
PARALLEL ALGORITHMS AND ARCHITECTURES 1

W.F.McCoLL

Programming Research Group

Oxford University

11 Keble Road

Oxford OX1 3QD

England

A b s t r a c t

in this paper we consider some of the central issues involved in the design of parallel

algorithms. We describe several efficient algorithms for idealised shared memory architectures

and draw some conclusions as to what would be required to implement them on a realistic

physical architecture, i.e. one with distributed memory. We also describe some systolic

algorithms for matrix computations, sequence comparison and molecular modelling, and briefly

discuss their implementation on arrays of transputers. In the final section we discuss the

question of whether the current preoccupation with architectural details in parallel algorithm

design is likely to persist. We briefly describe some techniques which show that a physically

realistic general purpose parallel architecture based on distributed memory can be constructed

which will execute any shared memory parallel algorithm with no significant overhead due to

communication. We thus have the attractive prospect in the very near future of architectural

independence in parallel algorithm design.

Keywords : algorithms, complexity, computer architecture, molecular modelling, parallel

computation, routing, sequence comparison, systolic algorithms.

1 This work was supported by the Science and Engineering Research Council under grant GR/E01010.

1 I n t r o d u c t i o n

An extensive set of general techniques for the design and analysis of efficient sequential algo-

rithms has been developed over the last three decades, see, e.g. [1, 13, 38, 40, 41, 42, 59, 67, 69].

The successs of this development is in large measure due to the existence of theoretical models

of computation (Random Access Machine, Turing Machine) and natural complexity measures

for those models (e.g. time, space) which, since they accurately reflect the true costs of sequen-

tial computations, have been almost universally adopted in discussions of algorithmic efficiency.

For example, we are able to assert that a new O(n 2) time sequential algorithm is superior to

a known O(n 3) one, without giving elaborate details of the various physical representations of

data structures within the machine. Only in extreme cases does this simplistic approach to

complexity give way to a much more detailed analysis of the physical data representations used.

For example, in considering operations on very large databases [22, 70] one typically has to take

into account the representation of the database within a hierarchical memory system.

The situation in para~el computing at the present time is dramatically different. Almost

all parallel algorithms are designed with a particular architecture (theoretical or practical) in

mind. We thus have a wide variety of different types of parallel algorithm. These include PRAM

algorithms [18, 29, 55], circuit algorithms (Boolean and arithmetic) [4, 8, 12, 14, 21, 23, 28, 52,

77], comparison networks [2, 7, 42], VLSI algorithms [71], systolic algorithms [47, 51], mesh

algorithms [6, 66], hypercube algorithms [26, 33], pyramid algorithn-ls [50] and various types

of asynchronous distributed algorithms [9, 27]. Even within a single class, such as the PI~AM

algorithms, we have further subdivisions on the basis of properties of the shared memory, e.g.

concurrent or exclusive read, concurrent or exclusive write etc. This plethora of computational

models inhibits the development of a set of general methods for the design of efi$cient parallel

algorithms.

In this paper we consider some of the central issues involved in the design of parallel algo-

rithms. We describe several efficient algorithms for idealised shared memory architectures and

draw some conclusions as to what would be required to implement them on a realistic physical

architecture, i.e. one with distributed memory. We also describe some systolic algorithms for

matrix computations, sequence comparison and molecular modelling, and briefly discuss their

implementation on arrays of transputers. In the final section we discuss the question of whether

the current preoccupation with architectural details in parallel algorithm design is likely to per-

sist. We briefly describe some techniques which show that a physically realistic general purpose

parallel architecture based on distributed memory can be constructed which will execute any

shared memory parallel algorithm with no significant overhead due to communication. We thus

have the attractive prospect in the very near future of architectural independence in parallel

algorithm design. This should greatly assist us in the pursuit of a set of general techniques for

the design~ analysis and verification of parallel algorithms to match those which we currently

have for sequential algorithms.

For an introduction to the areas of para~el programming and para~el algorithms, see e.g.

[3, 9, 16, 26, 29, 55].

2 Shared Memory Parallel Algorithms

Two standard models for shared memory parallel computation are the PRAM and the circuit.

A parallel random access machine (PRAM) consists of a collection of processors which com-

pute synchronously in parallel and which communicate with a common global random access

memory. In one time step, each processor can do (any subset of) the following - read two values

from memory, perform a simple two-argument operation, write a value to memory. There is no

explicit communication between processors. Processors can only communicate by writing to,

and reading from, the shared memory. We make the following simplifying assumptions.

• The memory size is unbounded.

• The inputs to the computation are stored in the memory when the algorithm is started.

• The number of processors is unbounded.

• Each processor has only enough memory to store the argument and result values.

In a Concurrent Read Concurrent Write (CRCW) PRAM, any number of processors can read

from, or write to, a given memory cell in a single time step. In a Concurrent Read Exclusive

Write (CREW) PRAM, at most one processor can write to a given memory cell at any one time.

A circuit is a directed acyclic graph with n input nodes (in-degree 0) corresponding to the

n inputs to the problem, and a number of gates (in-degree 2) corresponding to two-argument

functions. In a Boolean circuit, the gates axe labelled with one of the binary Boolean functions

NAND,A, NOR, V,-%@ etc. In a typical arithmetic circuit, the input nodes are labelled with

some value from Q, the set of rational numbers, and the gates are labelled with some operation

from the set {+, - , , , / } .

E x a m p l e 2.1 P R A M computation of ab + ac + bd + cd from inputs a, b, c, d.

Time step1 Pi b T c =~ x

T ime , top2 Pl a . x ~ y

p2 x . d =~ z

Time step3 Pl y + z ~ result

E x a m p l e 2.2 Arithmetic circuit for ab + ac + bd + cd.

b c

E x a m p l e 2.3 Boolean circuit which computes the two binary digits < 'dl, do > of ~1 + r~ + ~3.

x ~ x3

The parallel complexity of a PRAM algorithm is the number of steps. The parallel complexity

of a circuit is the depth of the circuit, i.e. the maximum number of gates on may directed path.

The parallel complexity of Examples 2.1, 2.2 and 2.3 are all three.

2.1 A d d i t i o n

Let ADD~(m~ ,xn) = ~'~-~=t ~ where ~ E Q. A circuit of depth ~or ADD,~ can easily

be obtaiue~ by constructing ~ balanced binary tree of ÷-gates, with n leaves corresponding to

the arguments i~i ~..., ~.~. The optimality of this co~tmtction, in terms of d~pth, follows from the

functional dependency of ADD,~ on each of its n arguments. If we now define OR,~(zl , . . . , r~) =

Vi~=l ~/where ~:i E {0,1}, then we have a very similar problem to that of computing ADD,~. We

can easily obtain a PRAM algorithm of complexity [log2n] and a Boolean circuit of depth [Iog2n]

for OR,. That this circuit depth is optimal follows from functional dependency. However, as

Cook and Dwork [19] observed, there is rather more to the question of the PttAM complexity of

OPt. If we allow concurrent write then ORn can be computed in one parallel step in an obvious

way. Processor i reads ~ from memory location i and if zl = 1 it writes a 1 into location 0.

Cook and Dwork [19] show that even on an exclusive read/exclusive write PRAM, OR~ can be

computed in less than [log2n] steps. They derive an upper bound of 0. 721og2n on the number

of steps required. However, they also show that a lower bound of f/(/og2n) holds and thus only

a constant factor improvement is possible.

2.2 Polynomial Evaluation

Let P~(a0, a l , . . . , a~, ~) = ~ = 0 a/~' where a~, x E Q. The standard sequential algorithm for

polynomial evaluation is Homer's Rule where to calculate P~ we successively compute

~ a n

Pi = (Pi+l*X) Jc04 for i=n - - l , n - -2 , . . . , 1 ,O .

Then P~ = P0. The sequential complexity of polynomial e~luation has been studied for many

years. It is known that 2n axithmetic operations are required to evaluate a general polynomial

of degree n, given by its coefficients [12]. Thus, in terms of sequential complexity, Homer's

Rule is optimal. However, it is very unsuitable for parallel computation since at every step

in the computation the immediately preceding subresult is required. If instead, we evaluate

each term ai~ i of the polynomial independently, in parallel~ using a balanced binary tree of

.-gates and we then sum the values of the terms using a balanced binary tree of +-gates then

we have a circuit of depth 2[/og2(n + 1)]. This circuit is e~ponentially better, in terms of depth,

than a circuit based on Homer's Rule, although the number of gates (sequential complexity)

is now O(n 2) rather than O(n). The 2[log2(n + 1)] upper bound can be further improved to

log2n ~- O (o V ~) by using a simple recursive parallel algorithm due to Munro and Paterson

[53] which splits the polynomial into consecutive blocks of terms and factors out the appropriate

power of x. Kosaraju [43] has shown that the algorithm of Munro and Paterson is optimal.

2.3 M a t r i x M u l t i p l i c a t i o n

Let A, B be two n x n matrices of rational numbers. Then the product of A, B is an n × n

matrix C, where c~.j = ~kn_l a4,~ * bk,j. The exact determination of the sequential complexity

of matrix multiplication is a major open problem in the field of computational complexity

[17, 54, 68]. At the present time, the best known algorithm (asymptotically, as n --* 0o) requires

only O(n 2"376) arithmetic operations [20] as opposed to the standard O(n3). No lower bound

larger than the trivial fl(n 2) is known.

In contrast, determining the shared memory parallel complexity of matrix multiplication is

trivial. We can evaluate each ci,j term independently, in paratIe1, by a balanced binary tree of

depth ~log2n] + 1. Functional dependency shows this bound for ci,i to be optimal and so we

have an optimal bound for parallel matrix multiplication. Despite having obtained an optimal

algorithm for an idealised machine (PRAM, circuit) we still have some way to go to produce an

efficient algorithm which can be physically realised. The crux of the problem can be seen by

considering the circuit graph for 2 x 2 matrices.

al,1 al,2 a2,1 a2,2 b1.1 bl,2 b2,1 b2,2

%1 ¢I,z c23 ~2.2

If we make the (reasonable) assumption that the arguments to the problem are not replicated

within the physical parallel machine, then the above diagram suggests that more time might be

spent in moving the arguments around than in performing the arithmetic operations. Precise

results of this form can, in fact, be obtained using information-theoretic arguments. For examaple,

motivated by VLSI considerations, we might restrict our circuits to be planar. Using information

flow arguments we can establish lower bounds off l (n a) and ~2(~ 2) on the size (number of gates)

and depth respectively, of any planar Boolean matrix multiplication circuit [65]. Such results,

indicating the dominance of the cost of communication in parallel computations, are by no means

unusual, they are very common indeed. The problem of managing communication is a central

task in the design of efficient parallel algorithms.

2.4 Linear Recurrences

The m ~h Fibonacci number fm is given by the second order linear recurrence

f0 = 0

fl = 1

fm = fra-l+fra-2 for m > 2

This definition can be directly translated into am amithmetic circuit with m - 1 gates (and depth

m - 1) which successively computes f2,f3, . . . ,f,~. As in the case of Horner's Rule we have a

circuit with no direct pamallel speedup. If instead, we use the unconventional definition

)tn--S
(/ m - l / m) = (/0£) 0 1

1 1

then we see immediate ly tha t) e can be calculated by an ar i thmetic circuit of size and depth

O(log2m) if we compute the matr ix power efficiently by repeated squaring.

The above result for Fibonacci numbers is a special case of the following more general result

by Greenberg et al. [30] on the parallel evaluation of k e• order linear recurrrences. If we have F =

(f0 J~ - . - h - -S) a n d f m = ~ k = 1 ak-~ * f m - j for ~ :>]g, t h e n (f rn -k+l -*. fro) = F * M ' ~ - i + l

where M is the k × k matr ix

. . . 0 ao

as

x i

ak-S

and therefore the parallel complexity of computing .f,n is at most O(log2k. log2(m - k)).

For a pract ical applicat ion of this result we consider the problem of solving linear systems. Let

B be an n x n non-singular, lower tr iangular matr ix, and c be an n-element vector. In solving the

linear system B~ = c by 'back subst i tut ion ' we use the recurrence ~ = (ci - ~ - 1 b~,i. zi)/b~,~ j=S

for 1 ___ i <__ n. If we let x~ = 0 for i < 1 then we can rewrite this recurrence in the form

(z4 zi-~ . . . xi-,~+l 1) = (x~_ s x~-2 . . . zi-,~ 1)* Mi where

t b~ i-1

_ ~ =

bi.i

0

0

0 0 0

0 1

Therefore we can design an ar i thmetic circuit of depth O((/og2n) 2) which solves B z = c to

obtMn x_.

2.5 Sequence Comparison

Let X,~ = x l z2 . . , x,, and Y,, = YsY2... y,, be two sequences. We are interested in the minimum

number of insertions and deletions required to change X, , into Yn. We assume tha t each insertion

or deletion costs 1. Very large ins.tances of this problem arise in the area of molecular biology

where the strings correspond to nucleic acid sequences [64 I. The edit distance is a measure of

the similari ty of the two sequences

When m = 0 we have Cost(X.,, Y,,) = n.

m > 0 , n > 0 t h e n w e h a v e

Cost(x.,, Y~) < Cost(x.,_1, y._~)

Cost(X,n, IT,) < i + Cost(X,n_1, Y,~)

Cost(X.,, Y,) < 1 + Cost(X.,, Y,_~)

Similarly, n = 0 gives Cost(X,,, Y,~) = m. If

if :c"* = y.

[delete x,~]

[insert y,]

Using dynamic programming we can tabulate the values of Cost in a straightforward way.

Example 2.4 DEFINE =~ DESIGN

$ D E F I N E

0 [o] i 2 s 4 5

D 1 [0] 1 2 3 ~ 5

E ~ I M [i] 2 S 4

s 3 z i [$] 3 $ 5

z 4 3 z 3 [z] s 4

G 5 4 3 4 [3] 4 5

N ~ 5 4 5 4 Is] [4]

The number below zi and to the right of Yi is Cost(X~, Yi). The chain of bracketed numbers

indicate that we should perform the following sequence of edits to change DEFINE into DESIGN

: Delete F, insert S, insert G, delete E. An arithmetic circuit of size O(m* n) and depth 0 (m + n)

can be obtained by performing the calculations on the i th diagonal, in parallel, at the i ~h level

in the circuit. We will return to the sequence comparison problem in Section 3.3.

3 Systolic Algorithms

H.T.Kung [45, 46] has persuasively argued the case for the design of parallel algorithms which

carefully balance the input/output, communication and processing in parallel computations to

avoid bottlenecks and hence increase throughput. A systolic parallel algorithm typically has the

following properties

• computation proceeds synchronously

• only local computation is required

• operations are pipelined to balance input/output, computation and processing

• the processor architecture has a simple, regular (usually mesh) structure.

The synchronous property is not an essential feature and, indeed, many asynchronous systolic

(or wavefront) algorithms have been developed [47].

3 .1 M a t r i x M u l t i p l i c a t i o n

For our first example of a systolic algorithm we consider again the problem of multiplying two

n X n matrices A, B to produce C. The systolic matrix multiplication Mgorithm is based on the

following simple program.

Prograrnl,j

Time step 0

Time step i + j + t - 2, 0 < t _< n

: ~ , j : = O;

: IIlput(ai,,, b,,i);

G,j := ci,j + (ai,t * bt,i);

Output(ai,t, bt,i);

Programi,i is implemented on processor Pi,i in an n x n array of processors corresponding to

the elements of C. To ensure the correct synchronous dataflow we need to do the following.

• Provide a communication channel from P~,j to Pi,j+l and from P~,i to Pi+l,j+l.

• Supply ai,j as input to processor P~,x at time i + j - 1.

• Supply bi,i as input to processor Px6 at time i + j - 1.

At time step 3n - 1 the product matrix C is stored in the n x n processor array and can be

output using the communication channels.

3 .2 A l g e b r a i c P a t h P r o b l e m

Let G be a complete directed graph on n nodes and A be a matrix of values corresponding

to the arcs of G. The Algebraic Path Problem (APP) is the problem of computing A* =

I @ A @ A 2 @ A 3 ~ --. where matrix product is defined in terms of two operations @ and ®.

The APP is a problem of major importance in a variety of areas a~ld has been extensively

studied in recent years. Some simple examples of the APP are the following :

t0

A

{0,1}

I~ u {+co}

R u {+oo}

® Problem

V A Transitive closure of a directed graph.

(Is node i connected to node j by a

directed path 7) Warshall [76]

rain + Shortest path from node i to node j.

Floyd [25]

min maz Minimum cost spanning tree in a

connected undirected graph.

Maggs and Plotkin [49]

The APP also finds applications in areas such as parsing and logic programming, and can be

used as the basis of algorithms for matrix inversion. For simplicity in our discussion here, we

restrict ourselves to the instance of the APP corresponding to the transitive closure of a directed

graph. In this case, letting A ° = I , we have A* = Vi_>0 A~. Noting that node i is connected

to node j if and only if it is connected by a path of length < n - 1, we have

A* = V A~
i = 0

= (A °V A) '~-1

= (A ° V A) 2k whenever2 k > n - 1

Therefore, to obtain an efficient shared memory parallel algorithm for the computation of the

transitive closure of A we need only set the main diagonal to 1 and repeatedly square the resulting

matrix until we have a sufficiently large power. For an n x n Boolean matrix A, this method yields

an arithmetic circuit of depth O(log2n)2). This ~repeated squaring' approach, when combined

with the systolic matrix multiplication algorithm yields an O(n log2n) time systolic algorithm for

transitive closure on an n x n processor array. The problem of designing more efficient systolic

algorithms for the APP has been intensively studied in recent years. Gnibas et al. [31] describe

a simple "three pass" extension of the systolic matrix multiplication algorithm which yields the

transitive closure in O(n) steps on an n × n array. A detailed description of the correctness

proof for this algorithm can be found in the text by UUman [71]. Since the appearance of the

paper by Guibas et al.[31], Robert, Rote and others [62, 63] have improved and generalised this

algorithm in a number of ways.

3.3 Sequence Comparison

The sequence comparison problem can be efficiently solved using a linear systolic array with

two-way communication in which the two sequences are compared as they pass through the

array moving in opposite directions. Let X~ = z l ~ " ' z , , and Y,~ = YlY2""Y,~ be the

two sequences to be compared. We use a linear array of processors. Each processor P~ has

1I

input and output channels (In.L,Out.L) to the processor on the left, P i - 1 , and similar channels

(In.R,Out.R) to the processor on the right, Pi+z • We input the sequences Yl 1 Y2 2 Y3 3 . . . y,~ n

and zz 1 ~ 2 x3 3 . . . $,n m sequentially from the left and right respectively. Once the sequences

have been input to the array, the computation proceeds with each processor repeatedly perform-

ing the following set of operations every two time steps.

Step 1 : In.R(x/);

In.L(yj);

Bool:=(~ = yj);

Out.R(yj);

Out.L(xi);

Step 2 : In.It(Cost(X,, Y',-1));

In.T,(Cost(X _ , Yi));

1 + Cost(x ,
Cost(Xi, l~) = minimum 1 + Cost(Xi_l, ~)

Cost(Xi-1, Y/-1) /f Bool

out.R(x . Yj));

Out.L(X.

The following simple example illustrates how the values in the array change from one time step

to the next.

® T G G

O 0 1 2 3

A 1 2 3 4

C 2 3 4 5

G 3 4 3 4

2 1 I 0 1 I 2

3 G ~ 133

2 2 1 2 I 2 2

3 2 3 2 3 2 3

4 3 4 3 4

3 4- 5

4

T4 G 3 O
5 C 4A

12

A simple inductive argument shows that the matrix of edit distances has the property that hor-

izontally and vertically adjacent pairs of values always differ by 1. Because of this property it is

sufficient to keep the remainder modulo 4 of the matrix entry. If we implement the above systolic

algorithm but keep only such remainders then we can still reconstruct the true value of the edit

distance from either of the two sequences of vMues c,~,1, c~,2, . . . , cm,,, and cl,n, c2, , , , . . . , c,n,,~

which are output by the array (cl,j = Cost(X~, I~) rood 4) since

cm,o = m , (cm,i = c.~,~:-1 - 1) V (c..,i = c~,i-1 -k 1)

c0 ,~=n , (c i , , = c ~ - l , n - 1) V (c ~ , , = e ~ _ l , , ÷ l)

At Oxford we have implemented this algorithm on a small array of 40 T800 transputers, each

with 1/4 MByte memory. In matching nucleic acid sequences (four letter alphabet) we need only

two bits per character and, as we have seen~ two bits per value. This greatly reduces the com-

munication and storage costs and significantly improves the performance of the implementation.

Nucleic acid sequence databases are already growing in size at an astonishing rate. The Human

Genome Project promises to further accelerate this growth. Algorithmic techniques for pattern

matching and database searching, such as those described, will be crucial to future developments

in this area.

13

3.4 Molecular Modelling

Molecular modelling is one of the most important practical applications of parallel architectures.

Ab initio methods [34] are based on quantum-mechanical calculations of molecular structure.

The computation times required for such calculations, even with highly parallel architectures,

are at present prohibitive for all but the smallest molecules. However, as the power of parallel

machines increases we can expect a much wider use of this approach.

At present, most calculations of the structure and dynamics of proteins, carbohydrates and

nucleic acids are carried out using molecular mechanics and molecular dynamics techniques.

These methods adopt a force field approach to calculating the potential energy of a molecule in

a given conformation. The A M B E R force field is quite typical. Let i ~ j denote the (symmetric)

relation that atom i is bonded to atom j. Then in AMBER the potential energy is calculated

as a sum of the following types of term.

• Bond energies for all i , j , i ¢~ j

• Angle energies for all i , j , k, (i ¢~ k) ^ (k v} j)

• Torsional energies for all i , j , k, l, (k V i) ^ (i ¢~ j) ^ (j ~ l)

• Conlombic potential for all i , j , (i "~ j)

• Lennard-Jones potential for all i , j , (i ~ j)

• Hydrogen bonding term for all i , j , (i .¢~ j)

The problem of calculating the potential energy of a molecular conformation is similar in

many ways to the sequence comparison problem. They are both instances of "all pairs" com-

putations. For any such computation, a linear systolic array provides a convenient pattern of

dataliow. In the case of the potential energy calculation we simply pass one copy of the atomic

coordinates and bond information of the structure past another in the array. When the coordi-

nate and bond information for atom i meets that for atom j , we execute the following program.

if i . w j then

elseif (i ~ k) A(k~=}j) then

else

calculate bond term;

for all k,Z, (k *} i) ^ (i , } j) A (j ~ t),

calculate torsional terms;

calculate angle energy;

calculate Coulombic energy;

calculate Lennard-Jones potential;

calculate hydrogen bonding term;

Let did denote the distance between atoms i , j . The contributions from the Lennard-Jones

14

and hydrogen bonding terms rapidly decline with increasing d~,j and can safely be neglected

beyond a certain predefined cut-off distance. Unfortunately, the Coulombic potential does not

decline quickly, and it is the calculation of these Coulombic terms for all non-bonded pairs which

dominates the energy calculation for large molecules.

We have used this approach to produce a highly parallel imlementation of AMBER which

runs on an array of transputers attached to a SUN workstation.

3.5 Systolic Programming

The systolic approach was initially conceived as a means of producing high-performance special-

purpose hardware systems. However, most of the systolic algorithms which have been developed

in recent years can be quite naturally viewed as para~el programs to be implemented on standard

communicating process architectures such as transputer arrays.

The range of applications for which efficient systolic algorithms are known is growing steadily

each year [47, 51]. We are also starting to see the development of a theory of systolic parallel

programming [15, 16, 35, 47, 60] which will assist in the future design and verification of systolic

algorithms.

4 General Purpose Parallel Computers

In the previous sections we have described a number of parallel algorithms for idealised shared

memory parallel machines and for distributed memory architectures such as transputer arrays.

In this final section we consider some more general questions concerning developments in the

areas of algorithms, architectures and programming languages for parallel computation.

There have been many notable successes in recent years in the design of new highly efficient

parallel algorithms through the explicit control of input/output, communication and processing.

Some of the systolic algorithms are particularly impressive. It should also be noted that for

many practical applications in the physical sciences, relatively little detailed design is required

to produce an efficient parallel algorithm. Many such problems are "embarrassingly parallel"

by virtue of the underlying physical structure.

On the basis of such observations, some would argue that parallel programming need not

(and should not) change significantly. The arguments are essentially the same as those used

in support of low-level languages for sequential programming, i.e. greater control over physical

resources. The arguments against this approach, e.g. the possibility of architecture-independent

parallel software, are , however, very strong. It should also be noted that there are many

application areas where no parallel algorithms with simple, regular data structures and process

structures are known, although efficient algorithms for shared memory machines have been

developed [18, 29].

]5

Thus far, the absence of any commercially available parallel systems which simultaneously

offered large scale parallelism and a shared memory programming model has resulted in the

communicating process approach [37] prevailing by default. However, a number of recent results

in theoretical computer science indicate how such such a system could be designed, and the

continuing developments in VLSI technology give confidence that very shortly such systems will

be widely available. Before pursuing this issue further, we briefly discuss two topics related to

general-purpose parallel computers which are now quite well understood, namely the possible

communication structures (interconnection networks) for such machines, and the efficiency with

which one parallel machine can simulate another.

4.1 C o m m u n i c a t i o n S t r u c t u r e s

A very large number of papers have been written on the topic of how to connect n nodes (proces-

sors) together to produce a parallel architecture which efficiently supports the communicating

process programming model. This is a standard problem from the field of algebraic graph theory

[10] and is quite well understood. If we restrict ourselves to regular structures with exactly d

connections to each node then even with small fixed d, e.g. d < 6, we have a wide range of

possible families of graphs such as toroidal meshes (1D,2D,3D), trees, and shuffle-exchange type

graphs such as the Cube-Connected Cycles (CCC) [58].

Ease of programming and avoidance of bottlenecks both suggest that a useful feature for

any such communication graph structure is that it should look isomorphic from any node, i.e.

it should be vertex-transitive [10]. This property tends to rule out trees as a communication

structure, although they have many other desirable features.

We can compare meshes and shuffie-exchange type graphs in a variety of ways. Perhaps the

main advantage of the meshes (up to 3D!) is that they can be directly embedded in 3D physical

space. The main advantage of the shuffle graphs, on the other hand, is that they have diameter

O(log2n), i.e. the distance between any two nodes is at most O(log2n). For a k-dimensional

mesh, the diameter is O(~-n).

If we allow a nonconstant number of connections per node, then we can, for example, con-

struct a (log2n)-dimensional hypercube. This structure has /og2n connections per node, has

diameter logan, and is vertex-transitive. The main advantage of the hypercube over fixed-degree

shuffle graphs such as the CCC is the increased communication bandwidth afforded by the

increase in the number of connections per node.

For more on the topic of communication structures, see e.g. [9, 39, 71, 74].

4.2 Embedding

Another issue which has received a great deal of attention in recent years is efficient graph

embedding, i.e. the task of efficiently mapping a given graph onto some standard host graph.

]6

There are a number of situations in parallel computing where one encounters this problem. In

laying out VLSI circuits one has often to efficiently embed some arrangement of wires, e.g. a

binary tree of wires, onto a planar grid structure. Another example is where one has a standard

multiprocessor archite~cture, e.g. a hypercube, and one requires some other process structure,

perhaps a tree or a mesh, The final example is closely related to the previous one, but is worthy

of explicit mention. It is where one has a large virtual process structure and a much smaller

physical structure of the same form. For example , one might have an algorithmic problem

which naturally gives rise to a 100 x 50 mesh of processes, but have only an 8 × 8 physical mesh

on which to implement it. Such situations arise frequently when programming in a language

such as occam. There will typically be a number of possible ways of allocating the large set of

virtual processes to the much smaller set of physical processors. Which of these possible process

mappings is most appropriate will often depend crucially on the balance between communication

and computation in the processes.

For more details on solutions to some of these problems, see e.g. [5, 24, 32, 44, 48, 57].

4 . 3 R o u t i n g

A major challenge for contemporary computer science is to determine the extent to which one can

have architectural independence in parallel algorithms and parallel programming languages. The

central task in this direction is to design highly parallel distributed memory architectures which

efficiently implement the idealised shared memory model, using only a 'sparse' communication

structure, e.g. at most tog2n connections per node.

Over the last decade, a series of results in theoretical computer science by Valiant, Brebner,

Upfal, Pippenger, Ranacle and others [56, 61, 72, 74, 73, 75] have demonstrated conclusively

that there is no theoretical impediment to providing such a system. They have shown that using

ideas such as randomised two-phase routing one can implement shared memory algorithms on

architectures such as the hypercube with no significant loss of efficiency. In randomised two-

phase routing, one sends a message from node i to node j not by sending it directly by a shortest

path, but by sending it initially from i to some randomly chosen node k in the structure (by a

shortest path) , and from there to j (again by a shortest path).

Some parallel computer systems, such as the Ametek system and the Intel iPSC-2, currently

provide hardware support for routing non-local messages. The next step is to provide enough

communication bandwidth and memory management hardware to directly support shared mem-

ory. We can confidently expect that within five years such features will be standard on most

parallel architectures. This, of course, raises the question of what else might be provided as

"primitive" on future parallel architectures. There is a strong case for examining the extent to

which it is cost-effective to provide hardware support for parallel operations on complex data

structures. This topic is likely to receive a lot of attention over the next few years [11, 36].

17

5 Conclusion

We have described some simple parallel algorithms for two idealised shared memory models,

PRAMs and circuits. We have also shown some systolic algorithms which can be efficiently

implemented either directly in hardware or using arrays of transputers.

The comparative ease with which one can design algorithms for a shared memory machine

is likely to be a decisive factor in determining the form of future parallel architectures. Hard-

ware support for routing and shared memory management will result in general-purpose parallel

architectures which are efficient for a wide range of problems. However, in those application

areas where no overhead whatsoever is considered acceptable and where the financial and tech-

nical resources are available, dedicated special-purpose systems will continue to be developed

(at a cost) using programming notations which allow one to explicitly control input/output,

communication etc. as in systolic programs.

The "special-purpose systems approach" will probably continue to be adopted for some time

in many of the areas which currently absorb large amounts of time on parallel architectures, e.g.

fluid dynamics, molecular modelling, signal processing, image processing, computer graphics.

The advantages gained by adopting this approach are likely to diminish, however, with increases

in the scale of parallelism.

Our conclusion then is that the current degree of diversity in architectures for parallel compu-

tation will be greatly reduced over the next few years. We can at last look forward to parallelism

having an impact in application areas where one has complex data structures and/or much less

regular patterns of computation, e.g. combinatorial optimisation, sparse matrix computations,

symbolic computation, artificial intelligence. We can also expect to see the emergence of a set

of general techniques for the design, analysis and verification of efficient parallel algorithms to

match those which we currently have for sequential algorithms.

]8

R e f e r e n c e s

[1] AHO, A. V., HOPCROFT, J. E., AND ULLMAN~ J. D. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

[2] AKL, S. G. Parallel Sorting Algorithms. Academic Press, 1985.

[3] AKL, S. G. The Design and Analysis of Parallel Algorithms. Prentice Hall, 1989.

[4] ALT, H. Comparing the combinational complexities of arithmetic functions. Journal of the

ACM 35, 2 (Apr. 1988), 447-460.

[5] ATALLAH, M. J., AND HA~,IBRUSCIt, S. E. Solving tree problems on a mesh-connected

processor array. In Proc. 26th Annual IEEE Symposium on Foundations of Computer

Science (1985), pp. 222-231.

[6] ATALLAH, M. J., AND KOSARA]U, S. R. Graph problems on a mesh-connected processor

array. In Proe. 14th Annual ACM Symposium on Theory of Computing (1982), pp. 345-353.

[7] BATCHER, K. E. Sorting networks and their applications. In Proc. AFIPS Spring Joint

Computer Conference (1968), pp. 307-314.

[8] BEaKOWITZ~ S. J. On computing the determinant in small parallel time using a sma~

number of processors. Information Processing Letters I8 (1984), 147-150.

[9] BEttTSEKAS, D. P., AND TSITSIKLIS, J. N. Parallel and Distributed Computation - Nu-

merical Methods. Prentice Hall~ 1989.

[10] BIGGS, N. Algebraic Graph Theory. Cambridge University Press, 1974.

[11] BLELLOCtI, G. Scans as primitive parallel operations. In Proc. International Conference

on Parallel Processing (1987).

[12] BORODIN, A., AND MUNRO, I. J. The Computational Complexity of Algebraic and Numeric

Problems. Theory of Computation Series. American Elsevier, 1975.

[13] BaASSARD, G., AND BRATLEY, P. Algorithmics- Theory and Practice. Prentice Hall,

1988.

[14] BttENT, R. P. The parallel evaluation of general arithmetic expressions. Journal of the

ACM 21 (1974), 201-206.

[15] CAPPELLO, P. R., AND STEIGLITZ, K. Unifying VLSI array design with linear trans-

formations of space-time. Advances in Coraputing Research 2 (1984), 23-65. Ja~ Press

Inc.

]9

[16] CItANDY, K. M., AND MISRA, J. Parallel Program Design : A Foundation. Addison-

Wesley, 1988.

[17] COOK, S. A. An overview of computational complexity. Communications of the ACM 26,

s (1983), 400-408.

[18] COOK, S. A. A taxonomy of problems with fast parallel algorithms. Information and

Control 6~, (1-3) (1985), 2-22.

[19] COOK, S. A., AND DWORK, C. Bounds on the time for parallel I~AM's to compute

simple functions. In Proc. 14th Annual ACM Symposium on Theory of Computing (1982),

pp. 231-233.

[20] COP PERSMITII, D., AND WINOGRAD, S. Matrix multiplication via arithmetic progressions.

In Proc. 19th Annual ACM Symposium on Theory of Computing (1987), pp. 1-6.

[21] CSANKY, L. Fast parallel matrix inversion algorithms. SIAM Journal on Computing 5

(1976), 618-623.

[22] DATE, C. J. An Introduction to Database Systems, fourth ed., vol. 1 of Systems Program-

ming Series. Addison-Wesley, 1986.

[23] DONNE, P. E. The Complexity of Boolean Networks, vol. 29 of A.P.L C. Studies in Data

Processing. Academic Press, 1988.

[24] FIAT, A., AND SIIAMIR, A. Polymorphic arrays : A novel VLSI layout for systolic compu-

ters. In Proc. 25th Annual IEEE Symposium on Foundations of Computer Science (1984),

pp. 37-45.

[25] FLOYD, R. W. Algorithm 97 : Shortest path. Communications of the ACM 5, 6 (1962),

345.

[26] Fox, G. C., JOIINSON, M. A., I~YZENGA, G. A., OTTO, S. W., SALMON, J. K., AND

WALKER, D. W. Solving Problems on Concurrent Processors : Volume 1. General Tech-

niques and Regular Problems. Prentice Ha~, 1988.

[27] GALLAGER, R. G., HOMBLET, P. A., AND SPIRA, P. M. A distributed algorithm for

minimum-weight spanning trees. A CM Transactions on Programming Languages and Sys-

tems 5 (1983), 66-77.

[28] GATIIEN, YON ZOR, J. Parallel arithmetic computations : A survey. In Proc. Mathematical

Foundations of Computer Science1986, LNCS Vol. 233 (1986), Springer-Verlag, pp. 93-112.

[29] GIBBONS, A. M~., AND RYTTER, W. Efficient Parallel Algorithms. Cambridge University

Press, 1988.

20

[30] GREENBERG, A. C., LADNER, R. E., PATERSON, M. S., AND GALIL, Z. Efficient paxallel

algorithms for linear recurrence computation. Information Processing Letters I5, 1 (Aug.

1982), 31-35.

[31] GUIBAS, L. J., KUNG, It. T., AND THOMPSON, C. D. Direct VLSI implementation of

combinatorial algorithms. In Proc. Caltech Conference on VLSI (1979), C. Seitz, Ed.,

pp. 509-525.

[32] GUPTA, A. K., AND HAMBRUSCH, S. E. Optimal three-dimensional layouts of complete

binary trees. In]ormation Processing Letters 26 (1987), 99-104.

[33] HEATH, M. T., Ed. Hypercube Multiprocessors 1986. SIAM, Philadelphia, 1986.

[34] HEHRE, W. J., RADOM, L., v .R SCIILEYER, P., AND POPLE, J. A. Ab Initio Molecular

Orbital Theory. John Wiley and Sons, 1986.

[35] HENNESSY, M. Proving systolic systems correct. ACId Transactions on Programming

Languages and Systems 8, 3 (1986), 344-387.

[36] HILLIS, W. D. The Connection Machine. MIT Press, 1985.

[37] HOARE, C. A. R. Communicating Sequential Processes. Prentice Halt, 1985.

[38] HOROWITZ, E., AND SAHNI, S. Fundamentals of Computer Algorithms. Pitman, 1978.

[39] JERRUM, M. R., AND SKYUM, S. Families of fixed degree graphs for processor intercon-

nection. IEEE Transactions on Computers 33 (1984), 190-194.

[40] KNUTH, D. E. Fundamental Algorithms, vol. 1 of The Art of Computer Programming.

Addison-Wesley, 1968. (2nd Edition, 1973).

[41] KNVTH, D. E. SeminumericaI Algorithms, vol. 2 of The Art of Computer Programming.

Addison-Wesley, 1969. (2nd Edition, 1981).

[42] KNUTH, D. E. Sorting and Searching, vol. 3 of The Art of Computer Programming.

Addison-Wesley, 1973.

[43] KOSARAJU, S. R. Parallel evaluation of division-free arithmetic expressions. In Proc. 18th

Annual A CM Symposium on Theory of Computing (1986), pp. 231-239.

[44] KOSARA~U, S. R., AND ATALLAH, M. J. Optimal simulations between mesh-connected

arrays of processors. In Proc. 18th Annual ACM Symposium on Theory of Computing

(1986), pp. 264-272.

[45] KUNG, H. T. Why systolic architectures? IEEE Computer 15, 1 (Jan. 1982), 37-46.

21

[46] KUNG, H. T. Memory requirements for balanced computer architectures. Journal of

Complexity i, 1 (Oct. 1985), 147-157.

[47] KUNG, S. Y. VLSI Array Processors. Prentice Hall, 1988.

[48] LEmHTON, F. T. Complexity Issues in VLSI : Optimal Layouts for the Shuffte-Ezchan#e

Graph and Other Networks. MIT Press, 1983.

[49] MAGGS, B. M., AND PLOTKIN, S. A. Minimum-cost spanning tree as a path-finding

problem. Information Proces~in9 Letters 26 (1988), 291-293.

[50] MILLER, I%., AND STOUT, Q. F. Data movement techniques for the pyramid computer.

SIAM Journal on Computing 16, 1 (1987), 38-60.

[51] MooaE, W., MCCXBE, A., XND URQUHAaT, R., Eds. Systolic Arrays. Adam Hilger,

1987.

[52] MULLE~, D. E., AND PREPArtATA, F. P. Bounds to complexities of networks for sorting

and switching. Journal of the A CM 22, 2 (1975), 195-201.

[53] MUNRO, I. J., AND PATERSON, M. S. Optimal algorittmas for parallel polynomial evalua-

tion. Journal of Computer and System Sciences (1973), 189-198.

[54] PAN, V. How to Multiply Matrices Faster, vol. 179 of Lecture Notes in Computer Science.

Springer-Verlag, 1984.

[55] PARBERI%Y, I. Parallel Complezity Theory. Pitman, 1987.

[56] PIePENGEa, N. J. Parallel communication with limited buffers. In Proc. 25th Annual

IEEE Symposium on Foundations of Computer Science (1984), pp. 127-136.

[57] PR~.PARATA, F. P. Optimal three-dimensional VLSI layouts. Mathematical Systems Theory

ia (1983), 1-8.

[58] PREPARATA, F. P., AND VUILI, EMIN, J. The Cube-Connected Cycles: A versatile network

for parallel computation. Communications of the ACM 24, 5 (1981), 300-309.

[59] PURDOM JR., P. W., AND BROWr% C. A. The Analysis of Algorithms. Holt, Rinehart

and Winston, 1985.

[60] QUINTON, P. The systematic design of systolic arrays. In Automata Networks in Computer

Science Theory and Applications (I987), F. F. Soulie, Y. robert, and M. Tchuente, Eds.,

Manchester University Press, pp. 229-260.

[61] RANADE, A. G. How to emulate shaved memory. In Proc. 28th Annual IEEE Symposium

on Foundations of Computer Science (1987), pp. 185-194.

22

[62] ROBERT, Y., AND TRYSTKAM, D. Systolic solution of the algebraic path problem. In

Systolic Arrays (1986), W. Moore, A. McCabe, and R. Urquhart, Eds., Adam Hilger,

pp. 171-180.

[63] ROTE, G. A systolic array algorithm for the algebraic path problem (shortest paths ;

matrix inversion). Computing 3~ (1985), 191-219.

[64] SANKOFF, D., AND KRUSKAL, J. B.~ Eds. Time Warps, String Edits~ and Macromotecules

: The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.

[65] SAVAGE, J. E. Planar circuit complexity and the performance of VLSI algorithms. In VLSI

Systems and Computations (1981), H. T. Kung, B. Sproull, and G. Steele, Eds., Computer

Science Press, pp. 61-68. (Expanded version appears as INRIA Report No.77 (1981).).

[66] SCHNOP~R, C. P., AND SHAMIR, A. All optimal sorting algorithm for mesh connected com-

puters. In Proc. 18th Annual ACM Symposium on Theory of Computing (1986), pp. 255-

263.

[67] SEDGEWICK, R. Algorithms, second ed. Addison-Wesley, 1988.

[68] STRASSEN, V. Gaussian elimination is not optimal. Numerische Mathematik 13 (1969),

354-356.

[69] TARJAN, R. E. Data Stmtctures and Network Algorithms. SIAM, 1983.

[70] ULLMAN, J. D. Principles of Database Systems, second ed. Pitman, 1982.

[71] ULLMAN, J. D. Computational Aspects of VLSI. Computer Science Press, 1984.

[72] UPFAL, E., AND WIGDERSON, A. How to share memory in a distributed system. In Proc.

25th Annual IEEE Symposium on Foundations of Computer Science (1984), pp. 171-180.

[73] VALIANT, L. G. A scheme for fast parallel communication. SIAM Journal on Computing

11, 2 (1982), 350-361.

[74] VALIANT, L. G. General purpose parallel architectures. In Handbook of Theoretical Com-

puter Science (To appear), J. van Leeuwen, Ed., North Holland.

[75] VALIANT, L. G., AND BaEBNER, G. J. Universal schemes for parallel communication. In

Proc. 13th Annual A CM Symposium on Theory of Computing (1981), pp. 263-277.

[76] WAaS~IALL, S. A theorem on Boolean matrices. Journal of the ACM 9, 1 (1962), 11-12.

[77] WEGENER, I. The Complexity of Boolean Functions. John Wiley and Sons, 1987.

