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PAIMI,I.I:I. AI.GORTTIIMS FOR ADAPTIVE QUAI)RATIJIU;-(:ONVI~I~GENCE

.John IL IU l"C

Purdue Ull i vcrs i ty

West Lafayette, Indiana

1. INTRODUCTION. A rather detailed analysis of the structure of algorithms

for adaptive quadrature is given in {3]. The concept of meta1gorithm

is introduced and a metalgorithm for adaptive quadrature is illustrated

by the block diagram in figure I.

INTERVAL
COLLECTION

INTERVAL
COLLECTION
MANAGER

INTERVAL
PROCESSOR

ALGORITHM
CONTROLLER

Figure 1. Block diagram of a metalgorithrn for adaptive quadrature.

The heavy line shows the flow of intervals and the light

line -the flow of control and other information.

The analysis in [3] shows that there are at least I to 10 million poten-

tially interesting adaptive quadrature algorithms. That paper also CS~

tablishes a range of convergence results and examines three concrete

realizations of the metalgorithm.



The purpose of this paper is to use the metalgorithm framework to

discuss parallel algorithms for adaptive quadrature. Space precluQcS

the level of detail given in [3] so we refer the reader to that paper

for further clarification of some of the concepts presented. The use

of parallel computers has been very fruitful in some areas of numerical

computation (especially vector and matrix computations) and unfruitful

in others (e.g. solving nonlinear equations P], [41). It is plausihle

that quadrature is an area where parallel hardware may be effectively

used ami this is, in fact, the case. The idea is to have multiple copie!'

of the subalgorithm for processing intervals (i.e. for making estimates

of areas and errors on various subintervals of the original one)_ This

subalgorithm is then in execution on each of a number of independent

general purpose computers (or CPUs ). The interval collection management

subalgorithm is in execution on another CPU and it has th~ task of dis­

tributing intervals to the interval processors and collecting results and

intervals back from them. The algorithm controller is in execution on

yet another CPU and it initiates and monitors the entire computation.

In summary then we have a number of independent CPUs \~i th access to

a single large memory. There are three distinct programs involved (for

control~ collection management and interval processing) J one of "-hi cll is

used by many CPUs. Thus we have what is called a "mUltiple-instruction

stream, multiple-data stream, asynchronous, parallel computation".

There are several aspects to these algorithms besides convergence

behavior and we organize the material so as to avoid consideration of

these other aspects and yet to allow the convergence results to be
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to be applicable in a larger context. This is done by stating in the

next section a list of assumptions about the integrand, the area and

error bound formulas used by the interval processor, the data structure

used by the collection manager. the timing and protection of critical

data by the collection manager and various other components of the

algorithm. These assumptions become hypothesis of the theorem esta-

blished and thus i~s domain of applicability is fairly well delineated

even though it applies, literally. to millions of potentially interest-

ing algorithms. Note that it is our intention to arrange things so that

this theorem is applicable to real algorithms (i.e. Algoi or Fortran

programs) rather "than to have them merely be "mathematically relevant".

The convergence results are stated in terms of the accuracy

achieved as a function of the number of evaluations of the integrand.

Thus the problem is to evaluate

If = J f(x)dt
o

and the algorithm produces an estimate QNf after N evaluations of

f(x). The theorems then state things like I If ~ QNf I ~ KN-P (where

K and p are some constants of the algorithm) which is essentially the

same results as established in [3] for sequential algorithms. One ex-

pects in general that with NCPU + 2 CPUs (NCPU doing interval process­

ing) that N evaluations may be made in N/NCPU times the time required

for I evaluation. This would imply that maximum advantage is made of

the parallelism. This expectation is approximately fulfilled, but certain
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special situations arise (which are not analyzed here) such as the initial

stages of a computati.on where NerO is very laT~c (the comput.atlon may

terminate before an appreciable fraction of the CPUs is used). The }tCIl-

eral question of speed-up due to parallelism is briefly di scu5sed. but

not analyzed in depth, in the last section.

2. HYPOTIiESES AND -ALGORITIIM DEFINITION. The general form of the algo-

rithms has been indicated ahove, we now introduce some definitions and

precise hypotheses to he used in the convergence theorem. OUT first

assumption involves the inte~rand f(x) and it indicates the domain of

efficient applicability of adaptive algorithms.

ASSUMPTION 1 (Integrand). Assume rex) has singularities

S == {s.]i=1.2 ••••• R 0:: CD}
1

and set w(x) = fI (x- 5
i )

1=1

(i) If X
o

¢ S then f(P)(x) is continuous in a neighborhood of xo ·

(ii) There are constants p~2. K and (1 is that

w(x)
a-p

As each interval is processed the algorithm computes an approximate

area and an estimate of the error in this approximation. The quadrature

rule for the area plays no role in this analysis but the error estimate

and the nature of bounds on it playa central role. For simplicity we

assume that the interval processor divides an interval into two equal parts
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anl! thus ('wry interval i~; of I"hl' 1'111'11I Ix.x+.~-"l. T.I~_{:.:I_I~l.!·_i!~\.!l_(::

~~t j uwtc ()f the qU:ltlr;IJ~~'J:.l:~'':':'.!'!1.-1.~.,:~,,_2_-~L_.j~~~l_l~:~J~~~~~I~f.!L"l·

Every such algori thm must relate the local error estimates to a ~lolnd

one as discussed in .[1]. A fixed error distribution is where the global

error is simply the sum of the local ones. We assume this distribution

here, but the analysis and proofs may be extended to the more commonly

used proportional error distribution as is done in [31-

ASSUMPTION 2 (Error Estimates). There are constants p. K and a

(the same as in Assumption 1) so that:

[i) if (x.x+2- k] contains no singularity of f(x).

1'1l1l01l(x,k) ::. K I f(P) (x) I 2-
k

(P+l)

(ii) if [_x,X+2- k] contains n singularity of f(x)

ERROR(x,k) 2 K 2-k(1+a)

The model of a parallel computer used here is that of a number of

general purpose processors, essentially identical, that share a common

memory. These CPUs operate asynchronously and NCPU of them are assigned

to process intervals so that NCPU+2 CPUs are used by the algorithm.

We ignore any operating system features and assume that the algorithms

correctly initializes memory and the CPUs. The processing time is the time

required by a CPU to compute the area and hound estimates and to make

auxiliary computations. The return time is the time (delay) from the

completion of the processing of an interval to the acquisition of the

results by the collection manager and algorithm controller.



[,

ASSUMPTION 3 (Interval Processing). The processing of an

interval requires at most q evaluations of rex) and the

processing time is less that a constant Co. The return time

is less than C +C1*NCPU where (1 is a constant.
a

The merits of various data structures for the interval collection

are discussed in [3], but for the sake of brevity we assume that the

collection is divided into two boxes according to whether ERROR(x.k)

is larger or smaller than an a priori specified value E. One may

think of these boxes containing Ilactive" and "discarded" intervals

and the collection manager merely chooses (by any means whatsoever) an

active interval and delivers it to an interval processor. Upon the re-

turn of the resulting two intervals it places them in the appropriate boxes.

The time required for the collection manager to locate and deliver an

interval to an interval processor CPU is the delivery time. It is impor-

tant to note that this time includes detecting the existence of an idle

CPU and an interval in the active box. The time requi red for" the manag,cr

to insert returned intervals into the data structure is called the insertion

time. We assume that the collection manager preserves the integrity of

the interval collection in this concurrent operating environment and that

no interlocks may occur.

ASSUMPTION 4 (Interval Collection Management) There are

constants Co and Cl so that the delivery time and the

insertion time are each less than C +Cl*NCPU.
0-



7

This data ~tructurc model may seem overly simplified hilt. in :lpplicati.ulls,

it is seen that more realistics algorithms may be interpreted in thi~ way

and Assumption 4 is satisfied. The value of C1 here and in Assumption 3

plays a key role in determining the effectiveness of the parallelism.

That is to say. the speed-up achieved depends on the behavior of each of

the times (processing, return, delivery, insertion) involved and thus an

algorithm ~hich is truly efficient must have Cl=O (or replace t~e term

Cl*NCPU by something like Cl*log(NCPU». The governing time is seen to

he the cycle t iroe T defined as the total elapsed time from the moment_____ c

the delivery process is initiated until the insertion of the tl.'() halvc~

is completed. It follows from Assumptions 3 and 4 that

Tc :5.. 4Co +3C 1*NCPU

One ~bvious data structure is an ordered list and it appears to be

difficult to devise algorithms where the insertion time has a smaller

bound tha~
C +C 1*NCPU+C2*NLIST where NLIST is the number of intervals in

o

the collej:tion.



B

In order to.clarify the alr.nrithm's processing of intervals Ne

pre~cnt fiJ!llrt~ 2.

ACTIVE
BOX

==.

_ E: Level-- __ ....:l~_

•

Idle in the
collection

Being delivered
or processed

Being or waiting
to be inserted

Figure 2. A snapshot of the total interval collection's status.

The arrows indicate the possible status transitions that

an interval may make.

We see that the algorithm terminates when the discard box contains the

total interval collection. The algorithm is initiated by placing the

interval [0,1] 'in the actiye box.
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3. THE CONVERGENCE RESULTS. We begin with a consideration a simple

case where f(x) has a single singularity at x=O. The quadrature

estimate obtained by the algorithm after N evaluations of f(x) is

denoted by QNf and the time to compute QNf 15 denoted by TNf.

The unit of time is that required to evaluate f(x) oncp..

LEMMA 1. Let a parallel, 2-hox algorithm satisfy Assumptions

2, 3, and 4. Let Assumption 1 be satisfied with S-(O}.

Then, as N ~ ~. we have

and for NCPU <

< t!7(_1_)
- NP

there is a constant K4

T f < K4 ~Z~6N -

50 that

Proof.
. -t

We consider separately intervals of the form [0,2 1 and

note from AS5umptio~ 2 that

ERROR(O,t) < K2- t (1+a)

Let t satisfy
0

t
1 10&2 ElK> t -1> 1+.0 - 0

and then we know that [?,2- tO ] is placed in the discard box.

All other inter~als are of the form [2-t.2~t+ll or descendents

of such intervals. We have

ERROR(2- t ,2-t ) ~ ERROR(O,1)2~t(1+·).K2-t(1+0)

Let d
t

denote the number of times that [Z-t,z-t+l) ~ust be halved in order
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to be certain that all its descendents are discarded. Then dt is

the smallest integer so that

K2-t (l+n) - (p+l)dt
2 ' ,

or
1

2-dt .:'. ['2t(~+0)r+1 , 2-dt+1

We may now bound the total number M of distinct intervals that

appear ill the active box by 1

to
zdt+ 1

to
[K«I+a)r

l

M , t + 1: ' t +4 1:
0 - 0

t=l t=l

1 t(l+a.)
~

, t +4 [~l p+1 1: 2
p+1

- 0 , t=1

, 1+ 1
1+0

where K is a constant independent of ,.
1

that N , qM and thus
1

p+1
N ~ qK1E

It follows from Assumption ~

and it is clear that

-p
N

This establishes the first conclusion of the lemma.

Consider the state of the algorithm at times 0, Te • 2Tc •. ", up

to termination time T. An interval is said to be active ,if its associated
s
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ERROR v;tlUl' I~ 1:lrgt"r ll1;11\ I, it nlll~ht noL he In tIll' ;1("[ [VI' box. l,l't

Ll be the set of times that there are NepU or more active intervals

and let L2 be the remainder. The assertion below follows from the

assumptions on the algorithm and the definition of T .
c

Assertion: (1) If there are fewer than NeFD active intervals

~a~t~t~i~m~eO-~t~,,-t~h~e~n~~bIY~t~i~m~ec-~t~+cT,c(1 cycle later) at

least this many intervals have been through the 10-

terval processor.

(ii). If there are NePD or more active intervals at

time t p then by time t+T at least NerU inter-
c

vats have been returned to the intervnl col1ec~ion

(either in the active or discard boxes).

It follows from this assertion that if a time kT is one of the L)t

times, then at least NCPU intervals are proGessed in the period

[kT ,(k+l)T). We may bound the size il of Ll by noting that at
c c

most M intervals are processed and thus we have

i} .::. M!NCPU

In order to bound the size i2 of L2 we let Pk'~' and ~

denote, respectively. the number of intervals initially in, added to

and removed from the active box during the cycle starting at time

We have P
k

+
1

= Pk+~-~ and ~ is the number of intervals whose

kT
c

processing is initiated during this cycle. Now Let I.
J

be the number
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of cycles in L2 that exactly j intervals in the active box are not

processed. We see that I is bounded by the length of the longest
o

chain of active descendents of [0,1] before the last descendent is dis-

carded. Thus we have

I < t
o 0

1
< 1 + --- log, ElK

1+0

Likewise II is bounded by the length of the second longest chain and

I
j

by the length of the jth longest chain. Thus we have r. < t .
J 0

Let IA
j

be the number of times that ~=j. We have ~ ~ Pk from

the assertion and if ~=j then the kth cycle has at most j intervals

whose prbcessing is not initiated. Thus we have IA < 1 •o 0

and, in general

NCFU-l NCPU-l j NCPU (NCPU+ 1)

£2 = 2: IA
j

< 2: 2: I < t

j=o j=o
m 2 0

m=o

where £2 denotes the number of cycles with ~ < NCPU. For the

remaining £2-£2 cycles we have ~ ~ NCPU and thus

so there are constantsRecall that

when NCPU <

£2-£2 < M/NCPU

_...1-
1'+1 such that

<
NCI'U(NCI'lH-[)

2
(l+K2 10g2M) ~ Kg M!NCPU

We may combine these estimates to obtain

which establishes the second conclusion of the lemma and completes

the proof.



The analysis of the behavior of the t;ycle time is deferred to

another paper, but the followin~ corollary indicates what one might

hope for the speed-up from a parallel algorithm.

COROLLARY If the cycle time is a constant (C1=O) in Lemma 1

•then for ./N > NCPTI there is a constant Kt+ so that

N
NCPU

This lemma and analysis is now used to establish the general

convergence result:

THEOREM 1. Let a parallel, 2-box algorithm satisfy Assumptions

I, 2, 3 and 4. Then, as N + ~t we have

and for NCPD < so that

N1I:Tc
NCPU

Proof. Suppose that the theorem is ~rue for the intervals [a,b]

and [b,c] separately replacing [0,1]. It is not difficult to show that

Lerruua 1 implies that the following assertion is true: I f the algori thm

is initiated with the two intervals [a,b] and [blc] in the active box

then the convergence behavior is as stated in the conclusions of the

theorem. Mathematical induction may be used to extend this assertion to

an arbitrary finite sequence of intervals.
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We next show that the algorithm generates a sequence 1J.· ,d. I], ..
of intervals whose union is to.I[ 5111... h that each contains at most one

singularity of f(x). If the algorithm never ,generates an interval

then the interval5,. ' d,' < 5.
,1 +1satisfyingd.,

-k
would never be subdivided and hence any interval [x,x+2 1

with end point

containing [s. ,-5. I] would have, '+
ERROR(x,k) > ERROR(5. ,-IOg,(5. 1-5.)) = e._ 1 1+ 1 1

When £.<e.
1

the a~gorithm would never terminate as this interval would

never be discarded. This contradicts the easily established fact that

the algorithm terminates for every value of E>O. Thus the subdivision

of [O,IJ into intervals [d .• d. I]' i=1.2, ...• R docs occur in the
1 1+

algorithm. We take 00=0 and dR=l. Note that [d. ,u. ]J
1 1 +

is probably

not a single interval considered by the algorithm, out rather the union

of such intervals.

We next adapt the analysis of Lemma I to establish the convergence

result for [di,d i +l ] . Let [at ,btl denote the active interval which

currently contains 5.. If at any point at=si or b = 5. then \\'e rna)'
1

t 1

redefine d. or d i + l
to be 5. and omit the following analxsis for

1 1

-t= a + 2
t
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and, as in the proof of Lemma I, there is a value , \~hcrc we knol,'
0

that ERROR(at,t) , £ and [at,b,l is discarded. All other intervals

derived from [di,di+1J are split off the left or right end of [at,b,l

or are the descendents of su~h intervals. An interval that is first

split off {at' btl has

ERROR(x) , ERROR(O,I) 2- t (I+·)=K2- t (1+u)

l.et N. denote the number of f(x) evaluations for processing (d. ,0. 1]'
1 1 1+

We may repeat the analysis of Lemma

N. < qK1 £
1

and

1 to conclude
1

p+l

that

f(x) - QN. f
1

I <

We now patch the intervals [d
i

,d i +1] together and apply the

earlier assertion to establish that

and that the time TNf ~ K4 N*Tc/NCPU. This concludes the proof.

We also have

COROLLARY If the cycle time

•Theorem 1 then for .IN, > NCPU there is a constant K~ such

that

N
NCPU
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4. FURTHER ALGORITHM CONSIDERATIONS. Four specific data structures

(stack, queue, ordered list and boxes) for organizing the contents of

the active box are described in [3]. It is shown there that all four

of these lead to algorithm classes with the convergence properties

given in Theorem 1. Timing is a critical consideration in parallel

computation and the choice of data structure directly influences the

cycle time T (and hence the speed-up obtained).
c

An ordered list

algorithm, for example, is likely to have an insertion of the order of

C +Cl*NCPU+C2*NLIST where NLIST is the list length. This makes it
o

impossible to obtain any speed-up and hence this class of algorithms

is unsuitable for parallel computation. The other three data structures

allow quick insertions (With Cl=O) and thus do not prevent maximum

speed-up.

If both the insertion and processing times are constant, then the

speed-up possible is governed by the delivery time and return time.

A little thought shows that a crucial factor in both these times is

how the collection management processor becomes aware of the status of

the interval processors. A simple and common approach is to have the

interval processors set flags (or semaphores) and then have the collection

management processor.poll the interval processors to determine their

status. This, of course, .makes the delivery and return times proportional

to NCPU and thus prevents speed-Up in the theoretical sense. Befpre

going on it is important to note that very significant speed-up can occur

in the practical sense even when there is none theoretically. One must
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examine actual algorithms in order to obtain a realistic evaluation

of the speed-up obtained by parallel computation.

The polling approach to communication between the collection man­

ager and interval processors is inherently slow (and inefficient)

tDlless the relative times of the computations and the number NCPU are

such that the collection management CPU does .little besides polling.

Once the flow of intervals through the collection manager becomes sig­

nificant then communication via interrupts is much more efficient.

That is, an inte~al processor indicates its status by interrupting

(in some sense) the collection manager. Interrupts can be constructed

by software so that hardware interrupts are not required, but hardware can

facilitate the tasks. Once NCPU becomes very large· even the interrupt

approach fails to elimdnate the communication bottle neck entirely and

then more elaborate mechanisms are required including assigning more

than one CPU to·manage the interval collection. An analysis of actual

algorithms and of mechanisms to minimize the delivery and return times

must be deferred to another paper as it is more complex than the tradi­

tional convergence analysis. It may well be that algorithms cannot be

found where these times are less than Co+Cllog(NCPU) asymptotically

as NCPU -+- .... However
2
for:llreasonable value-like NCPU=50, it is the

author's belief that algorithms involving say 52 or 53 processors exist

which give a speed-up in time of a factor of about 50.
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