
Parallel algorithms for approximation of distance

maps on parametric surfaces

Alexander M. Bronstein∗ Michael M. Bronstein†

Yohai S. Devir‡ Ron Kimmel§

Ofir Weber¶

Department of Computer Science,

Technion–Israel Institute of Technology,

Haifa 32000, Israel.

April 14, 2007

Abstract

We present an efficient O(n) numerical algorithm for first-order approximation

of geodesic distances on parametric surfaces, where n is the number of points on

the surface. The structure of our algorithm allows efficient implementation on par-

allel architectures. Two implementations on a SIMD processor and on a GPU are

discussed. Numerical results demonstrate a two order of magnitude improvement

in execution time compared to the state-of-the-art algorithms.

1 Introduction

Approximation of geodesic distances on curved surfaces is an important computational

geometric problem, appearing in many computer graphics applications. For example,

several surface segmentation and editing methods are based on cutting the surface along

geodesic paths [1, 2]. Function interpolation on meshes requires the knowledge of geo-

desic distances, and has numerous uses such as skinning [3] and mesh watermarking

[4]. Isometry-invariant shape classification [5, 6, 7, 8], minimum-distortion parame-

trization [9, 10, 11], and non-rigid correspondence techniques [12] require the matrix

∗e-mail: bron@cs.technion.ac.il
†e-mail: mbron@cs.technion.ac.il
‡e-mail: yd@cs.technion.ac.il
§e-mail: ron@cs.technion.ac.il
¶e-mail: weber@cs.technion.ac.il

1

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

of all pair-wise geodesic distances on the surface. Other fields where the need to com-

pute geodesic distance maps arises are medical imaging, geophysics[13], and robot

motion planning [14] and navigation to mention a few.

The problem of distance map computation can be formulated as the viscosity solution

of the eikonal equation,

‖∇ t‖ = 1, t(S) = 0, (1)

where S is a set of source points on the surface. In optics and acoustics, the eikonal

equation governs the propagation of waves through a medium. The solution of the

eikonal equation demonstrates that light or acoustic waves traverse the path between

two points, which takes the least time, a physics law known as Fermat’s principle.

In [15], Sethian proposed an O(n logn) algorithm for first-order approximation of

weighted distance maps on domains with weighted Euclidean metric, known as fast
marching. A similar algorithm based on a different discretization of the eikonal equa-

tion was developed independently by Tsitsiklis [16]. The main idea of fast marching

is to simulate a wave front advancing from a set of source points S. The propagating

front can be thought of as a “prairie fire” evolution towards directions where the grid

has not yet been “burnt out”. At time t = 0, the fire starts at the source points, and the

algorithm computes the time values t for each vertex at which the advancing fire front

reaches it.

Algorithm 1 outlines the fast marching method. Solution of the eikonal equation starts

by setting initial (usually zero) distance to the set of source points S and updating

the neighboring points by simulating an advancing wavefront. The algorithm is con-

structed similar to Dijkstra’s algorithn for finding shortest paths in graphs. It maintains

a set of fixed vertices S, for which the time of arrival has already been computed, and

a priority queue Q of all other vertices sorted by their times of arrival. The basic op-

eration of the fast marching algorithm is the update step, which computes the time of

arrival of the wavefront to a grid point based on the times of arrival to its neighbor

points.

By construction, the updated value cannot be smaller than the values of the support-

ing vertices. This monotonicity property ensures that the solution always propagates

outwards by fixing the vertex with the smallest t. The latter implies that the values

of grid points in S vertices are never recomputed. Since the update step has constant

complexity, the overall complexity of the fast marching algorithm is determined by the

procedure that finds the smallest t in the priority queue Q. Heap sorting-based priority

queue allows to implement this task in O(logn), where n is the number of grid ver-

tices. Since each vertex is removed from Q and inserted to S only once, the overall

complexity is O(n logn).

Over the last decade, the fast marching algorithm was generalized to arbitrary triangu-

lated surfaces [17], unstructured meshes [18], implicit unorganized surfaces [19], and

parametric surfaces [20]. Higher-order versions of fast marching were also proposed

[18]. Besides fast marching, there exist other families of numerical algorithms for ap-

proximate and exact computation of geodesic distances on surfaces, among which the

2

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

most notable one is the Mount-Mitchel-Papadimitriou (MMP) algorithm [21], whose

most recent approximate implementation by Surazhsky et al. [22] appears to be the

fastest distance computation code available in public domain.

In this paper, we explore the problem of geodesic distance map approximation on para-

metric surfaces, a representation becoming growingly popular as an alternative to un-

ordered triangular meshes [23]. We distinguish between two problems: computation of

geodesic distances from an arbitrary source to all vertices on the surface, and computa-

tion of the matrix of all pair-wise geodesic distances. The paper is organized as follows.

In Section 2, we formulate the eikonal equation on parametric surfaces. Section 3 is

dedicated to the update step. We show a compact expression in matrix-vector form for

a first-order update step on parametric surfaces based on the planar wavefront model.

We show that the scheme is numerically stable, which allows its use with low-precision

arithmetics. Section 4 presents a raster scan algorithm for approximate distance map

computation on parametric surfaces. The proposed algorithm can be thought of as a

generalization of Danielsson’s raster scan method [24] to parametric surfaces, or as a

raster-scan version of the parametric fast marching algorithm [20]. We show that the

raster scan algorithm converges with a bounded number of iterations, which enables

its use for geodesic distance map computation. In Section 5, we discuss two parallel

implementations of the raster scan algorithm on a SIMD processor and a GPU. Graph-

ics hardware has been previously used for computation of distance maps and Voronoi

diagrams on the plane or in the three-dimensional Euclidean space [25, 26, 27, 28, ?].

However, the use of vector processors for computation of geodesic distance maps is

a different and significantly more complex problem, which to the best of our knowl-

edge, has not been yet addressed in the literature. In Section 6, we present numerical

tests and performance benchmarks for our algorithms. Parallel raster scan algorithms

outperform the state-of-the-art distance computation algorithms by up to two orders

of magnitude on commodity hardware, making feasible real-time implementation of

many applications, where the complexity of geodesic distance computation has been

so far prohibitively high. Section 7 concludes the paper.

2 Eikonal equation on parametric surfaces

In this paper, we focus our attention on parametric two-dimensional manifolds, i.e.

surfaces that can be represented by a smooth mapping x : U→ R
3, where U ⊂ R

2 is

a parametrization domain. The topology of U depends on the topology of the surface.

The derivatives

ξ i =
∂x
∂ui (2)

with respect to the parametrization coordinates constitute a local system of coordinates

on the surface (Figure 1). Distances on the surface are measured according to the

differential arclength element,

ds2 = duTGdu, (3)

3

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Algorithm 1: Fast marching method.

Input: Numerical grid U, set of source points S⊂ U with the corresponding initial

values t(s)
Output: The distance map t : U 7→ R

+.

Initialization
Q←− /01

foreach point u ∈ U\S do t(u)←− ∞2

foreach point u ∈ S do3

Q←− Q∪N (u)4

end5

Iteration
while Q 6= /0 do6

u←− ExtractMin(Q)7

S←− S∪{u}8

foreach point v ∈N (u) do Update (v)9

end10

Figure 1: A system of coordinates in the parametrization domain (left) and the corre-

sponding local system of coordinates on the surface (right).

where du = (du1,du2) and G is a 2× 2 metric matrix, whose elements are given by

gi j = ξ T
i ξ j. The local system of coordinates is orthogonal if and only if G is diagonal

(note that orthogonality of the coordinate system in the parametrization domain does

not imply orthogonality of the coordinate system on the surface).

A distance map on the surface is computed by solving the eikonal equation, expressed

in our notation as

‖∇ Gt‖2 = ∇ T
ut G(u)−1∇ ut = 1 (4)

on a discrete grid obtained by sampling the parametrization domain U. For conve-

nience, we discretize the parametrization domain on a regular Cartesian grid with

unit steps. A grid point u0 is connected to its neighbors u0 + m according some

grid connectivity. The simplest grid connectivity is based on four neigbors: m =

4

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

(±1,0)T,(0,±1)T. Another possible grid connectivity is the eight-neigbor connec-

tivity, where m = (±1,0)T,(0,±1)T,(±1,±1)T.

The former two grid connectivity patterns create four and eight triangles, respectively,

supporting the grid point u0. Let us examine a triangle created by x0 = x(u0), x1 =
x(u0 +m1), and x2 = x(u0 +m2); without loss of generality we will henceforth assume

that x0 = 0. In local coordinates, we can write

xi = x0 +m1
i ξ 1 +m2

i ξ 2, (5)

or X = TM, where X = (x1,x2), T = (ξ 1,ξ 2), and M = (m1,m2). The matrix E =
MTGM describes the geometry of the triangle. If e12 > 0 is positive, the angle ∢x1x0x2

on the surface is acute.

3 Update step

The fast marching algorithm can be formulated for parametric surfaces as shown in

[20]. All computations are performed on the grid in the parametrization domain, though

the distances are computed with respect to the surface metric G. In the numerical core

of this algorithm lies the update step, which given a grid point u0 and the times of

arrival of its neighbors, computes the time of arrival t(u0). Since u0 is shared by

several triangles (the exact number of triangles depends on the grid connectivity), t(u0)
is computed in each triangle and the smallest value is selected to update the time of

arrival at u0.

Let u0 be updated from its two neighbors u1 = u+m1 and u2 = u0 +m2, whose times

of arrival are t1 = t(u0 + m1) and t2 = t(u0 + m2). We denote xi = x(ui) and assume

without loss of generality that x0 = 0. Our goal is to compute t0 = t(u0) based on t1,

t2 and the geometry of the triangle x1x0x2. The update of x0 has to obey the following

properties:

1. Consistency: t0 > max{t1, t2}.

2. Monotonicity: an increase of t1 or t2 increases t0.

3. Upwinding: the update has to be accepted only from a triangle containing the

characteristic direction (characteristics of the eikonal equation coincide with

minimum geodesics on the surface).

4. Numerical stability: a small perturbation in t1 or t2 results in a bounded pertur-

bation in t0.

In the original fast marching algorithm, a vertex is updated by simulating a planar

wavefront propagating inside the triangle [17]; the values of the two supporting ver-

tices allow to compute the front direction. The same update scheme was used in [20].

Here, we develop a similar scheme, expressing it more compactly and without the use

of trigonometric functions, which allow more efficient computation. We model the

wavefront as a planar wave propagating from a virtual planar source described by the

5

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 2: Update scheme based on the planar wavefront propagation model.

equation nTx+ p = 0, where n is the propagation direction (Figure 2). Demanding that

the supporting vertices x1, x2 of the triangle lie at distances t1 and t2, respectively, from

the source, we obtain

XTn+ p ·1 = t, (6)

where X is a matrix whose columns are x1 and x2, 1 = (1,1)T, and t = (t1, t2)T. The

wavefront time of arrival to the updated vertex x0 is given by its distance from the

planar source,

t0 = nTx0 + p = p. (7)

Assuming that the mesh is non-degenerate, x1 and x2 are linearly independent, and we

can solve (6) for n, obtaining

n = X(XTX)−1(t− p ·1). (8)

Invoking the condition ‖n‖= 1 yields

1 = nTn

= (t− p ·1)T(XTX)−TXTX(XTX)−1(t− p ·1)

= (t− p ·1)T(XTX)−1(t− p ·1)

= p2 ·1TQ1−2p ·1TQt+ tTQt, (9)

6

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

where Q = (XTX)−1 = E−1. Hence, t0 can be found as the largest solution of the

quadratic equation

t2
0 ·1

TQ1−2t0 ·1TQt+ tTQt−1 = 0 (10)

(the smallest solution corresponds to the opposite propagation direction, where the

wavefront arrives to x0 before it arrives to x1 and x2 and therefore has to be discarded).

To speed the solution up, the terms 1TQ1 and 1TQ depending on the grid geometry

only are pre-computed.

The consistency condition can be written as p · 1 > XTn + p · 1 or simply XTn < 0,

which can be interpreted geometrically as a demand that the direction −n must form

an acute angle with the triangle edges. In order to impose monotonicity, we demand

that

∇ t t0 =

(

∂ t0
∂ t1

,
∂ t0
∂ t2

)T

> 0. (11)

Differentiating (10) with respect to t, we obtain

t0 · ∇ t t0 ·1TQ1− ∇ t t0 ·1TQt− t0 ·Q1+Qt = 0, (12)

from where

∇ t t0 =
Q(t− p ·1)

1TQ(t− p ·1)
. (13)

Substituting (8), we can write

Q(t− p ·1) = (XTX)−1XTn = QXTn. (14)

The monotonicity condition XTn < 0 and the fact that Q is positive definite imply that

at least one of the coordinates of QXTn must be negative. Hence, demanding ∇ t t0 > 0

yields 1TQ(t− p ·1) < 0. The latter condition can be rewritten as

0 > Q(t− p ·1) = (XTX)−1XTn. (15)

Observe that the rows of the matrix (XTX)−1XT are orthogonal to x1, x2, or in other

words, are normal to the triangle edges. This gives the following geometric interpre-

tation of the monotonicity condition: the direction −n must come from within the

triangle. Since the update direction also obeys the consistency condition, any direc-

tion coming from within the triangle must form acute angles with the triangle edges,

leading to the demand that the angle ∢x1x0x2 is acute (or, equivalently, e12 > 0).

Consistency and monotonicity conditions should guarantee that the update is performed

only from a triangle that contains the characteristic direction, which makes the update

scheme upwind [18]. However, since n is only an approximation of the characteristic

direction, it may happen that the conditions are not satisfied although the true charac-

teristic lies inside the triangle. For a sufficiently small triangle, this can happen only

7

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Algorithm 2: Planar update scheme for acute triangulation.

Set tnew
0 ←− t0.1

foreach triangle X = (x1,x2)
T do2

Solve the quadratic equation (10) for t0.3

if Q(t− t0 ·1) > 0 or t0 < max{t(x1), t(x2)} then compute t0 according to (16).4

Set tnew
0 ←−min{tnew

0 , t0}.5

end6

if any of the two inner products nTx1, nTx2 is sufficiently close to zero. This cor-

responds to the situation in which t0 can be updated from one of the triangle edges

(one-dimensional simplices) x0x1, x0x2. In this case, the simple Dijkstra-type update,

t0 = min{t1 +‖x1‖, t2 +‖x2‖}, (16)

is performed.

In order to ensure that the update formula is numerically stable, we assume that ti is

affected by a small error ε , which, in turn, influences the computed time of arrival t0.

Using first-order Taylor expansion, we have

t̃0 ≈ t0 + ε ·
∂ t0
∂ ti
≤ t0 + ε ·

(∣

∣

∣

∣

∂ t0
∂ t1

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ t0
∂ t2

∣

∣

∣

∣

)

. (17)

Under the monotonicity condition ∇ t t0 > 0, we can write

t̃0 ≈ t0 + ε ·1T∇ t t0 = t0 + ε ·
1TQ(t− p ·1)

1TQ(t− p ·1)
= t0 + ε. (18)

The error in t0 is also bounded in the one-dimensional Dijkstra-type update, which

makes the update formula stable.

The planar wavefront update scheme is summarized in Algorithm 2. Note that it is valid

only for acute triangulations; when some triangles have obtuse angles (e12 < 0), they

have to be split by adding connections to additional neighbor grid points, as proposed

by Spira and Kimmel in [20].

4 Raster scan algorithm

One of the disadvantages of the fast marching algorithm is that it is inherently sequen-

tial, thus allowing no parallelization. In addition, the order of visiting the grid points

depend on the shape of the propagating wavefront and is therefore data-dependent.

This results in irregular memory access that is unlikely to utilize the caching system

efficiently. These drawbacks call for searching for alternative grid traversal orders.

8

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 3: Update of a point on a grid with eight-neighbor connectivity using the raster

scan algorithm. First row: four directed raster scans; second row: the same raster scans

rotated by 45◦.

In his classical paper, Danielsson [24] observed that since the geodesics on the Euclid-

ean plane are straight lines, all possible characteristic directions of the eikonal equa-

tion fall into one of the four quadrants of a Cartesian grid and can be therefore covered

by traversing the grid in four directed raster scans. Danielsson’s raster scan spirit was

adopted by Zhao [29] for solving the eikonal equation on weighted Euclidean domains;

similar ideas date back to Dupuis and Oliensis’ studies on shape from shading [30].

Raster scan traversal has linear complexity in the grid size, and is characterized by

regular access to memory, which increases the efficiency of caching. Since the order of

visiting of the grid points is independent of the data and is known in advance, one can

use the pre-caching mechanism, supported in many modern processors. In addition,

unlike its priority queue-based counterpart, raster scan can be efficiently parallelized

as will be shown in Section 5.

Here, we use the raster scan order to traverse the Cartesian grid in the surface para-

metrization domain, as summarized in Algorithm 3. As in the priority queue-based

traversal order, all computations are done in the parametrization domain, taking into

account the metric on the surface. Since each directed raster scan covers only 90◦ of

possible characteristic directions, the update of a point on the grid can be done only

from the triangles containing that direction. For example, if the eight-neighbor grid

connectivity is used, only two triangles formed by three neighbors are absolutely re-

quired in the update (Figure 3, first row).

Observe that unlike the Euclidean case where the characteristics are straight lines, on a

general parametric surface, the characteristics in the parametrization domain are usu-

ally curved. This implies that the four raster scans may cover only a part of a charac-

teristic, and have to be repeated more times in order to produce a consistent distance

9

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Algorithm 3: Raster scan algorithm on a parametric surface.

Input: Numerical M×N grid U, set of source points S⊂ U with the corresponding

initial values t(s)
Output: The distance map t : U 7→ R

+.

Initialization
Pre-compute the update equation coefficients for each triangle.1

foreach point u ∈ U\S do t(u)←− ∞2

Iteration
for iter = 1,2,... do3

for i = 1,2, ...,M do4

Right-up scan
for j = 1,2, ...,N do Update (ui j)5

Right-down scan
for j = N,N−1, ...,1 do Update (ui j)6

end7

for i = M,M−1, ...,1 do8

Left-up scan
for j = 1,2, ...,N do Update (ui j)9

Left-down scan
for j = N,N−1, ...,1 do Update (ui j)10

end11

if ‖t(n)− t(n−1)‖ ≤ ε then stop12

end13

map. As a consequence, the complexity of the raster algorithm for parametric surfaces

is O(N iter · n), where n is the grid size, and N iter is the data-dependent number of

iterations. In what follows, we present a bound on the maximum number of iterations.

Theorem 1 The maximum number of raster scan iterations required to produce a con-
sistent approximation of the distance map on a parametric surface x(U) is bounded
by

N iter ≤

⌈

2D λ G
max

πλG
min

√

(λ H1

min)
2 +(λ H2

min)
2 +(λ H3

min)
2

⌉

+1.

where D is the surface diameter, λ Hi

min is the smallest eigenvalue of the Hessian matrix
Hi = ∇ 2

uuxi of xi with respect to the parametrization coordinates u, and λ G
max/λ G

min is
the condition number of the metric G.

For proof, see Appendix A. When the surface is given as a graph of a function z(x,y),
the bound can be simplified as

N iter ≤

⌈

2D λ G
max

πλG
min

λ H
min

⌉

+1, (19)

10

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

where H = ∇ 2z.

The main significance of this bound is that the maximum number of iterations does not

depend on the discretization of U and is a constant regardless of the grid size. Note,

however, that the bound depends both on the properties of the surface expressed in

terms of the metric G and the diameter D, and those of the parametrization expressed

in terms of the Hessian Hi. This means that some parametrizations of the same surface

may be less favorable for the raster scan algorithm. For example, in the parametriza-

tion x = (u1 cosu2,u1 sinu2,0)T of a flat disc, the characteristics in the parametrization

domain are curved and require multiple iterations to be covered.

Note that the bound is a worst case bound; in practice the number of iterations required

for convergence may be smaller. Adding another triangle to the grid update such that

every grid point is updated from four “causal” (in the raster scan order) neighbors

rather than from three causal neighbors as shown in Figure 3 may reduce the number

of iterations. It is important to emphasize that in the worst case N iter will remain

unchanged.

5 Parallelization

The structure of the raster scan algorithm gives much opportunity for exploiting data

independence to compute some of the grid updates concurrently on a set of parallel

computation units. Here we explore parallelization of two different problems: com-

putation of all pair-wise geodesic distances on a surface and computation of a single

distance map from an arbitrary source. In addition, we show how to parallelize the lat-

ter computation on a graphics processing unit using its architecture-specific features.

5.1 Computation of all pair-wise distances

Given a grid of n vertices in the parametrization domain, our goal is to compute the

n×n matrix, whose elements are the geodesic distances d(ui,u j) between all pairs of

points ui and u j on the surface. The computation can be split into n separate problems

of solving the eikonal equation on the same grid for n sets of different boundary con-

ditions, or, said differently, computing n distance maps T i = {t i
j : j = 1, ...,n} from the

point sources ti = 0. Since there is no dependence between the problems, they can be

solved concurrently on a set of P processors. The fact that the same computation is per-

formed for each updated grid point allows to use a single stream of instructions for all

the CPUs operating on multiple streams of data. This makes the algorithm especially

attractive for implementation on single instruction multiple data (SIMD) processors.

The parallel algorithm works as outlined in Algorithm 4. First, the grid is initialized

by pre-computing the coefficients of the update equation (10), which are shared by

all processors, and the n× n distance matrix is allocated. To exploit better memory

alignment, the memory is organized by collocating the data belonging to each of the P
processors, i.e., t1

1 , t2
1 , ...,tP

1 , t1
2 , t2

2 , ...,tP
2 , etc.

11

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Algorithm 4: Parallel computation of pair-wise geodesic distances.

Input: Numerical grid U containing n vertices.

Output: The pair-wise distances T : U×U 7→ R
+.

Pre-compute the update equation coefficients for each triangle.1

for k = 0,P,2P, ...,n−P do2

Initialization
for i = k,k +1, ...,k +P−1 do3

t i
i ←− 0.4

for j = 1,2, ...,k do t i
j←− t j

i5

for j = k +1,k +2, ...,n do t i
j←− ∞6

end7

Iteration
for iter = 1,2,... until convergence do8

Perform Steps 4-11 of Algorithm 3 for tk, tk+1, ..., tk+P−1 concurrently on P9

processors.

end10

end11

Second, the first P distance maps are initialized by setting t i
i = 0 and t i

j = ∞ for all

i = 1, ...,P and j = 1, ...,n, j 6= i. The raster scan algorithm is then executed, where an

update of a grid point i is performed by all the processors simultaneously, each of which

operates on its own distance map T i. After the completion of the raster scan algorithm,

the elements t i
j, i = 1, ...,P; j = 1, ...,n of the distance matrix become available.

The step is repeated for the next set of distance maps T P+1, ...,T 2P. Note that since the

distance matrix is symmetric, we can use the previously computed values of t i
j in the

initialization,

t i
j =

t j
i : 1≤ j ≤ P
0 : i = j
∞ : otherwise,

(20)

and skip the updates of the first P points on the grid. The algorithm proceeds, com-

puting each time n distance maps until the entire matrix is computed. Note that the

last distance maps require less computation time due to the fact that many grid points

are initialized with the values from the previously computed distance maps, and are

therefore not updated. The complexity of the algorithm is O(n2), and the speedup due

to parallelization on P processors is exactly P, which is usually labeled with the term

“embarrassingly parallel” in the parallel computing jargon.

12

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 4: Dependency graph in the right-down (left) and the rotated up-left-down

(right) raster scan updates. Grid point updates that can be computed concurrently are

numbered and shaded with different colors.

5.2 Computation of a single distance map

The structure of the raster scan algorithm allows to exploit data independency of many

grid updates when computing a distance map from a single source. To demonstrate

the parallelism, let us consider for example the right-down raster scan, starting from

the top leftmost grid point t11. After t11 has been updated, the points t12 and t21 can

be updated concurrently, since their updates do not depend on each other. Next, the

points t31, t22 and t13 are updated concurrently, and so on (Figure 4, left). Assuming

the number of available computation units is P ≥ min{M,N}, the right-down raster

scan can be performed in M +N−1 steps, where at each step k the points along the line

i+ j = k+1 are updated. If the number of processors is smaller, every step is serialized

into ⌈(k +1)/P⌉ sub-steps. The other three directed raster scans are parallelized in the

same manner.

An obvious disadvantage of such a parallelization is the lack of data coherence in the

memory, which may deteriorate performance on many architectures such as GPUs. An-

other disadvantage is the fact that the number of operations in each step is not constant

and the benefit from the parallelization is obtained only on sufficiently long diagonals.

A way to overcome these two difficulties is to rotate the direction of all raster scans

by 45◦ (Figure 3, second row). Using the rotated raster scans, rows or columns of

the grid can be updated concurrently (Figure 4, right). This allows coherent access

to memory and provides better parallelization with a speedup factor of P. Since the

same operations are performed to update all the grid points, the algorithm is suitable

for implementation on a SIMD processor.

5.3 Distance map computation on a GPU

Recent advances in GPU architectures make these processors increasingly attractive

for general purpose computing [31]. Usually, GPU’s highly-parallel programmable

fragment processors are exploited for performing arithmetic operations, and texture

13

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

memory is used for storing the data. Here, we discuss the implementation of the raster

scan algorithm on a GPU.

It is important to keep in mind that GPUs are not general purpose processors and, there-

fore, implementation of general algorithms requires several issues to be considered.

First, architectural limitations do not allow the same memory location to be accessed

for read and write simultaneously. A common technique to overcome this difficulty

is the ping-pong methodology [32], according to which two texture buffers are held.

At each iteration, the fragment shader reads the data from the first buffer containing

the current distance map, and simultaneously writes the updated distance map to the

second buffer. At the end of the iteration, the buffers are swapped.

Second, the texture buffers have to be accessed coherently in order to exploit the GPU

memory efficiently. The structure of the raster scan algorithm with rotated scan direc-

tions fits well this requirement, since each fragment is updated according to adjacent

fragments.

Third, the arithmetic intensity (i.e., the ratio between arithmetic calculations and mem-

ory accesses) should be high. In order increase the ratio, we pack every 2× 2 grid

points into one fragment (in our implementation, 4× 32 IEEE floating point textures

were used). In addition, another four times bigger texture is held, in which each four

texels contain the pre-computed coefficients of the update equation for all the triangles

participating in the update of the corresponding vertex. Although such a representation

is redundant, it saves multiple texture fetches.

Another architectural consideration requires many fragments (thousands) to be processed

at each iteration to achieve good pipeline utilization. On medium-sized meshes con-

taining about 1,000 vertices in each row or column, this can be achieved by combining

all the four scans. On smaller meshes (below 128×128 vertices), performing n updates

of all n grid points appears to be faster. Another way to achieve better pipeline utiliza-

tion is to update several rows or columns simultaneously, repeating the computation

several times.

Additional speedup is made by skipping vertices, all of whose neighbors have infi-

nite distances. For example, at the first iterations during the left to right scans, points

located left to the leftmost source point will not be updated and can be skipped. More-

over, points that are distant from the source point can also be skipped at the first itera-

tions. The selection of fragments to skip is implemented using the scissor test.

It is worthwhile noting that there usually exists some overhead in transferring data to

and from the GPU, which varies from hardware to hardware. Therefore, a standalone

implementation of a distance computation algorithm may result less efficient. However,

in many applications there is no need to transfer all the distance map back to the CPU;

for example, in order to compute a geodesic path, only a small number of distances has

to be fetched. In other applications, operations performed on the distance map can be

executed on the GPU itself, thus requiring no data transfer back to the CPU.

14

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

6 Numerical results

In order to demonstrate the efficiency of the proposed algorithms, we consider its two

particular implementations. The pairwise distance computation algorithm was imple-

mented in C on an AMD Opteron platform, with the update step written in assembly

and taking advantage of the SSE2 extensions (Intel-compatible SIMD architecture).

The single distance map computation algorithm was implemented on an nVidia 7950

GT GPU, using the CG shading language. Single precision floating point representa-

tion was used in both programs. Grid construction and pre-computation of coefficients

was done on the CPU and was excluded from time measurements. Since this step is

fully parallelizable, its implementation on a GPU would make this time complexity

negligible compared to the complexity of the iteration itself.

6.1 Performance benchmarks

Table 1 presents the execution times of the SSE2 implementation with N iter = 1 on

grids of sizes varying from 1,024 to 4,096 vertices (1 to 16.8 million distances). All

timing measurements were averaged over ten runs and do not include grid memory al-

location. For comparison, execution times of optimized C code of the sequential fast

marching method are presented (for fairness of comparison, grid construction time was

not measurement). The SSE2 implementation computes approximately 6.8 million dis-

tances per second, which is about ten times faster than fast marching. Table 2 presents

the execution times of the GPU implementation with N iter = 1 on grids of sizes varying

from 22,000 to 1.44 million vertices. All timing measurements were averaged over ten

runs and do not include data transfer to and from the GPU. For the 1.44 million vertex

grid, the transfer overhead was about 60 msec. About 1.95 million distances per second

are computed1, which is almost 90 time faster compared to sequential fast marching

and exceeds by over 50 times the best results with comparable numerical error reported

so far [22].

6.2 Numerical accuracy

Figure 5 presents the convergence plots of a single iteration of the raster scan algorithm

on three simple surfaces (plane, tilted plane with obtuse angles, and a sphere). The

choice of the surfaces was governed by the availability of analytic expressions for the

geodesic distances. Note the linear convergence of the algorithm, which is a manifest of

its first-order accuracy. The dependence of the distance map accuracy on the number of

iterations N iter is visualized in Figure 6, which shows the distance map computed from

a single point source on the “maze” surface with complicated spiral characteristics.

As it appears from the figure, three iterations are sufficient to produce a consistent

1This number is lower compared to the SSE2 implementation, since in the tests performed with GPU

code, the mesh sizes, and as consequence the length of the geodesics, were significantly larger.

15

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Raster scan Fast Marching
Vertices Distances Exec. time (sec) Exec. time (sec)

1,024 1,048,576 0.1541±0.00 1.2824±0.01

1,936 3,748,096 0.5156±0.01 5.5156±0.02

2,500 6,250,000 0.8348±0.01 9.4335±0.08

2,916 8,503,056 1.1336±0.01 12.9128±0.08

3,600 12,960,000 1.8539±0.01 19.5472±0.09

4,096 16,772,166 2.4762±0.01 25.8347±0.14

Table 1: Execution times of a single iteration of the raster scan algorithm on AMD

Opteron with SSE2 extensions for pairwise geodesic distances computation on grids

of different sizes. For a reference, execution times of the sequential fast marching is

given.

Vertices Exec. time (sec) Mem. usage (bytes)
22,500 0.1110±0.0031 1,620,000

40,000 0.1208±0.0046 2,880,000

160,000 0.1629±0.0045 11,520,000

360,000 0.2766±0.0034 25,920,000

640,000 0.4192±0.0260 46,080,000

1,000,000 0.6125±0.0249 72,000,000

1,440,000 0.7362±0.0044 103,680,000

Table 2: Execution times and peak memory consumption of a single iteration of the

raster scan algorithm on an GPU for distance map computation on grids of different

sizes.

approximation of the distance map. In general, our practice shows that few iterations

are sufficient to obtain accurate distance map even on complicated surfaces.

6.3 Geodesic paths, offset curves, and Voronoi diagrams

Figure 7 shows several computational geometric operations requiring the knowledge

of a distance map on a surface. For this visualization, a face surface from the Notre

Dame University database was used [33]. The surface contained 21,775 vertices and

42,957 faces. In the first two examples, a distance map was computed from a point

source located at the tip of the nose. Equi-distant contours were computed using the

marching triangle technique in the parametrization domain and then projected back

onto the surface. Minimum geodesic paths were computed by backtracking the curve

from some starting point along the gradient of the distance map t in the parametrization

domain. Formally, geodesic computation can be thought of as solution of the ordinary

differential equation

.
γ = −G−1∇ ut, (21)

16

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 5: Convergence plots of the raster scan algorithm with N iter = 1 for different

mesh sampling radii.

where γ(s) is the geodesic path in the parametrization domain and Γ(s) = x(γ(s)) is

the geodesic on the surface. A first-order integration technique to compute γ(s).

In the third example, a distance map from 20 random points on the surface was com-

puted and a geodesic Voronoi diagram was found using marching triangles. In the

fourth example, the distance map was computed from two disconnected curves and

marching triangles were used to trace the geodesic offset curves.

6.4 Isometry-invariant canonical forms

As an example of application requiring the knowledge of the matrix of pair-wise geo-

desic distances on the surface, we show computation of canonical forms introduced

in [5] as isometry-invariant signatures for classification of non-rigid objects. Figure 8

17

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 6: Distance map computation on the “maze” surface using the raster scan al-

gorithm after one iteration (left), two iterations (middle) and three iterations (right).

Equidistant contours in the parametrization domain are show. Grayed regions stand for

infinite distance.

Figure 7: Computation of distance maps on a parametric surface (21,775 vertices,

42,957 faces). Left-to-right: equi-distant contours; minimum geodesic paths; geodesic

Voronoi diagram; offset curves.

shows a surface containing 2,695 vertices and its canonical form computed from the

distance matrix using least squared multidimensional scaling. All computations were

performed on AMD Opteron with SSE2 extensions and took about one second. The

algorithm was employed in our three-dimensional face recognition system [34], achiev-

ing near real-time performance.

7 Conclusion

We presented a raster scan-based version of the fast marching algorithm for compu-

tation of geodesic distances on parametric surfaces. The structure of the algorithm

allowed its efficient parallelization on SIMD processors and GPUs, which have been

18

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

Figure 8: A surface (left) and its isometry-invariant canonical form (right) obtained

by embedding into the Euclidean space using LS-MDS. Fast computation of canonical

forms enables non-rigid shape matching applications such as expression invariant face

recognition.

considered in this paper. Numerical experiments showed that the proposed method out-

performs state-of-the-art methods for first-order distance map approximation by one or

two orders of magnitude, thus allowing real-time implementation of applications in-

volving intensive geodesic distance computations. In our sequel works, we are going

to demonstrate some of such applications.

The main limitation of the presented approach is that it works with parametric surfaces

represented as a single chart, though the latter can be of arbitrarily complex topology.

Such a topology usually introduces “holes” in the parametrization domain, which are

handled efficiently by our code by “masking” the update in those regions. Generalizing

the algorithm to multiple charts or triangular meshes as well as adaptive samplings is

an interesting research direction.

A Proof of Theorem 1

Let Γ(s) be the characteristic curve with on the surface, s its arclength, and γ(s) =
(u1(s),u2(s))T its parametrization in U. Since Γ(s) = x(γ(s)), using the chain rule we

obtain
.
Γ = T

.
γ

..
Γ = T

..
γ + r, (22)

where r = (
.
γT

H1 .
γ,

.
γT

H2 .
γ,

.
γT

H3 .
γ)T and Hi = ∇ 2

uuxi are the Hessian matrices of xi with

respect to the parametrization coordinates u. Since Γ is a geodesic,
..
Γ is normal to the

surface and hence

0 = PT
..
Γ = T

..
γ + PTr, (23)

19

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

where PT denotes the projection on the tangent space.

Hence,

‖T
..
γ‖ = ‖PTr‖ ≤ ‖r‖

≤

√

(λ H1

min)
2 +(λ H2

min)
2 +(λ H3

min)
2 · ‖

.
γ‖, (24)

where λ Hi

min is the smallest eigenvalue of the Hessian Hi.

Since Γ is a geodesic, ‖
.
Γ‖= 1. From (22) we have

1 = ‖
.
Γ‖2 =

.
γT

TTT
.
γ =

.
γT

G
.
γ ≥ λ G

min · ‖
.
γ‖2. (25)

Hence, 1/λ G
max ≤ ‖

.
γ‖2 ≤ 1/λ G

min. In a similar manner,

‖T
..
γ‖2 =

..
γT

TTT
..
γ =

..
γT

G
..
γ ≥ λ G

min · ‖
..
γ‖2 (26)

Combining the above results, yields a bound on the curvature of γ

κ =
‖

..
γ×

.
γ‖

‖
.
γ‖3

≤
‖

..
γ‖
‖

.
γ‖2

≤
λ G

max

λ G
min

√

(λ H1

min)
2 +(λ H2

min)
2 +(λ H3

min)
2. (27)

Therefore, the total variation of the tangential angle of γ is bounded by

TV(φ) =
∫

γ
κ ds ≤ maxκ ·

∫

Γ
ds ≤ maxκ ·D. (28)

In the worst case, an iteration is required for every π/2 in TV(φ) to consistently cover

the characteristic γ, which completes the proof.

References

[1] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and

cuts. ACM Trans. on Graphics, 22(3):954–961, July 2004.

[2] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkewicz,

and D. Dobkin. Modeling by example. In Proc. SIGGRAPH, pages 652–663,

2004.

[3] P.-P. J. Sloan, C. F. Rose, and M. F. Cohen. Shape by example. In ACM Sympo-
sium on Interactive 3D Graphics, pages 133–144, 2001.

[4] E. Praun, H. Hoppe, and A. Finkelstein. Robust mesh watermarking. In Proc.
SIGGRAPH, pages 49–56, 1999.

20

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

[5] A. Elad and R. Kimmel. Bending invariant representations for surfaces. In Proc.
CVPR, pages 168–174, 2001.

[6] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology matching for

fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH, pages

203–212, 2001.

[7] F. Mémoli and G. Sapiro. A theoretical and computational framework for isom-

etry invariant recognition of point cloud data. Foundations of Computational
Mathematics, 5(3):313–347, 2005.

[8] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimen-

sional scaling: a framework for isometry-invariant partial surface matching. Proc.
National Academy of Sciences, 103(5):1168–1172, January 2006.

[9] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flat-

tening via multi-dimensional scaling. IEEE Trans. Visualization and computer
graphics, 9(2):198–207, 2002.

[10] K. Zhou, J. Snyder, B. Guo, and H.-Y. Shum. Iso-charts: Stretch-driven mesh

parameterization using spectral analysis. In Symposium on Geometry Processing,

2004.

[11] G. Peyré and L. Cohen. Geodesic re-meshing and parameterization using front

propagation. In Proc. VLSM’03, 2003.

[12] A. M. Bronstein, A. M. Bronstein, and R. Kimmel. Calculus of non-rigid surfaces

for geometry and texture manipulation. IEEE Trans. Visualization and Comp.
Graphics, 2006. to appear.

[13] J.A. Sethian and A.M. Popovici. 3-d traveltime computation using the fast march-

ing method. Geophysics, 64(2):516–523, 2006.

[14] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in

the plane. SIAM J. Computing, 28(6), 1999.

[15] J. A. Sethian. A fast marching level set method for monotonically advancing

fronts. Proc. of National Academy of Sciences, 93(4):1591–1595, 1996.

[16] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control, 40(9):1528–1538, 1995.

[17] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Proc. of
National Academy of Sciences, 95(15):8431–8435, 1998.

[18] J. A. Sethian and A. Vladimirsky. Fast methods for the Eikonal and related

Hamilton-Jacobi equations on unstructured meshes. PNAS, 97(11):5699–5703,

2000.

[19] F. Mémoli and G. Sapiro. Fast computation of weighted distance functions

and geodesics on implicit hyper-surfaces. Journal of Computational Physics,

173(1):764–795, 2001.

21

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

[20] A. Spira and R. Kimmel. An efficient solution to the eikonal equation on para-

metric manifolds. Interfaces and Free Boundaries, 6(4):315–327, 2004.

[21] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic

problem. SIAM Journal of Computing, 16(4):647–668, 1987.

[22] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. Fast exact and

approximate geodesics on meshes. In Proc. SIGGRAPH, pages 553–560, 2005.

[23] X. Gu, S.J. Gortler, and H. Hoppe. Geometry images. ACM Transactions on
Graphics, 21(3):355–361, 2002.

[24] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and Image
Processing, 14:227–248, 1980.

[25] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using graphics

hardware. In Proc. IEEE Visualization, pages 83–90, 2003.

[26] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of gen-

eralized Voronoi diagrams using graphics hardware. In Proc. ACM SIGGRAPH,

pages 277–286, 1999.

[27] I. Fischer and C. Gotsman. Fast approximation of high order Voronoi diagrams

and distance transforms on the GPU. Technical report CS TR-07-05, Harvard

University, 2005.

[28] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3D distance field

computation using linear factorization. In Proc. ACM Symposium on Interactive
3D Graphics and Games, pages 117–124, 2006.

[29] Hongkai Zhao. A fast sweeping method for eikonal equations. Mathematics of
computation, 74(250):603–627, 2004.

[30] P. Dupuis and J. Oliensis. Shape from shading: Provably convergent algorithms

and uniqueness results. In Proc. ECCV, pages 259–268, 1994.

[31] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, and

T.J. Purcell. A survey of general-purpose computation on graphics hardware.

Eurographics 2005, State of the Art Reports, pages 21–51, 2005.

[32] GPGPU : General-purpose computation using graphics hardware. Website:

www.gpgpu.org.

[33] K. Chang, K. Bowyer, and P. Flynn. Face recognition using 2D and 3D facial

data. ACM Workshop on Multimodal User Authentication, pages 25–32, 2003.

[34] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Three-dimensional face

recognition. International Journal of Computer Vision (IJCV), 64(1):5–30, Au-

gust 2005.

22

Technion - Computer Science Department - Technical Report CIS-2007-03 - 2007

