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A b s t r a c t  

in this paper we consider some of the central issues involved in the design of parallel 

algorithms. We describe several efficient algorithms for idealised shared memory architectures 

and draw some conclusions as to what would be required to implement them on a realistic 

physical architecture, i.e. one with distributed memory. We also describe some systolic 

algorithms for matrix computations, sequence comparison and molecular modelling, and briefly 

discuss their implementation on arrays of transputers. In the final section we discuss the 

question of whether the current preoccupation with architectural details in parallel algorithm 

design is likely to persist. We briefly describe some techniques which show that a physically 

realistic general purpose parallel architecture based on distributed memory can be constructed 

which will execute any shared memory parallel algorithm with no significant overhead due to 

communication. We thus have the attractive prospect in the very near future of architectural 

independence in parallel algorithm design. 
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1 I n t r o d u c t i o n  

An extensive set of general techniques for the design and analysis of efficient sequential algo- 

rithms has been developed over the last three decades, see, e.g. [1, 13, 38, 40, 41, 42, 59, 67, 69]. 

The successs of this development is in large measure due to the existence of theoretical models 

of computation (Random Access Machine, Turing Machine) and natural complexity measures 

for those models (e.g. time, space) which, since they accurately reflect the true costs of sequen- 

tial computations, have been almost universally adopted in discussions of algorithmic efficiency. 

For example, we are able to assert that a new O(n 2) time sequential algorithm is superior to 

a known O(n 3) one, without giving elaborate details of the various physical representations of 

data structures within the machine. Only in extreme cases does this simplistic approach to 

complexity give way to a much more detailed analysis of the physical data representations used. 

For example, in considering operations on very large databases [22, 70] one typically has to take 

into account the representation of the database within a hierarchical memory system. 

The situation in para~el computing at the present time is dramatically different. Almost 

all parallel algorithms are designed with a particular architecture (theoretical or practical) in 

mind. We thus have a wide variety of different types of parallel algorithm. These include PRAM 

algorithms [18, 29, 55], circuit algorithms (Boolean and arithmetic) [4, 8, 12, 14, 21, 23, 28, 52, 

77], comparison networks [2, 7, 42], VLSI algorithms [71], systolic algorithms [47, 51], mesh 

algorithms [6, 66], hypercube algorithms [26, 33], pyramid algorithn-ls [50] and various types 

of asynchronous distributed algorithms [9, 27]. Even within a single class, such as the PI~AM 

algorithms, we have further subdivisions on the basis of properties of the shared memory, e.g. 

concurrent or exclusive read,  concurrent or exclusive write etc. This plethora of computational 

models inhibits the development of a set of general methods for the design of efi$cient parallel 

algorithms. 

In this paper we consider some of the central issues involved in the design of parallel algo- 

rithms. We describe several efficient algorithms for idealised shared memory architectures and 

draw some conclusions as to what would be required to implement them on a realistic physical 

architecture, i.e. one with distributed memory. We also describe some systolic algorithms for 

matrix computations, sequence comparison and molecular modelling, and briefly discuss their 

implementation on arrays of transputers. In the final section we discuss the question of whether 

the current preoccupation with architectural details in parallel algorithm design is likely to per- 

sist. We briefly describe some techniques which show that a physically realistic general purpose 

parallel architecture based on distributed memory can be constructed which will execute any 

shared memory parallel algorithm with no significant overhead due to communication. We thus 

have the attractive prospect in the very near future of architectural independence in parallel 

algorithm design. This should greatly assist us in the pursuit of a set of general techniques for 

the design~ analysis and verification of parallel algorithms to match those which we currently 



have for sequential algorithms. 

For an introduction to the areas of para~el programming and para~el algorithms, see e.g. 

[3, 9, 16, 26, 29, 55]. 

2 Shared Memory Parallel Algorithms 

Two standard models for shared memory parallel computation are the PRAM and the circuit. 

A parallel random access machine (PRAM) consists of a collection of processors which com- 

pute synchronously in parallel and which communicate with a common global random access 

memory. In one time step, each processor can do (any subset of) the following - read two values 

from memory, perform a simple two-argument operation, write a value to memory. There is no 

explicit communication between processors. Processors can only communicate by writing to, 

and reading from, the shared memory. We make the following simplifying assumptions. 

• The memory size is unbounded. 

• The inputs to the computation are stored in the memory when the algorithm is started. 

• The number of processors is unbounded. 

• Each processor has only enough memory to store the argument and result values. 

In a Concurrent Read Concurrent Write (CRCW) PRAM, any number of processors can read 

from, or write to, a given memory cell in a single time step. In a Concurrent Read Exclusive 

Write (CREW) PRAM, at most one processor can write to a given memory cell at any one time. 

A circuit is a directed acyclic graph with n input nodes (in-degree 0) corresponding to the 

n inputs to the problem, and a number of gates (in-degree 2) corresponding to two-argument 

functions. In a Boolean circuit, the gates axe labelled with one of the binary Boolean functions 

NAND,A,  NOR, V,-%@ etc. In a typical arithmetic circuit, the input nodes are labelled with 

some value from Q, the set of rational numbers, and the gates are labelled with some operation 

from the set {+, - ,  , , / } .  

E x a m p l e  2.1 P R A M  computation of ab + ac + bd + cd from inputs a, b, c, d. 

Time step1 Pi b T c =~ x 

T ime , top2  Pl a . x ~ y 

p2 x . d =~ z 

Time step3 Pl y + z ~ result 



E x a m p l e  2.2 Arithmetic circuit for ab + ac + bd + cd. 

b c 

E x a m p l e  2.3 Boolean circuit which computes the two binary digits < 'dl, do > of  ~1 + r~ + ~3. 

x ~ x3 

The parallel complexity of a PRAM algorithm is the number of steps. The parallel complexity 

of a circuit is the depth of  the circuit, i.e. the maximum number of gates on may directed path. 

The parallel complexity of Examples 2.1, 2.2 and 2.3 are all three. 

2.1 A d d i t i o n  

Let ADD~(m~ . . . .  ,xn) = ~'~-~=t ~ where ~ E Q. A circuit of depth ~or ADD,~ can easily 

be obtaiue~ by constructing ~ balanced binary tree of ÷-gates, with n leaves corresponding to 

the arguments i~i ~..., ~.~. The optimality of this co~tmtction, in terms of d~pth, follows from the 

functional dependency of ADD,~ on each of its n arguments. If we now define OR,~(zl , . . . ,  r~) = 

Vi~=l ~/where ~:i E {0,1}, then we have a very similar problem to that of computing ADD,~. We 



can easily obtain a PRAM algorithm of complexity [log2n] and a Boolean circuit of depth [Iog2n] 

for OR,. That this circuit depth is optimal follows from functional dependency. However, as 

Cook and Dwork [19] observed, there is rather more to the question of the PttAM complexity of 

OPt. If we allow concurrent write then ORn can be computed in one parallel step in an obvious 

way. Processor i reads ~ from memory location i and if zl = 1 it writes a 1 into location 0. 

Cook and Dwork [19] show that even on an exclusive read/exclusive write PRAM, OR~ can be 

computed in less than [log2n] steps. They derive an upper bound of 0. 721og2n on the number 

of steps required. However, they also show that a lower bound of f/(/og2n) holds and thus only 

a constant factor improvement is possible. 

2.2 Polynomial Evaluation 

Let P~(a0, a l , . . . ,  a~, ~) = ~ = 0  a/~' where a~, x E Q. The standard sequential algorithm for 

polynomial evaluation is Homer's Rule where to calculate P~ we successively compute 

~ a n 

Pi = (Pi+l*X) Jc04 for i=n - - l , n - -2 , . . . , 1 ,O .  

Then P~ = P0. The sequential complexity of polynomial e~luation has been studied for many 

years. It is known that 2n axithmetic operations are required to evaluate a general polynomial 

of degree n, given by its coefficients [12]. Thus, in terms of sequential complexity, Homer's 

Rule is optimal. However, it is very unsuitable for parallel computation since at every step 

in the computation the immediately preceding subresult is required. If instead, we evaluate 

each term ai~ i of the polynomial independently, in parallel~ using a balanced binary tree of 

.-gates and we then sum the values of the terms using a balanced binary tree of +-gates then 

we have a circuit of depth 2[/og2(n + 1)]. This circuit is e~ponentially better, in terms of depth, 

than a circuit based on Homer's Rule, although the number of gates (sequential complexity) 

is now O(n 2) rather than O(n). The 2[log2(n + 1)] upper bound can be further improved to 

log2n ~- O ( o V ~ )  by using a simple recursive parallel algorithm due to Munro and Paterson 

[53] which splits the polynomial into consecutive blocks of terms and factors out the appropriate 

power of x. Kosaraju [43] has shown that the algorithm of Munro and Paterson is optimal. 

2.3 M a t r i x  M u l t i p l i c a t i o n  

Let A, B be two n x n matrices of rational numbers. Then the product of A, B is an n × n 

matrix C, where c~.j = ~kn_l a4,~ * bk,j. The exact determination of the sequential complexity 

of matrix multiplication is a major open problem in the field of computational complexity 

[17, 54, 68]. At the present time, the best known algorithm (asymptotically, as n --* 0o) requires 

only O(n 2"376) arithmetic operations [20] as opposed to the standard O(n3). No lower bound 

larger than the trivial fl(n 2) is known. 



In contrast, determining the shared memory parallel complexity of matrix multiplication is 

trivial. We can evaluate each ci,j term independently, in paratIe1, by a balanced binary tree of 

depth ~log2n] + 1. Functional dependency shows this bound for ci,i to be optimal and so we 

have an optimal bound for parallel matrix multiplication. Despite having obtained an optimal 

algorithm for an idealised machine (PRAM, circuit) we still have some way to go to produce an 

efficient algorithm which can be physically realised. The crux of the problem can be seen by 

considering the circuit graph for 2 x 2 matrices. 

al,1 al,2 a2,1 a2,2 b1.1 bl,2 b2,1 b2,2 

%1 ¢I,z c23 ~2.2 

If we make the (reasonable) assumption that the arguments to the problem are not replicated 

within the physical parallel machine, then the above diagram suggests that more time might be 

spent in moving the arguments around than in performing the arithmetic operations. Precise 

results of this form can, in fact, be obtained using information-theoretic arguments. For examaple, 

motivated by VLSI considerations, we might restrict our circuits to be planar. Using information 

flow arguments we can establish lower bounds off l (n  a) and ~2(~ 2) on the size (number of gates) 

and depth respectively, of any planar Boolean matrix multiplication circuit [65]. Such results, 

indicating the dominance of the cost of communication in parallel computations, are by no means 

unusual, they are very common indeed. The problem of managing communication is a central 

task in the design of efficient parallel algorithms. 

2.4 Linear Recurrences  

The m ~h Fibonacci number  fm is given by  the second order linear recurrence 

f0 = 0 

fl = 1 

fm = fra-l+fra-2 for m > 2  

This definition can be directly translated into am amithmetic circuit with m - 1 gates (and depth 

m - 1) which successively computes f2,f3, . . .  ,f,~. As in the case of Horner's Rule we have a 

circuit with no direct pamallel speedup. If instead, we use the unconventional definition 



)tn--S 
( / m - l / m )  = (/0£) 0 1 

1 1 

then we see immediate ly  tha t  ) e  can be calculated by an ar i thmetic  circuit of size and depth 

O(log2m) if we compute the matr ix  power efficiently by repeated squaring. 

The above result for Fibonacci  numbers is a special case of the following more general result 

by Greenberg et al. [30] on the parallel  evaluation of k e• order linear recurrrences. If we have F = 

(f0 J~ - . -  h - -S)  a n d  f m =  ~ k =  1 ak-~ * f m - j  for ~ :> ]g, t h e n  ( f rn -k+l  -*. fro) = F * M ' ~ - i + l  

where M is the k × k matr ix  

. . .  0 ao 

as 

x i 

ak-S 

and therefore the parallel  complexity of computing .f,n is at most O(log2k. log2(m - k)). 

For a pract ical  applicat ion of this result we consider the problem of solving linear systems. Let 

B be an n x n non-singular, lower tr iangular  matr ix,  and c be an n-element vector. In  solving the 

linear system B~ = c by 'back subst i tut ion '  we use the recurrence ~ = (ci - ~ - 1  b~,i. zi)/b~,~ j=S 

for 1 ___ i <__ n. If we let x~ = 0 for i < 1 then we can rewrite this recurrence in the form 

(z4 zi-~ . . .  xi-,~+l 1) = (x~_ s x~-2 . . .  zi-,~ 1)* Mi where 

t b~ i-1 

_ ~  = 

bi.i 

0 

0 

0 0 0 

0 1 

Therefore we can design an ar i thmetic  circuit of depth O((/og2n) 2) which solves B z  = c to 

obtMn x_. 

2.5 Sequence Comparison 

Let X,~ = x l z2 . . ,  x,, and Y,, = YsY2...  y,, be two sequences. We are interested in the minimum 

number of insertions and deletions required to change X, ,  into Yn. We assume tha t  each insertion 

or deletion costs 1. Very large ins.tances of this problem arise in the area of molecular biology 

where the strings correspond to nucleic acid sequences [64 I. The edit  distance is a measure of 

the similari ty of the  two sequences 



When m = 0 we have Cost(X.,, Y,,) = n. 

m > 0 ,  n > 0 t h e n w e h a v e  

Cost(x.,, Y~) < Cost(x.,_1, y._~) 

Cost(X,n, IT,) < i + Cost(X,n_1, Y,~) 

Cost(X.,, Y,)  < 1 + Cost(X.,, Y,_~) 

Similarly, n = 0 gives Cost(X,,, Y,~) = m. If 

if :c"* = y.  

[ delete x,~ ] 

[ insert y, ] 

Using dynamic programming we can tabulate the values of Cost in a straightforward way. 

Example  2.4 DEFINE =~ DESIGN 

$ D E F I N E 

0 [ o ]  i 2 s 4 5 

D 1 [0] 1 2 3 ~ 5 

E ~ I M [ i ]  2 S 4 

s 3 z i [$] 3 $ 5 

z 4 3 z 3 [z] s 4 

G 5 4 3 4 [3] 4 5 

N ~ 5 4 5 4 Is] [4] 

The number below zi and to the right of Yi is Cost(X~, Yi). The chain of bracketed numbers 

indicate that we should perform the following sequence of edits to change DEFINE into DESIGN 

: Delete F, insert S, insert G, delete E. An arithmetic circuit of size O(m* n) and depth 0 (m + n) 

can be obtained by performing the calculations on the i th diagonal, in parallel, at the i ~h level 

in the circuit. We will return to the sequence comparison problem in Section 3.3. 

3 Systolic Algorithms 

H.T.Kung [45, 46] has persuasively argued the case for the design of parallel algorithms which 

carefully balance the input/output, communication and processing in parallel computations to 

avoid bottlenecks and hence increase throughput. A systolic parallel algorithm typically has the 

following properties 

• computation proceeds synchronously 

• only local computation is required 

• operations are pipelined to balance input/output, computation and processing 

• the processor architecture has a simple, regular (usually mesh) structure. 



The synchronous property is not an essential feature and, indeed, many asynchronous systolic 

(or wavefront) algorithms have been developed [47]. 

3 .1  M a t r i x  M u l t i p l i c a t i o n  

For our first example of a systolic algorithm we consider again the problem of multiplying two 

n X n matrices A, B to produce C. The systolic matrix multiplication Mgorithm is based on the 

following simple program. 

Prograrnl,j 

Time step 0 

Time step i + j  + t -  2, 0 < t _< n 

: ~ , j  : =  O; 

: IIlput(ai,,, b,,i); 

G,j := ci,j + (ai,t * bt,i); 

Output(ai,t, bt,i); 

Programi,i is implemented on processor Pi,i in an n x n array of processors corresponding to 

the elements of C. To ensure the correct synchronous dataflow we need to do the following. 

• Provide a communication channel from P~,j to Pi,j+l and from P~,i to Pi+l,j+l. 

• Supply ai,j as input to processor P~,x at time i + j - 1. 

• Supply bi,i as input to processor Px6 at time i + j - 1. 

At time step 3n - 1 the product matrix C is stored in the n x n processor array and can be 

output using the communication channels. 

3 .2  A l g e b r a i c  P a t h  P r o b l e m  

Let G be a complete directed graph on n nodes and A be a matrix of values corresponding 

to the arcs of G. The Algebraic Path Problem (APP) is the problem of computing A* = 

I @ A @ A 2 @ A 3 ~ --. where matrix product is defined in terms of two operations @ and ®. 

The APP is a problem of major importance in a variety of areas a~ld has been extensively 

studied in recent years. Some simple examples of the APP are the following : 



t0 

A 

{0,1} 

I~ u {+co} 

R u {+oo} 

® Problem 

V A Transitive closure of a directed graph. 

(Is node i connected to node j by a 

directed path 7) Warshall [76] 

rain + Shortest path from node i to node j. 

Floyd [25] 

min maz Minimum cost spanning tree in a 

connected undirected graph. 

Maggs and Plotkin [49] 

The APP also finds applications in areas such as parsing and logic programming, and can be 

used as the basis of algorithms for matrix inversion. For simplicity in our discussion here, we 

restrict ourselves to the instance of the APP corresponding to the transitive closure of a directed 

graph. In this case, letting A ° = I ,  we have A* = Vi_>0 A~. Noting that node i is connected 

to node j if and only if it is connected by a path of length < n - 1, we have 

A* = V A~ 
i = 0  

= (A °V A) '~-1 

= (A ° V A )  2k whenever2 k > n - 1  

Therefore, to obtain an efficient shared memory parallel algorithm for the computation of the 

transitive closure of A we need only set the main diagonal to 1 and repeatedly square the resulting 

matrix until we have a sufficiently large power. For an n x n Boolean matrix A, this method yields 

an arithmetic circuit of depth O(log2n)2). This ~repeated squaring' approach, when combined 

with the systolic matrix multiplication algorithm yields an O(n log2n) time systolic algorithm for 

transitive closure on an n x n processor array. The problem of designing more efficient systolic 

algorithms for the APP has been intensively studied in recent years. Gnibas et al. [31] describe 

a simple "three pass" extension of the systolic matrix multiplication algorithm which yields the 

transitive closure in O(n) steps on an n × n array. A detailed description of the correctness 

proof for this algorithm can be found in the text by UUman [71]. Since the appearance of the 

paper by Guibas et al.[31], Robert, Rote and others [62, 63] have improved and generalised this 

algorithm in a number of ways. 

3.3 Sequence Comparison 

The sequence comparison problem can be efficiently solved using a linear systolic array with 

two-way communication in which the two sequences are compared as they pass through the 

array moving in opposite directions. Let X~ = z l ~ " ' z , ,  and Y,~ = YlY2""Y,~ be the 

two sequences to be compared. We use a linear array of processors. Each processor P~ has 
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input and output channels (In.L,Out.L) to the processor on the left, P i - 1 ,  and similar channels 

(In.R,Out.R) to the processor on the right, Pi+z • We input the sequences Yl 1 Y2 2 Y3 3 . . .  y,~ n 

and zz 1 ~ 2 x3 3 . . .  $,n m sequentially from the left and right respectively. Once the sequences 

have been input to the array, the computation proceeds with each processor repeatedly perform- 

ing the following set of operations every two time steps. 

Step 1 : In.R(x/); 

In.L(yj); 

Bool:=(~ = yj); 

Out.R(yj); 

Out.L(xi); 

Step 2 : In.It(Cost(X,, Y',-1)); 

In.T,( Cost(X _ , Yi)); 

1 + Cost(x , 
Cost(Xi, l~) = minimum 1 + Cost(Xi_l, ~ )  

Cost(Xi-1, Y/-1) /f  Bool 

out.R( x .  Yj)); 

Out.L( X. 

The following simple example illustrates how the values in the array change from one time step 

to the next. 

® T G G 

O 0 1 2 3 

A 1 2 3 4 

C 2 3 4 5 

G 3 4 3 4 

2 1 I 0 1 I 2 

3 G ~  133 

2 2 1 2 I 2 2 

3 2 3 2 3 2 3 

4 3 4 3 4 

3 4- 5 

4 

T4 G 3 O 
5 C 4A 
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A simple inductive argument shows that the matrix of edit distances has the property that hor- 

izontally and vertically adjacent pairs of values always differ by 1. Because of this property it is 

sufficient to keep the remainder modulo 4 of the matrix entry. If we implement the above systolic 

algorithm but keep only such remainders then we can still reconstruct the true value of the edit 

distance from either of the two sequences of vMues c,~,1, c~,2, . . . ,  cm,,, and cl,n, c2, , , , . . . ,  c,n,,~ 

which are output by the array (cl,j = Cost(X~, I~) rood 4) since 

cm,o = m , (cm,i = c.~,~:-1 - 1) V (c..,i = c~,i-1 -k 1) 

c0 ,~=n  , ( c i , , = c ~ - l , n - 1 )  V ( c ~ , , = e ~ _ l , , ÷ l )  

At Oxford we have implemented this algorithm on a small array of 40 T800 transputers, each 

with 1/4 MByte memory. In matching nucleic acid sequences (four letter alphabet) we need only 

two bits per character and, as we have seen~ two bits per value. This greatly reduces the com- 

munication and storage costs and significantly improves the performance of the implementation. 

Nucleic acid sequence databases are already growing in size at an astonishing rate. The Human 

Genome Project promises to further accelerate this growth. Algorithmic techniques for pattern 

matching and database searching, such as those described, will be crucial to future developments 

in this area. 
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3.4 Molecular Modelling 

Molecular modelling is one of the most important practical applications of parallel architectures. 

Ab initio methods [34] are based on quantum-mechanical calculations of molecular structure. 

The computation times required for such calculations, even with highly parallel architectures, 

are at present prohibitive for all but the smallest molecules. However, as the power of parallel 

machines increases we can expect a much wider use of this approach. 

At present, most calculations of the structure and dynamics of proteins, carbohydrates and 

nucleic acids are carried out using molecular mechanics and molecular dynamics techniques. 

These methods adopt a force field approach to calculating the potential energy of a molecule in 

a given conformation. The A M B E R  force field is quite typical. Let i ~ j denote the (symmetric) 

relation that atom i is bonded to atom j.  Then in AMBER the potential energy is calculated 

as a sum of the following types of term. 

• Bond energies for all i , j ,  i ¢~ j 

• Angle energies for all i , j ,  k, (i ¢~ k) ^ (k v} j)  

• Torsional energies for all i , j ,  k, l, (k V i) ^ (i ¢~ j)  ^ (j ~ l) 

• Conlombic potential for all i , j ,  (i "~ j )  

• Lennard-Jones potential for all i , j ,  (i ~ j )  

• Hydrogen bonding term for all i , j ,  (i .¢~ j )  

The problem of calculating the potential energy of a molecular conformation is similar in 

many ways to the sequence comparison problem. They are both instances of "all pairs" com- 

putations. For any such computation, a linear systolic array provides a convenient pattern of 

dataliow. In the case of the potential energy calculation we simply pass one copy of the atomic 

coordinates and bond information of the structure past another in the array. When the coordi- 

nate and bond information for atom i meets that for atom j ,  we execute the following program. 

if i . w j  then 

elseif ( i ~ k )  A(k~=}j) then 

else 

calculate bond term; 

for all k,Z, (k *} i) ^ (i , }  j )  A (j ~ t), 

calculate torsional terms; 

calculate angle energy; 

calculate Coulombic energy; 

calculate Lennard-Jones potential; 

calculate hydrogen bonding term; 

Let did denote the distance between atoms i , j .  The contributions from the Lennard-Jones 
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and hydrogen bonding terms rapidly decline with increasing d~,j and can safely be neglected 

beyond a certain predefined cut-off distance. Unfortunately, the Coulombic potential does not 

decline quickly, and it is the calculation of these Coulombic terms for all non-bonded pairs which 

dominates the energy calculation for large molecules. 

We have used this approach to produce a highly parallel imlementation of AMBER which 

runs on an array of transputers attached to a SUN workstation. 

3.5 Systolic Programming 

The systolic approach was initially conceived as a means of producing high-performance special- 

purpose hardware systems. However, most of the systolic algorithms which have been developed 

in recent years can be quite naturally viewed as para~el programs to be implemented on standard 

communicating process architectures such as transputer arrays. 

The range of applications for which efficient systolic algorithms are known is growing steadily 

each year [47, 51]. We are also starting to see the development of a theory of systolic parallel 

programming [15, 16, 35, 47, 60] which will assist in the future design and verification of systolic 

algorithms. 

4 General Purpose Parallel Computers 

In the previous sections we have described a number of parallel algorithms for idealised shared 

memory parallel machines and for distributed memory architectures such as transputer arrays. 

In this final section we consider some more general questions concerning developments in the 

areas of algorithms, architectures and programming languages for parallel computation. 

There have been many notable successes in recent years in the design of new highly efficient 

parallel algorithms through the explicit control of input/output, communication and processing. 

Some of the systolic algorithms are particularly impressive. It should also be noted that for 

many practical applications in the physical sciences, relatively little detailed design is required 

to produce an efficient parallel algorithm. Many such problems are "embarrassingly parallel" 

by virtue of the underlying physical structure. 

On the basis of such observations, some would argue that parallel programming need not 

(and should not) change significantly. The arguments are essentially the same as those used 

in support of low-level languages for sequential programming, i.e. greater control over physical 

resources. The arguments against this approach, e.g. the possibility of architecture-independent 

parallel software, are , however, very strong. It should also be noted that there are many 

application areas where no parallel algorithms with simple, regular data structures and process 

structures are known, although efficient algorithms for shared memory machines have been 

developed [18, 29]. 
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Thus far, the absence of any commercially available parallel systems which simultaneously 

offered large scale parallelism and a shared memory programming model has resulted in the 

communicating process approach [37] prevailing by default. However, a number of recent results 

in theoretical computer science indicate how such such a system could be designed, and the 

continuing developments in VLSI technology give confidence that very shortly such systems will 

be widely available. Before pursuing this issue further, we briefly discuss two topics related to 

general-purpose parallel computers which are now quite well understood, namely the possible 

communication structures (interconnection networks) for such machines, and the efficiency with 

which one parallel machine can simulate another. 

4.1 C o m m u n i c a t i o n  S t r u c t u r e s  

A very large number of papers have been written on the topic of how to connect n nodes (proces- 

sors) together to produce a parallel architecture which efficiently supports the communicating 

process programming model. This is a standard problem from the field of algebraic graph theory 

[10] and is quite well understood. If we restrict ourselves to regular structures with exactly d 

connections to each node then even with small fixed d, e.g. d < 6, we have a wide range of 

possible families of graphs such as toroidal meshes (1D,2D,3D), trees, and shuffle-exchange type 

graphs such as the Cube-Connected Cycles (CCC) [58]. 

Ease of programming and avoidance of bottlenecks both suggest that a useful feature for 

any such communication graph structure is that it should look isomorphic from any node, i.e. 

it should be vertex-transitive [10]. This property tends to rule out trees as a communication 

structure, although they have many other desirable features. 

We can compare meshes and shuffie-exchange type graphs in a variety of ways. Perhaps the 

main advantage of the meshes (up to 3D!) is that they can be directly embedded in 3D physical 

space. The main advantage of the shuffle graphs, on the other hand, is that they have diameter 

O(log2n), i.e. the distance between any two nodes is at most O(log2n). For a k-dimensional 

mesh, the diameter is O(~-n). 

If we allow a nonconstant number of connections per node, then we can, for example, con- 

struct a (log2n)-dimensional hypercube. This structure has /og2n connections per node, has 

diameter logan, and is vertex-transitive. The main advantage of the hypercube over fixed-degree 

shuffle graphs such as the CCC is the increased communication bandwidth afforded by the 

increase in the number of connections per node. 

For more on the topic of communication structures, see e.g. [9, 39, 71, 74]. 

4.2 Embedding 

Another issue which has received a great deal of attention in recent years is efficient graph 

embedding, i.e. the task of efficiently mapping a given graph onto some standard host graph. 
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There are a number of situations in parallel computing where one encounters this problem. In 

laying out VLSI circuits one has often to efficiently embed some arrangement of wires, e.g. a 

binary tree of wires, onto a planar grid structure. Another example is where one has a standard 

multiprocessor archite~cture, e.g. a hypercube, and one requires some other process structure, 

perhaps a tree or a mesh,  The final example is closely related to the previous one,  but is worthy 

of explicit mention. It is where one has a large virtual process structure and a much smaller 

physical structure of the same form. For example , one might have an algorithmic problem 

which naturally gives rise to a 100 x 50 mesh of processes, but have only an 8 × 8 physical mesh 

on which to implement it. Such situations arise frequently when programming in a language 

such as occam. There will typically be a number of possible ways of allocating the large set of 

virtual processes to the much smaller set of physical processors. Which of these possible process 

mappings is most appropriate will often depend crucially on the balance between communication 

and computation in the processes. 

For more details on solutions to some of these problems, see e.g. [5, 24, 32, 44, 48, 57]. 

4 . 3  R o u t i n g  

A major challenge for contemporary computer science is to determine the extent to which one can 

have architectural independence in parallel algorithms and parallel programming languages. The 

central task in this direction is to design highly parallel distributed memory architectures which 

efficiently implement the idealised shared memory model, using only a 'sparse' communication 

structure, e.g. at most tog2n connections per node. 

Over the last decade, a series of results in theoretical computer science by Valiant, Brebner, 

Upfal, Pippenger, Ranacle and others [56, 61, 72, 74, 73, 75] have demonstrated conclusively 

that there is no theoretical impediment to providing such a system. They have shown that using 

ideas such as randomised two-phase routing one can implement shared memory algorithms on 

architectures such as the hypercube with no significant loss of efficiency. In randomised two- 

phase routing, one sends a message from node i to node j not by sending it directly by a shortest 

path, but by sending it initially from i to some randomly chosen node k in the structure (by a 

shortest path) , and from there to j (again by a shortest path). 

Some parallel computer systems, such as the Ametek system and the Intel iPSC-2, currently 

provide hardware support for routing non-local messages. The next step is to provide enough 

communication bandwidth and memory management hardware to directly support shared mem- 

ory. We can confidently expect that within five years such features will be standard on most 

parallel architectures. This, of course, raises the question of what else might be provided as 

"primitive" on future parallel architectures. There is a strong case for examining the extent to 

which it is cost-effective to provide hardware support for parallel operations on complex data 

structures. This topic is likely to receive a lot of attention over the next few years [11, 36]. 
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5 Conclusion 

We have described some simple parallel algorithms for two idealised shared memory models, 

PRAMs and circuits. We have also shown some systolic algorithms which can be efficiently 

implemented either directly in hardware or using arrays of transputers. 

The comparative ease with which one can design algorithms for a shared memory machine 

is likely to be a decisive factor in determining the form of future parallel architectures. Hard- 

ware support for routing and shared memory management will result in general-purpose parallel 

architectures which are efficient for a wide range of problems. However, in those application 

areas where no overhead whatsoever is considered acceptable and where the financial and tech- 

nical resources are available, dedicated special-purpose systems will continue to be developed 

(at a cost) using programming notations which allow one to explicitly control input/output,  

communication etc. as in systolic programs. 

The "special-purpose systems approach" will probably continue to be adopted for some time 

in many of the areas which currently absorb large amounts of time on parallel architectures, e.g. 

fluid dynamics, molecular modelling, signal processing, image processing, computer graphics. 

The advantages gained by adopting this approach are likely to diminish, however, with increases 

in the scale of parallelism. 

Our conclusion then is that the current degree of diversity in architectures for parallel compu- 

tation will be greatly reduced over the next few years. We can at last look forward to parallelism 

having an impact in application areas where one has complex data structures and/or much less 

regular patterns of computation, e.g. combinatorial optimisation, sparse matrix computations, 

symbolic computation, artificial intelligence. We can also expect to see the emergence of a set 

of general techniques for the design, analysis and verification of efficient parallel algorithms to 

match those which we currently have for sequential algorithms. 
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