below it.

The f bitmap bins under the Fruit attribute represent the

distinct fruit items that can be referred to in the relation: f0
encodesApple, f1 representsOrange, and so on.Where the

f bins represent discrete values, the q bins underQuantity

represent value ranges. Specifically, q0 represents [0, 100),

q1 is [100, 200), q2 is [200, 300), q3 is [300, 400), and q4
is [400,∞). Each row in the bitmap represents a tuple

from the relation. The specific bit pattern of each row in

the bitmap is generated by analyzing the attributes of the

corresponding tuple. For each attribute in a tuple, a value

of 1 is placed in the bin that encodes that value and a

value of 0 is placed in the remaining bins for that attribute.

For example, consider tuple t1 from Produce. Its Fruit

attribute is Apple, so a 1 is placed in f0 and the remaining f

bins in that row are assigned a 0. TheQuantity of t1 is 548,

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00191-w&domain=pdf
http://orcid.org/0000-0003-0022-6192
mailto: jason.sawin@stthomas.edu
http://creativecommons.org/licenses/by/4.0/

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 2 of 21

Table 1 Example relation and corresponding bitmap

Produce

ID Fruit Quantity

t1 Apple 548

t2 Orange 233

t3 Kiwi 257

t4 Durian 3

Bitmap of Produce

ID Fruit Quantity

f0 f1 f2 f3 q0 q1 q2 q3 q4

t1 1 0 0 0 0 0 0 0 1

t2 0 1 0 0 0 0 1 0 0

t3 0 0 1 0 0 0 1 0 0

t4 0 0 0 1 1 0 0 0 0

this value falls into the [400,∞) range represented by bin

q4, so that bin is assigned a 1 and all other q bins get a 0.

Bitmap indices are typically sparse, which makes them

amenable to compression using hybrid run-length encod-

ing schemes. Numerous such schemes have been devel-

oped (e.g. [4–8]), and among these, one of the most

prominent is theWord-Aligned Hybrid code (WAH) [9]. It

has been shown that WAH can compress a bitmap to just

a small fraction of its original size [10].

One major benefit of bitmap indices is that they can

be queried directly, greatly reducing the number of tuples

that must be retrieved from disk. Considering the exam-

ple from Table 1, suppose a user executes a range query of

the form:

SELECT * FROM Produce

WHERE Quantity >= 100;

This query can be processed by executing the following

bitmap formula q1 ∨ q2 ∨ q3 ∨ q4 = r where r is the result

column of a bitwise OR between the q1, q2, q3, and q4
bins. Every row in r that contains a 1 corresponds with a

tuple in Produce that has aQuantity in the desired range.

Moreover, a WAH compressed bitmap can be queried

directly without first being decompressed in a very similar

manner.

Notice that the above range query example could easily

be executed in parallel. For example, one process could be

execute r1 = q1 ∨ q3, another could perform r2 = q2 ∨ q4,

and the final result could be computed by r = r1 ∨ r2. It

is clear that the more bins that are needed to be processed

to answer a range query, the more speedup a parallel

approach could realize. This describes a classic parallel

reduction, requiring log2(n) rounds to obtain a result.

In the past decade, the applicability of graphics pro-

cessing units (GPUs) has expanded beyond graphics to

general-purpose computing. GPUs are massively paral-

lel computational accelerators that augment the capabil-

ities of traditional computing systems. For example, an

NVIDIA Titan X GPU is capable of executing 57,344 con-

current threads. Coupled with high-bandwidth memory,

GPUs are a natural fit for throughput focused parallel

computing and may be able to increase the efficiency of

data management systems. Previous works have shown

that WAH-style compression, decompression, and point

queries can be processed efficiently on GPUs [11, 12]. We

have built upon these efforts to create several algorithms

exploiting various GPU architectural features to accelerate

WAH range query processing [13].

The specific contributions of this paper are:

• We present two parallel CPU algorithms and four

parallel GPU algorithms for executing WAH range

queries.
• We present refinements to the GPU algorithms that

exploit hardware features to improve performance.
• We present an empirical study on both real-world

and synthetic data. The results of our study show:

– The highest performing parallel CPU

algorithm provides an average of 2.18×

speedup over the alternative parallel CPU

algorithm.

– The GPU algorithms are capable of

outperforming the CPU algorithms by up to

54.1× and by 11.5× on average.

– When compared to only the best performing

CPU tests, the GPU algorithms still provide up

to 5.64× speedup for queries of 64 bins and

6.44× for queries of 4, 8, 16, 32, and 64 bins.

The remainder of the paper is organized as follows. We

provide overviews of WAH algorithms and GPUs as com-

putational accelerators in the “Background” section. We

describe our parallelWAH query algorithms in the “Paral-

lel range queries” section. Our experimental methodol-

ogy is presented in the “Evaluation methodology” section.

The “Results” section presents the results of our empir-

ical study with discussion in the “Discussion of results”

section. We describe related works in the “Related work”

section before presenting conclusions and plans for future

work in the “Conclusion and future work” section.

Background
Word-Aligned hybrid compression (WAH)

WAH compresses bitmap bins (bit vectors) individu-

ally. During compression, WAH chunks a bit vector into

groups of 63 consecutive bits. Figure 1 shows an exam-

ple bit vector. This vector consists of 189 bits, implying

the relation it is taken from contained that many tuples.

In the example, the first chunk contains both ones and

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 3 of 21

Fig. 1 An example of WAH compression using one literal and two fills

zeros, making it heterogeneous. The last two chunks are

homogeneous, containing only zeros.

Heterogeneous chunks are encoded in WAH literal

atoms. For efficient query processing,WAH atoms are tai-

lored to the system word size. Literal atoms have the form

(flag, lit), where the most-significant-bit (MSB) or flag is

set to 0, indicating the atom is a literal. The remaining 63

bits, lit, record verbatim the heterogeneous chunk of the

original bit vector.

WAH groups sequences of homogeneous chunks and

encodes them in fill atoms. Fill atoms have the form

(flag, value, len). The flag, or MSB, is set to 1 designat-

ing the atom as a fill. The second-MSB is value and

records the value of the run being encoded: 1s or 0s. The

remaining 62 bits are len, which records the number of

homogeneous chunks that have been clustered together.

In Fig. 1, the last two chunks are homogeneous, so they

are grouped into a fill. The chunks are a run of 0’s so the

value bit is set to 0 and len is set to two since the group is

made of two chunks.

One of the advantages of WAH is that the compressed

bit vectors can be queried directly without decompres-

sion. For example, let X and Y be compressed bit vectors

and Z = X ◦ Y where ◦ is a bitwise logical operation,

and Z is the resulting bit vector. The standard query algo-

rithm for compressed bit vectors treats X and Y as stacks

of atoms. Processing starts by popping the first atom off

each vector. The atoms are then analyzed until they are

fully processed, or exhausted.When an atom is exhausted,

the next atom from that vector is popped.

There are three possible atom-type pairings during pro-

cessing:

1 (literal,literal): Let ai and aj be the current literals

being processed from X and Y respectively. In this

case, a result literal atom is added to Z, where

Z.result.lit = X.ai.lit ◦ Y .aj.lit.

After this operation, a new atom is popped from both

X and Y as both operand literal atoms have been

exhausted.

2 (fill,fill): In this case, a fill atom result is added to Z
of the form,

Z.result.value = X.ai.value ◦ Y .aj.value and

Z.result.len = Min(X.ai.len,Y .aj.len).

Processing fills produces side effects for the operand

atoms. Specifically,

ai.len = ai.len − result.len and

aj.len = aj.len − result.len.

This will exhaust the atom with the shorter len or

both if they are the same.

3 (fill,literal): in this case result is a literal. Assume

X.ai is the fill word. If X.ai.value is 1 then

Z.result.lit = Y .aj.lit, else Z.result.lit = 0. This will

exhaust Y .aj and result in X.ai.len = X.ai.len − 1.

When applied to bit-vector pairs, the above approach

handles point queries. This can easily be extended to apply

to range queries. Range queries seek tuples with values

that fall between an upper and lower bound. A bitmap

index can be used to process such queries in the follow-

ing manner: R = A1 ∨ A2 ∨ ...An where Ai is a bitmap

bin that encodes attributes within the desired range. The

resulting bit vector Rwill indicate the tuples that should be

retrieved from disk. A simple iterative algorithm is often

employed to solve range queries. First R is initialized toA1,

then R ← R ∨ Aj is repeated for all j such that 2 ≤ j ≤ n.

Graphics processing units (GPUs)

Using NVIDIA’s compute unified device architecture

(CUDA) programming platform for GPUs, thousands of

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 4 of 21

threads can be organized into 1-, 2-, or 3-dimensional

Cartesian structures. This layout naturally maps to many

computational problems. Hierarchically, these structures

comprise thread grids, thread blocks, and threads as

shown in Fig. 2. Threads are executed in groups of 32,

ergo, thread blocks are typically composed of 32m threads,

where m is a positive integer. These groups of 32 threads

are known as warps.

The NVIDIA GPUs memory hierarchy is closely linked

to its organization of threads. The memory hierarchy is

composed of global, shared, and local memory. Global

memory is accessible to all threads. Each thread block

has private access to its own low-latency shared mem-

ory (∼ 100× less than global memory latency) [14]. Each

thread also has its own private local memory.

To fully realize high-bandwidth transfers from global

memory, it is critical to coalesce global-memory accesses.

For a global memory access to be coalesced, it must meet

two criteria: 1) the memory addresses being accessed

are sequential and 2) the memory addresses span the

addresses 32n to 32n + 31, for some integer, n. Coalesced

global memory accesses allow the GPU to batch mem-

ory transactions in order to minimize the total number of

memory transfers.

A classic challenge to ensuring high computational

throughput on a CUDA capable GPU is warp divergence

(sometimes called thread divergence). Warp divergence

is a phenomenon that occurs when threads within the

same warp resolve a branching instruction (commonly

stemming from loops or if-else statements) to different

outcomes. At an architectural level, CUDA GPUs require

all threads within a warp to follow the same execution

pathway. When warp divergence occurs, a CUDA GPU

will execute the multiple execution pathways present in

the warp serially. This makes it important to minimize the

amount of branching instructions in a CUDA program

as the loss in computational throughput can significantly

reduce performance (as seen in [15, 16]).

Parallel range queries
In the “Word-Aligned hybrid compression (WAH)”

section we briefly described how a range query of the

form A1 ∨ . . . ∨ An, where Ai is a bitmap bin can be

solved iteratively. However, the same problem could be

solved in parallel by exploiting independent operations.

For example, R1 = A1 ∨ A2 and R2 = A3 ∨ A4 could be

solved simultaneously. An additional step of R1∨R2 would

yield the final result. This pattern of processing is called

a parallel reduction. Such a reduction transforms a serial

O(n) time process to a O(log n) algorithm, where n is the

number of bins in the query.

Further potential for parallel processing arises from the

fact that row operations are independent of one another

(e.g., the reduction along rowi is independent of the

reduction along rowi+1). In actuality, independent pro-

cessing of rows in compressed bitmaps is very challeng-

ing. The difficulty comes from the variable compression

achieved by fill atoms. In the sequential-query algorithm

this is not a problem as compressed bit vectors are treated

like stacks, where only the top atom on the stack is pro-

cessed and only after all of the represented rows have been

exhausted is it removed from the stack. This approach

ensures row alignment.Without additional information, it

would be impossible to exploit row independence. When

selecting an atom in themiddle of a compressed bit vector,

its row number cannot be known without first examining

the preceding atoms to account for the number of rows

compressed in fills.

In the remainder of this section, we present parallel

algorithms for processingWAH range queries using GPUs

and multi-core CPUs.

GPU decompression strategy

All of our GPU-based range query algorithms rely on the

same preparations stage. In this stage, the CPU sends

compressed columns to the GPU. As concluded in [12],

it is a natural decision to decompress bitmaps on GPUs

when executing queries as it reduces the communication

costs between CPU and GPU. Once the GPU obtains the

compressed columns, it decompresses them in parallel

using Algorithm 1. Once decompressed, the bit vectors

involved in the query are word-aligned. This alignment

makes the bitwise operation on two bit vectors embarrass-

ingly parallel and an excellent fit for the massively parallel

nature of GPUs.

Algorithm 1 Parallel column decompression

1: procedure DECOMPRESSION(Cols)

2: ⊲ Cols is a collection of compressed bit vectors

3: for all C ∈ Cols in parallel do

4: dCols ← dCols
⋃

Decomp(C,C_size,C_

decomp_size)

5: end for

6: return dCols

7: end procedure

The procedure Decompression (Algorithm 1) takes, as

input, a set of compressed bit vectors, Cols. This is the set

of bins that have been identified as necessary to answer

a range query. Decompression processes each bit vector

in Cols in parallel, sending each of them to the Decomp

function. Ultimately, Decompression returns a set of fully

decompressed bit vectors.

The Decomp procedure (Algorithm 2) is a slightly mod-

ified version of the decompression algorithm presented

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 5 of 21

Fig. 2 The organizational hierarchy used by NVIDIA’s CUDA to structure groups of threads. Shown is a 2 × 4 2-dimensional thread grid of thread

blocks, where each 1-dimensional thread block is composed of 8 threads along the x-dimension

by Andrzejewski and Wrembel [11]. One notable imple-

mentation difference is that 32-bit words were used in [11,

12], while we use 64-bit words. We also modified their

algorithm to exploit data structure reuse. Algorithm 2

takes a single WAH compressed bit vector, CData. It also

requires, the size of CData in number of 64-bit words,

Csize, and Dsize which is the size number of 64-bit words

required to store the decompressed version of CData.

Algorithm 2 Parallel decompression of data

1: procedure DECOMP(CData,CSize,DSize)

2: for i ← 0 to CSize − 1 in parallel do

3: if CData(i)63 = 0b then

4: DecompSizes[i]← 1

5: else

6: DecompSizes[i]← CData(i)0→61

7: end if

8: end for

9: StartingPoints ← exclusive scan on DecompSizes

10: EndPoints an array of zeroes, size DSize

11: for i ← 1 to CSize − 1 in parallel do

12: EndPoints[StartingPoints[i]−1]← 1

13: end for

14: WordIndex ← exclusive scan on EndPoints

15: for i ← 0 to DSize − 1 in parallel do

16: tempWord ← CData[WordIndex[i]]

17: if tempWord63 = 0b then

18: DecompData[i]← tempWord

19: else

20: if tempWord62 = 0b then

21: DecompData[i]← 064
22: else

23: DecompData[i]← 01 + 163
24: end if

25: end if

26: end for

27: return DecompData

28: end procedure

In Algorithm 2, lines 2 to 8, Decomp generates the

DecompSizes array, which is the same size as CData. For

each WAH atom in Cdata, the DecompSizes element at

the same index will hold the number of words being

represented by that atom. The algorithm does this by

generating a thread for each atom in Cdata. If Cdata[i]

is a literal, then threadi writes a 1 in DecompSizes[i],

as that atom encodes 1 word (line 4). If Cdata[i] holds

a fill atom, which are of the form (flag, value, len) (see

“Background” section), then threadi writes the number of

words compressed by that atom, or len, to DecompSizes[i]

(line 6).

Next, Decomp performs an exclusive scan (parallel ele-

ment summations) on DecompSizes storing the results in

StartingPoints (line 9). StartingPoints[i] contains the total

number of decompressed words represented by CData[0]

to CData[i − 1], inclusive. StartingPoints[i] ∗63 is the

number of the bitmap row first represented in CData[i].

In lines 10 to 13, the EndPoints array is created and

initializes. This array has a length of Dsize and is ini-

tially filled with 0s. Decomp then processes each element

of StartingPoints in parallel. A 1 is assigned to EndPoints

at index StartingPoints[i]−1 for i < |StartingPoints|. In

essence, each 1 in EndPoints represents where a heteroge-

neous chunk was found in the decompressed data by the

WAH compression algorithm. At line 14 another exclusive

scan is performed, this time on EndPoints. The result of

this scan is saved to WordIndex. WordIndex[i] stores the

index to the atom in CData that contains the information

for the ith decompressed word.

The final for-loop (lines 15 - 26) is a parallel process-

ing of every element of WordIndex. For each WordIndex

element, the associated atom is retrieved from CData. If

CData[WordIndex[i]] is a literal atom (designated by a 0

value in the most significant bit (MSB)), then it is placed

directly into DecompData[i]. Otherwise, the atom must

be a fill. If it is a fill of zeroes (second MSB is a zero), then

64 zeroes are assigned into DecompData[i]. If it is a fill

of ones, a word consisting of 1 zero (to account for the

flag bit) and 63 ones is assigned to DecompData[i]. The

resulting DecompData is the fully decompressed bitmap.

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 6 of 21

Figure 3 illustrates a thread access pattern for the final

stage ofDecomp. As shown,CData, theWAH compressed

bit vector, is composed of three literal atoms (L0, L1, and

L2) and two fill atoms (the shaded sectors).

For each literal, Decomp uses a thread that writes the

value portion of the atom to the DecompData bit vec-

tor. Fill atoms need as many threads as the number of

compressed words the fragment represents. For example,

consider the first fill in CData, it encodes a run of three

words of 0. Decomp creates three threads all reading the

same compressed word but writing 0 in the three differ-

ent locations in DecompData. If a run of 1s had been

encoded, a value of 0x3FFF FFFF FFFF FFFF would have

been written instead of 0.

GPU range query execution strategies

Here we present four methods for executing range queries

in parallel on GPUs. These are column-oriented access

(COA), row-oriented access (ROA), hybrid, and ideal

hybrid access approaches. These approaches are anal-

ogous to structure-of-arrays, array-of-structures, and a

blend thereof. Structure-of-arrays and array-of-structures

approaches have been used successfully to accelerate sci-

entific simulations on GPUs [17, 18], but differ in the how

data is organized and accessed which can impact GPU

efficiency.

Column-oriented access (COA)

Our COA approach to range query processing is shown

in Algorithm 3. The COA procedure takes a collection

of decompressed bit vectors needed to answer the query

and performs a column oriented reduction on them. At

each level of the reduction, the bit vectors are divided

into two equal groups: low-order vectors and high-order

Algorithm 3 Column-oriented access query processing

1: procedure COA(Cols)

2: ⊲ Cols is a collection of decompressed bit vectors

3: m ← |Cols|⊲ the number of bit vectors in the query

4: n ← |Cols0| ⊲ the number of words in a bit vector

5: s ← m/2

6: while s ≥ 1 do

7: for c ← 0 to s − 1 in parallel do

8: c1 ← Colsc
9: c2 ← Colsc+s

10: for t ← 0 to n − 1 in parallel do

11: c1t ← c1t ∨ c2t
12: end for

13: end for

14: s ← s/2

15: end while

16: return Cols0
17: end procedure

vectors. The s variable in Algorithm 3 stores the divide

position (lines 5 and 14). During processing, the first low-

order vector is paired with the first high-order, as are

the seconds of each group and so on (lines 8 and 9).

The bitwise operation is performed between these pairs.

To increase memory efficiency, the result of the query

operation is written back to the low order column (Algo-

rithm 3, line 11). The process is then repeated using only

the low-order half of the bit vectors as input until a sin-

gle decompressed bit vector remains. The final bit-vector

containing the result can then be copied back to the CPU.

Figure 4a shows the COA reduction pattern for a range

query across bit vectors 0 through 3. A 1-dimensional

Fig. 3 Algorithm 2’s thread access pattern

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 7 of 21

Fig. 4 Shown here are (a) the reduction pattern used by the COA method and (b) the mapping of thread blocks within thread grids to the WAH

query data

thread grid is assigned to process each pair of bit vectors.

Note that multiple thread blocks are used within the grid,

as a single GPU thread block cannot span the full length

of a decompressed bit vector. Figure 4b shows how the

thread grid spans two columns and illustrates the inner

workings of a thread block. As shown, a thread block

encompasses 1024 matched 64-bit word pairs from two

columns. A thread is assigned to each pair of words. Each

thread performs the OR operation on its word pair and

writes the result back to the operand word location in the

low ordered column. As each thread block only has access

to a very limited shared memory (96 kB for the GPU used

in this study), and since each round of the COA reduction

requires the complete result of the column pairings, all of

COA memory reads and writes have to be to global mem-

ory. Specifically, given a range query ofm bit vectors, each

with n rows, and a system word size of w bits, the COA

approach performs (2m − 2) nw coalesced global memory

reads and (m − 1) nw coalesced global memory writes on

the GPU.

Row-oriented access (ROA)

Algorithm 4 presents our ROA approach to range query

processing. Because all rows are independent, they can be

processed in parallel. To accomplish this, ROA uses many

1-dimensional thread blocks that are arranged to create

a one-to-one mapping between thread blocks and rows

(Algorithm 4, line 5).

This data access pattern is shown in Fig. 5. The figure

represents the query C0 ∨ C1 ∨ C2 ∨ C3, where Cx

is a decompressed bit vector. As shown, the individual

thread blocks are represented by rectangles with perfo-

rated borders. Unlike COA, where thread blocks only span

two columns, the ROA thread blocks span all columns

of the query (up to 2048, 2× the maximum number of

threads in a thread block.)

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 8 of 21

Fig. 5 The data access pattern and work performed by each ROA thread block

Algorithm 4 Row-oriented access query processing

1: procedure ROA(Cols)

2: ⊲ Cols is a collection of decompressed bit vectors

3: m ← |Cols| ⊲ the number of bit vectors in the

query

4: n ← |Cols0| ⊲ the number of words in a bit vector

5: for t ← 0 to n − 1 in parallel do

6: s ← m/2

7: while s ≥ 1 do

8: for c ← 0 to s − 1 in parallel do

9: c1 ← Colsc
10: c2 ← Colsc+s

11: c1t ← c1t ∨ c2t
12: end for

13: s ← s/2

14: end while

15: end for

16: return Cols0
17: end procedure

Inside any given ROA thread block, the column access

pattern within it is identical to the COA pattern (Algo-

rithm 4 line 8-11). The words of the row are partitioned

into low-order and high-order by column ID. Each thread

performs a bitwise OR on word pairs, where one operand

word is from the low-order columns, and the other is from

the high-order set (shown in the Thread block of Fig. 5).

The results of the operation are written back to the low

order word.

Like COA, a ROA reduction has log2(n) levels, where

n is the number of bit vectors in the query. However, all

of ROA processing is limited in scope to a single row. By

operating along rows, the ROA approach loses coalesced

global memory accesses as row data are not contiguous in

memory. However, for the majority of queries, the num-

ber of bit vectors is significantly less than the number of

words in a bit vector. This means that ROA can use low-

latency GPU shared memory to store the row data (up

to 96 kB) and intermediate results necessary for perform-

ing the reduction. Using shared memory for the reduction

avoids repeated reads and writes to high-latency global

memory (∼ 100× slower than shared memory). Given a

range query of m bins, each with n rows, and a system

word size ofw bits, the ROA approach performs mn
w global

memory reads and n
w global memory writes. A significant

reduction of both relative to COA.

Hybrid

We form the hybrid approach to range query process-

ing by combining the 1-dimensional COA and ROA data

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 9 of 21

access patterns into 2-dimensional thread blocks. These

2D thread blocks are tiled to provide complete coverage

of the query data. An example tiling is shown in Fig. 6.

To accomplish this tiling the hybrid method uses a thread

grid of p × q thread blocks, where p and q are integers.

Each thread block is composed of k × j threads and spans

2k columns and j rows, where k and j are integers. With

this layout, each thread block can use the maximum of

1024 threads.

A single thread block in the hybrid process performs the

same work as multiple ROA thread blocks stacked verti-

cally. A major difference being that thread blocks in the

hybrid process do not span all bit vectors. Using these 2-

dimensional thread blocks provides the hybrid approach

the advantages of both coalesced memory accesses of

COA, and ROA’s use of GPU shared memory to pro-

cess the query along rows. The disadvantage of the hybrid

approach is that the lowest order column of each thread

block along the rows must undergo a second round of the

reduction process to obtain the final result of the range

query. This step combines the answers of the individual

thread block tiles.

The hybrid process is shown in Algorithm 5

where the first round of reductions are on lines 8-

20 and the second round of reductions are on

lines 22-34.

Due to the architectural constraints of NVIDIA GPUs,

the hybrid design is limited to processing range queries

of ≤ 222 bins. This is far beyond the scope of typi-

cal bitmap range queries and GPU memory capacities.

Given a range query of m bins, each with n rows, a

system word size of w, and k thread blocks needed to

span the bins, up to (m + k) nw global memory reads and

(k + 1) nw global memory writes are performed. Although

the hybrid approach requires more global memory reads

and writes than the ROA approach, its use of memory

Fig. 6 The data access pattern and reduction work performed by each hybrid thread block. In standard scenarios, each thread block would

comprise 1024 threads

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 10 of 21

Algorithm 5 Hybrid query processing

1: procedure HYBRID(Cols, p, q)

2: ⊲ Cols is a collection of decompressed bit vectors

3: ⊲ p is the number of tiles in the x-dimension

4: ⊲ q is the number of tiles in the y-dimension

5: m ← |Cols|⊲ the number of bit vectors in the query

6: n ← |Cols0| ⊲ the number of words in a bit vector

7: ⊲ First set of loops performs reductions within tiles

8: for rb ← 0 to n/q − 1 in parallel do

9: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do

10: s ← m/(2 ∗ p)

11: while s ≥ 1 do

12: for c ← 0 to s − 1 in parallel do

13: c1 ← Colsc
14: c2 ← Colsc+s

15: c1t ← c1t ∨ c2t
16: end for

17: s ← s/2

18: end while

19: end for

20: end for

21: ⊲ Second set of loops performs reductions across

tiles

22: for rb ← 0 to n/q − 1 in parallel do

23: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do

24: s ← p/2

25: while s ≥ 1 do

26: for c ← 0 to s − 1 in parallel do

27: c1 ← Colsc
28: c2 ← Colsc+s

29: c1t ← c1t ∨ c2t
30: end for

31: s ← s/2

32: end while

33: end for

34: end for

35: return Cols0
36: end procedure

coalescing can enhance the potential for computational

throughput.

Ideal hybrid

In practice, most WAH range queries involve less than

1024 columns. This mean that in most query scenarios it

is possible to map a single 2-dimensional thread block tile

across multiple rows and all of the columns (bit vectors)

of the query. This purely vertical tiling is shown in Fig. 7.

Such a tiling improves throughput by allowing each thread

block to comprise the maximum of 1024 threads. Like

the hybrid method, each thread block retains the advan-

tages of coalesced memory accesses and the use of GPU

shared memory. Further, this tiling pattern eliminates the

need for a second round of reduction. The result of this

arrangement is the ideal hybrid algorithm as described in

Algorithm 6.

Algorithm 6 Ideal hybrid query processing

1: procedure IDEALHYBRID(Cols, q)

2: ⊲ Cols is a collection of decompressed bit vectors

3: ⊲ q is the number of tiles in the y-dimension

4: m ← |Cols|⊲ the number of bit vectors in the query

5: n ← |Cols0| ⊲ the number of words in a bit vector

6: for rb ← 0 to n/q − 1 in parallel do

7: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do

8: s ← m/2

9: while s ≥ 1 do

10: for c ← 0 to s − 1 in parallel do

11: c1 ← Colsc
12: c2 ← Colsc+s

13: c1t ← c1t ∨ c2t
14: end for

15: s ← s/2

16: end while

17: end for

18: end for

19: return Cols0
20: end procedure

The theoretical expressions for global reads and writes

in the hybrid algorithm agree that an “ideal” hybrid layout

is one where a single thread block of k × j threads spans

all 2k columns. Multiple k × j thread blocks are still used

to span all of the rows. This layout limits the number of

global writes in the first round to 1 and removes the need

to perform the second reduction between thread blocks

along rows. For processing a range query of m bins, each

with n rows, and a system word size of w, the ideal hybrid

layout thereby reduces the total number of global memory

reads and writes to mn
w and n

w , respectively. These are the

same quantities obtained for ROA, but the ideal hybrid

method guarantees a higher computational throughput as

each k × j thread block has 1024 threads.

Multi-core CPUmethods

For an experimental baseline, we created a CPU-based

parallel algorithm for processing range queries. Most

multi-core CPUs cannot support the number of concur-

rent operations needed to fully exploit all of the available

parallelism inWAHbitmap query processing. For this rea-

son, we limited the CPU algorithm to two approaches: 1)

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 11 of 21

Fig. 7 The data access pattern and reduction work performed by each ideal hybrid thread block. In standard scenarios, each thread block would

comprise 1024 threads

a baseline approach that iterates through bit vectors to

execute a query and 2) a COA style reduction approach.

Given an np-core CPU, approach 1 uses OpenMP [19]

to execute up to np parallel bitwise operations on paired

compressed bit vectors. Once a set of paired bit vectors is

processed, the CPU iterates to execute up to np parallel

bitwise operations on the result and the next remaining bit

vector to process.

Approach 2 uses OpenMP to execute up to np paral-

lel bitwise operations on paired compressed bit vectors

for any reduction level. If more than np bit vector pairs

exist in a given reduction level, the CPU must iterate

until all pairs are processed and the reduction level is

complete. The range-query result is obtained once the

final reduction level is processed. The pattern of the CPU

reduction process is similar to the COA pattern shown in

Fig. 4a.

Theoretical analysis
The GPU and CPU algorithms presented earlier in this

section all perform the same amount of work. Perfor-

mance variations between those algorithms come from

data access patterns and the parallelism that the CPU or

GPU architectures are capable of achieving when using

those patterns.

In ideal scenarios (unlimited threads, no resource con-

tention, etc.), all of the GPU algorithms yield the same

run time complexity of O(n log2(m)/t), where m is the

number of bit vectors in the query, n is the number

of system words in a decompressed bit vector, and t

is the number of executing threads. The n/t term cor-

responds to many parallel bitwise operations between

paired bit vectors and the log2(m) term corresponds

to the number of reduction levels required to produce

a result.

Even in ideal scenarios, CPUs are not capable of the

same degree of parallelism as GPUs. Our two CPU algo-

rithms are manifestations of focused application of par-

allelism. The iterative approach (algorithm 1) focuses

parallelism on the bitwise operations between paired bit

vectors. This yields a run time complexity of O(nm/t).

The reduction approach (algorithm 2) focuses parallelism

on performing a reduction, yielding a run time complexity

ofO(nlog2(m)).

It is important to note that the idealized scenarios used

to guide our theoretical analysis of our CPU and GPU

algorithms are not realistic. The behavior of real imple-

mentations of these algorithms will deviate from the the-

oretical descriptions due to the influence of architectural

effects, including finite parallelism, resource contention,

cache effects, and memory usage.

Evaluationmethodology
In this section, we provide the testing methodology that

was used to produce our results. Our tests were executed

on a machine running Ubuntu 16.04.5. It is equipped with

dual 8-core Intel Xeon E5-2609 v4 CPUs (each at 1.70

GHz) and 322 GB of RAM. All CPU tests were written in

C++ and compiled with GCC v5.4.0. All GPU tests were

developed using CUDA v9.0.176 and run on an NVIDIA

GeForce GTX 1080 with 8 GB of memory.

The following data sets were used for our evalua-

tion. They are representative of the type of applications

(e.g., scientific, mostly read-only) that would benefit from

bitmap indexing.

• KDD – this data set was procured from KDD

(knowledge discovery and data mining) Cup’99 and is

network flow traffic. The data set contains 4,898,431

rows and 42 attributes [20]. Continuous attributes

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 12 of 21

were discretized into 25 bins using Lloyd’s Algorithm

[21], resulting in 475 bins.
• linkage – This data set contains 5,749,132 rows

and 12 attributes. The attributes were discretized into

130 bins. The data are anonymized records from the

Epidemiological Cancer Registry of the German state

of North Rhine-Westphalia [22].
• BPA (Bonneville power administration) – this data

set contains measurements reported from 20

synchrophasors deployed over the Pacific Northwest

power grid over approximately one month [23]. Data

from all synchrophasors arrive at a rate of 60

measurements per second and are discretized into

1367 bins. There are 7,273,800 rows in this data set.
• Zipf – we generate three synthetic data sets using a

Zipf distribution. Zipf distributions represent

clustered approaches to discretization and mimic

real-world data [24]. The Zipf distribution generator

assigns each bit a probability of:

p(k, n, skew) = (1/kskew)/
∑n

i=1(1/i
skew) where n is

the number of bins determined by cardinality, k is

their rank (bin number: 1 to n), and the parameter

skew characterizes the exponential skew of the

distribution. Increasing skew increases the likelihood

of assigning 1s to bins with lower rank (lower values

of k) and decreases the likelihood of assigning 1s to

bins with higher rank. We set k = 10, n = 10, and

create three different synthetic Zipf data sets using

skew = 0, 1, and 2. These generated data sets each

contain 100 bins (i.e., ten attributes discretized into

ten bins each) and 32 million rows.

For each of these six data sets (three real and three

synthetic), we use the GPU based range-query methods

described in the “GPU decompression strategy” section

(i.e., COA, ROA, hybrid, and ideal hybrid), as well as

the parallel CPU methods described in the “Multi-core

CPU methods” section (processing iteratively and using

a reduction), to execute a range query of 64 random bit

vectors. This query size is sufficiently large that there is

negligible variation in execution time when different bit

vectors are selected. We also conduct a test where query

size is varied. For this test we use the highest perform-

ing CPU and GPU methods to query all data sets using

4,8,16,32, and 64 bins.

For GPU methods, we use the maximum number of

threads per thread block (32 for ROA and 1024 for the

others) and the maximum number of thread blocks per

thread grid required for the problem at hand. When using

the CPU methods, we conduct multiple tests using 1, 2, 4,

8, and 16 cores.

Each experiment was run six times and the execu-

tion time of each trial was recorded. To remove tran-

sient program behavior, the first result was discarded.

The arithmetic mean of the remaining five execution

times is shown in the results. We use the averaged

execution times to calculate our comparison metric,

speedup.

Results
Here we present the results of the experiments described

in the previous Section. We first present a comparison of

GPU performance enhancement over the two CPU meth-

ods organized by data set. We then compare the relative

performance of the two CPU methods. A focused view

of GPU performance relative to the highest performing

CPU scenarios (using 16 cores) for each data set is then

provided. We then examine the relative performance of

only the GPU methods. Finally, we present GPU and CPU

results for queries of varying size.

Results are shown for all GPU tests compared to the

iterative CPUmethod, organized by data set, in Fig. 8. Iter-

ative CPU range query performance typically improves

with additional cores for every data set. The only excep-

tion being the BPA data set when transitioning from 8 to

16 cores. The GPUmethods outperform the iterative CPU

method in 96.2% of these tests with an average speedup

of 14.50×. The GPU methods are capable of providing

a maximum speedup of 54.14× over the iterative CPU

method. On average, the GPU methods provide 1.45×,

20.24×, 11.45×, 17.36×, 18.76×, and 17.72× speedup for

the KDD, linkage, BPA, Zipf (skew = 0), Zipf (skew = 1),

and Zipf (skew = 2) data sets, respectively.

Results for GPU tests compared to the CPU method

using a reduction, organized by data set, are shown in

Fig. 9. The performance of the CPU reduction method

improves with additional cores for every data set. The

GPU methods outperform the parallel reduction CPU

method in 100% of these tests with an average speedup

of 8.50×. The GPU methods are capable of providing a

maximum speedup of 26.01× over the CPU reduction

method. On average, the GPU methods provide 7.03×,

9.47×, 8.60×, 7.57×, 9.46×, and 9.11× speedup for the

KDD, linkage, BPA, Zipf (skew = 0), Zipf (skew = 1), and

Zipf (skew = 2) data sets, respectively.

Speedups provided by the CPU reduction method over

the iterative CPU approach (when using 16 cores) are

shown for each data set in Fig. 10. The CPU reduction

method provides an average of 2.18× speedup over the

iterative CPU approach and a maximum of 3.77×. KDD

is the only data set where the CPU reduction approach is

not beneficial and incurs a 0.44× slowdown.

A comparison of the GPU methods to the highest per-

forming iterative CPU (16 core) tests is shown in Fig. 11a.

On average, the GPU methods provide 4.97× speedup

over the iterative CPU method when using 16 cores. The

KDD data set is the only instance where the GPU meth-

ods do not outperform the CPU method using 16 cores.

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 13 of 21

Fig. 8 Speedups (vertical axes) for the GPU methods compared to the iterative CPU method (using the number of cores shown in the legend)

grouped by the GPU range query method (horizontal axes). The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0).

The horizontal dashed line indicates a speedup of 1×. All plots share the same legend

In this scenario, only the ideal hybrid GPU approach

outperforms the iterative CPU method (using 16 cores)

with a speedup that is> 1 (1.002×). Despite this, the aver-

age speedup provided by the ideal hybrid method over the

CPU using 16 cores is 5.69×.

A comparison of the GPU methods to the highest

performing CPU reduction (16 core) tests is shown in

Fig. 11b. The GPU methods outperform the CPU reduc-

tion method (using 16 cores) in all tests. On average, the

GPU methods provide 2.16× speedup over the reduction

CPU method when using 16 cores.

Speedups provided by the COA, hybrid, and ideal

hybrid GPU methods relative to the lowest-performing

GPU method (ROA) are shown in Fig. 12. For these

tests, the COA and hybrid methods always outperform

the ROA method, with the hybrid methods providing the

most significant performance improvement over ROA.

On average, the COA, hybrid, and ideal hybrid methods

provide 25.09%, 38.47%, and 45.23% speedup over the

ROA method, respectively.

The effects that varying query size had on our algo-

rithms are shown in Fig. 13a and b. In Fig. 13a, the solid

lines represent the time required by the iterative CPU

method (using 16 cores) for the given query size which is

shown in number of bit-vectors. The solid lines in Fig. 13b,

show the times required by the CPU reduction method

(using 16 cores) for the given query sizes. For compari-

son, the time required by the ideal hybrid GPU approach

are shown as dashed lines in both figures. GPU execution

times are relatively consistent compared to the CPU times

which grow at a faster rate (seen in Fig. 13a and b). For var-

ied query size, the GPU method outperforms the iterative

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 14 of 21

Fig. 9 Speedups (vertical axes) for the GPU methods compared to the CPU reduction method (using the number of cores shown in the legend)

grouped by the GPU range query method (horizontal axes). The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0).

The horizontal dashed line indicates a speedup of 1×. All plots share the same legend

CPU method by a factor of 6.44×, on average, and the

CPU reduction method by 3.06×, on average.

Discussion of results
Using a general (not related to bitmaps) benchmark suite

of optimized GPU and optimized CPU programs, Intel

found that GPUs outperformed CPUs by 3.5× on aver-

age [25]. The ideal hybrid method provides an average

speedup of 4.0× relative to both parallel CPU methods

(using 16 cores). This aligns well with expectations when

comparing optimized GPU and CPU programs.

When compared to the parallel iterative CPU approach,

a major factor determining relative GPU performance is

the degree of the data set’s column compression. This

behavior is shown in Fig. 14. It is most consequential

for tests using the KDD data set, which is the only data

set where the GPU methods do not always outperform

the iterative CPU method. This only occurs when the

CPU method is used with 16 cores. The relatively high-

performance of the CPU method is entirely due to the

highly compressed nature of the KDD data set. The com-

pressibility of the KDD data set is such that compressed

queried bit vectors can be held entirely in cache. Further,

the branch prediction and speculative execution capabil-

ities of the CPU allow enhanced performance over GPUs

when querying highly compressed bit vectors. GPUs have

no such branch predictors and do not benefit from bitmap

compression beyond storage and transmission efficiency.

The remaining data sets did not exhibit the same degree

of compression, thereby reducing CPU performance and

enhancing GPU speedup. When data sets are less com-

pressible, there is greater variance in the relative per-

formance of the GPU methods when compared to the

iterative CPU method. This is apparent in the variation

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 15 of 21

Fig. 10 Speedups provided by the CPU reduction method relative to the iterative CPU method. The Zipf data set skews are appended (e.g., Zipf0

has a skew of 0). The horizontal dashed line indicates a speedup of 1×

in speedup results across the GPU methods in Fig. 14a,

where there is less variation for highly compressible data

sets and more variation for less compressible data sets.

When compared to the parallel reduction CPUmethod,

the effect of compression ratio is greatly reduced. This is

seen in Fig. 14b, where the data look like damped ver-

sions of their counterparts from Fig. 14a. The relative

performance of the GPU methods is reduced (compared

to the relative GPU performance vs the iterative CPU

approach). These features occur because the parallel

reduction approach provides more consistent query exe-

cution behavior. The parallel reduction consecutively

halves the amount data remaining to be processed until

the query is completed. This halving means that the data

of interest can be completely stored in lower latency

CPU caches fairly early in the reduction. The same is not

Fig. 11 Speedups for all GPU methods vs. a the iterative CPU method using 16 cores and vs. b the reduction CPU method using 16 cores. The Zipf

data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0). The horizontal dashed line indicates a speedup of 1×. All plots share

the same legend

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 16 of 21

Fig. 12 Percent speedups for the GPU COA, hybrid, and ideal hybrid

methods relative to the ROA method. The Zipf data set skews are

appended (e.g., Zipf0 has a skew of 0). A speedup of 1× is a percent

speedup of zero

true for the iterative approach which necessitates iterative

loads of bit vectors from memory.

When varying query size, we find the ideal hybrid GPU

method provides a consistent performance enhancement

over the parallel CPU method (Fig. 13). The relatively

consistent results for the GPU in these tests are due

to the massively parallel nature of our algorithms. As

the majority of the processing happens in parallel, the

additional cost of adding columns is negligible. The syn-

thetic data set Zipf skew 0-2 produces the only results

where a variation in GPU execution time can be easily

be observed. This variance is likely due to additional con-

tention for memory resources as Zipf has more than 4×

the number of rows than the largest real-world data set.

The iterative CPU method (Fig. 13a) displays consistent

behavior where execution times appear to be “plateauing”

as query size increases. Conversely, the CPU reduction

method (Fig. 13b) displays an execution time trough for

queries between 8 and 32 (inclusive) bit-vectors in size.

For larger queries, the execution times rise appreciably.

This rise for queries of 64 columns demonstrates the con-

sequences of using a reduction to handling queries that

are beyond the parallelism of which the CPU is capable.

Each of our GPU methods can take advantage of cer-

tain GPU architectural features due to their differing

data access patterns. These differences make each GPU

method suited for particular types of queries. A listing of

architectural advantages, disadvantages, and ideal queries

is provided in Table 2.

An example of query suitability is apparent in our exper-

imental results. In our tests, the ROA method is con-

sistently outperformed by the COA method. This occurs

because we limit our tests to queries of 64 columns,

thereby limiting ROA thread blocks to 32 threads, far

below the potential 1024 thread limit. The consequences

of this are severely limiting the benefits of using shared

memory and reducing the computational throughput of

each thread block. For larger queries (≤2048 columns),

the ROA method could potentially outperform the COA

method due to increased computational throughput.

However, such queries are not commonly encountered in

practice.

Related work
There has been a significant amount of research con-

ducted in the area of bitmap indices and their com-

pression. The work presented in this paper is concerned

with the widely adopted WAH [9] bitmap compression

scheme. However, there are many similar techniques.

One of the first hybrid run-length encoding schemes was

Byte-aligned Bitmap Compression (BBC) [4]. BBC uses

byte-alignment to compress runs and which, in certain

cases, allows it to achieve greater compression than other

compression schemes [9]. This increase in compression is

often achieved at the expense of query times. For this rea-

son many of the recent encoding schemes (e.g., [5–8, 26–

28]) use system word alignment. We believe that many of

the bitmap-compression schemes could realize significant

query speed-up by employing similar parallel algorithms

as presented in this paper.

Previous works have explored parallel algorithms for

bitmaps indices. Chou et al. [29] introduced FastQuery

(and several later augmentations, e.g. [30, 31]) which

provides a parallel indexing solution that uses WAH com-

pressed bitmap indices. Su et al. [32] presented a parallel

indexing system based on two-level bitmap indices. These

works focused on generating the bitmaps in parallel and

not necessarily the parallel processing of actual bitwise

operations, nor did they implement their algorithms for

GPUs.

With CUDA, GPUs have exhibited a meteoric rise in

enhancing the performance of general-purpose comput-

ing problems. Typically, GPUs are used to enhance the

performance of core mathematical routines [33–35] or

parallel programming primitives [36, 37] at the heart of

an algorithm. With these tools, GPUs have been used to

create a variety of high-performance tools, including com-

putational fluid dynamics models [38, 39], finite element

methods [40], and traditional relational databases [41].

Several researchers have explored using hardware sys-

tems other than standard CPUs for bitmap creation and

querying. Fusco, et al. [42] demonstrated that greater

throughout of bitmap creation could be achieved using

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 17 of 21

Fig. 13 Average execution times for the iterative CPU method (a) using 16 cores (solid lines), the CPU reduction method (b) using 16 cores, and the

ideal hybrid GPU method (shown as dashed lines in a and b) by query size. The Zipf data set skews are appended (e.g., Zipf0 has a skew of 0). Both

plots share the same x-axis

GPU implementations over CPU implementations of

WAH, and a related compression scheme, PLWAH (Posi-

tion List Word-Aligned Hybrid) [6]. Nguyen, et al. [43]

showed that field-programmable gate arrays (FPGAs)

could be used to create bitmap indices using significantly

less power than CPUs or GPUs. These works did not

explore querying algorithms. Haas et al. [44] created a

custom instruction set extensions for the processing of

compressed bitmaps. Their study showed that integrat-

ing the extended instruction set in a RISC style processor

could realize more than 1.3× speedup over an Intel i7-

3960X when executing WAH AND queries. Their study

did not investigate parallel solutions.

Other works have developed systems that use GPUs

to answer range queries using non-bitmap based

approaches. Heimel and Markl [45] integrated a GPU-

accelerated estimator into the optimizer of PostgreSQL.

Their experiments showed that their approach could

achieve a speedup of approximately 10× when compared

to a CPU implementation. Gosink et al. [46] created a

parallel indexing data structure that uses bin-based data

clusters. They showed that their system could achieve 3×

speedup over their CPU implementation. Kim et al. [47]

showed that their massively parallel approach to R-tree

traversal outperformed the traditional recursive R-tree

traversals when answering multi-dimensional range

queries. Our work focuses on increasing the efficiency of

systems relying on WAH compressed bitmaps.

Orthogonal to our parallel approach, other works have

investigated non-parallel methods to increase the effi-

ciency of range query processing using bitmap indices.

Wu et al. [48] used a size ordered priority queue to

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 18 of 21

Fig. 14 Average GPU speedup a) relative to the iterative CPU method and B) relative to the reduction CPU method vs. data set compression ratio

(compressed size / uncompressed size, shown below each data set on the x-axis). The data for hybrid and ideal hybrid in (b) are indistinguishable at

the scale of this figure. The Zipf data set skews are appended (e.g., Zipf0 has a skew of 0). The horizontal axis is logarithmically scaled. Both plots

share the same legend and x-axis

sequence the column processing of WAH and BBC com-

pressed bitmap range queries. Their empirical study

showed that this approach requires less core memory and

often performed better than a random sequence of col-

umn processing. Additionally, they explored an in-place

query algorithm, in which the largest column was decom-

pressed and used to start all intermediate results. This

approach was shown to be faster than the priority queue

algorithm but required more memory. Slechta, et al. [49]

explored several similar column ordering techniques for

the range query processing of Variable-Aligned Length

[27] compressed bitmaps. Chmiel et al. [50] proposed a

hierarchically organized bitmap index (HOBI) for dimen-

sional models used in data warehouses. HOBI creates a

bitmap index for each dimensional level. An upper level

bitmap is essentially the aggregation of the lower level

bitmaps. Their experiments showed that the hierarchical

structure of HOBI was able to outperform Oracle’s native

bitmap join index. Similarly, Nagarkar et al. [51] proposed

a compressed spatial hierarchical bitmap (cSHB) index to

support spatial range queries. Their approach converts a

2D space into a 1D space using Z-order traversal. A hierar-

chy is then imposed over the 2D space where each node of

the hierarchy corresponds to a bounded subspace. Their

experimental study showed that cSHB and their bitmap

selection process performed better than alternative index-

ing structures for spatial range queries.

The works of Andrzejewski and Wrembel [11, 12] are

closest to the work presented in this paper. They intro-

duced WAH and PLWAH compression and decompres-

sion algorithms for GPUs. Their decompression work

details a parallel algorithm for decompressing a single

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 19 of 21

Table 2 Advantages, disadvantages, and ideal query application for the GPU methods

Method Advantages Disadvantages Ideal queries

Memory
coalescing

Shared memory Extra global
memory accesses

Limited
throughput

COA � � Point

ROA � � Range, where
2048 ≥ columns
>1024

Hybrid � � � Range, where
columns >2048

Ideal
hybrid

� � Range, where
columns ≤ 1024

WAH compressed bit vector. Our previous work [13] and

this extension builds upon their approach so that multi-

ple WAH compressed bit vectors can be decompressed

in parallel. Their work also examined parallel queries that

were limited to bitwise operations between two bit vec-

tors. While executing bitwise operations between two

decompressed bit vectors is obvious, Andrzejewski and

Wrembel presented a parallel GPU algorithm for such

an operation between two compressed bit vectors [12].

We explored range queries which require bitwise oper-

ations to be performed on sequences of bit vectors. As

demonstrated above, range queries provide an excellent

application for exploiting the highly parallel nature of

GPUs.

It should be noted that in [12], Andrzejewski andWrem-

bel presented a comparison between their GPU-WAH

andGPU-PLWAH implementations. Their results showed

that GPU-PLWAH was slower due to an additional step

needed to decompress PLWAH data. However, after the

data was decompressed, their query algorithms were

essentially the same. The use of our algorithms (COA,

ROA, Hybrid, and Ideal Hybrid) would produce a sim-

ilar result. Our approaches take decompressed columns

as input, so the only timing difference between WAH

and PLWAH would be due to the varying decompression

algorithms.

As mentioned above, this work is an extension of our

previous work [13]. In this paper, we more thoroughly

presented all of our algorithms, including a formal pre-

sentation of Ideal Hybrid and a theoretical analysis of all

our approaches. We also introduced two novel parallel

algorithms for processing bitmap range queries on the

CPU. Additionally, we significantly expanded our empiri-

cal study.

Conclusion and future work
In this paper, we present parallel methods for execut-

ing range queries on CPUs and GPUs. The CPU methods

comprise iterative and reduction based approaches. All

GPU methods perform a reduction across the queried

bitmaps. To extract parallelism, the CPU and COA GPU

methods operate primarily along pairedWAH bit vectors,

the ROA GPU method operates along rows (all of which

are independent), and the hybrid GPU methods operate

along multiple rows at once. The GPU methods exploit

the highly parallel nature of GPUs and their architectural

details to extract additional performance. These include

mechanisms to accelerate memory transfers (coalescing)

and the use of low-latency GPU shared memory.

We conducted an empirical study comparing the GPU

methods to the CPU methods. Of the two CPU methods,

the reduction approach provided greater performance

when querying five of the six data sets. It realized an aver-

age speedup of 2.18× over the iterative CPU approach.

The results of our study showed that the GPU methods

outperform the CPU in 98.8% of our tests, providing a

maximum speedup of 54.1× and an average speedup of

11.5×. When compared to the highest performing iter-

ative CPU tests, the GPU methods provide an average

speedup of 5.69× for queries of 64 bins and 6.44× for

queries of 4, 8, 16, 32, and 64 bins. When compared to the

highest performing CPU reduction tests, the GPU meth-

ods provide an average speedup of 2.16× for queries of 64

bins and 3.06× for queries of 4, 8, 16, 32, and 64 bins.

We plan to pursue additional work analyzing the param-

eter space of the hybrid method and subsequent perfor-

mance. This includes the effect of database character-

istics, varying tile dimension, and distributing tiles and

queries across multiple GPUs. We also intend to con-

tinue exploring means to accelerate bitmap query exe-

cution using computational accelerators. In particular,

we plan to use non-NVIDIA GPUs and future genera-

tions of NVIDIA GPUs to investigate additional means

of enhancing bitmap query throughput. We would also

like to explore the feasibility of refactoring other bitmap

schemes such as roaring bitmaps [52] and byte-aligned

bitmap codes [4] to run on GPUs.

Abbreviations

CPU: Central processing unit; CUDA: Compute unified device architecture;

GPU: Graphics processing unit; MSB: Most significant bit; WAH: Word-aligned

hybrid; COA: Column oriented access; ROA: Row oriented access; BBC:

Byte-aligned bitmap compression; PLWAH: Position list word-aligned hybrid;

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 20 of 21

FPGA: Field programmable gate array; RISC: Reduced instruction set computer;

HOBI: Hierarchically organized bitmap index; cSHB: Compressed spatial

hierarchical bitmap; GB: Gigabyte; RAM: Random access memory; KDD:

Knowledge discovery and data mining; BPA: Bonneville power administration

Acknowledgements

JMM and JS would like to acknowledge the University of St. Thomas College of

Arts and Science Dean’s Office for generously funding some of the

computational resources that made this study possible. We would also like to

thank our anonymous reviewers for their constructive feedback and positive

comments contributing to the improvement of this manuscript.

Author’s contributions

Algorithmic design was primarily done by JMM, JS, and DC with secondary

contributions by MN and ZS. The implementation of all algorithms was

primarily performed by MN and ZS with secondary development by JMM and

JS. All parties played an equal role in manuscript development. The author(s)

read and approved the final manuscript.

Funding

MN and ZS received Undergraduate Research Funding from the University of

St. Thomas.

Availability of data andmaterials

Please contact the corresponding author to obtain the data used in this

manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computer and Information Sciences, University of St. Thomas,

2115 Summit Ave., 55105 Saint Paul, Minnesota, USA. 2Department of

Mathematics and Computer Science, University of Puget Sound, 1500 N.

Warner St., 98416 Tacoma, Washington, USA.

Received: 25 March 2020 Accepted: 14 July 2020

References

1. Norris RP (2010) Data challenges for next-generation radio telescopes. In:

Proceedings of the 2010 Sixth IEEE International Conference on e-Science

Workshops. E-SCIENCEW ’10. IEEE. pp 21–24. https://doi.org/10.1109/

esciencew.2010.13

2. Stockinger K (2001) Design and implementation of bitmap indices for

scientific data. In: International Database Engineering and Application

Symposium. pp 47–57. https://doi.org/10.1109/ideas.2001.938070

3. Kesheng W, Koegler W, Chen J, Shoshani A (2003) Using bitmap index for

interactive exploration of large datasets. In: International Conference on

Scientific and Statistical Database Management. pp 65–74. https://doi.

org/10.1109/ssdm.2003.1214955

4. Antoshenkov G (1995) Byte-aligned bitmap compression. In: Proceedings

DCC’95 Data Compression Conference. IEEE. p 476. https://doi.org/10.

1109/dcc.1995.515586

5. Corrales F, Chiu D, Sawin J (2011) Variable length compression for bitmap

indices. In: Hameurlain A, Liddle SW, Schewe K-D, Zhou X (eds). Database

and Expert Systems Applications. Springer, Berlin. pp 381–395

6. Deliège F, Pedersen TB (2010) Position list word aligned hybrid:

Optimizing space and performance for compressed bitmaps. In:

International Conference on Extending Database Technology. EDBT ’10.

pp 228–239. https://doi.org/10.1145/1739041.1739071

7. Fusco F, Stoecklin MP, Vlachos M (2010) Net-fli: On-the-fly compression,

archiving and indexing of streaming network traffic. VLDB 3(2):1382–1393

8. Wu K, Otoo EJ, Shoshani A, Nordberg H (2001) Notes on design and

implementation of compressed bit vectors. Technical Report

LBNL/PUB-3161, Lawrence Berkeley National Laboratory

9. Wu K, Otoo EJ, Shoshani A (2002) Compressing bitmap indexes for faster

search operations. In: Proceedings 14th International Conference on

Scientific and Statistical Database Management. IEEE. pp 99–108. https://

doi.org/10.1109/ssdm.2002.1029710

10. Wu K, Otoo EJ, Shoshani A (2006) Optimizing bitmap indices with efficient

compression. ACM Trans. Database Syst. 31(1):1–38

11. Andrzejewski W, Wrembel R (2010) GPU-WAH: Applying GPUs to

compressing bitmap indexes with word aligned hybrid. In: International

Conference on Database and Expert Systems Applications. Springer,

Berlin. pp 315–329

12. Andrzejewski W, Wrembel R (2011) GPU-PLWAH: GPU-based

implementation of the PLWAH algorithm for compressing bitmaps.

Control Cybern 40:627–650

13. Nelson M, Sorenson Z, Myre JM, Sawin J, Chiu D (2019) Gpu acceleration

of range queries over large data sets. In: Proceedings of the 6th IEEE/ACM

International Conference on Big Data Computing, Applications and

Technologies. BDCAT ’19. Association for Computing Machinery, New

York. pp 11–20

14. CUDA C (2019) Best practice guide. https://docs.nvidia.com/cuda/cuda-

c-best-practices-guide. Accessed 1 Mar 2020

15. Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z

(2015) Gpu-based bees swarm optimization for association rules mining.

J Supercomput 71(4):1318–1344

16. Djenouri Y, Bendjoudi A, Habbas Z, Mehdi M, Djenouri D (2017) Reducing

thread divergence in gpu-based bees swarm optimization applied to

association rule mining. Concurr Comput Pract Experience 29(9):3836

17. Tran N-P, Lee M, Choi DH (2015) Memory-efficient parallelization of 3D

lattice Boltzmann flow solver on a GPU. In: 2015 IEEE 22nd International

Conference on High Performance Computing (HiPC). IEEE. pp 315–324.

https://doi.org/10.1109/hipc.2015.49

18. Weber N, Goesele M (2017) MATOG: array layout auto-tuning for CUDA.

ACM Trans Archit Code Optim (TACO) 14(3):28

19. Dagum L, Menon R (1998) OpenMP: An industry-standard API for

shared-memory programming. Comput Sci Eng 5(1):46–55

20. Lichman M (2013) UCI Machine Learning Repository. http://archive.ics.uci.

edu/ml. Accessed 1 Aug 2019

21. Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf Theory

28(2):129–137

22. Sariyar M, Borg A, Pommerening K (2011) Controlling false match rates in

record linkage using extreme value theory. J Biomed Inf 44(4):648–654
23. Bonneville Power Administration, http://www.bpa.gov
24. Newman M (2005) Power laws, pareto distributions and zipf’s law.

Contemp Phys 46(5):323–351
25. Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N,

Smelyanskiy M, Chennupaty S, Hammarlund P, et al (2010) Debunking the

100X GPU vs. CPU myth: an evaluation of throughput computing on CPU

and GPU. ACM SIGARCH Comput Archit News 38(3):451–460
26. Colantonio A, Di Pietro R (2010) Concise: Compressed ’n’ composable

integer set. Inf Process Lett 110(16):644–650
27. Guzun G, Canahuate G, Chiu D, Sawin J (2014) A tunable compression

framework for bitmap indices. In: 2014 IEEE 30th International Conference

on Data Engineering. IEEE. pp 484–495. https://doi.org/10.1109/icde.

2014.6816675
28. van Schaik SJ, de Moor O (2011) A memory efficient reachability data

structure through bit vector compression. In: Proceedings of the 2011

ACM SIGMOD International Conference on Management of Data.

SIGMOD ’11. pp 913–924. https://doi.org/10.1145/1989323.1989419
29. Chou J, Howison M, Austin B, Wu K, Qiang J, Bethel EW, Shoshani A, Rübel

O, Prabhat Ryne RD (2011) Parallel index and query for large scale data

analysis. In: International Conference for High Performance Computing,

Networking, Storage and Analysis. SC ’11. pp 30–13011. https://doi.org/

10.1145/2063384.2063424
30. Dong B, Byna S, Wu K (2014) Parallel query evaluation as a scientific data

service. In: 2014 IEEE International Conference on Cluster Computing

(CLUSTER). pp 194–202. https://doi.org/10.1109/cluster.2014.6968765
31. Yildiz B, Wu K, Byna S, Shoshani A (2019) Parallel membership queries on

very large scientific data sets using bitmap indexes. Concurr Comput

Pract Experience:5157. https://doi.org/10.1002/cpe.5157
32. Su Y, Agrawal G, Woodring J (2012) Indexing and parallel query

processing support for visualizing climate datasets. In: 2012 41st

International Conference on Parallel Processing. IEEE. pp 249–258. https://

doi.org/10.1109/icpp.2012.33
33. Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I

(2014) Accelerating numerical dense linear algebra calculations with

GPUs. Numer Comput GPUs:1–26. https://doi.org/10.1007/978-3-319-

06548-9_1

https://doi.org/10.1109/esciencew.2010.13
https://doi.org/10.1109/esciencew.2010.13
https://doi.org/10.1109/ideas.2001.938070
https://doi.org/10.1109/ssdm.2003.1214955
https://doi.org/10.1109/ssdm.2003.1214955
https://doi.org/10.1109/dcc.1995.515586
https://doi.org/10.1109/dcc.1995.515586
https://doi.org/10.1145/1739041.1739071
https://doi.org/10.1109/ssdm.2002.1029710
https://doi.org/10.1109/ssdm.2002.1029710
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://doi.org/10.1109/hipc.2015.49
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.bpa.gov
https://doi.org/10.1109/icde.2014.6816675
https://doi.org/10.1109/icde.2014.6816675
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1145/2063384.2063424
https://doi.org/10.1145/2063384.2063424
https://doi.org/10.1109/cluster.2014.6968765
https://doi.org/10.1002/cpe.5157
https://doi.org/10.1109/icpp.2012.33
https://doi.org/10.1109/icpp.2012.33
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1007/978-3-319-06548-9_1

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 21 of 21

34. Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for

hybrid GPU accelerated manycore systems. Parallel Comput

36(5-6):232–240

35. Tomov S, Nath R, Ltaief H, Dongarra J (2010) Dense linear algebra solvers

for multicore with GPU accelerators. In: 2010 IEEE International

Symposium on Parallel & Distributed Processing, Workshops and Phd

Forum (IPDPSW). IEEE. pp 1–8. https://doi.org/10.1109/ipdpsw.2010.

5470941

36. Bell N, Hoberock J (2012) Thrust: A productivity-oriented library for CUDA.

In: GPU Computing Gems Jade Edition. pp 359–371. https://doi.org/10.

1016/b978-0-12-811986-0.00033-9

37. Merrill D (2016) Cub: Cuda unbound. http://nvlabs.github.io/cub.

Accessed 1 Aug 2019

38. Bailey P, Myre J, Walsh SD, Lilja DJ, Saar MO (2009) Accelerating lattice

Boltzmann fluid flow simulations using graphics processors. In: 2009

International Conference on Parallel Processing. IEEE. pp 550–557. https://

doi.org/10.1109/icpp.2009.38

39. Myre J, Walsh SD, Lilja D, Saar MO (2011) Performance analysis of

single-phase, multiphase, and multicomponent lattice-Boltzmann fluid

flow simulations on GPU clusters. Concurr Comput Pract Experience

23(4):332–350

40. Walsh SD, Saar MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and

engineering system simulations on graphics hardware. Comput Geosci

35(12):2353–2364

41. Bakkum P, Skadron K (2010) Accelerating sql database operations on a

gpu with cuda. In: Proceedings of the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units. GPGPU-3. ACM, New York.

pp 94–103

42. Fusco F, Vlachos M, Dimitropoulos X, Deri L (2013) Indexing million of

packets per second using gpus. In: Proceedings of the 2013 Conference

on Internet Measurement Conference. IMC ’13. pp 327–332. https://doi.

org/10.1145/2504730.2504756

43. Nguyen X, Hoang T, Nguyen H, Inoue K, Pham C (2018) An FPGA-based

hardware accelerator for energy-efficient bitmap index creation. IEEE

Access 6:16046–16059

44. Haas S, Karnagel T, Arnold O, Laux E, Schlegel B, Fettweis G, Lehner W

(2016) Hw/sw-database-codesign for compressed bitmap index

processing. In: 2016 IEEE 27th International Conference on

Application-specific Systems, Architectures and Processors (ASAP).

pp 50–57. https://doi.org/10.1109/asap.2016.7760772

45. Heimel M, Markl V (2012) A first step towards gpu-assisted query

optimization. In: Bordawekar R, Lang CA (eds). International Workshop on

Accelerating Data Management Systems Using Modern Processor and

Storage Architectures - ADMS. VLDB endowment. pp 33–44

46. Gosink LJ, Wu K, Bethel EW, Owens JD, Joy KI (2009) Data parallel

bin-based indexing for answering queries on multi-core architectures. In:

Winslett M (ed). Scientific and Statistical Database Management.

pp 110–129. https://doi.org/10.1007/978-3-642-02279-1_9

47. Kim J, Kim S-G, Nam B (2013) Parallel multi-dimensional range query

processing with r-trees on gpu. J Parallel Distrib Comput 73(8):1195–1207

48. Wu K, Otoo E, Shoshani A (2004) On the performance of bitmap indices

for high cardinality attributes. In: VLDB’04. pp 24–35. https://doi.org/10.

1016/b978-012088469-8.50006-1

49. Slechta R, Sawin J, McCamish B, Chiu D, Canahuate G (2014) Optimizing

query execution for variable-aligned length compression of bitmap

indices. In: International Database Engineering & Applications

Symposium. pp 217–226. https://doi.org/10.1145/2628194.2628252

50. Chmiel J, Morzy T, Wrembel R (2009) Hobi: Hierarchically organized

bitmap index for indexing dimensional data. In: Data Warehousing and

Knowledge Discovery. pp 87–98. https://doi.org/10.1007/978-3-642-

03730-6_8

51. Nagarkar P, Candan KS, Bhat A (2015) Compressed spatial hierarchical

bitmap (cshb) indexes for efficiently processing spatial range query

workloads. Proc VLDB Endow 8(12):1382–1393

52. Chambi S, Lemire D, Kaser O, Godin R (2016) Better bitmap performance

with roaring bitmaps. Softw Pract Exper 46(5):709–719

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

https://doi.org/10.1109/ipdpsw.2010.5470941
https://doi.org/10.1109/ipdpsw.2010.5470941
https://doi.org/10.1016/b978-0-12-811986-0.00033-9
https://doi.org/10.1016/b978-0-12-811986-0.00033-9
http://nvlabs.github.io/cub
https://doi.org/10.1109/icpp.2009.38
https://doi.org/10.1109/icpp.2009.38
https://doi.org/10.1145/2504730.2504756
https://doi.org/10.1145/2504730.2504756
https://doi.org/10.1109/asap.2016.7760772
https://doi.org/10.1007/978-3-642-02279-1_9
https://doi.org/10.1016/b978-012088469-8.50006-1
https://doi.org/10.1016/b978-012088469-8.50006-1
https://doi.org/10.1145/2628194.2628252
https://doi.org/10.1007/978-3-642-03730-6_8
https://doi.org/10.1007/978-3-642-03730-6_8

	Abstract
	Keywords

	Introduction
	Background
	Word-Aligned hybrid compression (WAH)
	Graphics processing units (GPUs)

	Parallel range queries
	GPU decompression strategy
	GPU range query execution strategies
	Column-oriented access (COA)
	Row-oriented access (ROA)
	Hybrid

	Ideal hybrid
	Multi-core CPU methods

	Theoretical analysis
	Evaluation methodology
	Results
	Discussion of results
	Related work
	Conclusion and future work
	Abbreviations
	Acknowledgements
	Author's contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

