
Parallel Algorithm for Incremental
Betweenness Centrality on Large Graphs

Item Type Article

Authors Jamour, Fuad Tarek; Skiadopoulos, Spiros; Kalnis, Panos

Citation Jamour F, Skiadopoulos S, Kalnis P (2017) Parallel Algorithm
for Incremental Betweenness Centrality on Large Graphs. IEEE
Transactions on Parallel and Distributed Systems: 1–1. Available:
http://dx.doi.org/10.1109/tpds.2017.2763951.

Eprint version Post-print

DOI 10.1109/tpds.2017.2763951

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Journal IEEE Transactions on Parallel and Distributed Systems

Rights (c) 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Download date 04/08/2022 18:33:11

Link to Item http://hdl.handle.net/10754/625935

http://dx.doi.org/10.1109/tpds.2017.2763951
http://hdl.handle.net/10754/625935

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 1

Parallel Algorithm for Incremental Betweenness
Centrality on Large Graphs

Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis

Abstract—Betweenness centrality quantifies the importance of nodes in a graph in many applications, including network analysis,

community detection and identification of influential users. Typically, graphs in such applications evolve over time. Thus, the

computation of betweenness centrality should be performed incrementally. This is challenging because updating even a single edge

may trigger the computation of all-pairs shortest paths in the entire graph. Existing approaches cannot scale to large graphs: they

either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them

prohibitively slow. We propose iCENTRAL; a novel incremental algorithm for computing betweenness centrality in evolving graphs. We

decompose the graph into biconnected components and prove that processing can be localized within the affected components.

iCENTRAL is the first algorithm to support incremental betweeness centrality computation within a graph component. This is done

efficiently, in linear space; consequently, iCENTRAL scales to large graphs. We demonstrate with real datasets that the serial

implementation of iCENTRAL is up to 3.7 times faster than existing serial methods. Our parallel implementation that scales to large

graphs, is an order of magnitude faster than the state-of-the-art parallel algorithm, while using an order of magnitude less

computational resources.

Index Terms—Betweenness centrality, dynamic graph algorithms, parallel graph algorithms

✦

1 INTRODUCTION

G RAPHS model complex relationships among objects in
a plethora of applications ranging from chemistry and

bioinformatics to social networks and web analysis. An
essential tool for graph analysis is centrality metrics defined
on graph nodes. These metrics rank nodes according to
their position in the graph and are typically interpreted
as the prominence of the corresponding entities [1]. For
instance, a node with high centrality in a citation graph may
represent an influential paper or a prominent researcher.
Many centrality metrics are defined using the number of
paths that link pairs of nodes, or the ratio of the shortest
paths a node lies on.

In this paper, we study the betweenness centrality metric
[2], [3]; which for a node v of a graph G is defined as the
fraction of the shortest paths between all pairs of nodes
that pass through v. Betweenness centrality is used in a
variety of applications, including community detection in
social networks [4], identifying gene-disease associations
in gene-interaction graphs [5] and message routing in mo-
bile networks [6]. Computing betweenness centrality is an
intensive task that requires the computation of all-pairs
shortest paths. The fastest known algorithm was proposed
by Brandes [1] and takes O(|V ||E|) time, where |V | is the
number of nodes and |E| is the number of edges of the input
graph.

Modern graphs are inherently evolving [7]. For instance,
users join and leave social networks over time, and con-
nections between users (e.g., friendships) are established

• Fuad Jamour and Panos Kalnis are with the King Abdullah University of
Science and Technology (KAUST), Saudi Arabia.
E-mails: fuad.jamour@kaust.edu.sa and panos.kalnis@kaust.edu.sa

• Spiros Skiadopoulos is with the University of the Peloponnese, Greece.
E-mail: spiros@uop.gr

Algorithm Time (sec) Space (GB) Cores

Green [8] crashed 4,000.0 1

QUBE [9] 4,210 0.2 1

Lee 20161 [10] 2,634 0.06 1

Kourtellis [11] 2,376 4,000.0 100

iCENTRAL 190 1.6 20

TABLE 1: Performance of the best incremental algorithms
for updating betweenness centrality after inserting one
edge; twitter-munmun dataset (460K nodes, 833K edges).

or demolished. Consider the relatively small twitter-munmun

dataset with 460K nodes and 833K edges (see Section 4 for
details) and assume one new edge is inserted. To recompute
betweenness centrality from scratch, Brandes algorithm re-
quires a day. Consequently, in evolving graphs, betweenness
centrality should be updated in an incremental way that
avoids complete recomputation. This is challenging because
it requires all-pairs shortest path information in the entire
graph. Even a small graph update can result in many short-
est path alternations, causing many betweenness centrality
values updates.

In this work we concentrate on the incremental computa-
tion of betweenness centrality. In the related literature, three
approaches stand out for updating betweenness centrality
in evolving graphs:

1) Green’s algorithm [8] stores and maintains the all-
pairs shortest path information of the graph in the
main memory. Although this approach is fast, memory
requirements are prohibitive. For example, for the rel-

1. Estimated runtime. (see Section 4 for details)

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 2

atively small twitter-munmun graph mentioned above,
Green requires more than 4TB of RAM, causing the
algorithm to crash on our machine with 256GB of RAM,
as shown in Table 1.

2) QUBE [9] decomposes the input graph into indepen-
dent components using minimum union cycles, such
that a change in one component does not affect the
betweenness centrality values of nodes in other compo-
nents. After a graph update, complete recomputation is
only performed within the affected component. QUBE
has linear space requirements and needs only 0.2GB of
RAM for the twitter-munmun graph, but it is very slow
(see Table 1). Recently, the same authors proposed using
biconnected components (a graph decomposition that
results in smaller components compared to the mini-
mum union cycles) [10]. This approach is faster than
the original QUBE (refer to Lee 2016 in Table 1), but it
is still slow, since it requires complete recomputation
within each affected biconnected component.

3) Kourtellis’ algorithm [11] is a parallel map-reduce vari-
ation of Green’s algorithm that uses the Hadoop file
system, instead of RAM, to store the all-pairs shortest
path information. As shown in Table 1, Kourtellis needs
4TB of distributed disk space for the twitter-munmun

graph, and finishes roughly 2 times faster than QUBE,
but uses 100 cores whereas QUBE needs only one.

In this paper we propose iCENTRAL: an incremental
algorithm for computing betweenness centrality in evolving
graphs, that needs space linear to the size of the graph
allowing it to scale to large graphs. The main novelty
of iCENTRAL is the incremental computation within each
graph component, allowing it to avoid many unnecessary
recomputations and be much faster than the state-of-the-art;
for the example in Table 1, iCENTRAL on 20 cores is 10x
faster than Kourtellis on 100 cores. iCENTRAL is based on
three key ideas:

Avoid BFSs. Betweenness centrality needs the all-pairs
shortest path information, which entails the compu-
tation of breadth-first search DAGs of all nodes in
the graph [1]. We observe that after a graph update,
many breadth-first search DAGs do not change at all.
iCENTRAL implements a novel method that identifies
efficiently the breadth-first search DAGs that remain
intact without realizing the actual DAGs.

Incremental BFSs. For those DAGs that are affected by
a graph update, iCENTRAL implements a novel algo-
rithm that incrementally maintains only the parts of
the breadth-first search DAGs that are affected without
recomputing the actual DAGs.

Biconnected components. iCENTRAL decomposes the
graph into biconnected components [12]. We formally
prove (Theorem 1) that the betweenness centrality val-
ues of nodes not belonging to the affected biconnected
components do not change after the update. We also
show how to incrementally update betweenness cen-
trality values within the affected components (Theo-
rem 2). This contrasts existing approaches [9], [10] that
need to recompute everything within each affected
component.

The ideas above result in significant speedups over re-

1 2 3

6 7 8

4 5

Fig. 1: Graph G contains two shortest paths from node 2 to
node 4; node 1 lies on one of them, so σ24=2 and σ24(1)=1.

computation of betweenness centrality from scratch. Still,
the computational intensity of betweenness centrality can-
not be handled effectively by a single machine. Thus, ex-
ploiting parallelism is necessary to scale to large graphs.
To this end, we develop a parallel version of iCENTRAL

that runs on multiple cores on one machine, or on many
machines. The main idea is to perform in parallel many
breadth-first searches from different starting nodes. Other
than some synchronization at the beginning and the end
of the breadth-first searches, our implementation is embar-
rassingly parallel; therefore it scales well to large computer
clusters. Parallel iCENTRAL can handle the largest graphs
reported in previous work, using an order of magnitude
less computational resources than the best existing parallel
algorithm [11].

We make the following contributions in this paper:

• We propose iCENTRAL, a novel incremental method for
updating betweenness centrality in evolving graphs.
iCENTRAL scales to large graphs by requiring space
linear to the graph size.

• We couple iCENTRAL with biconnected components
graph decomposition and prove formally the correct-
ness of our algorithm. iCENTRAL is the first algorithm
to support incremental betweenness centrality compu-
tation within each graph component.

• We evaluate our method experimentally by using large
real graphs. We show that the serial version of iCENT-
RAL is up to 3.7 times faster than the best serial meth-
ods.

• Finally, we develop a scalable parallel implementation
of our algorithm. Compared to the state-of-the-art par-
allel incremental algorithm, parallel iCENTRAL is an
order of magnitude faster and requires an order of
magnitude fewer machines.

The rest of this paper is organized as follows: Section 2
contains essential background on the incremental computa-
tion of betweenness centrality. Section 3 introduces iCENT-
RAL. Section 4 presents the experimental analysis, followed
by related work in Section 5 and conclusions in Section 6.

2 BACKGROUND AND DEFINITIONS

A graph G = (V,E) is composed of a set of nodes V and a
set of edges E⊆V ×V . For simplicity, we assume that G is
unweighted, undirected and connected. Our results can be
generalized to directed and weighted graphs.

2.1 Betweenness centrality

The betweenness centrality [1] value BCG[v] of node v in
graph G is the fraction of the shortest paths between all

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 3

σ12 = 1

P1(2) = {1}
1:

1

δ1•(2) = 1.514: 2 4

3

5 8

6

7

σ13 = 2

P1(3)={2, 4}
3:

δ1•(3) = 212:

σ15 = 2

P1(5)={3}
5:

δ1•(5)=010:

σ14 = 1

P1(4) = {1}
2:

δ1•(4) = 3.513:

σ16 = 1

P1(6) = {4}
4:

δ1•(6) = 111:

σ17 = 1

P1(7) = {6}
7:

δ1•(7) = 08:

σ18 = 2

P1(8)={3, 6}
6:

δ1•(8) = 09:

(a)

σ12 = 1

P1(2) = {1}

1

δ1•(2)=0.8310:
2 4

3

5

8 6

7

σ13 = 2

P1(3)={2, 4}

δ1•(3)=0.678:

σ15 = 3

P1(5)={3, 8}
2:

δ1•(5) = 05:

σ14 = 1

P1(4) = {1}

δ1•(4) = 4.1659:

σ16 = 1

P1(6) = {4}

δ1•(6)=0.56:

σ17 = 2

P1(7)={6, 8}
3:

δ1•(7) = 04:

σ18 = 1

P1(8) = {4}
1:

δ1•(8)=0.837:

(b)

Fig. 2: Computing δ1•(v) (illustrations of Examples 1 and 3). The breadth-first search DAGs of node 1 in the example graph
of Fig. 1 before and after inserting edge (4, 8) are shown in (a) and (b) respectively. For clarity, we do not illustrate edges
connecting nodes at the same level.

pairs of nodes in the graph that pass through v. Formally:

BCG[v] =
�

s,t∈V, s �=t �=v

σst(v)

σst

(1)

where σst is the number of shortest paths from node s to
node t, and σst(v) is the number of shortest paths from s to t
that pass through v. For example in Fig. 1, σ24=2, σ24(1)=1,

and BCG[1]=
σ24(1)
σ24

+ σ26(1)
σ26

= 1
2 + 1

2=1.
The fastest known algorithm for computing betweenness

centrality of the nodes of a static graph was proposed by
Brandes [1]. For any triplet of nodes s, t, and v in V ,
Brandes defines pair dependency, denoted by δst(v), and
source dependency, denoted by δs•(v) as:

δst(v) =
σst(v)

σst

and δs•(v) =
�

t∈V, t �=v

δst(v) (2)

respectively. Using the above notions, Equation 1 can be
equivalently written as:

BCG[v] =
�

s∈V, s �=v

δs•(v) (3)

Brandes proved that δs•(v) can be computed using the
following formula:

δs•(v) =
�

v∈Ps(w)

σsv

σsw

· (1 + δs•(w)) (4)

where σij is the number of shortest paths from i to j
and Ps(w) is the list of parents of w in the breadth-first
search DAG of s. Equation 4 defines the source dependency
of a source s on a node v as a function of the source
dependencies of v’s children, however, it does not define the
process that needs to be performed to compute the source
dependencies. To implement Equation 4, Brandes performs
a two-phase process. The first phase executes a breadth-
first search initiated from s to compute σst and Ps(t) for
all nodes t ∈ V with s �= t. The second phase performs a
reverse breadth-first search (i.e., from the leaves to the root)
and uses Equation 4 to compute δs•(v).

The process is highlighted in the following example:

Example 1. Consider graph G of Fig. 1. The computation of
δ1•(v) for all v ∈ V is illustrated in Fig. 2a. The first phase

of Brandes algorithm performs breadth-first search and computes
σ1v and P1(v) (these results are illustrated in light gray boxes
numbered according to the search order). For instance, in the
3rd step, σ13=2 and P1(3)={2, 4}. The second phase performs
reverse breadth-first search and uses σ1v , P1(v) and Equation 4
to compute δ1•(v) (these results are illustrated in dark gray boxes
numbered according to the search order). For instance, in the 12th
step, δ1•(3)=

σ13

σ15

(1+δ1•(5)) +
σ13

σ18

(1+δ1•(8))=2.

In Brandes method, the cost of computing the between-
ness centrality of a single node does not differ much from
the cost of computing betweenness centrality of all nodes of
the graph. This is because BC[v] is a function of the source
dependencies δs•(v) of all other nodes s ∈ V, s �= v (see
Equation 3), and computing each δs•(v) requires computing
δs•(vdec) for all nodes vdec that are descendants of v in the
breadth-first search DAG of s (see Equation 4). This means
that computing BC[v] involves computing the source de-
pendencies on v and on other nodes as well. For instance,
in Fig. 2a, to compute δ1•(4), the values of δ1•(i) for all
i∈{3, 5, 6, 7, 8} are required. With minor effort we may also
compute all other values δs•(i), i ∈ V (i.e., δ1•(2) in the
previous example). Using these values, we may compute
the betweenness centrality of all other nodes.

2.2 Updating betweenness centrality

Graphs are rarely static; edges and nodes are inserted and
deleted as a graph evolves. The most important update op-
eration is the insertion of a new edge between two existing
nodes; deletions can be performed analogously.

Consider graph G(V,E) and the betweenness centrality
values BCG[v] for all of its nodes. Assume that a new edge
e is inserted into G. The new graph is denoted by G�(V �, E�)
where V �=V and E�=E ∪ {e}. As explained in Section 2.1,
computing BCG[v] is done by computing of δs•(v) for all
s, v∈V (Equation 3). For each s∈V , the breadth-first search
DAG of s is used to compute σsv , Ps(v) and finally δs•(v)
for all v∈V (see also Example 1). Adding edge e to G affects
some of these DAGs and the corresponding values of δs•(v).
In our example, consider the breadth-first search DAG of
node 1 (Fig. 2a) and add a new edge e between nodes 2
and 4. e does not change the DAG of node 1, so it does not

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 4

1 2 3

6 7 8

4 5

e

9 10

11

12

1413

17 18

15 16

19 20

B5

B1

B2

B3 B4

Fig. 3: Biconnected components of a graph

affect the values of σ1v , P1(v) and δ1•(v). This observation
is captured in the following proposition [8].

Proposition 1. Let us add a new edge e to a graph G. If for a
node s, edge e connects two nodes at the same level in its breath-
first search DAG (or equivalently s has the same distance to both
nodes of edge e) then all δs•(v) values remain unchanged for all
nodes v.

This proposition allows updating betweenness centrality
values after a graph update without recomputing all the
breadth-first search DAGs in the graph. Previous works
[8], [11] utilize Proposition 1 by storing the breadth-first
search DAGs for all nodes in the graph, and querying these
DAGs upon an edge insertion to identify the DAGs that
need to be considered to update the betweenness central-
ity values. Such approach requires O(|V |2) storage, which
is prohibitive for large graphs. iCENTRAL scales to large
graphs by removing this storage requirement.

2.3 Biconnected components

A biconnected graph is a graph that cannot be disconnected
by removing any node [12]. Biconnected component of a graph
is a maximal biconnected subgraph. An articulation point is
a node whose removal disconnects the graph. A node can
belong to multiple biconnected components while an edge
belongs to only one biconnected component. Intuitively, a
biconnected component is a maximal subgraph separated
from the rest of the graph by articulation points. A graph
can be decomposed into multiple biconnected components;
two such components may share only one articulation point.
In Fig. 3, we present a graph with 5 biconnected components
B1, . . . ,B5 highlighted with different colors. Articulation
points 1, 6, 5 and 17 connect the biconnected components
and are illustrated in dark gray. The following example
illustrates our notation:

Example 2. Let G (respectively, G�) be the graph of Fig. 3
without (respectively, with) the dotted edge e. The biconnected
component affected by the insertion of edge e is denoted by B�

e.
In this case, B�

e is B3 and has 3 articulation points, namely 1, 5
and 6, that connect B�

e with the rest of the graph. We refer to the
subgraphs connected to the affected biconnected component B�

e by
G1, G2, . . . In Fig. 3 there are three such subgraphs composed of
nodes 9 – 11, 15 – 20 and 12 – 14, respectively.

Inserting an edge e in graph G may affect the parti-
tioning. If the nodes of edge e belong to the same bicon-
nected component then the partitioning remains intact. In
the general case, edge e is between two distinct biconnected
components Bi and Bj . In this case, after the insertion of e
all biconnected components on the path from Bi to Bj are
merged to form a new biconnected component B�

e.

Theorem 1. Let G� be the graph constructed by adding edge e
to graph G. Let also B�

e be the biconnected component of G� that
edge e belongs to. BCG� [v]=BCG[v] for all nodes v of graph G�

that do not belong to B�
e (proof in the appendix).

Theorem 1 states that the betweenness centrality values
do not change outside biconnected component B�

e; therefore,
an incremental method does not need to update such values.
Now let us consider the betweenness centrality values for
nodes v ∈ B�

e that need to be updated. To compute BCG� [v],
we need δ

�
st(v) of all nodes s and t; some of these nodes

are inside and others are outside of B�
e. However, we prove

in Lemma 1 (proof in the appendix) that δ
�
st(v) can be

computed by only considering nodes in B�
e.

Lemma 1. Let G� be the graph constructed by adding edge e to
graph G. Let B�

e be the biconnected component of G� containing
edge e. For all nodes v of G� that belong to B�

e and all pairs of
nodes s and t of G�, the pair dependency δ

�
st(v) of G� either does

not change or can be computed within biconnected component B�
e.

Previous works used biconnected components [10], as
well as the minimum union cycles2 decomposition [9] in
conjunction with Theorem 1 and Lemma 1 to update be-
tweenness centrality values. However, they recompute ev-
erything inside B�

e. In contrast, iCENTRAL performs incre-
mental computation within the affected component.

3 iCENTRAL

In this section we present our approach, iCENTRAL, which
incrementally updates betweeness centrality values in a
graph after an edge insertion or deletion. There are two
main novelties: (i) In contrast to existing methods [8], [11]
that need O(|V |2) space, iCENTRAL needs linear space; and
(ii) we prove theoretically (Theorem 2) that iCENTRAL per-
forms incremental updates within the affected biconnected
component, whereas existing work [10] must recompute
everything from scratch. In what follows we focus on edge
insertions; in Section 3.5 we discuss edge deletions.

3.1 Incremental computation

Let δs•(v) (respectively, δ�s•(v)) be the node dependencies of
the original graph G (respectively, of the updated graph G�).
From Equation 3, we have:

BCG[v] =
�

s∈V, s �=v

δs•(v) and BCG� [v] =
�

s∈V, s �=v

δ
�
s•(v) (4)

Let Q⊆V be the set of all nodes for which the values
of δs•(v) change with the insertion of edge e (which means
that the node dependencies for all nodes in V − Q remain
intact). BCG[v] and BCG� [v] in Equation 4 can be combined:

BCG� [v] = BCG[v] −
�

s∈Q, s �=v

δs•(v) +
�

s∈Q, s �=v

δ
�
s•(v) (5)

Equation 5 provides an incremental way to update be-
tweenness centrality. To compute δs•(v) and δ

�
s•(v), we

perform breadth-first and reverse breadth-first traversals,

2. Minimum union cycles provide similar guaranties to biconnected
components, but result in an inferior decomposition with larger com-
ponents; refer to Lemma A.3 in the appendix.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 5

respectively, on the breadth-first search DAG of s. Specifi-
cally, to identify set Q, we need the distances between all
nodes of the graph and the nodes of the inserted edge e. Let
e = (v1, v2). A node s belongs to Q if dsv1

�= dsv2
; since G is

undirected, this is equivalent to dv1s �= dv2s. Thus, instead of
storing the breadth-first search DAGs, we can perform two
breadth-first traversals from v1 and from v2 to determine Q.

Example 3. Consider graph G of Fig. 1 (the computation of
δ1•(v) for all v ∈ V is discussed in Example 1 and is illustrated
in Fig. 2a). Adding a new edge e, illustrated with a dotted line,
that connects nodes 4 and 8 modifies the breadth-first search DAG
of node 1 and the values of δs•(v) as presented in Fig. 2b.

Until here we discussed the main block of iCENTRAL,
which is the incremental computation of betweenness cen-
trality values. This is the part of iCENTRAL that utilizes
the fact that not all shortest paths change after a graph
update and allows avoiding many breadth-first traversals.
It is worth noting that the incremental computation method
described in this section is generic and can be applied
independently of the graph decomposition. That is, it can
be applied either to the input graph directly; or with the
biconnected components decomposition; or with any other
suitable decomposition.

3.2 Using biconnected components

In Theorem 2 we combine the incremental computation
idea with Lemma 1 to show how iCENTRAL incrementally
computes the affected betweenness centrality values within
the affected biconnected component.

Theorem 2. Let G� be the graph constructed by adding edge e
to graph G, B�

e be the biconnected component of G� that edge
e belongs to, a1, . . . , ak be the articulation points of B�

e and
G1, . . . , Gk be the subgraphs of G� connected to B�

e through
a1, . . . , ak respectively. For all nodes v of graph G� that belong
to B�

e we have:

BCG� [v] = BCG[v]−A[v]+A�[v]−B[v]+B�[v]−C[v]+C �[v]
(6)

where:

A[v] =
�

s,t∈B�

e

s �=t �=v

δst(v), A
�[v] =

�

s,t∈B�

e

s �=t �=v

δ
�
st(v),

B[v] =
�

s∈Gi,t∈B�

e

s �=t �=v,
i=1···k

δst(v), B
�[v] =

�

s∈Gi,t∈B�

e

s �=t �=v,
i=1···k

δ
�
st(v),

C[v] =
�

s∈Gi,t∈Gj

s �=t �=v, i=1···k,
j=1···k, i �=j

δst(v), C
�[v] =

�

s∈Gi,t∈Gj

s �=t �=v, i=1···k,
j=1···k, i �=j

δ
�
st(v)

Note that:
Expression A[v] (resp. A�[v]) is the contribution of nodes s

and t, that both belong to the affected biconnected component
B�
e, to the betweenness centrality of v in graph G (resp. G�).

Both expressions can be computed by considering only biconnected
component B�

e.

Expression B[v] (resp. B�[v]) is the contribution of node s that
does not belong, and node t that belongs to the affected biconnected

component B�
e, to the betweenness centrality of v and can be

computed by:

B[v] =
�

i=1···k
t∈B�

e,t �=v

|VGi
| · δait(v), B

�[v] =
�

i=1···k
t∈B�

e,t �=v

|VGi
| · δ�ait

(v)

where δait(v), δ
�
ait

(v) can be computed by considering only
biconnected component B�

e.

Expression C[v] (resp. C �[v]) is the contribution of nodes s and
t, that both do not belong to the affected biconnected component
B�
e, to the betweenness centrality of v and can be computed by:

C[v] =
�

i=1···k,
j=1···k,

i �=j

|VGi
|·|VGj

|·δaiaj
(v), C �[v] =

�

i=1···k,
j=1···k,

i �=j

|VGi
|·|VGj

|·δ�aiaj
(v)

where δaiaj
(v) and δ

�
aiaj

(v) can be computed by considering only
biconnected component B�

e (proof in the appendix).

Theorem 2 is crucial. It states that the affected between-
ness centrality values BCG� [v] can be incrementally com-
puted after a graph update by considering the nodes within
the affected biconnected component B�

e. This theorem distin-
guishes iCENTRAL from existing work [10], which requires
recomputation from scratch inside the affected component.

3.3 Computing source dependencies

In this subsection we show how to compute the source de-
pendencies that encapsulate the pair dependencies in each
of the expressions A[v], A�[v], B[v], B�[v], C[v], and C �[v]
of Theorem 2 to enable updating the betweenness centrality
with breadth-first and reverse breadth-first traversals. Below
we show how the source dependencies are computed for
A[v], B[v], and C[v]. The source dependency computation
of A�[v], B�[v], and C �[v] can be shown similarly.

Expression A[v] (s, t ∈ B�
e). This case is similar to com-

puting the source dependencies in a graph. Thus, the
source dependencies that encapsulate the pair depen-
dencies in A[v] are computed with Equation 4, (i.e.,
δs•(v) =

�

v∈Ps(w)

σsv

σsw
· (1 + δs•(w))).

Expression B[v] (s /∈ B�
e, t ∈ B�

e). Let s ∈ Gi. In this case,
each pair dependency δst(v) is equal to δait(v), (from
the proof of Lemma 1). Consequently, the source depen-
dency of each node s ∈ Gi is equal to the source de-
pendency of ai (i.e., δs•(v) = δai•(v)). This means that
the summation of the source dependencies of all nodes
s ∈ Gi can be computed at once with |VGi

| · δai•(v),
which encapsulates the pair dependencies in B[v].

Expression C[v] (s, t /∈ B�
e). Let s ∈ Gi and t ∈ Gj where

i �= j. For this case, we define the external graph pair
dependency and the external graph dependency as:

δGiGj
(v) =

�

s∈Gi,t∈Gj

δst(v) and δGi•(v) =
�

j=1···k, i �=j

δGiGj
(v).

The external graph dependencies encapsulate the pair
dependencies in C[v], and can be computed using the
following equation: (derivation in the appendix)

δGi•(v) =

|VGi
| · |VGv

| v is articulation point
�

v∈
Pai

(w)

σaiv

σaiw
· δGi•(w) otherwise

(7)

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 6

Algorithm: iCENTRAL

Input: Graph G(V,E), the betweenness centrality values
BCG of G, and new edge e ∈ V×V

Output: The betweenness centrality values BCG� of
graph G� that is constructed by inserting edge e
to graph G

1 Find the biconnected components of G�

2 Let B�

e(VB�

e
, EB�

e
) be the biconnected component of G�

that edge e belongs to
3 Let Be(VBe , EBe) be B�

e(VB�

e
, EB�

e
− {e})

4 Let e = (v1, v2)

5 Perform a breadth-first search to compute the distance
dv1s between v1 and s in Be

6 Perform a breadth-first search to compute the distance
dv2s between v2 and s in Be

7 for all nodes s ∈ VBe do
8 if dv1s �= dv2s then
9 Add s to Q

10 for all nodes s ∈ Q do
11 Find σs[v] and Ps[v] for v ∈ VBe (BFS from s)
12 δs•[v] = 0 for v ∈ VBe

13 δGs•[v] = 0 for v ∈ VBe

14 for all nodes w ∈ VBe in reverse BFS order from s do
15 if s and w are articulation points then
16 δGs•[w] = |VGs | · |VGw |

17 for p ∈ Ps[w] do

18 δs•[p] = δs•[p] +
σs[p]
σs[w]

· (1 + δs•[w])

19 if s is an articulation point then

20 δGs•[p] = δGs•[p] + δGs•[w] · σs[p]
σs[w]

21 if w �= s then
22 BCG� [w] = BCG� [w]− δs•[w]/2.0

23 if s is an articulation point then
24 BCG� [w] = BCG� [w]− δs•[w] · |VGs |
25 BCG� [w] = BCG� [w]− δGs•[w]/2.0

26 Find σ
�

s[v] and P �

s[v] for v ∈ VB�

e
(partial BFS from s)

27 δ
�

s•[v] = 0 for v ∈ VB�

e

28 δ
�

Gs•[v] = 0 for v ∈ VB�

e

29 for all nodes w ∈ VB�

e
in reverse BFS order from s do

30 if s and w are articulation points then
31 δ

�

Gs•[w] = |VGs | · |VGw |

32 for p ∈ P �

s[w] do

33 δ
�

s•[p] = δ
�

s•[p] +
σ
�

s[p]

σ
�

s[w]
· (1 + δ

�

s•[w])

34 if s is an articulation point then

35 δ
�

Gs•[p] = δ
�

Gs•[p] + δ
�

Gs•[w] ·
σ
�

s[p]

σ
�

s[w]

36 if w �= s then
37 BCG� [w] = BCG� [w] + δ

�

s•[w]/2.0

38 if s is an articulation point then
39 BCG� [w] = BCG� [w] + δ

�

s•[w] · |VGs |
40 BCG� [w] = BCG� [w] + δ

�

Gs•[w]/2.0

41 return BCG�

3.4 iCENTRAL algorithm

Algorithm iCENTRAL works as follows: Line 1 decomposes
the input graph G� into its biconnected components using
Hopcroft and Tarjan algorithm [13]. Then, Line 2 identifies
biconnected component B�

e that is affected by the graph
update. iCENTRAL performs the biconnected components

decomposition on G� instead of G to support the general
case when the inserted edge e connects multiple biconnected
components of G. Following, Lines 5–9 identify set Q by
performing two breadth-first traversals in Be.

For all nodes in set Q, Lines 10 – 40 iteratively update
the betweenness centrality of nodes in B�

e by performing a
breadth-first and a reverse breadth-first search, respectively.
The updates are done in two steps: subtracting the old
source and external graph dependencies; i.e., A[v], B[v], and
C[v] (Lines 11 – 25), and adding the new source and external
graph dependencies; i.e., A�[v], B�[v], and C �[v] (Lines 26
– 40). In the next paragraph we explain how to use the
equations in Section 3.3 to compute and subtract A[v], B[v],
and C[v] (Lines 11 – 25). Computing and adding A�[v], B�[v],
and C �[v] are done similarly in Lines 26 – 40.

Computing the source dependencies that encapsulate
node pairs in A[v] is done with a direct application of Equa-
tion 4 in Line 18. These source dependencies are subtracted
from the betweenness centrality values in Line 22. The pair
dependencies in B[v] are encapsulated in δs•(w) · |VGs

|,
which is subtracted in Line 24. This is done only if s is
an articulation point as explained in Section 3.3. The case
of pair dependencies in C[v] is more involved, and requires
maintaining the structure δGs•[v] to compute the external
graph dependencies (Line 13). Computing δGs•[v] starts
with the base case of Equation 7 when both the source s
and the node considered in the reverse breadth-first search
(i.e, w) are articulation points. This is done in Line 16. The
external graph dependency on node w is computed with
Equation 7 if the source s is an articulation point in Line 20.
Note that δGs•(w) is defined only if s is an articulation point,
because that is the case when external graph dependencies
are defined and needed to be propagated to nodes in B�

e (see
Section 3.3). Note that δs•(w) and δGs•(w) are divided by 2
in Lines 22 and 25 to avoid counting the same path twice,
since the input graph is undirected.

iCENTRAL utilizes the fact that many σsv values remain
unchanged in the breadth-first search DAG of s after insert-
ing edge e, even when s ∈ Q. Let l be the node of e further
from s in its breadth-first search DAG. To find the nodes
for which σsv changes, we only need to start a breadth-first
search from l in the breadth-first DAG of s. We refer to this
optimized traversal as partial breadth-first search (Line 26).

3.5 Edge deletions

Minimal modifications are required to support edge dele-
tions. Specifically, Lines 1, 2, and 3, and are modified as
follows. Line 1 becomes:

Find the biconnected components of G

The biconnected component decomposition is computed
on G to support the case when the removal of e breaks an ex-
isting component into multiple components. The subgraph
that needs to be considered is the union of the resulting
smaller components, which is the biconnected component
that e belongs to in G, denoted by Be (as reflected in the
updated Lines 2 and 3 below).

Let Be(VBe , EBe) be the biconnected component of G that
edge e belongs to
Let B�

e(VB�

e
, EB�

e
) be Be(VBe , EBe ∪ {e})

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 7

3.6 Weighted and directed graphs

iCENTRAL can be generalized to weighted and directed
graphs. To handle weighted graphs, Dijkstra’s algorithm
should be used instead of breadth-first traversal in Lines
11 and 26. To handle directed graphs, the main change is
identifying set Q by performing breadth-first traversals on
the transpose of B�

e rather than on B�
e itself.

3.7 Parallel implementation of iCENTRAL

Even though iCENTRAL saves a lot of computation, updat-
ing betweenness centrality in large graphs requires a many
independent breadth-first traversals that can be done in
parallel. Thus, in this subsection we describe two versions
of parallel iCENTRAL; a shared-memory (multi-threaded)
implementation and a distributed-memory implementation.
Note that the iterations of iCENTRAL (Lines 10–40) are inde-
pendent of each other. Thus, we are able to follow a simple
coarse-grained approach and compute the contributions of
subsets of Q in parallel.

Shared-memory implementation. The main thread computes
the biconnected components decomposition and set Q (i.e,
the set of nodes for which δs• changes). Following, set Q
is divided uniformly among the available threads and each
thread computes the changes of δs• for its assigned sources.
To avoid excessive allocations and deallocations of interme-
diate structures, memory allocation is performed at the ini-
tialization of each thread. All iterations in a particular thread
share the same intermediate structures. After all threads
complete their computation, the main thread summarizes
all partial contributions to produce the final updated be-
tweenness centrality values. Note that the shared-memory
implementation needs only one copy of the graph, and
each thread maintains intermediate structures (i.e., shortest
distances, shortest distance counts, and parent lists).

Distributed-memory implementation. This implementation
adds another level of parallelism. The nodes in set Q are
first divided uniformly among the available machines. The
assigned subset of Q within a machine is further divided
uniformly among the cores of the machine similarly to the
shared-memory implementation. The final result accumula-
tion is done in two steps. The partial results are accumulated
at the master thread of each machine, and then the master
machine collects the accumulated partial results from all
other machines and summarizes them for each node to
produce the final updated betweenness centrality values.
A copy of the graph is stored in each of the machines to
avoid communication among machines to retrieve the graph
structure.

iCENTRAL uses a serial implementation of Hopcroft and
Tarjan algorithm [13] to compute the biconnected compo-
nents. This algorithm is fast (i.e., takes linear time), and it
takes an insignificant portion of the total execution time of
iCENTRAL. To give a concrete example, the serial version
of iCENTRAL needs about 1800 seconds to compute the be-
tweenness centrality updates for the twitter-munmun dataset
after an edge insertion, out of which 1.3 seconds are spent to
compute the biconnected components (i.e., less than 0.1% of
the total execution time). Additionally, parallel biconnected
components computation methods do not achieve more

than 0.4 parallel speedup efficiency [14]. For the above two
reasons, we do not consider parallel algorithms for finding
biconnected components and focus on the optimization of
the remaining tasks that are quadratic and dominate the
execution time.

3.8 Complexity analysis of iCENTRAL

Let V and E be the sets of nodes and edges in the input
graph G. Let VB�

e
and EB�

e
be the sets of nodes and edges

of the biconnected component of the updated graph G� that
the inserted edge e belongs to.

Initially, iCENTRAL computes the biconnected compo-
nents (Line 1). This is done by depth-first traversal [13],
requiring O(|V | + |E|) time and O(|V | + |E|) space. Then
iCENTRAL computes set Q by doing two breadth-first
traversals and one loop through the nodes of B�

e to check for
sources that qualify for Q membership (Lines 5–9), which
take O(|VB�

e
|+ |EB�

e
|) time and space. Following, iCENTRAL

considers all nodes s in Q (which is a subset of VB�

e
).

Each iteration (Lines 10 – 40) performs two breadth-first
and two reverse breadth-first traversals and is performed
in O(|VB�

e
|+ |EB�

e
|) time and O(|VB�

e
|+ |EB�

e
|) space. Thus,

the complexity of Lines 10 – 40 is O(|Q||EB�

e
|) time and

O(|VB�

e
| + |EB�

e
|) space (the space bound does not change

because the reserved space is freed after each iteration).
To summarize, the overall complexity of iCENTRAL is
O(|Q||EB�

e
|) time and O(|V |+ |E|) space.

With T processing units we may parallelize the exe-
cution of Lines 10 – 40. iCENTRAL can be performed in
O(|Q||EB�

e
|/T) time and requires O(T (|V | + |E|)) space

(since each unit needs independent storage). Since Q is
bounded by V and EB�

e
is bounded by E, the time bound

can be also expressed as O(|V ||E|) for the serial and
O(|V ||E|/T) for the parallel case. In real graphs, though,
we typically have |Q| < |V |, so these bounds are crude and
the expected time is much lower. This is also verified in our
experiments (Section 4).

4 EXPERIMENTAL EVALUATION

We experimentally evaluate iCENTRAL and compare it with
several state-of-the-art methods [1], [8], [9], [10], [11]. Our
results illustrate that iCENTRAL is more than an order
of magnitude faster than non-incremental methods, and
3.7 times faster than the state-of-the-art serial incremental
algorithm. We also demonstrate that the parallel version
of iCENTRAL scales to graphs with millions of nodes and
edges, is an order of magnitude faster, and uses an order
of magnitude less resources than the state-of-the-art parallel
incremental algorithm.

4.1 Experimental setup

Datasets. We use the synthetic and real graph datasets listed
in Table 2. If a graph dataset is directed, we consider its
undirected version and if a graph is not connected we con-
sider its largest connected component. We refer to graphs
with less than 100,000 nodes as small, and those with more
nodes as large. Small graphs were used in [9], and large
graphs were downloaded from KONECT3 and SNAP4. We

3. http://konect.uni-koblenz.de/networks
4. http://snap.stanford.edu/data

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 8

Graph dataset |VG| |EG| Diam.

S
y

n
th

et
ic ER 10,000 100,000 5

PA 10,000 99,945 4

FF 10,000 151,433 14
R

ea
l

d
at

as
et

s

Cagr 4,158 13,428 16

Epa 4,253 8,897 10

Eva 4,475 4,654 17

Erdos972 5,440 8,940 11

Erdos02 6,927 11,850 4

Wiki-Vote 7,066 10,0736 6

Contact 13,373 79,823 9

slashdot 51,083 117,378 13

facebook 63,392 816,831 12

epinions 119,130 704,572 13

email-EuAll 224,832 340,795 11

com-dblp 317,080 1,049,866 20

web-NotreDame 325,729 1,117,563 31

twitter-munmun 465,017 833,540 8

amazon 2,146,057 5,743,146 11

TABLE 2: Graph datasets used in the experiments.

keep the dataset names of the original sources to avoid
confusion. The datasets cover a wide variety of properties
and domains. Specifically:

• Synthetic graphs: ER, PA, and FF are synthetic graphs
generated by SNAPPY5 using the following random
graph generation models, respectively: Erdős-Rényi
[15], Preferential Attachment [16] (with node out-
degree of 10), and Forest Fire [17] (with forward and
backward probabilities of 0.35).

• Real small graphs: Cagr, Erdos02, and Erdos972 are col-
laboration networks; Epa is a web graph; Eva is a media
ownership network; Wiki-Vote is vote network between
users of Wikipedia; and Contact is a communication
network. slashdot and facebook are snapshots of the
Slashdot and the Facebook social networks; edges in
these two networks are timestamped, and they repre-
sent real evolving graph data.

• Real large graphs: epinions is a trust network between
Epinions users; email-EuAll is a communication network
between an EU’s institution researchers; com-dblp is
a co-authorship network; web-NotreDame is the web
graph of the University of Notre Dame; twitter-munmun

is a snapshot of the Twitter follower network; and
amazon is an Amazon product rating network.

Detailed information about these datasets is available in
the respective sources. Note that the amazon dataset (2M
nodes and 6M edges) is the largest dataset ever considered
for incremental betweenness centrality. iCENTRAL scales to
this dataset using a computer cluster with 19 machines,
whereas the only existing work [11] that scales to it requires
a cluster with hundreds of machines.

Graph updates. For insertions, we insert random edges to
update a graph, except for the facebook and the slashdot

datasets where we remove the most recent edges and insert
them back. For deletions, we select random edges from the
graph excluding bridge edges to maintain the connected-

5. http://snap.stanford.edu/snappy/

ness of the graph. In our study, we evaluate the average
runtime for all edge insertions or deletions.

Competitors. We compare against the following algorithms:

KOURTELLIS: This is the original parallel map-reduce im-
plementation6 by Kourtellis et al. [11]. It is incremen-
tal and stores intermediate results in HDFS files. We
execute it on Hadoop 1.2.1 with 100 mappers and
one reducer. KOURTELLIS is a direct competitor to the
parallel version of iCENTRAL.

GREEN: This is the original implementation of Green’s algo-
rithm [8] provided by its authors. GREEN is incremental
and stores intermediate results in memory.

QUBE: This is our implementation QUBE [9]; the original
implementation was not available to us. As in the
original version [9], we use Brandes algorithm and
the minimum union cycle decomposition. In our im-
plementation, we replace the original minimum union
cycles decomposition algorithm, which has a time com-
plexity of O(|E|3) with a linear time alternative [18].
QUBE is incremental and does not store intermediate
results; thus, is a direct competitor to serial iCENTRAL.

BRANDES: This is our implementation of Brandes algorithm
[1]. BRANDES is the best algorithm for static graphs and
can be used as baseline for the incremental solutions.
We also use the parallel implementation of Brandes7

from [19] for the parallel Brandes experiment.
LEE-BCC: This is our implementation that mimics the im-

proved QUBE algorithm [10]. Since we did not have
access to the original implementation, we developed
a simulated version that inserts an edge within the
largest biconnected component of the input graph and
runs Brandes in that component, but avoids all other
overheads. Therefore, the reported runtimes consist a
lower-bound of the actual LEE-BCC implementation.

Implementation. All algorithms are coded in C++. The
parallel version of iCENTRAL8 is implemented using MPI
and C++11 threads. All serial and multi-threaded exper-
iments are executed on a Linux machine with a 20-core
Intel Xeon 2.80GHz CPU and 128GB main memory. The
distributed implementations of iCENTRAL and KOURTELLIS

are executed on a Linux cluster with 19 machines, each with
2x12-core AMD Opteron 2.10GHz CPUs and 140GB of main
memory.

4.2 Comparison with state-of-the-art

In this subsection, we show that iCENTRAL can support real
evolving graphs, and its real-time update capabilities out-
perform the state-of-the-art parallel algorithm. We also illus-
trate that iCENTRAL is able to handle graphs with millions
of nodes and edges. Finally, we compare serial iCENTRAL

with the existing state-of-the-art serial algorithms.

4.2.1 Parallel algorithms

We start by comparing iCENTRAL with KOURTELLIS the
state-of-the-art parallel incremental algorithm. We use the

6. https://github.com/nicolaskourtellis/
StreamingBetweenness

7. https://ecrc.github.io/BeBeCA/
8. iCENTRAL is available at:

https://github.com/fjamour/icentral

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 9

Insertions Deletions

Graph dataset iCENTRAL KOURTELLIS iCENTRAL KOURTELLIS

epinions 14.82 214.23 26.59 12.75

email-EuAll 4.15 80.89 6.01 140.39

com-dblp 151.63 1,027.25 108.65 314.70

web-NotreDame 42.06 322.68 30.19 272.87

twitter-munmun 35.01 2,376.28 66.73 2,522.56

amazon 13,567.79 N/A 14,803.24 N/A

TABLE 3: Average execution time (in sec) of iCENTRAL and KOURTELLIS for the large datasets on 19 machines. KOURTELLIS

could not process the amazon dataset within 24h.

Algorithm M
M

is
se

d

ed
g

es

A
v

g
.

d
el

ay

(s
ec

)

fa
c
e

b
o

o
k iCENTRAL 1 17 6.47

iCENTRAL 19 5 0.35

KOURTELLIS 19 23 117.86

s
la

s
h

d
o

t iCENTRAL 1 4 0.24

iCENTRAL 19 4 0.09

KOURTELLIS 19 4 0.62

TABLE 4: Number of missed edge updates and average de-
lays for different algorithms. M is the number of machines
used.

facebook and the slashdot datasets in this evaluation, for
which timestamped edges are available. Edge timestamps
make it possible to compute edge inter-arrival times, which
allows evaluating the real-time update capabilities of an
incremental algorithm.

Let ti (respectively ti+1) be the arrival time of edge ei
(respectively of the following edge ei+1) and let Ti be the
time required for an algorithm to insert edge ei. When
Ti ≤ ti+1 − ti the algorithm is able to successfully insert
ei before ei+1 arrives. On the contrary, when ti+1 − ti < Ti

the algorithm is not able to process edge ei. Thus, we say
that the algorithm missed edge ei. In such a case, we say
that the algorithm showed a delay of Ti − (ti+1 − ti) time.
Missed edges and delays are two valuable metrics for our
comparison. An efficient algorithm should report a small
number for both metrics.

In this experiment, we remove the 100 most recent edges
from each of the facebook and the slashdot datasets and
then insert them again in order. We measure the number
of missed edges and the corresponding delay for multi-
threaded iCENTRAL, distributed memory iCENTRAL, and
KOURTELLIS. Our results are illustrated in Table 4. Since
both methods are parallel, we also report the number of
used machines (denoted by M). Our results clearly indicate
that iCENTRAL outperforms KOURTELLIS. Specifically, for
the facebook dataset, KOURTELLIS parallel update algorithm
requires 19 machines to achieve 23 missed edges with an
average delay of 117.86 seconds (Table 4). To compare,
iCENTRAL misses only 5 edges with nearly 300 times lower
average delay (0.35 sec). Even on a single machine (our 20-
core machine), multi-threaded iCENTRAL misses 17 edges
with 18 times lower average delay than KOURTELLIS.

The slashdot dataset is smaller (has nearly 8 times fewer

edges than facebook) and can be adequately handled by both
algorithms iCENTRAL and KOURTELLIS (Table 4). The four
edges that both algorithms cannot process correspond to the
ones that arrive at exactly the same time with the previous
edge (i.e., ti+1 − ti = 0). Still, iCENTRAL achieves lower
average delay even when a single machine is used (Table 4).

We also compare the execution times of iCENTRAL and
KOURTELLIS on the large datasets (Table 3) for both edge
insertions and edge deletions.

Insertions: iCENTRAL is, on average, 23 times faster than
KOURTELLIS for all the large datasets and can be up to 67
times faster for the twitter-munmun dataset.

Deletions: iCENTRAL is, on average, 14 times faster than
KOURTELLIS, and is up to 37 times faster for the twitter-

munmun dataset. KOURTELLIS is faster than iCENTRAL only
for deletions on the epinions dataset.

Note that iCENTRAL scales to the amazon dataset using a
cluster of 19 machines, whereas KOURTELLIS does not finish
in 24 hours on the same cluster. To handle the amazon data-
set, KOURTELLIS needs a cluster with hundreds of machines,
as reported in [11].

4.2.2 Serial algorithms

We compare the performance of iCENTRAL against the per-
formance of serial methods, namely BRANDES, QUBE and
GREEN, to highlight the algorithmic value of our approach.
For fairness, we illustrate the performance of iCENTRAL in
two different settings: The first restricts iCENTRAL to use
one thread; thus, making its execution serial and directly
comparable with the rest. Since iCENTRAL is parallel, for
completeness, we also illustrate the performance of multi-
threaded iCENTRAL on one machine. We compute the aver-
age runtime of inserting 100 edges for small and 10 edges
for large graph datasets.

QUBE and BRANDES: We compare iCENTRAL against
QUBE, which is incremental and scales to large graphs, and
BRANDES, the state-of-the-art static algorithm. The results
are shown in Table 5. For all datasets, iCENTRAL outper-
forms QUBE and BRANDES. Specifically, the serial version
of iCENTRAL (i.e., 1 core) is up to 2.89 times faster than
QUBE and up to 75 times faster than BRANDES, for the
Erdos02 and email-EuAll datasets, respectively. On average,
for all datasets iCENTRAL is 1.93 times faster than QUBE and
more than 9 times faster than BRANDES. The results for the
parallel version (20 cores) are more impressive: iCENTRAL

is up to 32.46 times faster for the com-dblp dataset and more
than 20 times faster on average than QUBE. Compared to
parallel BRANDES, iCENTRAL is up to 111.20 times faster

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 10

Graph dataset iCENTRAL BRANDES QUBE

20 cores 1 core 20 cores 1 core

S
m

al
l

d
at

as
et

s

ER 1.31 18.54 1.55 20.77 27.53

PA 1.11 16.56 1.80 16.62 23.23

FF 0.79 9.94 1.55 22.41 22.83

Cagr 0.09 0.87 0.12 1.43 1.55

Epa 0.06 0.46 0.09 0.98 0.75

Eva 0.02 0.02 0.07 0.58 0.04

Erdos972 0.05 0.36 0.15 1.31 0.51

Erdos02 0.05 0.27 0.21 2.12 0.78

Wiki-Vote 0.44 5.59 0.63 9.13 9.11

Contact 0.73 11.25 1.58 20.32 18.78

slashdot 4.08 45.47 42.93 184.75 94.60

facebook 77.44 914.30 175.84 995.07 1,435.37

L
ar

g
e

epinions 83.56 827.27 475.33 2,836.07 1,514.37

email-EuAll 9.77 88.71 1,086.45 6,713.19 229.76

com-dblp 922.63 12,365.75 2,183.17 21,232.16 29,944.44

web-NotreDame 193.25 3,297.11 999.11 10,472.47 6,038.25

twitter-munmun 189.88 1,793.71 2,759.99 27,636.73 4,210.28

TABLE 5: Average execution time (in sec) of iCENTRAL (for 20 cores and 1 core), QUBE, and BRANDES.

iCENTRAL GREEN

Graph dataset Time Memory Time Memory Time Memory

(in sec) (in GB) (in sec) (in GB) ratio ratio

S
m

al
l

d
at

as
et

s

ER 18.54 0.03 0.17 4.84 89.29 161.33

PA 16.56 0.03 0.21 4.84 51.91 161.33

FF 9.94 0.04 0.68 4.84 32.86 121.00

Cagr 0.87 0.0156 0.06 2.99 16.14 191.67

Epa 0.46 0.0156 0.04 3.01 8.86 192.95

Eva 0.02 0.0137 0.09 3.05 0.08 222.63

Erdos972 0.36 0.0146 0.05 3.26 5.22 223.29

Erdos02 0.27 0.0156 0.04 3.68 6.40 235.90

Wiki-Vote 5.59 0.0332 0.21 3.72 30.83 112.05

Contact 11.25 0.0303 0.52 6.6 21.46 217.82

slashdot 45.47 0.0397 3.33 60.9 7.66 1,534.00

facebook 914.30 0.1709 9.31 92.4 117.85 540.67

L
ar

g
e

epinions 827.27 0.1611 Crashed 319 N/A 1,980.14

email-EuAll 88.71 0.0850 Crashed 1,132 N/A 13,317.65

com-dblp 12,365.75 0.2842 Crashed 2,249 N/A 7,913.44

web-NotreDame 3,297.11 0.2529 Crashed 2,374 N/A 9,387.11

twitter-munmun 1,793.71 0.2051 Crashed 4,836 N/A 23,578.74

TABLE 6: Average execution time and memory consumption comparison of iCENTRAL and GREEN.

for the email-EuAll dataset and more than 10 times faster on
average. Note that iCENTRAL provides a similar scalability
to BRANDES, even though it employs many more optimiza-
tions tuned for the incremental set-up.

The synthetic graphs ER and PA highlight the advantage
of iCENTRAL over QUBE. These graphs decompose into one
component. QUBE needs more time than BRANDES (i.e.,
simple recomputation from scratch), because the overhead
of computing and maintaining the minimum union cycles
decomposition is not amortized. Although iCENTRAL also
decomposes these graphs to one large biconnected compo-
nent, the overhead is amortized because of the incremental
computation within the affected component.

GREEN: iCENTRAL and GREEN are both incremental algo-
rithms but they are fundamentally different: GREEN stores
intermediate results, while iCENTRAL does not. Due to the
stored results, GREEN is expected to be more efficient on
small graphs, but storage becomes prohibitive for large

graphs. In this experiment, we restrict iCENTRAL to use
one core. We measure the execution time and the memory
consumption reported by the operating system. The results
are illustrated in Table 6. GREEN crashed while processing
the large graphs, due to excessive memory consumption.
Specifically, GREEN requested 319GB RAM for the epinions

dataset, and nearly 5TB RAM for the twitter-munmun dataset.
As expected for the smaller datasets, GREEN is faster but
requires significantly more memory than iCENTRAL. For a
meaningful comparison, we report the time and memory ra-
tio of the two algorithms. The time ratio indicates how faster
GREEN is over iCENTRAL: Time ratio = iCENTRAL runtime

GREEN runtime
while the memory ratio shows how much more memory
is required by GREEN over iCENTRAL: Memory ratio =

GREEN memory
iCENTRAL memory

. Table 6 shows that although GREEN is on av-

erage 33 times faster than iCENTRAL for the small datasets,
it consumes on average nearly 326 times more memory, and
cannot scale to the large datasets.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 11

Graph dataset iCENTRAL LEE-BCC

epinions 518.99 970.82

email-EuAll 60.35 177.04

com-dblp 6,476.23 8,696.06

web-NotreDame 1,672.67 2,005.57

twitter-munmun 706.49 2,634.20

TABLE 7: Average execution time (in sec) of iCENTRAL

and LEE-BCC. The largest biconnected component of the
corresponding dataset is used as input in this experiment.

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18

S
p

ee
d

u
p

Number of machines

twitter-munmun
web-NotreDame

Ideal

Fig. 4: Scalability of iCENTRAL on web-NotreDame and
twitter-munmun datasets using our 19 machines computer
cluster.

LEE-BCC: We compare iCENTRAL against LEE-BCC on
large graphs, where we expect the differences to be more
pronounced. Table 7 shows the runtimes of iCENTRAL and
LEE-BCC. iCENTRAL is up to 3.73 times faster than LEE-
BCC for the twitter-munmun dataset. iCENTRAL is on average
2.21 times faster than LEE-BCC over all large datasets. For
a fair comparison with LEE-BCC, we select edges from the
largest biconnected component when evaluating iCENTRAL

in this experiment.

4.3 Evaluating the scalability of iCENTRAL

In this subsection, we evaluate the scalability of iCENTRAL

on our 19 machine computer cluster. We use two real large
datasets in this experiment (web-NotreDame and twitter-

munmun). We insert 5 random edges and report the average
runtime for each machine count in this experiment. Fig. 4
shows the speedup as the number of machines increases.
The speedup for web-NotreDame is close to ideal, and in
some cases (i.e., for machine counts less than 12) is slightly
super linear. We believe that the superlinear speedup is
due to larger collective cache size. For the twitter-munmun

dataset, the speedup is close to ideal until 14 machines.
The twitter-munmun dataset has a smaller largest biconnected
component (twitter-munmun decomposes into smaller bicon-
nected components, see Table 8), which results in less work
per machine, and when the number of machines becomes
higher, the computation per machine is not large enough to
amortize the synchronization costs. The speedup efficiency
of iCENTRAL on web-NotreDame and twitter-munmun is at
least 0.8 on our computer cluster.

0

2

4

6

8

10

12

14

16

18

20

22

Contact

W
iki-Vote

Erdos972

Cagr
Eva

Epa
Erdos02

T
im

e
(i

n
se

c)

Dataset

iCENTRAL(serial-noBCC)
BRANDES

Fig. 5: Evaluating the incremental computation part of
iCENTRAL.

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

F
ra

ct
io

n
o

f
sa

v
ed

it
er

at
io

n
s

S
p

ee
d

u
p

Diameter

Erdos02

Wiki-Vote

Contact

Epa

Erdos972

Cagr

Eva

Fraction of saved iterations
Speedup

Fig. 6: Effect of diameter on the average speedup of the
incremental computation part of iCENTRAL(serial-noBCC).

4.4 Evaluating iCENTRAL components

In this subsection, we evaluate the different components
of iCENTRAL, namely; the incremental computation part
and the biconnected components decomposition part, and
investigate the graph properties that affect performance.

Incremental computation. In this experiment, we establish
the benefits of using the incremental computation method
discussed in Section 3.1 over a non-incremental method. To
this end, we compare the performance of the serial version
of iCENTRAL without the biconnected components decom-
position, denoted by iCENTRAL(serial-noBCC) and BRAN-
DES. We present the pseudo-code for iCENTRAL(serial-
noBCC) in the appendix. We insert 100 random edges and
measure the average time required to update the between-
ness centrality values. The results are illustrated in Fig.
5. iCENTRAL(serial-noBCC) is faster than BRANDES for all
datasets except for Eva dataset, even without using the
biconnected components decomposition, and is up to 3.12
times faster for the Erdos02 dataset.

The performance improvement of the incremental com-
putation part of iCENTRAL(serial-noBCC) happens because
it does not consider the search DAGs of nodes whose

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 12

MUC BCC

Graph dataset |VMUC |
|VG|

|MUC|
|G|

|VBCC |
|VG|

|BCC|
|G|

ER 1.00 1.00 1.00 1.00

PA 1.00 1.00 1.00 1.00

FF 0.76 0.97 0.71 0.96

Cagr 0.78 0.88 0.64 0.75

Epa 0.52 0.69 0.51 0.68

Eva 0.06 0.08 0.05 0.07

Erdos972 0.32 0.48 0.32 0.48

Erdos02 0.31 0.49 0.31 0.49

Wiki-Vote 0.68 0.96 0.68 0.96

Contact 0.63 0.89 0.62 0.89

slashdot 0.38 0.63 0.38 0.62

facebook 0.86 0.98 0.86 0.98

epinions 0.50 0.85 0.49 0.85

email-EuAll 0.16 0.33 0.16 0.33

com-dblp 0.83 0.92 0.67 0.80

web-NotreDame 0.46 0.74 0.41 0.69

twitter-munmun 0.24 0.46 0.24 0.46

amazon 0.64 0.81 0.64 0.81

TABLE 8: Largest component node and subgraph fraction
for minimum union cycle (MUC) and biconnected compo-
nent (BCC) decompositions.

source dependencies remain intact. These nodes have the
same distance from both ends of the inserted edge. In this
experiment, we show that in real graphs the fraction of
such sources can be significant. For each measurement, we
insert 160 random edges and measure the fraction of saved
iterations and the average speedup for several datasets. The
results are illustrated in Fig. 6 and are presented with an
increasing order of the diameter of the dataset. It is clear
that the fraction of saved iterations can be very high in
low diameter graphs, and it becomes smaller when the
diameter of the graph increases. The average speedup of the
incremental computation component of iCENTRAL(serial-
noBCC) follows the same trend. The reason is that in graphs
with smaller diameter, the probability that the nodes of the
inserted edge are on the same level is higher; thus, more
iterations can be avoided.

Biconnected components decomposition. A graph decom-
position can be evaluated by the number and the sizes of
the components. In our case, a decomposition can be judged
mainly by the size of its largest component. To explain this,
note that: (i) the cost of inserting a new edge is mainly
determined by the size of the component the new edge
belongs to; and (ii) the insertion of a random edge is more
probable to involve the largest component of the graph since
it contains more nodes. Obviously, this probability increases
with the largest component size.

We prove in Lemma A.3 that the biconnected compo-
nents decomposition (BCC) results in finer subgraphs than
the minimum union cycles (MUC) decomposition used in
previous studies [9]. In Table 8, we quantitatively illustrate
the benefit of using graph decomposition for both MUC
and BCC decompositions over doing the computation on
the input graph directly. Graph decomposition reduces the
computation in two ways: (i) By eliminating iterations from
sources outside the affected component. (ii) By reducing
the size of the graph where these iterations are performed

1

2

3

4

5

Contact

W
iki-Vote

Erdos02

Erdos972

Eva
Epa

Cagr

S
p

ee
d

u
p

Dataset

iCENTRAL(BCC)
iCENTRAL(MUC)

Fig. 7: Comparing graph decompositions.

(see Section 2.3 for details). The fraction of nodes in the
largest component (VMUC

VG
and VBCC

VG
for MUC and BCC

decompositions, respectively) shows how many iterations
are saved using the respective decomposition. For example,
the fraction of iterations that need to be performed if BCC
decomposition is used for the slashdot dataset is 0.38, which
means 62% of the iterations are skipped. The fraction of the

component size to the graph size (
|MUC|

|G| = |VMUC |+|EMUC |
|VG|+|EG|

and
|BCC|
|G| = |VBCC |+|EBCC |

|VG|+|EG| for MUC and BCC decomposi-

tions, respectively) shows the amount of saved work within
an iteration. For example, an iteration using BCC decom-
position for the slashdot dataset performs computation on a
subgraph that is 38% smaller than the input graph.

We show in Table 8 that BCC decomposition is better
than MUC decomposition in the sense that it produces a
decomposition with smaller largest component. The largest
component of BCC is never larger than the largest compo-
nent of MUC. BCC can save up to 19% more iterations, with
13% less work in each iteration (for the com-dblp dataset).

To conclude this comparison, we present an evaluation
of MUC and BCC decompositions for the computation of
betweenness centrality for several datasets. For this evalua-
tion, we use the incremental computation part of iCENTRAL

with MUC and BCC decompositions. The results of Fig. 7
illustrate the speedup achieved by BCC over MUC. BCC is
strictly faster, but the speedup ranges with different datasets
and can be up to 4.3 times for the Eva dataset.

5 RELATED WORK

Betweenness centrality was first proposed by Anthonisse [2]
and Freeman [3] as a metric to quantify the centrality of a
node in a graph. Freeman also proposed a O(|V |3) algo-
rithm for computing betweenness centrality. The need for
more efficient algorithms emerged with the increasing pop-
ularity of this metric. Brandes proposed the fastest known
algorithm that runs in O(|V ||E|) time [1]; see Section 2.1
for details. There have been several attempts [20], [21] to
improve the runtime; however, such works use heuristics
that do not improve the theoretical complexity of Bran-
des algorithm. The aforementioned methods assume static
graphs, whereas we focus on the incremental computation
of betweenness centrality in evolving graphs.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 13

One group of approaches to incremental betweenness
centrality relies on storing all intermediate results, including
all-pairs shortest paths and shortest path counts. When the
graph is updated, the stored information is also updated
and used to recalculate the affected betweenness centrality
values. Green et al. [8] store all-pairs shortest distance infor-
mation in the form of breadth-first DAGs; specifically, they
store one DAG for every node in the graph. When an edge
is inserted, incremental breadth-first search is performed in
the affected DAGs and betweenness centrality values are
updated in a way similar to that of Brandes algorithm.
Green uses the optimization proposed in [22], where the par-
ent lists are not stored but rather computed when needed,
to decrease the storage requirement from O(|V |2 + |E|)
to O(|V |2). Kas et al. [23], [24] also store intermediate
results. They use an existing incremental all-pairs shortest
path algorithm to find the updated shortest distances and
shortest path counts on edge insertions, and introduce al-
gorithms that use the updated values to compute the new
betweenness centrality values. Kas’ algorithm was further
optimized by Wei et al. [25]. Many other approaches also
store the intermediate all-pairs shortest path information in
various ways [26], [27], [28], [29]. Kourtellis et al. [11] extend
Green’s algorithm [8] and deploy a Hadoop implementation
on a large cluster to support large graphs. All aforemen-
tioned works need Ω(|V |2) space to store intermediate data,
which is prohibitive for large graphs. In contrast, iCENTRAL

requires only linear space, and thus seamlessly scales to
large graphs.

A second group of research efforts to compute incremen-
tal betweenness centrality decomposes the graph into com-
ponents and recomputes the metric only within the affected
component. QUBE [9] is the first system that facilitates this
approach. It decomposes the graph into minimum union
cycles (MUC), which are maximal subgraphs separated by
bridge edges. Computation is performed with a modified
version of Brandes algorithm. QUBE implements an expen-
sive O(|E|3) preprocessing step to extract MUCs; Goel et
al. [18] propose a linear time alternative. Independently and
concurrently with our approach, the same authors proposed
an improved version [10] that uses biconnected components,
which is a finer decomposition (Lemma A.3). Both methods
recompute all values from scratch for all nodes in the
affected component. However, real graphs often contain a
large MUC or biconnected component; with high probabil-
ity, a random edge involves a node in the large component.
In such a case, both methods become very slow. In contrast,
iCENTRAL is much faster because it implements a novel
incremental method that avoids redundant recomputation
within the affected component.

In another line of research, many research efforts con-
sider approximating betweenness centrality [30], [31], and
some more recent efforts offer approximation methods to
compute the changes of betweenness centrality values on
graph updates [32], [33]. In contrast, our work deals with
the exact calculation of betweenness centrality. Note that
computing exact betweenness centrality updates for truly
massive graphs (i.e., billions of nodes and edges) might not
be fast enough, even using efficient incremental methods. In
such a case, approximate betweenness centrality algorithms
might offer a fast alternative on the expense of accuracy. A

study of the available approximation algorithms and their
appropriateness for massive graphs is available in [19].

Biconnected components have been used for improving
the runtime of computing and updating other shortest-
path based centrality metrics. For example, biconnected
components are used [34] as a heuristic for updating close-
ness centrality. Other works use biconnected components to
accelerate the betweenness centrality computation in static
graphs [21]. In contrast, focus on the more complex case of
dynamically evolving graphs.

There are many research works on scaling the com-
putation of betweenness centrality to large graphs using
parallel and distributed architectures [35], [36], [37], [38],
[39]. However, these works focus on static graphs, unlike in
this paper where the focus is dynamic graphs.

6 CONCLUSIONS

We presented an approach for incremental betweenness
centrality computation that combines a novel method for
doing incremental computation with linear space, and bi-
connected components decomposition. We experimentally
show that our approach is faster and more scalable than
existing approaches. There remain some challenges related
to updating betweenness centrality in real evolving graphs.
For example, batches of edges arrive at very close times
or exactly at the same time in many real evolving graph
settings, which makes it desirable to have solutions specif-
ically optimized for updating betweenness centrality in the
batch case. Batch processing of edges is the primary focus of
our future work on incremental betweenness centrality. The
available literature on parallel and distributed betweenness
centrality computation in static graphs can be useful for the
dynamic graph case. Hence, our future work will involve
investigating the applicability of available ideas on paral-
lel betweenness centrality computation in static graphs to
dynamic graphs.

REFERENCES

[1] U. Brandes, “A faster algorithm for betweenness centrality,” Jour-
nal of Mathematical Sociology, vol. 25, pp. 163–177, 2001.

[2] J. M. Anthonisse, “The rush in a directed graph,” Stichting Math-
ematisch Centrum, Amsterdam, Tech. Rep., 1971.

[3] L. C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, vol. 40, pp. 35–41, 1977.

[4] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, pp. 7821–7826, 2002.

[5] A. Özgür, T. Vu, G. Erkan, and D. R. Radev, “Identifying gene-
disease associations using centrality on a literature mined gene-
interaction network,” Bioinformatics, vol. 24, pp. 277–285, 2008.

[6] E. M. Daly and M. Haahr, “Social network analysis for routing
in disconnected delay-tolerant manets,” in Proceedings of the ACM
MobiHoc, 2007, pp. 32–40.

[7] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graphscope:
parameter-free mining of large time-evolving graphs,” in Proceed-
ings of the ACM SIGKDD, 2007, pp. 687–696.

[8] O. Green, R. McColl, and D. A. Bader, “A fast algorithm for
streaming betweenness centrality,” in Proceedings of the ASE/IEEE
International Conference on Social Computing, 2012, pp. 11–20.

[9] M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung, “Qube: a
quick algorithm for updating betweenness centrality,” in Proceed-
ings of WWW, 2012, pp. 351–360.

[10] M.-J. Lee, S. Choi, and C.-W. Chung, “Efficient algorithms for
updating betweenness centrality in fully dynamic graphs,” Infor-
mation Sciences, vol. 326, pp. 278–296, 2016.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2763951, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, DECEMBER 2016 14

[11] N. Kourtellis, G. De Francisci Morales, and F. Bonchi, “Scalable
online betweenness centrality in evolving graphs,” IEEE TKDE,
vol. 27, no. 9, pp. 2494–2506, 2015.

[12] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms:
Theory and Practice. Prentice Hall College Div, 1977.

[13] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for
graph manipulation,” Commununcations of the ACM, vol. 16, pp.
372–378, 1973.

[14] G. Cong and D. A. Bader, “An experimental study of parallel bi-
connected components algorithms on symmetric multiprocessors
(smps),” in Proceedings of the International Parallel and Distributed
Processing Symposium. IEEE, 2005.

[15] P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathe-
maticae Debrecen, vol. 6, pp. 290–297, 1959.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, 1999.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in Proceedings of the ACM SIGKDD, 2005, pp. 177–187.

[18] K. Goel, R. R. Singh, S. Iyengar et al., “A faster algorithm to update
betweenness centrality after node alteration,” in Proceedings of the
international workshop on Algorithms and models for the web-graph,
2013, pp. 170–184.

[19] Z. Alghamdi, F. Jamour, S. Skiadopoulos, and P. Kalnis, “A
benchmark for betweenness centrality approximation algorithms
on large graphs,” in Proceedings of the International Conference on
Scientific and Statistical Database Management (SSDBM), 2017.

[20] D. Erdős, V. Ishakian, A. Bestavros, and E. Terzi, “A divide-and-
conquer algorithm for betweenness centrality,” in Proceedings of the
SIAM SDM, 2015, pp. 433–441.

[21] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes,
“Heuristics for speeding up betweenness centrality computation,”
in Proceedings of the IEEE PASSAT/SocialCom, 2012, pp. 302–311.

[22] O. Green and D. A. Bader, “Faster betweenness centrality based on
data structure experimentation,” Procedia Computer Science, vol. 18,
pp. 399–408, 2013.

[23] M. Kas, M. Wachs, K. M. Carley, and L. R. Carley, “Incremental
algorithm for updating betweenness centrality in dynamically
growing networks,” in Proceedings of the IEEE/ACM ASONAM,
2013, pp. 33–40.

[24] M. Kas, K. M. Carley, and L. R. Carley, “An incremental algorithm
for updating betweenness centrality and k-betweenness centrality
and its performance on realistic dynamic social network data,”
Social Network Analysis and Mining, vol. 4, pp. 1–23, 2014.

[25] W. Wei and K. Carley, “Real time closeness and betweenness
centrality calculations on streaming network data,” in Proceedings
of the ASE BigData Conference, 2014.

[26] S. S. Khopkar, R. Nagi, A. G. Nikolaev, and V. Bhembre, “Efficient
algorithms for incremental all pairs shortest paths, closeness and
betweenness in social network analysis,” Social Network Analysis
and Mining, vol. 4, pp. 1–20, 2014.

[27] M. Nasre, M. Pontecorvi, and V. Ramachandran, “Decremental all-
pairs all shortest paths and betweenness centrality,” in Proceedings
of the International Symposium on Algorithms and Computation, 2014,
pp. 766–778.

[28] M. Nasre, M. Pontecorvi, and V. Ramachandran, “Betweenness
centrality–incremental and faster,” in Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, 2014,
pp. 577–588.

[29] M. Pontecorvi and V. Ramachandran, “Fully dynamic between-
ness centrality,” in Proceedings of the International Symposium on
Algorithms and Computation, 2015, pp. 331–342.

[30] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approxi-
mating betweenness centrality,” in Proceedings of the international
workshop on Algorithms and models for the web-graph, 2007, pp. 124–
137.

[31] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation
of betweenness centrality.” in Proceedings of the SIAM ALENEX,
2008, pp. 90–100.

[32] T. Hayashi, T. Akiba, and Y. Yoshida, “Fully dynamic betweenness
centrality maintenance on massive networks,” Proceedings of the
VLDB Endowment, vol. 9, pp. 48–59, 2015.

[33] E. Bergamini, H. Meyerhenke, and C. L. Staudt, “Approximating
betweenness centrality in large evolving networks,” in Proceedings
of the SIAM ALENEX, 2015, pp. 133–146.

[34] A. E. Sarıyüce, K. Kaya, E. Saule, and U. V. Catalyürek, “Incre-
mental algorithms for closeness centrality,” in Proceedings of IEEE
International Conference on BigData, 2013, pp. 487–492.

[35] G. Tan, D. Tu, and N. Sun, “A parallel algorithm for computing be-
tweenness centrality,” in Proceedings of the International Conference
on Parallel Processing. IEEE, 2009, pp. 340–347.

[36] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Proceedings of the
International Conference on Parallel Processing (ICPP). IEEE, 2006,
pp. 539–550.

[37] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-
Miranda, “A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on massive
datasets,” in Proceedings of the IEEE IPDPS, 2009, pp. 1–8.

[38] N. Edmonds, T. Hoefler, and A. Lumsdaine, “A space-efficient
parallel algorithm for computing betweenness centrality in dis-
tributed memory,” in Proceedings of the IEEE HiPC, 2010, pp. 1–10.

[39] A. McLaughlin and D. A. Bader, “Revisiting edge and node
parallelism for dynamic gpu graph analytics,” in Proceedings of the
International Parallel & Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2014, pp. 1396–1406.

Fuad Jamour received his BS degree in com-
puter engineering with Honours from the Univ.
of Jordan in 2011 and his MS degree in com-
puter science from the King Abdullah Univ. of
Science and Technology (KAUST) in 2013. He
is currently pursuing a PhD degree in computer
science at KAUST. His research interests include
Graph Algorithms and Social Network Analysis.

Spiros Skiadopoulos is currently a Professor
at Dept. of Informatics and Telecommunications
at University of Peloponnese. He received a
diploma and a PhD degree from the National
Technical University of Athens and a MPhil de-
gree from Manchester Institute of Science and
Technology (UMIST). He has worked in a variety
of areas including data management, knowledge
representation and reasoning. His current re-
search interests include management of big and
complex data.

Panos Kalnis is professor and chair of the
Computer Science program in the King Abdul-
lah Univ. of Science and Technology (KAUST).
In 2009 he was visiting assistant professor in
the CS Dept., Stanford University. Before that,
he was assistant professor in the CS Dept.,
National University of Singapore (NUS). From
2013 to 2015 he was associate editor for TKDE.
Currently, he serves on the editorial board of
the VLDB Journal and the Data Science and
Engineering Journal. He received his Diploma

from the Computer Engineering and Informatics Dept., Univ. of Patras,
Greece in 1998 and his PhD from the Computer Science Dept., Hong
Kong Univ. of Science and Technology (HKUST) in 2002. His research
interests include Big Data, Cloud Computing, Parallel and Distributed
Systems, Large Graphs and Long Sequences.

