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REFINEMENT‘ 

M A R K  T JONES A X D  P. iUL E PLASSM.ANN~ 

Abstract. Computational methods based on the use of zdaptiveiy constructed nonuniform 

meshes reduce the amount of computation and storage necessary to perform many scientific 

calculations. T h e  adaptive construction of such nonuniform meshes is a n  important part of these 

methods. In this paper, we present a parallel algorithm for adaptive mesh refinement ihat  is 
suitable for implementation on distributed-memory parallel computers. Experimental results 

obtained on the Intel DELTA are presented to  demonstrate that ,  for scientific computations 
involving the finite element method. the  algorithm exhibits scalable performance and h a s  a small 

run time in comparison w i t h  other aspects  of the scientific computations examined. I t  is also 

shown that  the algorithm h a s  a fast expected running time under the P-RAM computation model. 

1. Introduction. Adaptive mesh refinement techniques have been shown to 

be very successful in  reducing the computational and storage requirements for 

solving many partial differential equations [lo]. Rather than use a uniform mesh 

with grid points evenly spaced on a domain, adaptive mesh refinement techniques 

place more grid points in areas where the local error in the solution is large. The 
mesh is adaptively refined and/or unrefined during the computation according to 

local error estimates on the domain. This technique is much more efficient than 

the use of uniform meshes when the solution is changing much more rapidly in 

some areas than in others. 

The  adaptive construction of these nonuniform meshes is a crucial part of 

adaptive mesh solution methods and has  been examined by many researchers, for 

example. [ : 3 ] .  [ lo] ,  [ l l ] ,  [l’], (131. [l-i], [l.?]. [IS]. and [ls]. Typically. one begins 

w i t h  a n  initial mesh conforming to a particular Seometry. This mesh is selectively 

refined. based o n  local error estimates. to construct a mesh that satisfies a certain 

error tolerance. hlost research has focused on meshes composed of simplicial eIe- 

ments: l ine segments in one dimension. triangles in  two dimensions. or tetrahedra 

in three dimensions. This paper focuses primarily on two-dimensional simplicial 

meshes. However. the algorithms and analyses presented here are applicable to 

other dimensions and to nonsimplicial meshes. 

In this paper. we present a new parallel algorithm for the adaptive construc- 

tion of nonuniform meshes. This algorithm is well suited for implementation on 

medium-grained distributed-memory parallel computers such as the Intel DELTA. 
The algorithm is based on the simplicial bisection algorithm given by Rivara [1.5]. 

Our algorithm is scalable in that it has an expected run time that  is a uery slowly 

growing function of t h e  triangles in  the mesh. 
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To denionstrate the performance of this algorithm. we present experimental 

results obtained on the Intel DELTA. The results demonstrate that. for practical 

scientific calculations, the algorithm exhibits scalable performance and a run time 

that is much smaller than the other computations necessary for the entire solution 

method . 
This paper is organized as follows. In $2 we review methods for adaptive mesh 

refinement. In $3 we present our algorithm and analyze its expected run time under 

the P-RAM computation model. A medium-grained distributed-memory version 

of the algorithm is detailed in $4. We discuss our experimental results from the 

Intel DELTA in $5. Finally, in $6 we summarize this research and discuss possible 

future work. 

2. Adaptive Refinement Methods. The finite element method has proven 

to  be extremely effective in the computation of approximate solutions to partial 

differential equations (PDEs). Our focus is on adaptive, or local, refinement strate- 

gies for generating finite element meshes. This approach can obtain much more 

accurate solutions to these problems than a uniform mesh with the same number 

of elements. 

The computation of an approximate solution to  a PDE consists of three main 

tasks: (1) the construction of the finite element mesh, (2) the assembly of a sparse 

linear system, and (3) the solution of this linear system. Although we are not 

explicitly discussing the last two tasks, they must be kept in mind. In particular, 

any method of local error estimation requires the approximate solution on a given 

element mesh. 

With a parallel implementation, we must remember that it is essential that 

any adaptive mesh algorithm be integrated with parallel algorithms for the ma- 

trix assembly and the solution of the resulting linear system. In addition, with 

an adaptive strategy the assignnient (or partitioning) of elements and vertices to  

processors must be updated with each modification of the mesh to ensure the 

continued efficient execution of the matrix assembly and linear system solution. 

k = O  

Solve the  PDE on Tk 

Estimate the error on each triangle 

whi le  the maximum error on a triangle is larger than the given tolerance do 

Based o n  error estimates, determine a set of triangles. S k ?  to refine 

* Divide the triangles in Sk, and any other 

Solve the PDE on T k + ,  

Estimate the error on each triangle 

k = k + l  

triangles necessary to form T k + ,  

endwhi l e  

F!G. 1 .  A f m n i r w o r k  f o r  t h e  adaptzve solulzon of PDEs 
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Consider the general adaptive mesh algorithm [ I O ]  shown in Figure 1.  \Ve 

begin by assuming that we have an initial element mesh given by the triangulation 

To consistent with the geometry of the problem domain. Our attention is focused 

on the step in the algorithm where the current mesh T k  is adaptively refined ( the  

step denoted by the * in  Figure 1). 

Suppose that some arbitrary subset of triangles. S k ,  of T k  is marked for refine- 

ment. We have developed and implemented parallel algorithms for constructing 

a new mesh T k + l  that satisfies the required changes in the mesh. To keep our 

presentation clear and brief, we assume that the set S k  contains triangles marked 

only for refinement, not for unrefinement. However, our software is able to unrefine 

triangles that have been previously refined. 

The refinement of the mesh must maintain several important properties. given 

that finite element approximations are used. First, we require that each mesh T k  

be conforming (or compatible). That is, the intersection of any two triangles in T k  

should be a single vertex, a line segment connecting two vertices, or the empty set. 

A side of a triangle is called &.-nonconforming if it has s > 0 vertices between 

any two endpoints. A triangle IS called compatible if none of its sides are -&- 
nonconforming. Examples of conforming and nonconforming meshes are given In 

Figure 2. If the mesh is conforming, then only one basic type of finite element is 

necessary. Otherwise, several speciai element types are required, and/or a more 

complicated matrix assembly. Note, however, that the use of triangles does not 

restrict one to linear finite elements: one can use higher-order basis functions in a 

t ri angu 1 at ion. 

FIG. 2.  O n  the le f t ,  a conforming me h; on [he right. n nonconforming m h 

A second requirement is that the mesh T k  be graded (or smoo th ) .  That is, 

adjacent triangles should not differ dramatically in  area. A nonsmooth mesh could 

result i n  the finite element approximation being very far from the continuous so- 

lution. 

A final requirement is that all angles in the mesh be bounded away from 0 

and n. The latter condition is necessary because the discretization error in a finite 

element approximation has been shown to grow as the maximum angle approaches 

n [ I ] .  We would like to avoid small angles because the condition number of the 

matrices arising from mesh elements has been shown to grow as (I(&), where 

Onin is the smallest angle in the mesh [4]. 

2.1. Related Work. A number of mesh refinement algorithms have been 

shown to maintain the mesh properties given above. In  this section we briefly 

review the three most widely used of these refinement met,hods. To begin, we note 

that there are two methods i ised to subdivide a triangle: 6i.qection and reguEar 
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r~fi71,ement. In bisection, a vertex of the triangle is connectecl to the midpoint of 

the opposite side of the triangle, as i11 Figure 3 .  forming two triangles of equal area. 

In regular refinement. the midpoints of the sides of the triangle are connected. as 

in Figure 3 ,  to form four similar triangles. 

FIG.  3. On the le f t ,  a trzangle dzvzded wzth bzsectzon, on the rzght. a trzanglf dirided by uszng 

regula r refin e 771 en t 

The regular ref inement  algorithm of Bank. Sherman, and Weiser [3] has been 

used very successfully in the software package PLTMG [2]. Triangles are divided 

by using regular refinement and temporary bisections of selected triangles to make 

the mesh conforming. The bisected triangles are merged before the mesh is refined 

again. By merging the bisected triangles at  each level, the method guarantees 

that each triangle in T k + ,  either is similar to a triangle in TO or is a bisection of a 

triangle similar to a triangle in To. Clearly, the angles in Tk+l  are bounded away 

from 0 and 7r. 

The mesh refinement algorithm 5.6 of Rivara [15] uses bisections of triangles 

across the largest edge (divid;ng the largest angle) and selective divisions across 

smaller edges. This approach has been shown to yield triangulations, T k ,  whose 

smallest angle is bounded by at worst one-half the smallest angle in TO [17]. A 

detailed discussion of this algorithm is given in  the following subsection. 

The newest-node algorithm of Sewell is also based on bisection, but without 

the restriction on bisecting the longest edge [ I O ] .  In this algorithm. a triangle 

is always bisected by using its newest node. The propagation inherent in the 

bisection and regular refinement algorithms is avoided by refining triangles only in 

pairs. However. because of the pair restriction, it is possible that a triangle may 

never be able to be refined. In the experiments run by Mitchell [lo], this difficulty 

did not arise. 

Llitchell compared these three methods in  a series of numerical experiments 

and found that it, was difficult to choose a consistently superior algorithm [lo]. 

In addition, he found that all three methods were superior to using uniform re- 

finement except on smooth problems. Given the similar performance of the three 

methods, we choose to discuss the bisection algorithm in detail in  this paper for 

three reasons: (1)  it is simpler from an  implementation standpoint than the regular 

refinement algorithm; (2) it manifests the propagation inherent in both the bisec- 

tion arid regular refinement algorithms and, therefore, demonstrates the ability of 

our algorithm to handle such propagations: and ( 3 )  it does not have the potential 

for having ‘‘unrefinable” nodes as in  the newest-node algorithm. We note, how- 

ever, that, our algorithms are applicable to all three algorithms. I n  addition, only 
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a simple modification to our  para.llel iniplenicntation is reqiiirecl to iniplemrnt the 

newest-node algorithm. 

We note that Williams [19] has developed a t~orel database approach to the 

parallel mesh refinement problem. Our approach. which we present in the following 

section, differs from his approach in that we have explicit parallel runtinie bounds. 

In addition. we have designed our approach to yield data structures that are inore 

suitable to the assembly of the sparse Iinear systems that arise from these meshes 

as well as the solution of these sparse linear systems by sophisticated iterative and 

direct sparse factorization methods. 

i = O  

&, = > k  

R, = 0 
while ( Q t  U R;) # 0 do 

9 { Q always denotes triangles not y e t  refined} 

{ R always denotes children of refined triangles) 

Bisect each triangle in Q; across its longest edge 

Bisect each triangle in R, across a nonconforming edge 

All incompatible triangles embedded in U;=,Q, are placed in I&+* 
A11 other incompatible triangles are placed in &;+I 

; = i s 1  

endwhi l e  

FIG. 4. The bisection algorithm 

2.2. The Bisect ion Algor i thm.  In Figure 4 we present the bisection algo- 

rithm. This algorithm is slightly altered, for ease of presentation, from Algorithm 

5.6 as presented by Rivara in [15]. However, this modified algorithm yields the 

same final mesh as the original algorithm presented by Rivara. 

FIG.  5. The process of the bzsectzon algorzlhm is shown from lefl t o  right. In the inilial 

mesh, the shaded trzangles are refined; subsequently the shaded triangles are refined because they 

a re not co nipn t 1 ble. 

To illustrate the bisection algorithm, we give a n  example of the  propagation 

in Figure 5 .  Note that the refinement could propagate through unmarked triangles 

not adjacent to  marked triangles before finishing. Rivara. however. has shown that 

this loop will terminate in a finite number of iterations. We denote this number 

of iterations by L p .  In general, L p  depends on the characteristics of the mesh 

being refined. Rivara also has shown that each triangle in Tk embeds 1, 2, 3 ,  or 4 

triangles of the resulting compatible mesh, T k + l .  We show the possible 3, 3 ,  or 4 

resulting triangles in Figure 6. We formalize the following useful result from [15]. 

THEOREM 2.1. During Lhc f~cecutzon of the bisection algori thm,  no side of a 

trzangle m a y  be dimdrd mor< tlmn oncr .  
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FIG. 6. The possible divisions o f  a single triangle in the bisection algorithm 

Proof: Vertices may be created only when a triangle. as member of Qz, bisects 

its longest edge-and then only if a vertex does not already exist in that location. 

Once a triangle is in Qt. its children are excluded from Qm for steps rn > i and 

thus may not create vertices. 

Therefore. if a triangle t ,  containing the edge e creates a vertex on e at step 

i, no further vertices will be created by that triangle or its children. Given the 

creation of the vertex, a triangle t b  adjacent to t ,  and sharing e would not create 

another vertex on e when it is a member of some Q 3 ,  j 2 i. In addition, the children 

of t b  cannot create any vertices. Thus, at most one vertex may be inserted on an 

edge during refinement. 0 

3. Parallel Adaptive Refinement. In this section, we present a parallel 

algorithm for adaptive refinement that correctly implements the bisection method. 

We illustrate the key aspect of this algorithm: the synchronization necessary for the 

correct parallel execution of the bisection algorithm. Finally, we give an analysis 

of the  algorithm under the P-RAM computation model. 

First, we need the following definitions. Let V = {vz I i = 1.. . . , n }  be the 

set of vertices in the mesh and T = { t ,  I a = 1 , .  . . , m }  be the set of polygons. 

We assume that the final mesh consists only of triangles (;.e., a conforming mesh). 

However. intermediate meshes can be nonconforming, hence we allow for these 

nonconforming elements in  our definition. Let G' = (V.  E )  be the graph associated 

with the mesh, with edges E = { ( u ~ ,  v3) 1 u t ,  u3 E t , } .  Let D = ( T ,  F )  be the dual 

graph associated with the mesh, where F = { ( t a ,  t b )  I (u, ,  v3) f t,, t b ) .  

The refinement algorithm will be formulated within the context of the dual 

graph. To begin the P-RAM analysis, we assume that a t  any given time we have 

as many processors as we have triangles and t,hat t>riangle t ,  is assigned to the 

processor p a .  For the analysis that follows, the specific P-RAM computational 

variant does not make a difference; one may assume that the CREW P-RAM 
model is used. Some synchronization must be managed during the execution of 

the algorithm to maintain the correct neighbor information in both the graph G' 

and the dual graph D as they are modified. Thus, each processor p ,  must keep 

track of the  current neighbors of t ,  in D.  We note that the correct neighbor 

information for G can be constructed i n  a straightforward way from D .  

TO illustrate the sy~~cliroiiization required for the correct execution of the par- 

allcl algorithm, we note t h c .  t w o  ways that neighbor inforriiation can be corrupted. 
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FIG. 7.  On the lef t ,  two processors creatzng a uerlex a t  the same locatzon; on ihe right. a 

posszble corruptzon of nezghbor informatzon 

First, two different processors must not create vertices at the same location when 

bisecting their triangles. If two vertices are created at the same location, then a 

postprocessing step must be included to merge these vertices. Lye eliminate the 

need for postprocessing by proper synchronization. In Figure 7 we see an example 

of two processors, PI and Pz, creating two vertices a t  the same location. Second, 

we must ensure that outdated neighbor information is not propagated. For exam- 

ple, in the same figure we see that triangle U1 may believe that triangle W is its 

neighbor, rather than triangle W,, if triangles U and W are refined simultaneously. 

The key observation is that both of these synchronization problems can be  

avoided if only triangles from an independent set in D are refined simultaneously. 

An independent set, I ,  is a subset of triangles of T such that no two triangles from 

I are adjacent in D. Once these triangles are refined and neighboring triangles 

are notified. another independent set can be chosen for refinement based on the 

correctly updated neighbor information. In the following subsection, we consider 

two possible approaches for computing these independent sets in parallel. 

3.1. Two Methods for Computing Independent Sets in Parallel. For 

the purpose of the running time analysis for the refinement algorithm. we review 

two approaches for computing the independent sets. Both of these approaches 

require that the graph be of bounded degree-which is true for the problem we 

consider. The  first approach uses a n  assignment of random numbers to the vertices 

of a graph to obtain a sequence of independent sets that is a slowly growing function 

of the size of the graph. The second approach is to compute a graph coloring and 

use this coloring to generate the independent sets. The advantage of the coloring 

approach is that we can guarantee that the number of colors, and thus the number 

of independent sets, is independent of the size of the graph for a bounded degree 

graph. However, the computation of this coloring requires the use of the first 

random number approach; therefore. the coloring is useful only if it is used enough 

times to justify the initial expense. 

First we consider the use of independent random numbers to generate the 

independent sets. Suppose we wish to compute the sequence of independent sets 

for the set of triangles 7”. a subset of T ,  in the corresponding subgraph D’ = D ( T ’ ) .  

For each triangle t ,  i n  D‘ we assign a distinct, independent random number p(t,). 

We choose an i~idependerit, set, 1 from 7’’ according t.o the following rule: 1, E 1 if for 

cacii of its neighbors T‘ or ( 1 ) )  p ( t q )  > p ( i b ) .  We i n  D. we i i ave  t,liat, either (a) 21, 

“ 
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then update the set of triangles under consideration by cfeleting the independent, 

set: T’ t T’ \ I .  We are now free to generate the next independent set) in the 

sequence using the same rule. This process continues until T‘ is the empty set. 

The expected number of independent sets is given by the following lemma. 

Let D’ be a bounded degree, undirected graph with n vertices. 

Suppose each vertex t in D’ is assigned a unique independent random number p ( t ) .  

Consider  t h e  sequence of independent sets  generated by the above rule. T h e  expected 

number  of these independent sets is bounded by EO(1og n,flog log n). 

Proof This bound is a consequence of Corollary l3.5 in [7]. 0 

We now consider a second approach for obtaining the sequence of independent 

sets. First, note tha t  any valid coloring of the graph D = ( T ,  F )  can be used to 

generate t h e  required independent sets. Recall that the function CT : T -+ { 1, .  . . , s) 
is an s-coloring of D ,  if a(t,) # a(t6) for all edges ( t a , t b )  E F .  Thus, a sequence 

of s independent sets can be generated from an s-coloring of D by assigning all 

triangles of the same color to one of the sets. 

To efficiently compute this coloring, we use the parallel greedy heuristic pre- 

sented in [7].  An outline of this heuristic is presented in Figure 8. The indepen- 

dent sets required for this heuristic can be generated by using the random number 

method described above. The greedy step in the heuristic is the color assignment; 

the smallest consistent color for t is the smallest color not assigned to  a neighbor 

of t .  

LEMMA 3.1. 

T’ t T 

While T’ # 0 do 

Choose an independent set I from T’ 
Color I in parallel by choosing the smallest 

T’ t T’ \ I 
consistent color a ( t )  for each t E I 

e n d d o  

FIG. 8. Outline of a parallel  greedy coloring heurzstzc 

The advantage of using a coloring to generate the independent sets is that for 

a bounded degree graph the maximum number of colors is independent of the size 

of the graph. We include this well-known result as the following lemma. 

Consider  a bounded degree graph. D ,  of m a x i m u m  degree A. 
T h e  parallel greedy coloring heuristic computes  a n  .s-coloring of D with s 5 A $- 1. 

Proof: Every vertex t is colored in the greedy heuristic by assigning it the smallest 

consistent color. Since, at worst, every neighbor of t is a different color, the 

maxiilium color assigned t required is the degree of t plus one. Thus, the maximum 

color assigned by the greedy heuristic to any vertex i n  D is A + 1. 0 

I n  sum. we have available t,wo methods for generating the sequence of indepen- 

dent sets required for thcx parallel refinement algori thin.  For the following P-RAM 
running time analysis, it, turns out that the best running time bound is obtained 

L E M M A  3.2. 



by maintaining a coloring of the dual graph comprising tJhe triangles to be re- 

fined. However. in practice, the overhead associated wit11 maintaining the coloring 

is not advantageous. Hence. the first approach is iised in the practical algorithm 

presented in $4. 

3.2. A P-RAM Adaptive Refinement Algorithm. In Figure 9 we present 

a P-RAM algorithm that avoids the synchronization problems discussed above. by 

simultaneously refining triangles from independent sets in D. Note that the inde- 

pendent sets used for refinement are also used to update the coloring. This update 

is required because the dual graph is modified after the bisection of a triangle. In 

the remainder of this section, we show that this algorithm avoids the two possible 

synchronization problems and has a fast run time. 

i = O  

Based on local error estimates, a set of triangles, Q O ,  is marked for refinement 

Each triangle, t i ,  in Qo is assigned a random number, p ( t j j  

The subgraph D(Q0)  is colored by the parallel greedy coloring heuristic 

R o = 0  
While (Q; U &) # 0 do 

Wi = Q; 

While (Qi U Ri) # 0 do {inner h o p }  

Choose an independent set in D? I, from (Q; u R;) 

Simultaneously bisect each of the triangles in I 

embedded in Q; across its longest edge 

Simultaneously bisect each of the triangles in I 

embedded in R; across a nonconforming edge 

Each new triangle. t j ,  is assigned the smallest consistent 

color. a ( t j ) .  and a new processor 

Each processor owning a bisected triangle updates this 

information on processors owning adjacent triangles 

Q i  = Q i  \ (1 n Q ; )  
R; = R; \ ( I  n Ri) 

Endwhile 

Ri+1 = A11 incompatible triangles embedded in U)=,Wj 

Qi+l = XI1 other incompatible triangles 

i = i + 1  

Endwhile 

F I G .  9. Parallel algorithm for  refinement 

We assume that the initial dual graph, D ,  is of bounded degree. In fact, 
hecause t he  triangulat,ion of a surface is of primary interest, we assume that each 

triangle edge is shared by at  most two triangles in the initial triangulation. In this 

case we have that maximum degree of the initial conforming mesh is three. The fact 

that  D has hoiinded degree iiot only is useful in the following runtime proof, but 
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also is useful in practice. Design of data  structures and software is simplified if the 

niaximum number of neighbors i n  the graph is boundetl by a small constant. \&:e 

now show that degree of any intermediate. nonc.onforming dual graph is bounded 

by at  most twice t.he initial maximum degree. 

LEMMA 3 .3 .  The dual graph, D .  is of bounded degree at all times daring 

the execution of the algorithm. In f ac t ,  the degree of a vertex in D never  exceeds 

six. A s  a result: the maximum number of colors required at  all times during the 

execution of the algorithm to color D is seven or less. 

Proof: From Theorem 2.1 each triangle edge is divided at  most once. Therefore, 

a triangle can at most double the number of its neighbors. By Lemma 3.2, if the 

maximum degree of the dual is six, at most seven colors will be required during 

the execution of the refinement algorithm. 0 

Because the degree of the dual graph remains bounded: we note that the work 

assigned to each processor during one pass through the inner loop of this algorithm 

can be done in constant time under the P-RAM computational model. We now 

show that the two possible corruption problems discussed above cannot occur. 

Neighbor information in the dual graph is correctly updated 

during the execution of the refinement algorithm. 

Proof: The proof is by induction. We assume that the initial neighbor information 

is correct and that the neighbor information is correct following step i - 1. If t ,  is 
being refined at  step i, by the properties of the independent set none of its neighbors 

in D are being refined. The triangles, t,, and t,,, resulting from bisection of t ,  

have correct information about their neighbors. The former neighbors of t, can, 

therefore. be notified of the refinement of t ,  and be given the correct information 

about their new neighbors. Thus, following step i of the refinement algorithm the 

modified neighborhood information for D is correct. 0 

LEMMA 3 . 5 .  .Vo two uertices .will be created at the same position during the 

execution of the refinement algorithm. 

Proof: Again, the proof is by induction. We assume that all vertices are unique 

initially and following step i - 1. For a vertex to be created at the same position 

a t  step i by two different processors, one of two situations must occur: (1 )  two 

processors must simultaneously refine the same edge. or ( 2 )  a processor must refine 

a previously refined edge because it has not been notified that a vertex has been 

created 011 that edge. The first condition is prevented by the definition of the 

independent set-no adjacent triangles are refined simultaneously. The second 

c.ondition is prevented by the correct notification of neighbor information in D 

ensured by Lenima 3.4. 0 

Finally, we give a bound on the expect,ed running time of the refinement algo- 

rithm. 

T H E O R E M  3 . 6 .  Recall that L.p is the number of loop iterations in the serial 

bistciion algorithm in Figure 4. The algorithnz given in Figu~c 9 terminates in n 

finile number of d c p ~  aitd h a s  a n  expected run time under i.hc P-RAM computa- 

iiorral model  of E o (  

LEMMA 3.4. 

, o ~ f ~ ~ o ,  + ( I (  L ~ ) ,  

i o  



Proof: First. we consider the expected running timc to compute the initial coloring 

of D(Q0) .  By Lemma 3.1 this time is EO( , o ~ ~ ~ $ o ,  ). 

Yext, we consider the running time for the inner  loop of the refinement algo- 

rithm at step i. Define the graph, D, = (St. F,). where  S, is the set of triangles 

Qt u R, to be refined at this step. The set F, is the subset of edges ( t , . t b )  from F 

with t,, t b  E S,. B_v Lemma 3.3: we know that D, is always a bounded degree zraph. 

Also by Lemma 3.3 the number colors required, and thus number if independent 

sets, is bounded by a constant. Hence the work assigned to any processor in  the 

inner loop (the bisection of its triangle. updating the coloring, and the neighbor 

notification) takes time bounded by a constant independent of the mesh size. 

Finally, we must show that it takes L p  iterations of the outer loop to form a 

conforming mesh. Clearly, every triangle that becomes incompatible at step i is 

refined at  step i + 1, just as in the sequential algorithm in Figure 4. Thus. the 

number of iterations of the outer loop in each algorithm is identical, L p .  

Hence, the total expected running time for the entire algorithm is bounded by 

E o ( l o g k l Q o /  
) + O ( W .  1oglQol 

We close this section with several notes about this running time analysis. 

First, since typically in this context the initial mesh to be refined was obtained 

from a previous level of refinement, the initial coloring step would not be required. 

Instead, a coloring of the mesh could be maintained between levels of refinement. 

Using this information, the P-RAM running timeof the algorithm would be O ( L p ) .  

i 
F I G .  10. On the left. the shaded trzangle is marked for refinement: on the right, the resulting 

conforming mesh after refinement. ,Vote that the refinement has propagated through every triangle 

in the mesh but one. 

Finally. we close the analysis with some comments about L p .  the length of 

propagation. We point out, that it is easy to construct a worst case example where 

IQol = O(1) and L p  = O(IT1). For example? in Figure 10 we give a.n example that 

can be generalized to illustrate this worst case behavior. However, another way of 

looking at  this example is to assume that this particular mesh was generated from 

previous refinements starting from a single triangle. In this case. the average length 

of propagation, L p ,  over all levels of refinement, is actually constant. Furthermore, 

as we note with the experimental results presented in $5,  the average number of 

independent sets required to ohtain a conforming mesh appears to bounded by a 

small constant and independent, of the size of the mesli. Thm, cve believe that this 

possible worst case behavior of' L p  is not t,he ominous prob1t.m that it appears it 

coi.11d be i n  a practical inipl"i~"'tit,atioti. 
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4. D i s t r i b u t e d - M e m o r y  Implemen ta t ion .  For use on a practical parallel 

computer, we must modify the P-RAM a1~01-ith1-n ana.lyzed i n  the preceding sect.ion. 

Rather than assigning a single triangle o r  vertex lo each processor. we assign a set of 

vertices and triangles to each processor. The vertices L7 are partitioned into disjoint 

subsets 5: where processor j owns the subset Cg, and we have that I -  = Up,, 4. 
We choose to partition the vertices rather than the triangles because we have found 

that it makes the finite element evaluation, mesh refinement, and sparse matrix 

assembly and solution (if necessary) more straightforward and efficient. Based on 

the partitioning of I..’, we determine a partitioning of T = UP,, Tj into disjoint 

subsets where processor j owns the subset T’. In practice, one can assume that a t  

least one vertex of triangle in Tj is in the set Vj. 

For communication purposes, each processor, j :  stores the set of triangles 

T j  = T’ u adjD(T’) U T(V , ) ,  where ua’j~(T’’) is the set of triangles adjacent to  a 

triangle in Tj in the dual graph D ,  and T (  LJ)  is the set of triangles containing a 

vertex in V,. In addition, processor j stores the set of vertices = k-(Tj), where 

V(Tj )  is the set of vertices contained by all triangles in Tj. 
and Ti, processor j has all the information necessary to  

evaluate all finite elements that  have vertices in V,, assemble complete rows and/or 

columns of a sparse matrix associated with each vertex in V,, and perform the 

parallel refinement algorithm (yet to be specified) on the triangles in Tj. We 

illustrate these sets for some processor j in Figure 11. In this figure we have 

partitioned the vertices by the geometric cuts represented by the orthogonal dashed 

lines. The vertices in the interior of the four dashed lines have been assigned to 

processor j-the set V,-and are shown as filled vertices. The set is the set of 

unfilled and filled vertices, Tj is the set of shaded triangles, and rj is the set of 

unshaded and shaded triangles. 

Given the sets 

FIG. 11. A n  illustration of the s e t s  I.’j a n d  maintained on processorj. The set of vertices 

nssign.ed t o  processor j, V,, is shown as the set  of f i l l e d  vertices. The  set of shaded triangles is 

the set r j .  The union of the set of shaded and unshaded triangles is c: the union of the set of 

filled and unfilled vertices is & .  

In Figure 12 we present a practical version of the P-RAM algorithm given in 

Figure 9. The algorithm ensures that vertices are not created at  the same location 

and that  the sets 1;; and T; on t.a.c.ii processor j a r t  correct. Note that, in  this 

modified algorithm, i f  a trimgle or vertex is creat.ed on processor j ,  processor 

j is its owner. The inIi(>r i t~icl  outer  loops in the P - R A k l  algorithm have been 
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combined illto a single loop for greater efficiency: the separate 1ooi)s allowed for 

a clearer presentat,ion of the runtime bounds ,  1111t that, is not necessary i n  this 

sect ion. 

Based on local error estimates a n  initial set of triangles, Q.  

Each triangle, t ,  E Q, is assigned a random number, p(t,) 

R=O 

w=O 
While ( Q  u R)  f 0 do 

is marked for refinement 

Choose an independent set in D .  I = U,”=, I,,  from the  

w- = bV u I 
Each processor, j ,  bisects the triangles in I ,  

Each processor, j ,  bisects the triangles in I ,  

For each new triangle, t b ,  a new random number, P ( t b ) ,  is chosen 

Each new triangle, t b ,  created on processor j is added to T, 

Each new vertex, vk, created on processor j is added to V, 
For each triangle, t ,  E I, notification of bisection is sent to each processor 

I for which ( ( a d j ~ ( t , )  n Tl) # 0) or ( (V(t , )  n Vi) # 0) 
Each processor receives notification and updates its sets ’r; and FJ 
R = ( R  \ ( I  n R))u  Any incompatible triangles embedded in W 

Q = (Q \ ( I  n Q))u All incompatible triangles not in R 

triangles in (Q U R) ,  where I ,  = I n T, 

embedded in Q across its longest edge 

embedded in R across a nonconforming edge 

Endwhile 

FIG. 12. A practical parallel algorithm for rcfineriient 

For this algorithm, independent sets are chosen according to a slightly different 

rule from the rule used in  the P-RAM algorithm. The triangle t ,  is in I ,  i f ,  for each 

of its neighbors t b  in D: one of the following hold: (a) t b  ( Q  U R): ( b )  I , ,  t b  E TJ,  
or ( c )  p(t ,>  > ~ ( t b ) .  This modification allows two triangles on the same processor 

to be refined 011 the same step. The cotnput,atioti of the independent sets requires 

no communication because each processor has all the necessary information in T, 
for this computation. Conimunication of the random numbers is not necessary i f  

the seed given the pseudo-random number generator used to  determine p(t,) is 

based solely on a .  Thus, the only communication necessary in the algorithm is the 

notification of bisections and  the global reduction required to determine whether 

(& U R)  # 0. For further efficiency, the notification messages can be packed so 

that each processor receives a t  most one tnessage frotn another processor during 

each time through the while loop. 

Because the modified algorit,hm in Figure 12 uses essenlially the same syn- 

chronization scheme presentecl i n  $3, collisions are avoided, and neighbors in D 011 



separate processors are not simul tatleolisl?. bise(-ted. Thus. we have t i i c l  following 

theorem. 

THEOREM 4.1. .-I11 changes made by other proces.sors to the tr.zariglt.s’,’S’t.r‘ti(‘f.~ 

i n  the sets TJ and c; o n  each processor J are receivtd so that these sets are k t p t  

updated throughout the algorzthm in Figure 13. 

Proof: The sets TJ and V, are updated correctly because only processor J can 

bisect triangles in this set or create new vertices in this set. Any changes to 

triangles or vertices in T’ and attributable to changes in triangles or vertices in 

ad’~(T,) and V ( T J )  are directly communicated in the algorithm. 

The remaining portion of T3, attributable to T(V , ) ,  is accounted for because, 

if tk E T (  V,) is bisected on another processor, then V ( t k )  fl b; # 8, and notification 

of this bisection will be sent and received. 

Finally, to  show that the vertex neighbor information is correct, we note that 

the neighbor information is correct on the subgraph of D induced by T’. Thus, 

the neighbor information contained in the subgraph of G induced by must also 

be correct because = V(T’). 0 

5 .  Experimental Results. In this section computational results are pre- 

sented that demonstrate that  the parallel refinement algorithm is scalable and 

that its execution time is negligible compared with that  of other computations 

required to  solve a PDE. 
The parallel refinement algorithm is implemented as a subroutine library that 

can be called by an  application program. Chameleon [ 5 ]  is used to achieve porta- 

bility across several architectures, including the Intel DELTA, which is the focus 

of this section. Note that in addition to  the refinement algorithm, the subrou- 

tine library also includes a similarly constructed, parallel unrefinement algorithm. 

Because the iinrefinement algorithm is necessary in many applications. including 

orie of those used here. and its performance is sii-nilar to the refinement algorithm, 

results from it are included here as well. Results are presented for the parallel 

refinement algorithm for two different two-dimensional PDEs: Poisson’s equation 

and the equations for linear elasticity. These problems are solved on two different 

geometries . 

5.1. Test Problems. O w  first set of test, problems models Poisson’s equa- 

tion 

(5.1) 

where S is a square domain and a linear finite element approximation is used. The 

function f ( z )  is a Caussian charge distribution centered at  a point (Sz, S,) inside 

the domain. The mesh is selectively refined according to the energy norm [lo] until 

the estimate of t,he local error 011 each triangle is less t han  a specified tolerance. 

Further, the point (+qT.  4S.,) is moved several t , i~nt~i ;  an(i a new solution/mesh is 
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found from the old solution/mesh. This moveineiit, rtvliiires significant mesh re- 

finement aroiind the new charge position and definemerit, around the old positiori 

while the remainder of the mesh remains relatively constant. The parallel con- 

jugate gradient method preconditioned by an inconiplete factorization is met1 to 

solve the sparse linear systems that arise [ 6 ] .  

The second problem considered is the linear elasticity equations for the plane 

stress problem, given (without inclusion of a load) as 

(5.2) 

1 + I/ a2v 8*u -+-  - -- 8% 8% 
8x2 dy2 - ,> I j a x 2  + =I 3 

where u and v are the x and y displacements. respectively. These equations are 

solved on a rectangular region with a central hole. One side of the region is con- 

strained to have zero displacement, and a constant traction is applied to the op- 

posite side. Again, linear finite elements are used to approximate these equations. 

The  mesh is selectively refined according to  the energy norm until the local error 

estimate for each triangle is less than a specified tolerance. The linear systems are 

solved by using the same code used for the Poisson problem. 

In each problem set, the initial coarse mesh has approximately 200 nodes 

except when running on 128 and 256 nodes; in these cases the initial coarse meshes 

are approximately 2 and 4 times larger, respectively. For each of these problems, 

by carefully choosing the maximum tolerance for the local error estimator, one can 

determine the  maximum number of vertices in the solution meshes. The following 

two problem sets have been constructed such that the final solution mesh for each 

successive problem has roughly twice as man?; vertices/triangles as in the previous 

problem. Information about the two problem sequences is given i n  Tables 1 and 2. 

TABLE 1 

il sequence of l e s t  problems based on t h e  Pozsson problem 

Maximum Xumber Maximum Number Ratio of Area of 

of Triangles i n  the Largest Triangle to 

Yame .Adaptive Mesh .Adaptive Mesh Smallest Triangle 

of Vertices in the 

1 I 1  I I 



TABLE 2 

4 sequence of l e s t  probleirts based o n  t h e  lzrtrar elastrczty r q u d z o r i s  for t h e  p lane  stress  prohlcrii 

Maximum Number hlaximum Number Ratio of Area of 

of Triangles in  the 
I 

of Vertices in the Largest Triangle to I 

Name Adaptive Mesh Adaptive Mesh I Smallest Triangle 1 
I I 

Tables 3 and 4 give the number of refinement steps required for each problem 

during the solution process. A refinement step consists of finding an approximate 

solution to  the PDE on the current mesh, T k ,  by solving the sparse linear sys- 

tem arising from the finite element model, computing estimates for the local error 

at each triangle, and then refining Tk according to these estimates to obtain the 

conforming mesh, Tkfl. One observes that,  not unexpectedly, it takes more mesh 

refinement steps to construct the larger meshes. In addition, the number of iter- 

ations through the loop in the algorithm in Figure 12 is given. The number of 

iterations should be at least L p  and perhaps a slowly growing function of the mesh 

size because we use the random number rule to generate the independent sets. 

One notes that the number of loop iterations needed is a slowly growing function 

of the number of processors and problem size. This result indicates that one can. 

i n  general, achieve scalable performance. as may be expected from Theorem :3.6. 

For the POISSON problem set, the charge location was moved twice: this 

movement meant that at two solution steps the mesh was not only refined around 

the charge. but also unrefined around the old charge position. However. there 

were still Inore refinement operations/steps than unrefinement operations. KO 

iinrefinement was necessary i n  the ELASTIC problem set: the load function was 

unchanged. 

A good partitioning of the vertices for each of these problems is necessary 

for the new algorithm to perform efficiently. Many good partitioning methods 

are available; a geometric partitioning algorithm [SI was chosen for this work. 

Figure 13 shows the average number of partitions that are adjacent to a given 

partition. This information gives some sense of the number of processors each 

processor shares triangles with and must, therefore. exchange information with .  

Figure 1 4  shows the percentage of the total triangle edges that have endpoints on 

t w o  tliffercwt processors. This data gives some sense of the number of triangles each 



TABLE :3 

Number o j  refinernen! steps and loop rterntions for  the s e q u e n c e  of Powson t c - s f  problcii is  

Number of Average Xumber 

Name Processors Refinement Steps of Loop Iterations 
, Number of 

TABLE 3 

LVumber of refinement steps and loop zterations for the sequence of h e a r  elasiictty test prob- 

lems 

Number of Number of Average Number 

Name Processors Refinement Steps of Loop Iterations 

I ELASTIC'S I /  4.83 

processor has that must be coordinated with  another processor. Note that these 

values initially rise rapidly. as one would expect, until approximately 16 processors 

are in use. For larger numbers of processors. these values increase very slowly. 

5.2.  Experiments. The experiments were run on up to 256 nodes of the 

Intel DELT.4. The DELTA parallel computer is a mesh-connected, 16 x 32 array 

of Intel is60 microprocessors.' In  all of the experiments, t he  reported times are 

given in seconds. The operations rates indicate the number of bisections and vertex 

deletions (note that vertex deletions correspond to unrefinement and constitute a 

small percentage of the total) per second. 

Note that because of constraints on the amount of time available to us on the DELTA, the 

512-processor case was not, run .  We believe, however, that, the r m i l t s  convincingly demonstrate 

the effectivenms of the parallel rcfincment. algorithm. 
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FIG. 13. T h e  average number of partttions each partition is adjacent  t o  in t h e  final mesh 

_ _ - - -  
Percentage of 

U I 

200 
IO0 Number of Processors 

FIG.  14. The percentage of cross-edges in the final mesh 

To demonstrate the scalability of the new algorithm and implementation, we 

designed the problems from each test set to have nearly equal numbers of vertices 

from the final mesh assigned to processors. This fact can be seen in Tables 1 

and 2, which show how many processors each problem was run on and the size of 

the final meshes. Each of the  test problems is refined in localized regions of the 

mesh; therefore, some processors have more refinement work than others. This 

load imbaiance is reflected in Tables 5 and 6, which give the average number 

of operations per processor per step and the average of the maximum number 

of operations on a single processor per step. The average number of operations 

falls as the number of processors increases; this decrease results because more 

refinement steps are taken to achieve the same number of vertices per processor in 

the final mesh. The average maximum number of operations increases because. as 

the mesh size increases, more refinement is concentrated in the same size area in 

which a limited number of processors are working. Recall that  the entire mesh is 

repartitioned after each refinement step. Thus, this concentration of new elements 

is continuously redistributed to processors with fewer elements. 

However, even given these handicaps, the results demonstrate that the algo- 

rithm performs quite well. Figure 15 shows the average number of refinement 

operations per second per processor as a function of the niirnber of processors. if 
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TABLE 5 

The n u m b e r  01 re f inemen t  opernlzons for  the  POLS.SOTL prob lem sequertcr 

Average Number of Average of t lie 

I Number of Operatioiis per Maximum Nuiiiber of I 
Processor j Operations per Processor 1 Name 11 Processors I Processor j Operations per Processor 1 Name 11 Processors I 

200 
loo Number of Processors 

F I G .  1.5. T h e  average n u m b e r  lr iangles  refined p e r  processor p e r  second 

refinement were occurring uniformly on all processors. one could expect this rate to 

be nearly constant; however, in the test problems, as in most practical problems, 

this is not the case. Figure 16 shows a more interesting rate, the maximum number 

of refinement operations per second on an individual processor. One would expect 

this rate to remain constant, or nearly so, i f  the algorithm is perfectly scalable. 

With the POISSON problem set, one sees very little degradation in the max- 

imum refinement rate. One might expect some degradation resulting from the 

increasing number of neighbors each processor must exchange information with 

as the number of processors increases. However, with the POSSION problem set 

the increase in the number of neighbors is offset by the rapidly increasing maxi- 

mum number of operations per processor (given in Table .5). With the ELASTIC 
problem set one observes this expected degradation because the maximum num- 

ber of operations per processor is increasing only moderately. Prior to reaching 

16 processors. the rnaximum rate of refinement, is rapidly changing because of the 
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TABLE 6 

The i i i ir i iher  of refinririent operattons f o r  t he  lzncnr t.lu,slzczty p r o h i e m  5equc i i ce  

I Average Number of 

Operations per 

Average of the 

Name Processors Processor Operations per Processor 

ELASTIC 1 211 

1 
Number of 

500 

Number of 
triangles 

per second 

300 

100 
IO0 Number of Processors 

FIG.  16. The maximum number of triangles refined p e r  second on an zndividual processor 

increasing communication requirements as the the number of processor neighbors 

and the percentage of cross-edges increases. After reaching 16 processors, the 

number of processor neighbors and the percentage of cross-edges stabilizes. and 

one sees approximately a 20% degradation i n  the rate of refinement from 16 to 256 

processors. 

Results given in Figure 17 demonstrate that. for a reasonably complex set of 

problems, the  time to  solve t h e  linear systems dominates the time to  refine the 

mesh for any number of processors. In fact, the total refinement time is always 

less than 4 percent of the total execution time. Note that a linear system is solved 

after each level of refinement. So, for example, the total execution time shown 

for 128 processors in Figure 17 includes the assembly and solution of 13 sparse 

linear systems. The time represented by the white region in the bar graph is 

composed almost entirely of the sum of the times required for the repartitioning of 

the mesh after each level of refinement. This partitioning time includes the time 
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FIG. 17. A comparison of the refinement times with the times required for all other aspects 

of the problem solution for the linear elasticity problem sequence 

to move vertices, triangles, and the data  associated with them between processors. 

We note that the implementation of our partitioning heuristic is preliminary; we 

believe that these times can be significantly reduced. 

To examine the total running time in more detail, we consider one problem, 

ELASTICS. run on 256 processors. In Figures 18 we show the time required 

to  solve the linear system and the number of nonzeros in  the assemblied matrix 

as a function of the refinement level. Initially the matrix size is doubling after 

every level of refinement. since most triangles are bisected at each refinement step. 

However, for the last several refinement levels only small areas of the mesh are 

being refined. As a result, the interpolated solution from the previous mesh is an 

excellent initial guess to the solution on the refined mesh, and only a small number 

of conjugate gradient iterations are required to obtain a solution that satisfies the 

specified tolerance for the relative residual. 

For the same problem. ELASTIC9 run on 256 processors. we show in Figure 19 

the time required to refine the mesh as a function of the refinement level. In 

the figure we show the numl>er of vertices that have been added to the mesh at 

that level of refinement. Note that refinement time continues to  increase after the 

number of vertices reaches a maximum. This effect can be explained by noting that 

the areas of the computational domain on which refinement is occurring become 

confined to fewer processors as the mesh is refined. Recall from Figure 16 that it 

is the mazimum rate of refinement on a processor that is constant. Thus, because 

the refinement is occurring on a smaller number of processors. the average rate of 

refineirient is worse at t t i c ,  Iiigltw levels o f  refinenie~it This Iieliavior explains the 
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FIG. 18. The time required to solve the linear systems and the number of nonzeros in the 

assembled linear system at  each level of refinement for problem ELASTIC9 run on 956 processors 

of the Intel DELT.4 
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FIG.  19. The refinement times and the number of vertices added a t  each level of refinement 

for problem ELASTIC9  run on %56 processors of the Intel DELTA 

decrease in the average rate of refinement as a function of the number of processors 

as shown in Figure le?. 

6. Concluding Remarks. We have described a parallel algorithm for the 

adaptive refinement of meshes. This algorithm was shown to run in provably fast 

time under a P-RAM model of computation. In addition, we described an efficient 

method of implementation for this algorithm on a practical, distributed-memory 

parallel computer. We then gave results for two problems that demonstrate the 

scalable nature of this algorithm. 

The  results given in this paper are for a two-dimensional triangular mesh. 

The use of independent sets for parallel synchronization, however, generalizes to 

the three-dimensional case as well as other refinement algorithms. The  next logical 

step in this work is to develop theoretical results for three-dirnensional tetrahedral- 
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izations as well as a practical, parallel iniplementation for three dimensions. In 

addition, we note that the use of higher-order hasis functions is straightforward 

in this methodology: in fact. we include th i s  functionality in  the current parallel 

implementation [g]. 
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