
r

b

PARALLEL ALGORITHMS FOR -4D-APTIVE MESH ‘ E @ E / a/

4’’6 12 1997
REFINEMENT‘

M A R K T JONES A X D P. iUL E PLASSM.ANN~

Abstract. Computational methods based on the use of zdaptiveiy constructed nonuniform

meshes reduce the amount of computation and storage necessary to perform many scientific

calculations. T h e adaptive construction of such nonuniform meshes is a n important part of these

methods. In this paper, we present a parallel algorithm for adaptive mesh refinement ihat is
suitable for implementation on distributed-memory parallel computers. Experimental results

obtained on the Intel DELTA are presented to demonstrate that , for scientific computations
involving the finite element method. the algorithm exhibits scalable performance and h a s a small

run time in comparison w i t h other aspects of the scientific computations examined. I t is also

shown that the algorithm h a s a fast expected running time under the P-RAM computation model.

1. Introduction. Adaptive mesh refinement techniques have been shown to

be very successful in reducing the computational and storage requirements for

solving many partial differential equations [lo]. Rather than use a uniform mesh

with grid points evenly spaced on a domain, adaptive mesh refinement techniques

place more grid points in areas where the local error in the solution is large. The
mesh is adaptively refined and/or unrefined during the computation according to

local error estimates on the domain. This technique is much more efficient than

the use of uniform meshes when the solution is changing much more rapidly in

some areas than in others.

The adaptive construction of these nonuniform meshes is a crucial part of

adaptive mesh solution methods and has been examined by many researchers, for

example. [: 3] . [lo] , [l l] , [l’], (131. [l-i], [l.?]. [IS]. and [ls]. Typically. one begins

w i t h a n initial mesh conforming to a particular Seometry. This mesh is selectively

refined. based o n local error estimates. to construct a mesh that satisfies a certain

error tolerance. hlost research has focused on meshes composed of simplicial eIe-

ments: l ine segments in one dimension. triangles in two dimensions. or tetrahedra

in three dimensions. This paper focuses primarily on two-dimensional simplicial

meshes. However. the algorithms and analyses presented here are applicable to

other dimensions and to nonsimplicial meshes.

In this paper. we present a new parallel algorithm for the adaptive construc-

tion of nonuniform meshes. This algorithm is well suited for implementation on

medium-grained distributed-memory parallel computers such as the Intel DELTA.
The algorithm is based on the simplicial bisection algorithm given by Rivara [1.5].

Our algorithm is scalable in that it has an expected run time that is a uery slowly

growing function of t h e triangles in the mesh.

* This work was supported in part by the Office of Scientific Computing. U.S. Department of

Energy, under Contract W-31- 109-Eng-38.

The address of the first author is Computer Science Department, C‘niversity of Tennessee!

Knoxville: T 3 37996. The address of the second author is Mathematics and Computer Science

Division. Xrgonne Yational Laboratory. 9700 South C a s Avenue . Argonne. I L 60439.
I

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or respomibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

To denionstrate the performance of this algorithm. we present experimental

results obtained on the Intel DELTA. The results demonstrate that. for practical

scientific calculations, the algorithm exhibits scalable performance and a run time

that is much smaller than the other computations necessary for the entire solution

method .
This paper is organized as follows. In $2 we review methods for adaptive mesh

refinement. In $3 we present our algorithm and analyze its expected run time under

the P-RAM computation model. A medium-grained distributed-memory version

of the algorithm is detailed in $4. We discuss our experimental results from the

Intel DELTA in $5. Finally, in $6 we summarize this research and discuss possible

future work.

2. Adaptive Refinement Methods. The finite element method has proven

to be extremely effective in the computation of approximate solutions to partial

differential equations (PDEs). Our focus is on adaptive, or local, refinement strate-

gies for generating finite element meshes. This approach can obtain much more

accurate solutions to these problems than a uniform mesh with the same number

of elements.

The computation of an approximate solution to a PDE consists of three main

tasks: (1) the construction of the finite element mesh, (2) the assembly of a sparse

linear system, and (3) the solution of this linear system. Although we are not

explicitly discussing the last two tasks, they must be kept in mind. In particular,

any method of local error estimation requires the approximate solution on a given

element mesh.

With a parallel implementation, we must remember that it is essential that

any adaptive mesh algorithm be integrated with parallel algorithms for the ma-

trix assembly and the solution of the resulting linear system. In addition, with

an adaptive strategy the assignnient (or partitioning) of elements and vertices to

processors must be updated with each modification of the mesh to ensure the

continued efficient execution of the matrix assembly and linear system solution.

k = O

Solve the PDE on Tk

Estimate the error on each triangle

whi le the maximum error on a triangle is larger than the given tolerance do

Based o n error estimates, determine a set of triangles. S k ? to refine

* Divide the triangles in Sk, and any other

Solve the PDE on T k + ,

Estimate the error on each triangle

k = k + l

triangles necessary to form T k + ,

endwhi l e

F!G. 1 . A f m n i r w o r k f o r t h e adaptzve solulzon of PDEs

I;

= f

Consider the general adaptive mesh algorithm [I O] shown in Figure 1. \Ve

begin by assuming that we have an initial element mesh given by the triangulation

To consistent with the geometry of the problem domain. Our attention is focused

on the step in the algorithm where the current mesh T k is adaptively refined (the

step denoted by the * in Figure 1).

Suppose that some arbitrary subset of triangles. S k , of T k is marked for refine-

ment. We have developed and implemented parallel algorithms for constructing

a new mesh T k + l that satisfies the required changes in the mesh. To keep our

presentation clear and brief, we assume that the set S k contains triangles marked

only for refinement, not for unrefinement. However, our software is able to unrefine

triangles that have been previously refined.

The refinement of the mesh must maintain several important properties. given

that finite element approximations are used. First, we require that each mesh T k

be conforming (or compatible). That is, the intersection of any two triangles in T k

should be a single vertex, a line segment connecting two vertices, or the empty set.

A side of a triangle is called &.-nonconforming if it has s > 0 vertices between

any two endpoints. A triangle IS called compatible if none of its sides are -&-
nonconforming. Examples of conforming and nonconforming meshes are given In

Figure 2. If the mesh is conforming, then only one basic type of finite element is

necessary. Otherwise, several speciai element types are required, and/or a more

complicated matrix assembly. Note, however, that the use of triangles does not

restrict one to linear finite elements: one can use higher-order basis functions in a

t ri angu 1 at ion.

FIG. 2. O n the le f t , a conforming me h; on [he right. n nonconforming m h

A second requirement is that the mesh T k be graded (or smoo th) . That is,

adjacent triangles should not differ dramatically in area. A nonsmooth mesh could

result i n the finite element approximation being very far from the continuous so-

lution.

A final requirement is that all angles in the mesh be bounded away from 0

and n. The latter condition is necessary because the discretization error in a finite

element approximation has been shown to grow as the maximum angle approaches

n [I] . We would like to avoid small angles because the condition number of the

matrices arising from mesh elements has been shown to grow as (I(&), where

Onin is the smallest angle in the mesh [4].

2.1. Related Work. A number of mesh refinement algorithms have been

shown to maintain the mesh properties given above. In this section we briefly

review the three most widely used of these refinement met,hods. To begin, we note

that there are two methods i ised to subdivide a triangle: 6i.qection and reguEar

3

r~fi71,ement. In bisection, a vertex of the triangle is connectecl to the midpoint of

the opposite side of the triangle, as i11 Figure 3 . forming two triangles of equal area.

In regular refinement. the midpoints of the sides of the triangle are connected. as

in Figure 3 , to form four similar triangles.

FIG. 3. On the le f t , a trzangle dzvzded wzth bzsectzon, on the rzght. a trzanglf dirided by uszng

regula r refin e 771 en t

The regular ref inement algorithm of Bank. Sherman, and Weiser [3] has been

used very successfully in the software package PLTMG [2]. Triangles are divided

by using regular refinement and temporary bisections of selected triangles to make

the mesh conforming. The bisected triangles are merged before the mesh is refined

again. By merging the bisected triangles at each level, the method guarantees

that each triangle in T k + , either is similar to a triangle in TO or is a bisection of a

triangle similar to a triangle in To. Clearly, the angles in Tk+l are bounded away

from 0 and 7r.

The mesh refinement algorithm 5.6 of Rivara [15] uses bisections of triangles

across the largest edge (divid;ng the largest angle) and selective divisions across

smaller edges. This approach has been shown to yield triangulations, T k , whose

smallest angle is bounded by at worst one-half the smallest angle in TO [17]. A

detailed discussion of this algorithm is given in the following subsection.

The newest-node algorithm of Sewell is also based on bisection, but without

the restriction on bisecting the longest edge [I O] . In this algorithm. a triangle

is always bisected by using its newest node. The propagation inherent in the

bisection and regular refinement algorithms is avoided by refining triangles only in

pairs. However. because of the pair restriction, it is possible that a triangle may

never be able to be refined. In the experiments run by Mitchell [lo], this difficulty

did not arise.

Llitchell compared these three methods in a series of numerical experiments

and found that it, was difficult to choose a consistently superior algorithm [lo].

In addition, he found that all three methods were superior to using uniform re-

finement except on smooth problems. Given the similar performance of the three

methods, we choose to discuss the bisection algorithm in detail in this paper for

three reasons: (1) it is simpler from an implementation standpoint than the regular

refinement algorithm; (2) it manifests the propagation inherent in both the bisec-

tion arid regular refinement algorithms and, therefore, demonstrates the ability of

our algorithm to handle such propagations: and (3) it does not have the potential

for having ‘‘unrefinable” nodes as in the newest-node algorithm. We note, how-

ever, that, our algorithms are applicable to all three algorithms. I n addition, only

1

a simple modification to our para.llel iniplenicntation is reqiiirecl to iniplemrnt the

newest-node algorithm.

We note that Williams [19] has developed a t~orel database approach to the

parallel mesh refinement problem. Our approach. which we present in the following

section, differs from his approach in that we have explicit parallel runtinie bounds.

In addition. we have designed our approach to yield data structures that are inore

suitable to the assembly of the sparse Iinear systems that arise from these meshes

as well as the solution of these sparse linear systems by sophisticated iterative and

direct sparse factorization methods.

i = O

&, = > k

R, = 0
while (Q t U R;) # 0 do

9 { Q always denotes triangles not y e t refined}

{ R always denotes children of refined triangles)

Bisect each triangle in Q; across its longest edge

Bisect each triangle in R, across a nonconforming edge

All incompatible triangles embedded in U;=,Q, are placed in I&+*
A11 other incompatible triangles are placed in &;+I

; = i s 1

endwhi l e

FIG. 4. The bisection algorithm

2.2. The Bisect ion Algor i thm. In Figure 4 we present the bisection algo-

rithm. This algorithm is slightly altered, for ease of presentation, from Algorithm

5.6 as presented by Rivara in [15]. However, this modified algorithm yields the

same final mesh as the original algorithm presented by Rivara.

FIG. 5. The process of the bzsectzon algorzlhm is shown from lefl t o right. In the inilial

mesh, the shaded trzangles are refined; subsequently the shaded triangles are refined because they

a re not co nipn t 1 ble.

To illustrate the bisection algorithm, we give a n example of the propagation

in Figure 5 . Note that the refinement could propagate through unmarked triangles

not adjacent to marked triangles before finishing. Rivara. however. has shown that

this loop will terminate in a finite number of iterations. We denote this number

of iterations by L p . In general, L p depends on the characteristics of the mesh

being refined. Rivara also has shown that each triangle in Tk embeds 1, 2, 3 , or 4

triangles of the resulting compatible mesh, T k + l . We show the possible 3, 3 , or 4

resulting triangles in Figure 6. We formalize the following useful result from [15].

THEOREM 2.1. During Lhc f~cecutzon of the bisection algori thm, no side of a

trzangle m a y be dimdrd mor< tlmn oncr .

5

FIG. 6. The possible divisions o f a single triangle in the bisection algorithm

Proof: Vertices may be created only when a triangle. as member of Qz, bisects

its longest edge-and then only if a vertex does not already exist in that location.

Once a triangle is in Qt. its children are excluded from Qm for steps rn > i and

thus may not create vertices.

Therefore. if a triangle t , containing the edge e creates a vertex on e at step

i, no further vertices will be created by that triangle or its children. Given the

creation of the vertex, a triangle t b adjacent to t , and sharing e would not create

another vertex on e when it is a member of some Q 3 , j 2 i. In addition, the children

of t b cannot create any vertices. Thus, at most one vertex may be inserted on an

edge during refinement. 0

3. Parallel Adaptive Refinement. In this section, we present a parallel

algorithm for adaptive refinement that correctly implements the bisection method.

We illustrate the key aspect of this algorithm: the synchronization necessary for the

correct parallel execution of the bisection algorithm. Finally, we give an analysis

of the algorithm under the P-RAM computation model.

First, we need the following definitions. Let V = {vz I i = 1.. . . , n } be the

set of vertices in the mesh and T = { t , I a = 1 , . . . , m } be the set of polygons.

We assume that the final mesh consists only of triangles (;.e., a conforming mesh).

However. intermediate meshes can be nonconforming, hence we allow for these

nonconforming elements in our definition. Let G' = (V. E) be the graph associated

with the mesh, with edges E = { (u ~ , v3) 1 u t , u3 E t , } . Let D = (T , F) be the dual

graph associated with the mesh, where F = { (t a , t b) I (u, , v3) f t,, t b) .

The refinement algorithm will be formulated within the context of the dual

graph. To begin the P-RAM analysis, we assume that a t any given time we have

as many processors as we have triangles and t,hat t>riangle t , is assigned to the

processor p a . For the analysis that follows, the specific P-RAM computational

variant does not make a difference; one may assume that the CREW P-RAM
model is used. Some synchronization must be managed during the execution of

the algorithm to maintain the correct neighbor information in both the graph G'

and the dual graph D as they are modified. Thus, each processor p , must keep

track of the current neighbors of t , in D. We note that the correct neighbor

information for G can be constructed i n a straightforward way from D .

TO illustrate the sy~~cliroiiization required for the correct execution of the par-

allcl algorithm, we note t h c . t w o ways that neighbor inforriiation can be corrupted.

6

FIG. 7. On the lef t , two processors creatzng a uerlex a t the same locatzon; on ihe right. a

posszble corruptzon of nezghbor informatzon

First, two different processors must not create vertices at the same location when

bisecting their triangles. If two vertices are created at the same location, then a

postprocessing step must be included to merge these vertices. Lye eliminate the

need for postprocessing by proper synchronization. In Figure 7 we see an example

of two processors, PI and Pz, creating two vertices a t the same location. Second,

we must ensure that outdated neighbor information is not propagated. For exam-

ple, in the same figure we see that triangle U1 may believe that triangle W is its

neighbor, rather than triangle W,, if triangles U and W are refined simultaneously.

The key observation is that both of these synchronization problems can be

avoided if only triangles from an independent set in D are refined simultaneously.

An independent set, I , is a subset of triangles of T such that no two triangles from

I are adjacent in D. Once these triangles are refined and neighboring triangles

are notified. another independent set can be chosen for refinement based on the

correctly updated neighbor information. In the following subsection, we consider

two possible approaches for computing these independent sets in parallel.

3.1. Two Methods for Computing Independent Sets in Parallel. For

the purpose of the running time analysis for the refinement algorithm. we review

two approaches for computing the independent sets. Both of these approaches

require that the graph be of bounded degree-which is true for the problem we

consider. The first approach uses a n assignment of random numbers to the vertices

of a graph to obtain a sequence of independent sets that is a slowly growing function

of the size of the graph. The second approach is to compute a graph coloring and

use this coloring to generate the independent sets. The advantage of the coloring

approach is that we can guarantee that the number of colors, and thus the number

of independent sets, is independent of the size of the graph for a bounded degree

graph. However, the computation of this coloring requires the use of the first

random number approach; therefore. the coloring is useful only if it is used enough

times to justify the initial expense.

First we consider the use of independent random numbers to generate the

independent sets. Suppose we wish to compute the sequence of independent sets

for the set of triangles 7”. a subset of T , in the corresponding subgraph D’ = D (T ’) .

For each triangle t , i n D‘ we assign a distinct, independent random number p(t,).

We choose an i~idependerit, set, 1 from 7’’ according t.o the following rule: 1, E 1 if for

cacii of its neighbors T‘ or (1)) p (t q) > p (i b) . We i n D. we i i ave t,liat, either (a) 21,

“
1

then update the set of triangles under consideration by cfeleting the independent,

set: T’ t T’ \ I . We are now free to generate the next independent set) in the

sequence using the same rule. This process continues until T‘ is the empty set.

The expected number of independent sets is given by the following lemma.

Let D’ be a bounded degree, undirected graph with n vertices.

Suppose each vertex t in D’ is assigned a unique independent random number p (t) .

Consider t h e sequence of independent sets generated by the above rule. T h e expected

number of these independent sets is bounded by EO(1og n,flog log n).

Proof This bound is a consequence of Corollary l3.5 in [7]. 0

We now consider a second approach for obtaining the sequence of independent

sets. First, note tha t any valid coloring of the graph D = (T , F) can be used to

generate t h e required independent sets. Recall that the function CT : T -+ { 1, . . . , s)
is an s-coloring of D , if a(t,) # a(t6) for all edges (t a , t b) E F . Thus, a sequence

of s independent sets can be generated from an s-coloring of D by assigning all

triangles of the same color to one of the sets.

To efficiently compute this coloring, we use the parallel greedy heuristic pre-

sented in [7]. An outline of this heuristic is presented in Figure 8. The indepen-

dent sets required for this heuristic can be generated by using the random number

method described above. The greedy step in the heuristic is the color assignment;

the smallest consistent color for t is the smallest color not assigned to a neighbor

of t .

LEMMA 3.1.

T’ t T

While T’ # 0 do

Choose an independent set I from T’
Color I in parallel by choosing the smallest

T’ t T’ \ I
consistent color a (t) for each t E I

e n d d o

FIG. 8. Outline of a parallel greedy coloring heurzstzc

The advantage of using a coloring to generate the independent sets is that for

a bounded degree graph the maximum number of colors is independent of the size

of the graph. We include this well-known result as the following lemma.

Consider a bounded degree graph. D , of m a x i m u m degree A.
T h e parallel greedy coloring heuristic computes a n .s-coloring of D with s 5 A $- 1.

Proof: Every vertex t is colored in the greedy heuristic by assigning it the smallest

consistent color. Since, at worst, every neighbor of t is a different color, the

maxiilium color assigned t required is the degree of t plus one. Thus, the maximum

color assigned by the greedy heuristic to any vertex i n D is A + 1. 0

I n sum. we have available t,wo methods for generating the sequence of indepen-

dent sets required for thcx parallel refinement algori thin. For the following P-RAM
running time analysis, it, turns out that the best running time bound is obtained

L E M M A 3.2.

by maintaining a coloring of the dual graph comprising tJhe triangles to be re-

fined. However. in practice, the overhead associated wit11 maintaining the coloring

is not advantageous. Hence. the first approach is iised in the practical algorithm

presented in $4.

3.2. A P-RAM Adaptive Refinement Algorithm. In Figure 9 we present

a P-RAM algorithm that avoids the synchronization problems discussed above. by

simultaneously refining triangles from independent sets in D. Note that the inde-

pendent sets used for refinement are also used to update the coloring. This update

is required because the dual graph is modified after the bisection of a triangle. In

the remainder of this section, we show that this algorithm avoids the two possible

synchronization problems and has a fast run time.

i = O

Based on local error estimates, a set of triangles, Q O , is marked for refinement

Each triangle, t i , in Qo is assigned a random number, p (t j j

The subgraph D(Q0) is colored by the parallel greedy coloring heuristic

R o = 0
While (Q; U &) # 0 do

Wi = Q;

While (Qi U Ri) # 0 do {inner h o p }

Choose an independent set in D? I, from (Q; u R;)

Simultaneously bisect each of the triangles in I

embedded in Q; across its longest edge

Simultaneously bisect each of the triangles in I

embedded in R; across a nonconforming edge

Each new triangle. t j , is assigned the smallest consistent

color. a (t j) . and a new processor

Each processor owning a bisected triangle updates this

information on processors owning adjacent triangles

Q i = Q i \ (1 n Q ;)
R; = R; \ (I n Ri)

Endwhile

Ri+1 = A11 incompatible triangles embedded in U)=,Wj

Qi+l = XI1 other incompatible triangles

i = i + 1

Endwhile

F I G . 9. Parallel algorithm for refinement

We assume that the initial dual graph, D , is of bounded degree. In fact,
hecause t he triangulat,ion of a surface is of primary interest, we assume that each

triangle edge is shared by at most two triangles in the initial triangulation. In this

case we have that maximum degree of the initial conforming mesh is three. The fact

that D has hoiinded degree iiot only is useful in the following runtime proof, but

9

also is useful in practice. Design of data structures and software is simplified if the

niaximum number of neighbors i n the graph is boundetl by a small constant. \&:e

now show that degree of any intermediate. nonc.onforming dual graph is bounded

by at most twice t.he initial maximum degree.

LEMMA 3 .3 . The dual graph, D . is of bounded degree at all times daring

the execution of the algorithm. In f ac t , the degree of a vertex in D never exceeds

six. A s a result: the maximum number of colors required at all times during the

execution of the algorithm to color D is seven or less.

Proof: From Theorem 2.1 each triangle edge is divided at most once. Therefore,

a triangle can at most double the number of its neighbors. By Lemma 3.2, if the

maximum degree of the dual is six, at most seven colors will be required during

the execution of the refinement algorithm. 0

Because the degree of the dual graph remains bounded: we note that the work

assigned to each processor during one pass through the inner loop of this algorithm

can be done in constant time under the P-RAM computational model. We now

show that the two possible corruption problems discussed above cannot occur.

Neighbor information in the dual graph is correctly updated

during the execution of the refinement algorithm.

Proof: The proof is by induction. We assume that the initial neighbor information

is correct and that the neighbor information is correct following step i - 1. If t , is
being refined at step i, by the properties of the independent set none of its neighbors

in D are being refined. The triangles, t,, and t,,, resulting from bisection of t ,

have correct information about their neighbors. The former neighbors of t, can,

therefore. be notified of the refinement of t , and be given the correct information

about their new neighbors. Thus, following step i of the refinement algorithm the

modified neighborhood information for D is correct. 0

LEMMA 3 . 5 . .Vo two uertices .will be created at the same position during the

execution of the refinement algorithm.

Proof: Again, the proof is by induction. We assume that all vertices are unique

initially and following step i - 1. For a vertex to be created at the same position

a t step i by two different processors, one of two situations must occur: (1) two

processors must simultaneously refine the same edge. or (2) a processor must refine

a previously refined edge because it has not been notified that a vertex has been

created 011 that edge. The first condition is prevented by the definition of the

independent set-no adjacent triangles are refined simultaneously. The second

c.ondition is prevented by the correct notification of neighbor information in D

ensured by Lenima 3.4. 0

Finally, we give a bound on the expect,ed running time of the refinement algo-

rithm.

T H E O R E M 3 . 6 . Recall that L.p is the number of loop iterations in the serial

bistciion algorithm in Figure 4. The algorithnz given in Figu~c 9 terminates in n

finile number of d c p ~ aitd h a s a n expected run time under i.hc P-RAM computa-

iiorral model of E o (

LEMMA 3.4.

, o ~ f ~ ~ o , + (I (L ~) ,

i o

Proof: First. we consider the expected running timc to compute the initial coloring

of D(Q0) . By Lemma 3.1 this time is EO(, o ~ ~ ~ $ o ,).

Yext, we consider the running time for the inner loop of the refinement algo-

rithm at step i. Define the graph, D, = (St. F,). where S, is the set of triangles

Qt u R, to be refined at this step. The set F, is the subset of edges (t , . t b) from F

with t,, t b E S,. B_v Lemma 3.3: we know that D, is always a bounded degree zraph.

Also by Lemma 3.3 the number colors required, and thus number if independent

sets, is bounded by a constant. Hence the work assigned to any processor in the

inner loop (the bisection of its triangle. updating the coloring, and the neighbor

notification) takes time bounded by a constant independent of the mesh size.

Finally, we must show that it takes L p iterations of the outer loop to form a

conforming mesh. Clearly, every triangle that becomes incompatible at step i is

refined at step i + 1, just as in the sequential algorithm in Figure 4. Thus. the

number of iterations of the outer loop in each algorithm is identical, L p .

Hence, the total expected running time for the entire algorithm is bounded by

E o (l o g k l Q o /
) + O (W . 1oglQol

We close this section with several notes about this running time analysis.

First, since typically in this context the initial mesh to be refined was obtained

from a previous level of refinement, the initial coloring step would not be required.

Instead, a coloring of the mesh could be maintained between levels of refinement.

Using this information, the P-RAM running timeof the algorithm would be O (L p) .

i
F I G . 10. On the left. the shaded trzangle is marked for refinement: on the right, the resulting

conforming mesh after refinement. ,Vote that the refinement has propagated through every triangle

in the mesh but one.

Finally. we close the analysis with some comments about L p . the length of

propagation. We point out, that it is easy to construct a worst case example where

IQol = O(1) and L p = O(IT1). For example? in Figure 10 we give a.n example that

can be generalized to illustrate this worst case behavior. However, another way of

looking at this example is to assume that this particular mesh was generated from

previous refinements starting from a single triangle. In this case. the average length

of propagation, L p , over all levels of refinement, is actually constant. Furthermore,

as we note with the experimental results presented in $5, the average number of

independent sets required to ohtain a conforming mesh appears to bounded by a

small constant and independent, of the size of the mesli. Thm, cve believe that this

possible worst case behavior of' L p is not t,he ominous prob1t.m that it appears it

coi.11d be i n a practical inipl"i~"'tit,atioti.

11

4. D i s t r i b u t e d - M e m o r y Implemen ta t ion . For use on a practical parallel

computer, we must modify the P-RAM a1~01-ith1-n ana.lyzed i n the preceding sect.ion.

Rather than assigning a single triangle o r vertex lo each processor. we assign a set of

vertices and triangles to each processor. The vertices L7 are partitioned into disjoint

subsets 5: where processor j owns the subset Cg, and we have that I - = Up,, 4.
We choose to partition the vertices rather than the triangles because we have found

that it makes the finite element evaluation, mesh refinement, and sparse matrix

assembly and solution (if necessary) more straightforward and efficient. Based on

the partitioning of I..’, we determine a partitioning of T = UP,, Tj into disjoint

subsets where processor j owns the subset T’. In practice, one can assume that a t

least one vertex of triangle in Tj is in the set Vj.

For communication purposes, each processor, j : stores the set of triangles

T j = T’ u adjD(T’) U T(V ,) , where ua’j~(T’’) is the set of triangles adjacent to a

triangle in Tj in the dual graph D , and T (LJ) is the set of triangles containing a

vertex in V,. In addition, processor j stores the set of vertices = k-(Tj), where

V(Tj) is the set of vertices contained by all triangles in Tj.
and Ti, processor j has all the information necessary to

evaluate all finite elements that have vertices in V,, assemble complete rows and/or

columns of a sparse matrix associated with each vertex in V,, and perform the

parallel refinement algorithm (yet to be specified) on the triangles in Tj. We

illustrate these sets for some processor j in Figure 11. In this figure we have

partitioned the vertices by the geometric cuts represented by the orthogonal dashed

lines. The vertices in the interior of the four dashed lines have been assigned to

processor j-the set V,-and are shown as filled vertices. The set is the set of

unfilled and filled vertices, Tj is the set of shaded triangles, and rj is the set of

unshaded and shaded triangles.

Given the sets

FIG. 11. A n illustration of the s e t s I.’j a n d maintained on processorj. The set of vertices

nssign.ed t o processor j, V,, is shown as the set of f i l l e d vertices. The set of shaded triangles is

the set r j . The union of the set of shaded and unshaded triangles is c: the union of the set of

filled and unfilled vertices is & .

In Figure 12 we present a practical version of the P-RAM algorithm given in

Figure 9. The algorithm ensures that vertices are not created at the same location

and that the sets 1;; and T; on t.a.c.ii processor j a r t correct. Note that, in this

modified algorithm, i f a trimgle or vertex is creat.ed on processor j , processor

j is its owner. The inIi(>r i t~icl outer loops in the P - R A k l algorithm have been

12

combined illto a single loop for greater efficiency: the separate 1ooi)s allowed for

a clearer presentat,ion of the runtime bounds , 1111t that, is not necessary i n this

sect ion.

Based on local error estimates a n initial set of triangles, Q.

Each triangle, t , E Q, is assigned a random number, p(t,)

R=O

w=O
While (Q u R) f 0 do

is marked for refinement

Choose an independent set in D . I = U,”=, I,, from the

w- = bV u I
Each processor, j , bisects the triangles in I ,

Each processor, j , bisects the triangles in I ,

For each new triangle, t b , a new random number, P (t b) , is chosen

Each new triangle, t b , created on processor j is added to T,

Each new vertex, vk, created on processor j is added to V,
For each triangle, t , E I, notification of bisection is sent to each processor

I for which ((a d j ~ (t ,) n Tl) # 0) or ((V(t ,) n Vi) # 0)
Each processor receives notification and updates its sets ’r; and FJ
R = (R \ (I n R))u Any incompatible triangles embedded in W

Q = (Q \ (I n Q))u All incompatible triangles not in R

triangles in (Q U R) , where I , = I n T,

embedded in Q across its longest edge

embedded in R across a nonconforming edge

Endwhile

FIG. 12. A practical parallel algorithm for rcfineriient

For this algorithm, independent sets are chosen according to a slightly different

rule from the rule used in the P-RAM algorithm. The triangle t , is in I , i f , for each

of its neighbors t b in D: one of the following hold: (a) t b (Q U R): (b) I , , t b E TJ,
or (c) p(t ,> > ~ (t b) . This modification allows two triangles on the same processor

to be refined 011 the same step. The cotnput,atioti of the independent sets requires

no communication because each processor has all the necessary information in T,
for this computation. Conimunication of the random numbers is not necessary i f

the seed given the pseudo-random number generator used to determine p(t,) is

based solely on a . Thus, the only communication necessary in the algorithm is the

notification of bisections and the global reduction required to determine whether

(& U R) # 0. For further efficiency, the notification messages can be packed so

that each processor receives a t most one tnessage frotn another processor during

each time through the while loop.

Because the modified algorit,hm in Figure 12 uses essenlially the same syn-

chronization scheme presentecl i n $3, collisions are avoided, and neighbors in D 011

separate processors are not simul tatleolisl?. bise(-ted. Thus. we have t i i c l following

theorem.

THEOREM 4.1. .-I11 changes made by other proces.sors to the tr.zariglt.s’,’S’t.r‘ti(‘f.~

i n the sets TJ and c; o n each processor J are receivtd so that these sets are k t p t

updated throughout the algorzthm in Figure 13.

Proof: The sets TJ and V, are updated correctly because only processor J can

bisect triangles in this set or create new vertices in this set. Any changes to

triangles or vertices in T’ and attributable to changes in triangles or vertices in

ad’~(T,) and V (T J) are directly communicated in the algorithm.

The remaining portion of T3, attributable to T(V ,) , is accounted for because,

if tk E T (V,) is bisected on another processor, then V (t k) fl b; # 8, and notification

of this bisection will be sent and received.

Finally, to show that the vertex neighbor information is correct, we note that

the neighbor information is correct on the subgraph of D induced by T’. Thus,

the neighbor information contained in the subgraph of G induced by must also

be correct because = V(T’). 0

5 . Experimental Results. In this section computational results are pre-

sented that demonstrate that the parallel refinement algorithm is scalable and

that its execution time is negligible compared with that of other computations

required to solve a PDE.
The parallel refinement algorithm is implemented as a subroutine library that

can be called by an application program. Chameleon [5] is used to achieve porta-

bility across several architectures, including the Intel DELTA, which is the focus

of this section. Note that in addition to the refinement algorithm, the subrou-

tine library also includes a similarly constructed, parallel unrefinement algorithm.

Because the iinrefinement algorithm is necessary in many applications. including

orie of those used here. and its performance is sii-nilar to the refinement algorithm,

results from it are included here as well. Results are presented for the parallel

refinement algorithm for two different two-dimensional PDEs: Poisson’s equation

and the equations for linear elasticity. These problems are solved on two different

geometries .

5.1. Test Problems. O w first set of test, problems models Poisson’s equa-

tion

(5.1)

where S is a square domain and a linear finite element approximation is used. The

function f (z) is a Caussian charge distribution centered at a point (Sz, S,) inside

the domain. The mesh is selectively refined according to the energy norm [lo] until

the estimate of t,he local error 011 each triangle is less t han a specified tolerance.

Further, the point (+qT. 4S.,) is moved several t , i~nt~i ; an(i a new solution/mesh is

14

found from the old solution/mesh. This moveineiit, rtvliiires significant mesh re-

finement aroiind the new charge position and definemerit, around the old positiori

while the remainder of the mesh remains relatively constant. The parallel con-

jugate gradient method preconditioned by an inconiplete factorization is met1 to

solve the sparse linear systems that arise [6] .

The second problem considered is the linear elasticity equations for the plane

stress problem, given (without inclusion of a load) as

(5.2)

1 + I/ a2v 8*u -+- - -- 8% 8%
8x2 dy2 - ,> I j a x 2 + =I 3

where u and v are the x and y displacements. respectively. These equations are

solved on a rectangular region with a central hole. One side of the region is con-

strained to have zero displacement, and a constant traction is applied to the op-

posite side. Again, linear finite elements are used to approximate these equations.

The mesh is selectively refined according to the energy norm until the local error

estimate for each triangle is less than a specified tolerance. The linear systems are

solved by using the same code used for the Poisson problem.

In each problem set, the initial coarse mesh has approximately 200 nodes

except when running on 128 and 256 nodes; in these cases the initial coarse meshes

are approximately 2 and 4 times larger, respectively. For each of these problems,

by carefully choosing the maximum tolerance for the local error estimator, one can

determine the maximum number of vertices in the solution meshes. The following

two problem sets have been constructed such that the final solution mesh for each

successive problem has roughly twice as man?; vertices/triangles as in the previous

problem. Information about the two problem sequences is given i n Tables 1 and 2.

TABLE 1

il sequence of l e s t problems based on t h e Pozsson problem

Maximum Xumber Maximum Number Ratio of Area of

of Triangles i n the Largest Triangle to

Yame .Adaptive Mesh .Adaptive Mesh Smallest Triangle

of Vertices in the

1 I 1 I I

TABLE 2

4 sequence of l e s t probleirts based o n t h e lzrtrar elastrczty r q u d z o r i s for t h e p lane stress prohlcrii

Maximum Number hlaximum Number Ratio of Area of

of Triangles in the
I

of Vertices in the Largest Triangle to I

Name Adaptive Mesh Adaptive Mesh I Smallest Triangle 1
I I

Tables 3 and 4 give the number of refinement steps required for each problem

during the solution process. A refinement step consists of finding an approximate

solution to the PDE on the current mesh, T k , by solving the sparse linear sys-

tem arising from the finite element model, computing estimates for the local error

at each triangle, and then refining Tk according to these estimates to obtain the

conforming mesh, Tkfl. One observes that, not unexpectedly, it takes more mesh

refinement steps to construct the larger meshes. In addition, the number of iter-

ations through the loop in the algorithm in Figure 12 is given. The number of

iterations should be at least L p and perhaps a slowly growing function of the mesh

size because we use the random number rule to generate the independent sets.

One notes that the number of loop iterations needed is a slowly growing function

of the number of processors and problem size. This result indicates that one can.

i n general, achieve scalable performance. as may be expected from Theorem :3.6.

For the POISSON problem set, the charge location was moved twice: this

movement meant that at two solution steps the mesh was not only refined around

the charge. but also unrefined around the old charge position. However. there

were still Inore refinement operations/steps than unrefinement operations. KO

iinrefinement was necessary i n the ELASTIC problem set: the load function was

unchanged.

A good partitioning of the vertices for each of these problems is necessary

for the new algorithm to perform efficiently. Many good partitioning methods

are available; a geometric partitioning algorithm [SI was chosen for this work.

Figure 13 shows the average number of partitions that are adjacent to a given

partition. This information gives some sense of the number of processors each

processor shares triangles with and must, therefore. exchange information with .

Figure 1 4 shows the percentage of the total triangle edges that have endpoints on

t w o tliffercwt processors. This data gives some sense of the number of triangles each

TABLE :3

Number o j refinernen! steps and loop rterntions for the s e q u e n c e of Powson t c - s f problcii is

Number of Average Xumber

Name Processors Refinement Steps of Loop Iterations
, Number of

TABLE 3

LVumber of refinement steps and loop zterations for the sequence of h e a r elasiictty test prob-

lems

Number of Number of Average Number

Name Processors Refinement Steps of Loop Iterations

I ELASTIC'S I / 4.83

processor has that must be coordinated with another processor. Note that these

values initially rise rapidly. as one would expect, until approximately 16 processors

are in use. For larger numbers of processors. these values increase very slowly.

5.2. Experiments. The experiments were run on up to 256 nodes of the

Intel DELT.4. The DELTA parallel computer is a mesh-connected, 16 x 32 array

of Intel is60 microprocessors.' In all of the experiments, t he reported times are

given in seconds. The operations rates indicate the number of bisections and vertex

deletions (note that vertex deletions correspond to unrefinement and constitute a

small percentage of the total) per second.

Note that because of constraints on the amount of time available to us on the DELTA, the

512-processor case was not, run . We believe, however, that, the r m i l t s convincingly demonstrate

the effectivenms of the parallel rcfincment. algorithm.

A - ,’ ,
i

___________________. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ -
_ _ _ _ _ _ - - - - I

- POISSON

200
loo Number of Processors

FIG. 13. T h e average number of partttions each partition is adjacent t o in t h e final mesh

_ _ - - -
Percentage of

U I

200
IO0 Number of Processors

FIG. 14. The percentage of cross-edges in the final mesh

To demonstrate the scalability of the new algorithm and implementation, we

designed the problems from each test set to have nearly equal numbers of vertices

from the final mesh assigned to processors. This fact can be seen in Tables 1

and 2, which show how many processors each problem was run on and the size of

the final meshes. Each of the test problems is refined in localized regions of the

mesh; therefore, some processors have more refinement work than others. This

load imbaiance is reflected in Tables 5 and 6, which give the average number

of operations per processor per step and the average of the maximum number

of operations on a single processor per step. The average number of operations

falls as the number of processors increases; this decrease results because more

refinement steps are taken to achieve the same number of vertices per processor in

the final mesh. The average maximum number of operations increases because. as

the mesh size increases, more refinement is concentrated in the same size area in

which a limited number of processors are working. Recall that the entire mesh is

repartitioned after each refinement step. Thus, this concentration of new elements

is continuously redistributed to processors with fewer elements.

However, even given these handicaps, the results demonstrate that the algo-

rithm performs quite well. Figure 15 shows the average number of refinement

operations per second per processor as a function of the niirnber of processors. if

18

TABLE 5

The n u m b e r 01 re f inemen t opernlzons for the POLS.SOTL prob lem sequertcr

Average Number of Average of t lie

I Number of Operatioiis per Maximum Nuiiiber of I
Processor j Operations per Processor 1 Name 11 Processors I Processor j Operations per Processor 1 Name 11 Processors I

200
loo Number of Processors

F I G . 1.5. T h e average n u m b e r lr iangles refined p e r processor p e r second

refinement were occurring uniformly on all processors. one could expect this rate to

be nearly constant; however, in the test problems, as in most practical problems,

this is not the case. Figure 16 shows a more interesting rate, the maximum number

of refinement operations per second on an individual processor. One would expect

this rate to remain constant, or nearly so, i f the algorithm is perfectly scalable.

With the POISSON problem set, one sees very little degradation in the max-

imum refinement rate. One might expect some degradation resulting from the

increasing number of neighbors each processor must exchange information with

as the number of processors increases. However, with the POSSION problem set

the increase in the number of neighbors is offset by the rapidly increasing maxi-

mum number of operations per processor (given in Table .5). With the ELASTIC
problem set one observes this expected degradation because the maximum num-

ber of operations per processor is increasing only moderately. Prior to reaching

16 processors. the rnaximum rate of refinement, is rapidly changing because of the

19

TABLE 6

The i i i ir i iher of refinririent operattons f o r t he lzncnr t.lu,slzczty p r o h i e m 5equc i i ce

I Average Number of

Operations per

Average of the

Name Processors Processor Operations per Processor

ELASTIC 1 211

1
Number of

500

Number of
triangles

per second

300

100
IO0 Number of Processors

FIG. 16. The maximum number of triangles refined p e r second on an zndividual processor

increasing communication requirements as the the number of processor neighbors

and the percentage of cross-edges increases. After reaching 16 processors, the

number of processor neighbors and the percentage of cross-edges stabilizes. and

one sees approximately a 20% degradation i n the rate of refinement from 16 to 256

processors.

Results given in Figure 17 demonstrate that. for a reasonably complex set of

problems, the time to solve t h e linear systems dominates the time to refine the

mesh for any number of processors. In fact, the total refinement time is always

less than 4 percent of the total execution time. Note that a linear system is solved

after each level of refinement. So, for example, the total execution time shown

for 128 processors in Figure 17 includes the assembly and solution of 13 sparse

linear systems. The time represented by the white region in the bar graph is

composed almost entirely of the sum of the times required for the repartitioning of

the mesh after each level of refinement. This partitioning time includes the time

Other (Partitioning, etc.) lo
n

r - l

1 2 4 8 16 32 64 128 256

Number of Processors

FIG. 17. A comparison of the refinement times with the times required for all other aspects

of the problem solution for the linear elasticity problem sequence

to move vertices, triangles, and the data associated with them between processors.

We note that the implementation of our partitioning heuristic is preliminary; we

believe that these times can be significantly reduced.

To examine the total running time in more detail, we consider one problem,

ELASTICS. run on 256 processors. In Figures 18 we show the time required

to solve the linear system and the number of nonzeros in the assemblied matrix

as a function of the refinement level. Initially the matrix size is doubling after

every level of refinement. since most triangles are bisected at each refinement step.

However, for the last several refinement levels only small areas of the mesh are

being refined. As a result, the interpolated solution from the previous mesh is an

excellent initial guess to the solution on the refined mesh, and only a small number

of conjugate gradient iterations are required to obtain a solution that satisfies the

specified tolerance for the relative residual.

For the same problem. ELASTIC9 run on 256 processors. we show in Figure 19

the time required to refine the mesh as a function of the refinement level. In

the figure we show the numl>er of vertices that have been added to the mesh at

that level of refinement. Note that refinement time continues to increase after the

number of vertices reaches a maximum. This effect can be explained by noting that

the areas of the computational domain on which refinement is occurring become

confined to fewer processors as the mesh is refined. Recall from Figure 16 that it

is the mazimum rate of refinement on a processor that is constant. Thus, because

the refinement is occurring on a smaller number of processors. the average rate of

refineirient is worse at t t i c , Iiigltw levels o f refinenie~it This Iieliavior explains the

21

6o T T

Linear

System

Solution

Time

(SeC)

3

Matrix

Nonzeros

(millions)

I 3 5 7 9 11 13

Refinement Level

FIG. 18. The time required to solve the linear systems and the number of nonzeros in the

assembled linear system at each level of refinement for problem ELASTIC9 run on 956 processors

of the Intel DELT.4

3.0 80

+ REFINEMENT TIME 60

-0- VERTICES ADDED vertices

, 40 Created
, Refinement

Time 1-5

1 3 5 7 9 11 13

Refinemen t Level

FIG. 19. The refinement times and the number of vertices added a t each level of refinement

for problem ELASTIC9 run on %56 processors of the Intel DELTA

decrease in the average rate of refinement as a function of the number of processors

as shown in Figure le?.

6. Concluding Remarks. We have described a parallel algorithm for the

adaptive refinement of meshes. This algorithm was shown to run in provably fast

time under a P-RAM model of computation. In addition, we described an efficient

method of implementation for this algorithm on a practical, distributed-memory

parallel computer. We then gave results for two problems that demonstrate the

scalable nature of this algorithm.

The results given in this paper are for a two-dimensional triangular mesh.

The use of independent sets for parallel synchronization, however, generalizes to

the three-dimensional case as well as other refinement algorithms. The next logical

step in this work is to develop theoretical results for three-dirnensional tetrahedral-

22

c

izations as well as a practical, parallel iniplementation for three dimensions. In

addition, we note that the use of higher-order hasis functions is straightforward

in this methodology: in fact. we include th i s functionality in the current parallel

implementation [g].

REFERENCES

[I] I . BABCSKA ASD .A. E;. A Z I Z , On the angle condition in the finite element method. SL4M

Journal of Numerical Analysis, 13 (19176), pp. 214-226.

[2] R. E. BAXK! PLTMG: A Soflware Package for Solving Elliptic Partial Diferential Equa-

tions. Users ' Guide 6.0, SIAM Publications, Philadelphia, Penn., 1990.

[3] R. E. B A X K . A . H. SHERMAN. AND -4. WEISER, Refinement algorithms and data structvres

for regular local mesh refinement, in Scientific Computing, R. Stepleman et al., ed.,

IMACS/North-Holland Publishing Company, Amsterdam, 1983, pp. 3-17.

[4] I . FRIED, Condition of finite element matrices generated f rom nonuniform meshes, AIXA

Journal, 10 (1972), pp. 219-221.
[5] W. D. GROPP A N D B. F. SMITH, Users Manual for Chameleon Parallel Programming

Tools, ANL Report ANL-93/23, Argonne National Laboratory, Argonne, tll., 1993.

[6] M. T. JONES A N D P. E. PLASSMANN, BlockSolve v1.0: Scalable library software fo r the

parallel solution of sparse linear systems, ANL Report ANL-92/46, Argonne National

Laboratory, Argonne, Ill . , 1992.

[71 - , A parallel graph coloring heuristic, SIAM Journal on Scientific Computing, 14 (1993),

[81 - , Parallel algorithms for the adaptive refinement and partitioning of unstructured

meshes, in Proceedings of the 1994 SHPCC, IEEE, 1994, pp. 726-733.

[91 - , Computational results for parallel unstructured mesh computations, International

Journal of Computing Systems in Engineering (to appear).
[lo] W. F. MITCHELL, A comparison of adaptive refinement techniques for elliptic problems,

XCM Transactions on Mathematical Software, 15 (1989), pp. 326-347.
[I l l R. V. N A M B I A R . R. S. VALERA, I(. L. LAWRENCE, R. B. M O R G A N , A N D D. .4MIL, .An

algorithm for adaptive refinement of triangular element meshes, International Journal

for Numerical Methods in Engineering, 36 (1993), pp. 499-509.

[I21 W. C . RHEJNBOLDT A N D C . K. MESZTENYI, On a d a t a structure f o r adaptivefinite element

mesh refinemenls, ACM Transactions on Mathematical Software, 6 (1980), pp. 166-187.

[I31 M .-C. RIVARA. .4lgorithms for refining triangular grids suitable for adaptive and multigrid

techniques, International Journal for Numerical Methods in Engineering, 20 (1984),

~ 4 1 - , Design and d a t a structure of fu l ly a d a p t i v e , multigrid, finite-element software! ACM
Transactions on Mathematical Software. 10 (1984), pp. 242-264.

~ 5 1 - , .Mesh refinement processes based on the generalized bisection of simplices, SIAM
Journal of Numerical Analysis, 21 (1984), pp. 604-613.

[I61 - , Selective refinement/derefinement algorithms for sequences of nested triangulations,

International Journal for Numerical Methods in Engineering, 28 (1989), pp. 2889-2906.

[IT] 1. G. ROSENBERC A N D F. STENGER, A lower bound on the angles of triangles constructed

b y bisecting the longest side, Mathematics of Computation, 29 (1975), pp. 390-395.

[I81 E. G. SEWELL, A finite element program with automatic user-controlled mesh grading, in

Advances in Computer Methods for Partial Differential Equations 111, R. Stepleman,
ed., IMACS, New Brunswick, 1979, pp. 8-10.

[19] R. WILLIAMS, A dynamic solution-adaptive unstructured parallel solver, Report CCSF-21-
92, Caltech Concurrent Supercomputing Facilities, California Institute of Technology,

Pasadena, Calif.: 1992.

pp. 6.54-669.

pp. 74.5-756.

