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Abstract

Given an off-line sequence S of n set-manipulation operations, we investi

gate the parallel complexity of evaluating S (Le., finding the response to every

operation in S and returning the resulting set). We show that the problem of
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operations. Once we establish membership in NO (or, if membership in NO

is obvious), we develop techniques for improving the time and/or processor

complexity.
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1 Introduction

The evaluation of operation sequences is a fundamental topic in the design and analysis

of algorithms. Given a. sequence S of set-manipulation operations, the problem is to find

the response to every operation in S and return the set one gets after evaluating S, so

that the answers are the same as if the operations in S were performed in a sequential.

fashion. There are a host of problems that are either instances of an evaluation prob

lem or can be solved by a reduction to an evaluation problem. For example, sorting

a set S = {XII X2, , :z:.,,.} can easily be reduced to the problem of evaluating the se-

quence l(x1) l(x2) l(xn ) E E ... E, where lex) stands for "Insert x," E stands for

"Extract!l1in," and there are n E's. The answers to all the E operations immediately

give a sorting of the items in S (this is in fact the idea in "heap sort" [2]).

The sequence evaluation problem is well-studied in the sequential setting (e.g., [2,

14, 16]), but surprisingly little is known about its parallel complexity. Our motivation,

then, comes from a desire to begin a systematic treatment of this important area from

a parallel perspective. In addition, because of the foundational aspect of off-line evalu

ation problems, we are also interested in these problems for their possible applications.

We already know of applications to such areas as processor scheduling, computational

geometry, and computational graph theory, for example (we discuss some of these below).

As an example illustrating the difficulty of the parallel version of off-line evaluation

problems, consider the following sequence of set·manipulation operations:

S = 1(5) 1(8) E D(5) 1(7) 1(9) E D(8) E E

where l(x) is an abbreviation for 1nsert(x) and inserts x in the set, D(x) is an abbre

viation for Delete(x) and deletes :z: from the set, and E stands for ExtraetMin and

simultaneously removes and returns the smallest element in the set (if the set is empty

then it returns a l'set empty" response). The set is initially empty, and the operations

are applied 'to it in the same order in which they appear in S. An attempt to delete

an element not in the set has no effect and returns an lCelement not in set" response,

otherwise it returns an Ilelement deleted" response. The response to an I(:z:) operation

is always "element inserted" and its effect is to add x to the set (if x is already there

then another copy of it is added). The problem is to compute, in parallel, the responses

to all the operations in S. In the example given above, the sequence of responses is: 5

inserted, 8 insertedi 5, 5 not in set, 7 inserted, 9 inserted, 7, 8 deleted, 9, set empty.

It is far from clear that the problem of evaluating such a sequence is in the complexity
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class NG, i.e., that it can be evaluated in O(logk n) time using a polynomial number of

processors, for some constant k [13, 32]. The difficulty arises from the fact that one has

no a priori knowledge of the behavior of the E and the D(x) operations. Some of them

may not remove anything (e.g., an E applied to an empty set, or a D(x) applied to a set

in which there is no x), while others are successful, and determining whether or not a

particular operation Ot is successful depends on knowing which operations before Ot in S

are successful. It is perhaps our most surprising result that the evaluation of a sequence

of l(x), D(x) and E operations is in fact in NC (Section 3).

We note in passing that the assumption regarding the insertion of an .existing element

is made without loss of generality. For example, if one wishes to define insertion so that

an attempt to insert an element x already in the set is ignored, then one can easily

convert a sequence S, where redundant insertions are ignored, to a sequence S', where

insertions are handled as above, as follows: from S, create 8 1 by replacing every lex)

by a D(x)l(x) (each such D(x) can be labeled extraneous to distinguish it from delete

operations in S). Now consider an evaluation of S': it never attempts to insert an element

that is already in the set (because of the way S' was built). Furthermore, the response

in 8 ' to an extraneous D(x) tells us whether the lex) that follows it would be, in S, an

attempt to insert an element already present: this is the case if and only if the response

to the extraneous D(x) is "element deleted", rather than "element not in set".

In general, this paper studies the following evaluation problem: one is given a sequence

S = 0 1 0 2 ... On of operations taken from some instruction set and asked to produce the

answer each Ot would give if S were evaluated sequentially in an on-line fashion. Since

the answer for each operation in S is defined by a hypothetical sequential evaluation of

S, we define an operation's position in 8 to be its time of evaluation, i.e., Ot'S time of

evaluation is t. We study this problem for various instruction sets, deriving one of two

types of results for each:

(i) Given a sequence S, containing various kinds of operations, we show that the

problem of evaluating S is in the class NC.

(ii) Once membership in NC is established, we develop techniques for improving the

time and/or processor complexity.

Our primary goal is to minimize the time complexity of evaluating S and our secondary

goal is to m i n i m i z ~ ' the number of processors used. The computational model we use

is the CREW PRAM model, unless otherwise specified. Recall that this is the shared

memory model where the processors operate synchronously and can concurrently read
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any memory cell, but concurrent writes are not allowed. Some of our results are for the

weaker EREW PRAM, in which no concurrent memory accesses are allowed. We outline

the specific problems we address in this framework below, and give for each the time and

processor bounds we achieved.

1. The off-line binary search tree problem. In this problem the operations that appear

in S are Insert(x), Delete(x), and lltree-search" queries. Intuitively, a tree-search query

is one that could be performed efficiently if the set were stored in a balanced binary search

tree (e.g., finding the minimum, selecting the k-th smallest element, range counting). We

make this notion precise in Section 2, where we show how to evaluate such a sequence in

O(log n) time using O(n) processors. Our solution is fairly simple, and will be used as a

subroutine in the (more difficult) solutions of later sections. The solution is based on the

use of a parallel data structure which we call the array-oj-trees. We know of no previous

parallel algorithms for this problemj the only related work is a method by Paul, Vishkin
J

and Wagener [29J for maintaining a binary tree in parallel through batch insertions and

deletions (where all the insertions or all the deletions come at the same time).

2. The off-line competitive deletes problem. In this problem the operations in S come

from the set {Insert(x), Delete(x), ExtraetMin}. We show that this problem is in NO?

and has an NO solution with a time-processor product of O(nlog?n). Since there are

two data-dependent ways that elements can be deleted in this problem (as discussed in

the example above), showing that this problem is in NC, let alone that it has an NO

solution with an efficient time-processor product, is perhaps our most surprising result.

(We called it competitive deletes because the two mechanisms for deletion, the E and

D(x) operations, are "competing" with each other for deletions.)

3. The off-line mergeable heaps problem. In this problem the operations in S can

take both set names and elements as arguments. In particular, the operations in S come

from the ,et {Insert(x,A),Delete(x),Min(A),Union(A,B),Find(x)}, whe.e A and B

are set names. We show that any such S can be evaluated in O(log n) time using O(n)

processors. Our method is based on using the array-of-trees data structure in conjunction

with an application of the cascade merging technique [9, 4] to tree-contraction [28].

4. The off-line priority queue problem. In this problem the operations that appear

in S come from the set {Insert(x),Extraet.A1in}. We derive an algorithm that runs

in O(1ogn) time using O(n) processors, which is optimal. This improves an O(log?n)

time, n processor solution that is implicitly present in Dekel and Sahni's work on parallel

scheduling algorithms [10]. Our result also improves the time complexity for solving the

scheduling problem studied by Deke1 and Sahni. (Subsequent to our initial announce-
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ment of this result we have learned that Rodger has independently·discovered a similar

improvement to this scheduling problem [31].)

5. The off-line barrier-eziractmin problem. In this problem the operations in S come

from the set {Insert(x), ExtractMin(y)}, where the EzirGctMin(y) operation (a gen

eralization of ExtractMin) returns and simultaneously removes the smallest element

greater than or equal to y. That is, it is a barrier-extractmin operation. We show that

this evaluation problem is in NC2 in the general case, and in NG1 for the case when the

ExtractMin(y)'s have non-decreasing arguments. This special case is motivated by an

application to computing a maximum matching in a convex bipartite graph, which in turn

has applications to processor scheduling [11]. Our results imply that this matching prob

lem is in NC
1

, improving the previous NG2 solution by Dekel and Sahni [11]. We believe

that the ExtractMin(y) operation will be helpful in solving many other "lexicographic"

problems, as well.

The details for each result are given in what follows, one per section. We conclude

with some final remarks in Section 7.

In what follows, if A is a set and B a sequence of set manipulation operations, then

AB denotes applying the sequence B to a set whose initial value is A (we use 0B to denote

the case when the initial set is empty). In addition to the responses to the operations

in B, an evaluation of AB also returns the set "left over" after B is evaluated. In this

notation we are interested in evaluating 05 for varous types of S's.

2 The Off-Line Binary Search Tree Problem

This section gives a simple solution to a problem that is needed as a subroutine in later

sections of this paper: that of evaluating a sequence of I(:c)'s, D(x)'s, and C'tree.search"

queries. By the name "tree-search" query we mean any query that could be performed

in O(log n) time if the elements in the set were stored in a balanced binary search tree

where each node 'U of this tree could store 0(1) labels, each label being the value of

some associative operation computed over all the elements stored in descendents of v

(note that the usual search key information stored in the nodes of binary search trees

satisfies this condition). Examples of such tree-search queries include finding the k-th

smallest element, and computing the number of elements in a certain range. For the

sake of definiteness·, we assume in what follows that the label label('/)) at a node '/) is

the number of elements in its subtree (the method is easily seen to work for other such

labels). Thus a query Q is any query which could be done sequentially in O(logn) time
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if the elements of the set were available sorted at the leaves of such a balanced binary

tree T in which each internal node v stores label(v). Thus query Q could be "find the

k-th smallest element in the set".

2.1 The Array-of-Trees Data Structure

Let m. be the number of set-modifying operations in S (the I(x)'s and D(x)'s), m .:$; n.

The subsequence SI of such set-modifying op·erations can easily be obtained from the

input sequence S by a parallel prefix computation, and we assume that this has already

been done.

Our method is based on the idea of storing all of the m relevant lisnapshots" of a

sequential data structure that evaluates the sequence on-line with O(log m) time per oper

ation. However, storing m copies of this sequential data structure would be prohibitively

expensive, so we l'compress" the representation of these logical m data structures into

a single data structure that is suitable for building and processing in O(log m) time us

ing O(m) processors. The method for constructing this representation makes use of the

cascading divide-and-conquer technique [4].

Let At denote the set of items that are present at "time" t, that is, the set that would

be formed by performing all the operations of S' up to and including the operation in

position t of S', assuming that the initial set is 0. The array-ai-trees data structure

allows one processor to perform a query Q in any such At in O(1og m) time. In fact, this

structure can be viewed as an array of m. trees where the t-th tree stores the elements

of At (hence the name "array-of-trees"). In this section we show that this structure can

be built in O(logm) time and O(mlogm) space using O(m) processors in the CREW

PRAM model.

Recall that in B. pa.ralle1 prcfix computation one has a sequence (al,a.2, ... ,an) and one wishes to

compute all partial s u ~ s 81r. = L~=l ai, which can be done in O(logn) lime using O(njlogn) proces

sors [24, 25]
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of the insert operation in 5'. We can then use some uniform way of determining which

copy of an element:z: is removed by a Delete(x) operation, e.g., that it removes the most

recently inserted copy.

Let Ot denote the t-th operation in 5', and let Xt denote the 'argument of Ot. Recall

that we think of Ot as the operation that is to be performed at time t (in a hypothetical

sequential execution of 5'). Let X be a list of all the distinct Xt values, in sorted order.

The llskeleton" of the array-of-trees is a complete binary tree T with IXI ~ m leaves,

such that the elements of X are associated with the leaves of T in left-to-right order. By

an abuse of notation, we use the same symbol to denote both a leaf in T and the value

that is associated with that leaf. In each leaf node :z: of T we store 5'(:z:), the subsequence

of 5' consisting of all operations which have:z: as their argument. Note that X, T, and all

the 5'(x)'s can be constructed in O(logm) time with Oem) processors by using parallel

,orting [91.

The array·of-trees structure consists of m trees that sha.re nodes, the t-th tree depict

ing the (hypothetical) sequential binary tree just after operation Ot is applied to it. A

node of the (skeleton tree) T is called a supernode and contains a number of mininodes,

that are nodes of the m individual trees it is supposed to represent. The root supernode

of the array of trees contains a list of m mininodes such that the t·th one is the root

of the t ~ t h tree. If one starts at the root of the t·th tree, one can traverse the t·th tree

by following left and right child pointers stored at each of the mininodes of the array

of-trees. Because of mininode-sharing (the details of which are given later), there are

only O(mlogm) mininodes, organized as logm levels such that the i-th level contains m

mininodes grouped into ~ 2i nodes (the root is at level 0). The supernodes at a certain

level need not contain the same number of mininodes, but their total at that level is

m mininodes. Each mininode consists of a 4~tuple (t,I,T,X), whose significance is as

follows. The first component of a mininode's 4-tuple, t, indicates that this mininode's

subtree describes the corresponding subtree of At, the (hypothetical) sequential binary

tree just after operation Ot is applied to it. The second (resp., third) component of a

mininode's 4 ~ t u p l e , 1 Cresp., r) is a pointer to the mininode that is its left Cresp., right)

child. The fourth component, X, is the label of that mininode in At (in this case, the

number of leaves in its subtree in At). The above was an "overview", and we now give

a precise description of the array-of-trees (AOT for short). We do so in a "bottom up"

fashion, starting from the m leaf supernodes (i.e., at level log [TD.

For each leaf node :z: of T I we construct a leaf supernode B(:z:) of the AOT that

consists of the list (also called B(x)) obtained from 5'(x) by replacing each Ot in Slz::)
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with a record (t,nil,nil,O) ifOt = D(x) or with (t,nil,nil,l) ifO t = lex). We also

add the "dummy" mininode (0, nil, nil, 0) to the beginning of the list B(x). Thus, B(x)

represents the history of all sets defined by restricting one's attention to the operations

in S'(x). That is, if we let (to,t l , .. . ,tIB(z>r) denote the list oft-values in B(x), then each

mininode (t i , nil, nil, *) in B(x) can be alternatively thought of as representing the root

of a (trivial) binary tree storing the llprojections'} of the sets At;, At'+l' ... , A
t
'+1-

1
on

element x (the projection of a set on an element is that element if the set contains it,

empty otherwise). It is because the projections of Atil At .+ l , •.. , At'+l-l on element :z:

are identical that we achieve a savings in space: we only store one copy of this projection,

namely, the mininode (t i , nil, nil, *).

Now, for each internal node v of T, we construct an internal supernode B(v) of the

AOT by merging B(u) and B(w) as sorted lists by t-values (removing the duplicate for

to = 0), where u and ware the children of v in T. Each element of B(v) is a mininode

(t,l, T, L",t) where t is the first coordinate of a mininode in B(u) U B(w) (as determined

by the merge), and 1 (resp., r) is a pointer to the mininode in B(u) (resp., B(w)) whose

first coordinate tl (resp., t .. ) is the the largest such coordinate less than or equal to t.

L",t is the label of v in At, in this case simply the sum of Lu,tl and L w . t ~ . By a simple

induction, it is easy to see that if (t l , t z, ... ,tIB(")I) denotes the list of t-values in B(v),

then each mininode (ti' I, T, L",t.) in B(v) represents the root of a binary tree representing

the (common) subset of the sets At" A t .+ l , ••. , A t '+1- I , as it relates to the elements which

are descendents of v. Thus, each mininode (t, L,T, *) of B(Toot(T)) will represent the root

of a binary tree storing the entire list A ~ . (See Figure 1 for an example, where we avoided

showing the dummy m i n i ~ o d e at the beginning of each supernode.)

Since the list of times for the mininodes in B(v) is exactly the merged union of the lists

of mininodes stored in v's two supernode children, we can apply the cascading divide-and

conquer technique [9, 4J to construct the array-of-trees data structure in O(logm) time

and O(m log m) space using O(m) processors in the CREW PRAM model. The method

also produces the labels (such as the L",t values) for each mininode in B(v) within these

same bounds.

2.2 Using the Array-of-Trees for the Off-Line Binary Search

Tree Problem

Once we have constructed the array-of-trees data structure for S', computing the re

sponses to all the tree-search queries of S is quite simple. From the parallel prefix

7



Figure 1: AOT for S' = I(3)I(5)I(2)D(5)I(7)D(2)D(7)I(2).

computa.tion that obtained 81 from S, we know for each query operation Q in S the

nearest set-modifying operation before it in 5, say it is Ot in 8' (tha.t is, the t-th opera

tion in 8 1
). This tells us which "tree" we must search in order to process query Q. We

therefore assign a single processor to each such query operation Q, and that processor

then performs the query operation in the appropriate tree At just as it would in the

sequential algorithm.

Let us make this more concrete with an example. Suppose we want to evaluate a

sequence of Insert(:l:), Delete(z), and Seleet(k) operations, where Seleet(k) reports the

k ~ t h smallest element in the set at the time. In this case one constructs the array-of

trees so that each internal. node stores the number of descendent leaves of that node (in

addition to the t, I, and r fields). One then can answer a particular SeIect(k) operation

at, say, time t by searching in the "tree" for time t using the obvious searching strategy.

This takes O(logm) time for each operation. Thus, the entire sequence can be evaluated

inO(log m) time using O(n - m) processors. See [191 and [20] for applications of the

array-of-trees data structure to some important computational geometry problems.

Incidentally, the evaluation of a sequence of 1(x), D(x) and Query operations can be

performed in O(logn) time using only O(n) space if all the queries are themselves the

values of associative operations, e.g., Min, Sum, etc [4]. (See [4] for applications of such

sequences to several computational geometry problems.)

Theorem 2.1: Gi1;en a sequence S ofn I nsert(x), Delete( x) and tree-query operations,

one can evaluate 0 S ~ i n O(logn) time using O(n) processors in the CREW PRAM model.

•
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In the next section we address the (considerably harder) case 'when there are two

different kinds of operations that delete elements, namely, Delete(x) and ExtractMin.

3 The Off-Line Competitive Deletes Problem

In this section we show that the problem solving 08, where the operations in 5 come from

the set {I( x), D(x), E}, is in NG 2 (using a quadratic number of processors). (Recall that

E is a shorthand for ExtraxtMin.) We also show how to llstream-line" our approach

to achieve O(log2nloglogn) time using only O(n/loglogn) processors. As mentioned

earlier, showing that this evaluation problem is in NC (let alone that it can be solved

efficiently) is perhaps our most surprising result. The difficulty comes from the fact that

the D(x) and E operations llcompete" with one another. That is, a D(x) operation can

cause a subsequent E operation to return the "set empty response," and an E operation

can cause a. subsequent D(x) operation to return the llelement not in set" response. This

complicates the parallel evaluation of 0S, since the competing operations may be far

apart in S.

Suppose we are given such a sequence 8. Our method for evaluating 08 is as follows.

Let 81 (resp., 52) be the sequence consisting of the first (resp., last) n/2 operations in

5. Recursively solve 051 and 082 in parallel. The recursive call for 051 returns (i) the

correct responses for the operations in it (i.e., the same as in (5), and (ii) the set just

after 051 terminates (let L 1 denote this set). The recursive call for 052 returns responses

and a final set that may differ from the correct ones, because we applied S2 to 0 rather

than to L 1 • The main problem that we now face is how to incorporate the effect of L1

into the solution returned by the recursive call for 052 , in order to obtain the solution to

L1S2 • We show how to deal with this problem in the following subsection. The crucial

insight that enabled us to solve the problem is contained in Lemma 3.3.

3.1 An NC2 Solution

Our method for incorporating the effect of Lion 8 2 involves a number of restructurings

of 52: roughly speaking, we remove some operations from 52 and permute the remaining

ones so that the restructured list has a special "suffix property" relative to the effects of

L 1 • Of course, We I;I1ust show that a solution to the restructured problem can be easily

converted to a solut~on to the original problem. This is all made precise below.

Notation: If R is a subsequence of 5, then 5 - R denotes the sequence obtained by

9



removing every operation in R from S.

Throughout this section, our algorithms adopt the convention that sets are actu

ally multisets (i.e., multiple copies of an element are allowed), so that whenever we say

(Ielement .:z::" we are actually referring to a particular copy of.:z::. As mentioned in the

introduction, it is straightforward to modify our results for the case when it is forbidden

to have multiple copies of an element, i.e., trying to insert a second copy of .:z:: results in

an Uinsertion failed" response rather than in another copy of x being inserted.

By convention, a D(x) executed when there are many copies of x in the set removes the

copy that was inserted latest. Similarly, an E executed when there are many copies of the

smallest element in the set removes the copy that was inserted latest. These conventions

cause no loss of generality, because they do not change any response. However, they do

simplify our correctness proofs.

Let us first make some observations about 052 , Let L 2 be the set resulting from 0S
2

(i.e., the set after 0S2 terminates). Consider an l(x) for which .:z:: is not removed by any

E in 0S2 , i.e., it either ends up in L2 or gets removed by a DCx) (in the latter case we

say that the D(.:c) corresponds to lex)). Let S' be the sequence obtained from 52 by

removing every such l(.:z::) and its corresponding DC.:z::) (if any). In other words the only

l(x) operations in 5' are those whose x was removed by an E in 05
2

, and the only DCx)

operations in S' are those whose response in 0S2 was II X not in set". It is easy to see that

the response to any operation in 5' is the same in 0S' as in 052 , However, the following

also holds.

Lemma 3.1: The responses to the opera.tions in 51 are the same in L
1
S' as in L

1
S

2
•

The set resulting from L1 S 2 equals L2 plus tile set resulting from LIS'.

Proof: The lemma would immediately follow if we can prove that, for any I(x) that is

in 52 - S', the following properties (i) and (ii) hold:

(i) if x ends up in L 2 after 0S2 then it also ends up in the set resulting from L
1
S

2
•

(ii) if :z: is, in 0S2 , removed by a D(.:z::), then it is removed by the same D(.:c) in

L1S2 •

Properties (i) and (ii) together would imply that the operations in 52 - S' have, in L
1
S

2
,

no effect on any operation in 51 and can therefore be ignored, their only effect being

the addition of £, to the resulting set (as returned by 08,). We prove (i) and (ii) by

contradiction: let lCx) be the rightmost insertion in S2 - 5/ that violates (i) or (ii).
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Case 1. lex) violates property (i), i.e. :z: ends up in L 2 after 082 bufis removed by some

operation 0 in L1 S 2 • If 0 = D(x) then, since x ends up in L2 after 0S
2

, 0 does not

remove x in 8 2 and hence must have removed another copy of x (call it x', x' = x). By

our convention that the latest copy is removed by a deletion, l(x') must have occurred

after lex). Since l(x') violates property (ii), this contradicts our choice of l(x) as the

rightmost violation of (i) or (ii). If 0 = E, then, since a did not remove :z: in 08
2

, the

response to 0 in S2 must have been better (either smaller than :z:, or equal to it but

inserted later). But it is a contradiction for x, the response of a in L
1
S

2
, to be worse

than the response of 0 in VJS2 (because having L1 rather than VJ as the initial set can

only make the response of any E better).

Case 2. lex) violates property (ii), i.e. x is removed by D(:z:) in 0S2 , but is not removed

by the same D(x) in L 1 S 2 • Suppose x is removed in Ll S2 by O. If 0 is a deletion,

then, since x is removed by D(x) rather than by a in VJS2 , a must have removed in 08
2

a.nother copy of x (call it x', x' = x). By our convention that the latest copy is removed

by a deletion, l(x') must have occurred after lex). Since l(x') violates property (ii), this

contradicts our choice of lex) as the rightmost violation of (i) or (ii). If 0 = E then,

since 0 did not remove x in VJS2 , the response to 0 in 082 must have been better (either

smaller than x, or equal to it but inserted later). But this is a contradiction for x, the

response of 0 in L 1 S 2 , to be worse than the response of 0 in 052••

Lemma 3.1 has reduced the problem of solving L1 82 to that of solving LIS', so we

now focus on obtaining the responses and final set for LIS'. The next lemma will further

reduce the problem to one in which a crucial suffix property holds, as is later established

in Lemma 3.3.

Lemma 3.2: Let S be obtained from 8' by moving every l(x) to just before tbe E whose

response it was in 052 (such an E must exist by definition of S'). Tben the responses to

the operations in S' are the same in LIS as in L I S2 • TIle set resulting from L
1
S

2
equals

L 2 plus tIle set resulting from LIS.

Proof: Because of Lemma 3.1, it suffices to prove that the responses to the operations

in S' are the same in LIS as in L1 8' and that the set resulting from LIS is the same as

the set resulting from LIS'. Therefore it suffices to show that for no lex) E 8' can x be

removed, in LIS', any earlier than by the E (call it E l ) that removed x in 0S
2

(this would

establish that moving that l(x) to just before E1 does not change anything). Suppose to

the contrary that such an x is removed in LIS' by some operation 0 that occurs before

E1 • That operation 0 cannot be a D(x) because otherwise that same D(x) (and not Ed

11



would have removed x in 052 (since that D(x) is in 5', it had an "x "not in set" response

in 0S2 ). Therefore 0 is an E (say, E 2 ). Now, the response of E z in 0Sz must have been

some y that is better than x (because x ended up being removed by Ed. This means

that x, the response to E2 in L1 S I
, is worse than its response in 0Sz. Since the response

to E2 in 0Sz is the same as its response in 051
, it follows that the response to E

2
in L

1
S 1

is worse than its response in 05'. It is a contradiction for the response to an E to be

worse in LIS' than it is in 0SI
••

Since we already know the responses to 052 (they were returned by one of the two

parallel recursive calls), a simple parallel prefix. computation easily identifies the set

8' (and hence S2 - 8' and S), in O(logn) time and with O(n/logn) processors. The

responses in L 1 82 to the operations in 82 - 51 are now trivially known: the response to an

l(x) is ";C inserted" by the definition of l(x), and the response to a D(x) is U x deleted" by

the definition of S'. The main problem we face is obtaining the responses in L
1
5

2
to the

operations in 51, and obtaining the final set resulting from L 152 • Lemma 3.2 has reduced

this problem to that of solving LIS, so we now focus on obtaining the responses and final

set for LIS. The rest of this subsection shows that they can be obtained in O(log n) time

and with 0(n2
) processors, thus implying for the overall problem an O(logZn) time and

0(n2
) processor bounds.

Let S = 0 1 0 2 ••• Om, m.:$; n/2. For every j, 1 :$; j :$; m, let SCi) be the sequence of

operations obtained from 0 1 ••• 0; by removing the E's from it. Note that SCi) contains

only two kinds of operations: (i) I(x) for which x was a response to an E in 05z, and

(n) D(x) whose response was Itx not in set" in 05z. Let L(j) denote the set resulting

from L1S(j). Let L(O) denote L1 • Recall that, by convention, element x is better than

element y if and only if either (i) x < y, or (ii) x = y and x was inserted later than y.

Lemma 3.3: (The Suffix Property Lemma) For every j such that OJ is a D(x) or

an E, 1 ~ j ~ m, there is an integer J(j), 0 ~ J(j) ~ IL(j)I, such that the set reaulting

from L10 1 ··. OJ consists of the lCi) WaIst (i.e., largest) elements in L(j).

Proof: It suffices to prove that the D(z)'s and E's (in L1 0 1 ..• OJ) remove the b

best elements in L(j), for some integer b (this would establish the lemma, with f(j) =

IL(j)I- b). The proof is by contradiction: suppose to the contrary that some Oi, i < j,

removes an element x of L(j) and that some element y of L(j), where y is better than

x, is not removed by any operation (in L 10 1 ••• OJ). We distinguish two cases.

Case 1. Oi is an E (call it Ed. Since y is better than x, y could not have been present

when E 1 removed x, and therefore y was inserted by an I(y) that comes after E
1

and
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before 0;. Such an I(y) is (by definition) in 5, and therefore (by the" definition of 5) it is

immediately followed in 5 by an E (call it E 2 ) that is after E1 and not after 0; (possibly

E2 == 0;, since I(y) = 0;_1 is possible). By hypothesis, y is not removed in L1 0
1
... OJ

and hence E2 must have removed a z that is better than y. Since z is better than :z:, z

could not have been present when E1 removed x and therefore z was inserted by an I(z)

that comes in between E1 and Ez. Such an I(z) is (by definition) in 5, and therefore

(by the definition of S) I(z) is immediately followed in 5 by an E (call it E
3

) that is in

between E1 and Ez (E3 #- E2 because it is I(y) and not I(z) that occurs just before Ez
in 5). Now, repeat the argument with E3 playing the role of E

2
, as follows.

E3 did not remove z in L 1 0 1 ••• O; and hence must have removed a w that is better

than z. This w could not have been present when E1 removed x and hence it must have

been inserted by an I(w) that comes in between E1 and E3 , and is followed by an E4. that

is in between E 1 and E3 • Repeat the argument with E4 playing the role of E
3

, resulting

in an E s that is in between E 1 and E 4 , etc.

Eventually, after (say) q iterations of this argument, a contradiction is reached (when

there is no E in between E1 and Eq ). Thus 0" cannot be an E.

Case 2. 0, is a D(z).

Then clearly y < x, since if y = :z: then 0. would have removed y rather than :z::. In

L1 S(j), x ended up in L(j) and hence was not removed by 0;, and therefore 0. removed

another, better (i.e., later) copy :Z:1 (:Z:1 = :z::). The fact that 0. removes x rather than

:1:1 in L1 0 1 ••• 0; means that :Z:1 was removed earlier by some operation Ot, t < i. If Ot

is an E then a contradiction is obtained as in Case 1 (with Ot and Zl playing the roles

of E 1 and x, respectively). So suppose Ot is a D(z). In L1S(j), Xl was removed by 0.

rather than by at, and therefore at removed another, better copy X2 (X2 = x). The next

paragraph iterates the argument of this paragraph one more time.

That Ot removes Xl rather than X2 in L 1 0 1 ••• OJ means that X2 was removed earlier by

some operation Ou, u < t. If Ou is an E then a contradiction is obtained as in Case 1

(with Ou and X2 playing the roles of E1 and x, respectively). So suppose Ou is a D(x).

In L1S(j), X2 was removed by Ot rather than by Ou, and therefore Ou removed another,

better copy X3 (:Z::3 = x). Iterating the argument eventually leads to a contradiction

(when after q iterations we get to X q , the earliest copy of :z:). Thus 0; cannot be a D(:z:)

either. This completes the proof of the lemma.•

Thus, if 0; is a+L E or a D(x), then the set resulting from L10 1 ••• 0; is a suffix of

L(j). The size of this suffix is f(j). It is not hard to come up with examples showing that

the suffix property does not hold for an 0; which is an I(x); by convention, if 0; is an
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l(x), then f(j) is undefined. The "suffix" property is the main reason why we can solve

the problem in NC. We have yet to show how to exploit this property, however. For

now, we note that, if we knew all the f(j) values, then we are essentially done (we omit

the trivial details of the proof that knowing the f(j)'s implies knowing the responses to

L,S).

We now turn our attention to showing that the f(j)'s can, in fact, be com

puted in O(logn) time with 0(n2
) processors. Using the array-of-trees technique, de

scribed in the previous section, we can compute an implicit representation of each of

L(O), L(I), ... , L(m), stored in a binary tree. Once we have such a description of the

L(i)'s, a single processor can determine in O(log n) time whether a certain x is in L(i)

or not. Now, for each 0. = D(x), we check whether :c is in L(i - 1): if not, then such

a D(x) has no affect a.nd can therefore be ignoredj we henceforth assume that all such

D(x)'s have been purged from 5 and the L(i)'s recomputed accordingly (i.e., from now

on for each D(x) in 5, we know that x E L(i)).

Let L(i,k), 1 :$ i :$ m, 1 :$ k =:; IL(i)l, denote the set consisting of the worst k

elements of L(i). Note that L(O, ILl D= L 1 • We say that an 0. is relevant if it is an E or

a D(x) (i.e., not an l(z)). Let Oi be relevant, and let O.(i) be the next relevant operation

in 5j in fact we have either (i) sCi) = i + 1 (if 0'+1 is not an lex)), or (ii) sCi) = i + 2

(if 0'+1 is an lex)), because every 1(z) is followed by an E in 5. If L(i, k)O;+1 ... 0.(;)

results in L(s(i),p), then we say that L(s(i),p) is the successor of L(i,k). The lemma

below shows that if L(s(i),p) is the successor of L(i,k), then p E {k,k -I}. An L(i,k)

has no successor if 0; is the last relevant operation in S (i.e., if i = m), otherwise it has

exactly one successor.

Definition 3.4: For each 0':+1 = D(x), let ni be the number of elements in L(i) that

are;::: x.

All the ni's can easily be computed in O(logn) time, since we have the L(irs.

In the lemma below, the reader should keep in mind that, by the defini tien of 5, every

lex) in it is immediately followed by an E, and every E is immediately preceded by an

I(x).

Lemma 3.5: For a relevant 0.:, tile successor of L(i, k) is obtained as follows:

Case 1: 0;+1 is a D(x) operation. The successor of L(i,k) is L(i + l,k) Hz is not

in L(i, k) (i.e., if k < ni), and is L(i + I, k - 1) otherv.'ise.
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Case 2: Oi+1 is an I(:z:) operation and OiH is an E operation. The successor of

L(i,k) isL(i+2,k).

Proof: Let us consider each case in turn.

Case 1: Oi+1 is a D(z) operation. In this case if:z:: is in L(i,k) then there is one less

element in the set resulting from L(i, k)Oi+1 than in L(i, k). If:z:: is not in L(i, k), then

this D(x) operation has no affect.

Case 2: Oi+10iH = I( x )E. There are two sub-cases, depending on whether x is in L(i, k)
or not.

Case 2a: x is in L(i, k). In this case the set resulting from L(i, k)Oi+1 has one

more element than L(i, k) and consists of the last k + 1 elements in L(i + 1). But the

next operation is an E, which will delete one of these elements-namely the best one in

L(i + l,k +1). Thus, the combined affect of lex) and E is that the set resulting from

L(i, k )Oi+1 0;+2 is L(i + 2, k). Therefore, it is correct to say that the successor of L(i, k)

is L(i +2,k).

Case 2b: x is not in L(i,k). In this case the set resulting from L(i,k)Oi+1 has one

more element than L(i, k) but does not consist of the worst k + 1 elements in L(i + 1);

it consists of L(i + I, k) plus the element x E L(i), which is less than all the elements

in L(i + l,k). But the next operation is an E, and, since x is the best element in the

set resulting from L(i, k)Oi+1' it will delete:t. Thus, in this case, the combined affect of

l( z) and E is that the set resulting from L(i, k)0;+1 Oi+2 is L(i + 2, k). Therefore, it is

correct to say that the successor of L(i,k) is L(i +2,k) .•

The successor function for L(i,k)'s defines a forest :F whose 0(n2 ) nodes are the

L(i,k)'s for which Oi '# lex), and such that the edge emanating out of L(i,k) goes to

its successor node (Figure 2 shows such a forest :F). Note that the only nodes with no

predecessors, i.e., the source nodes, are the L(O, k )'s, and the only ones with no successors,

i.e., the sink nodes, are the L(m, k)'s. The problem of computing the f(i)'s then becomes

a path finding problem in:F, where we wish to compute the path of successors in:F from

L(O,IL1 1) to the appropriate L(m,k). This path is drawn in heavy lines in Figure 2.

Marking this path can easily be done in O(log n) time using O(n2 ) processors, by a

simple pointer-doubling scheme. Thus, we get the fonowing lemma:

Lemma 3.6: Given a sequence S oin f(z), D(x) and E operations, one can evaluate

0S in 0(log2 n) t i ~ · e using O(n2
) processors in tIle GREW PRAM model.•

In the next subsection we show how to use the relationships established in the above
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Figure 2: An example of a successor forest F.

discussion to reduce the total work to O(n log2 n) while only increasing the time by a

log log n factor.

3.2 Stream-Lining the Construction

The previous subsection essentially reduces the problem to the following path problem.

We are given a grid G whose columns are numbered {O, .. ',' h} and whose rows are

numbered {I, ... , £}, and a threshold integer value ni for every column i of the grid. A

node at row l' and column c is numbered (e,1') rather than (1', c), in keeping with the

notation of the previous subsection (where L(i) was thought of as representing "column

i" and L(i, k) as representing "the k-suffix of column i"). There is one edge leaving each

node (i,k) if k < h: that edge goes to node (i + l,k) if k < ni, to node (i + l,k -1) if

k 2:: n;. No edge leaves any node of the form (h,k) (i.e., a node in the last column). We

want to mark, for each column, the node in it reachable from node (0,£).

Note: The correspondence with the notation of the previous subsection is as follows.

Here h is the number of relevant operations of 5, and £ = ILII. Also, in the forest :F of

the previous subsection, for some columns i we had a "successor" edge from L(i , k) to

L(s(i), k) for all k (i.e. , irrespective of any ni value)j this situation is modeled here by

considering ni to be 00 for each such column i.- .

The first thing to observe is that, if we start at any (i, k) in grid G and take s steps,

we end up at an (i + s,k') where k - s ~ k l ~ k (this follows from the fact that when
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moving along an edge we either stay at the rame row or move down one row). Let ).i,.(k)

denote k - k'j that is, starting at (i,k) and taking s steps brings us down bY).i,.(k)

rows, where 0 ::; ).;:,.(k) ::; s. Suppose that, for a given i and S, we partition the nodes

at column i into equivalence classes as per their ).i,.(k) values: nodes (i,kl ) and (i , k2)

are in the same class iff ).i,.(k1 ) = ).i,,(k2 ). Let ri" denote this partition of column i into

equivalence classes. In r i ,ll equivalence class a is the element of r i " consisting of the

row indices k for which ).;:,.(k) = a. In Figure 2, r O,2 consists of two equivalence classes:

class 0 consisting of {112, 3}, and class 1 consisting of {4, 5, B}.

Lemma 3.7: ri" contains:$. s + 1 equivalence classes. Each equivalence class is a

contiguous interval of row indices. Furthermore, for any two equivalence classes a and j3

where a < {3, the row indices of equivalence class a are smaller than those of equivalence

class f3.

Proof A straightforward induction on s .•

Thus if in a given r i " partition we let the highest (resp., lowest) row number of

equivalence class a: be U a (resp., [a), then equivalence a consists of the nodes (i, I",), (i, 1",+

l), ... ,(i,ua -l)l(i,Uo:). Thus we do not need to explicitly store equivalence class 0::

we can just remember the beginning and end of its interval of row indices (we call these

the endpoint row indices of that class). In Figure 2, the endpoints of equivalence class

1 of rO,2 are 4 and 6. Hence O(s) space suffices to describe r i ,•. Of course the tradeoff

of such an implicit representation of r i " is that for a particular k, in order to compute

).i,,(k), we now need to locate k in one of the 0(5) intervals of r i ".

A by-product of the above representation is that, given r i " and r"+",, one can obtain

r;.,. in O(loglog.) time and 0(.) work in the CREW·PRAM model. This is done by

using parallel merging to implement the following:

1. Create a sorted sequence u consisting of the elements k +a where k is an endpoint

row index of class a: in r i " (that is, u contains k + a for all such pairs k,a). Note

that lui = O(s). Also note that that u may contain more than one copy of an

element, since the sum k + 0: might be achieved for more than one pair k,o:: in

that case we "remember" where a copy came from by attaching to each such k + 0:

a reminder that this entry was caused by row endpoint k of equivalence class a.

2. Locate the relative positions of the elements of (i.e., "cross-rank") the following

two sequences: (i) u, and (ii) the sequence u' of the endpoint row indices of r.:+",.

This "cross-ranking" is done by merging u and u l
•
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3. For each k + a in u, if k + a is equal to an entry k' that is "in equivalence class

/3 of ri+.r,. (not necessarily as a row endpoint), then we mark k as being a row

endpoint of equivalence class a + {3 in f i •Z•• Note: more than one such k might

have k + a = k' for the same k' value, but these k's become the row endpoints of

different equivalence classes of fi,z., since each of them is in a different equivalence

class of f;:,.r'

4. For each element k' of (I' that does not coincide with any k + a of (I, locate the

equivalence class (say, a) of f i ... that contains the point (i, k) such that k + a = k'

(note that this k +a is not in (I', since k is not a row endpoint of fi,.). Mark k as

being a row endpoint of equivalence class a +/3 of fi,Z., where f3 is the equivalence

class of f H ••• that contains k ' , Note: it is not hard to see that the point k is unique,

since the only way there can be two such k's is if they are both row endpoints in

r i •• ,

The above has shown how to obtain ri,z. from r i,. and r H •••. Now, for each row

endpoint k in f;,z61 let cuti,z.(k) be the row index at which the path from (i, k) intersects

column i + s (the "middle" column). That is, node (i + s, cuti,z.(k)) is reachable from

node (i, k). The computation of the cuti,z.(k)'s can easily be incorporated into the above

lI combining" procedure for obtaining r i •Z• from f i •• and fi+.r,.: in both steps (3) and (4),

simply set cut;.2.(k) equal to k' = k + a.

We are now ready to describe the procedure for marking the nodes reachable from

node (O,l). Build a complete binary tree T on top of the column indices, where each

node v of T has associated with it an interval I(v) of column indices: if v is a leaf then

I(v) is the column index associated with it, and if v is an internal node then I(v) is the

union of the two intervals associated with its two children. Thus if v is at height j then

II(v)1 = 2;. Let first("V) be the smallest column index in I(v). The computation consists

of two stages, which we describe next.

The first stage builds, in a "bottom_up" fashion, r ji...c(v),II(lI)1 for each node v in T,

While doing so, it also computes the cutji...c(lI),ll{lI)[(k)'s for that node 11. This is done

in O(lognloglogn) time and O(nlogn) work by using the above-mentioned combining

procedure once at each node 11 (here n = h + i).

The second stage uses the results of the first stage to mark, in each column, the node

that is reachable from node (O,l). We explain how to do it in O(logn) time and O(n)

processors. The p r ~ c e d u r e is recursive, and starts at the root. When called at a node

v of T, its input also consists of (i) II(v)1 processors, and (ii) a grid node (first(v),()
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«( need not be a row endpoint of rjirdC"'),IIC...)I). The output is to cause, for each column

c in the column interval I(v), the marking of the node of c that is reachable from node

(first(v),() (this marking is permanent in the sense that it does not get undone when

the recursive procedure returns). The procedure does this marking as follows:

• Mark grid node (first(v),(). If v is a leaf of T, return. Otherwise proceed with

the following steps.

• Use the 11(v)1 processors to locate, in constant time, which equivalence class of

r j i ~ ~ t ( " ' ) , I I C " ' ) 1 contains row index (say it is class /,). Then, in constant time, mark

gdd node (first(v) + II(v)l, (+ ,).

• Recursively call the procedure for the left child u of v lD T and grid node

(first(u), 0, giving it II(u)1 = II(v)I/2 processors.

e Recursively call the procedure for the right child w of v in T and grid node

(first(w), cut/i."C"J,IIC"JI( ()), giving it II(w)1 = II(v)1/2 processors.

Correctness of the above second stage follows from the definitions. Its complexity

bounds are clearly O(logn) time and O(n) processors.

This completes the proof that the desired path can be marked in O(lognloglogn)

time and O(nlog n) work, thus implying an O(log2 nloglog n) time and O(nlog2 n) work

solution for the Cometitive Deletes problem.

4 The Off-Line Mergeable Heaps Problem

The methods of the p r ~ v i o u s sections only apply when the set-manipulation operations

all are for the same set. In this section we study sequences of operations that can take

set names as arguments in addition to specific elements. In particular, we address the

problem of evaluating a sequence of operations from the set {lnsert(x,A), Delete(x),

Min(A), Union(A, B), Find(x)}. We begin by describing the semantics associated with

each operation. Initially, we assume that every set named in the sequence S exists and

is empty. Since one of the possible operations in S is Find(x), we also assume that the

elements are distinct.

1. Insert(x, A): 'Insert x into the set A.

2. Delete(x): Delete an element x from whichever set it currently belongs to.
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3. Union(A, B): Union the elements of A and B into the set B, destroying A (i.e., no

operations after a Union(A,B) can have A as an argument).

4. Find( x): determine the name of the set to which x currently belongs.

5. Min(A): return the value of the minimum element currently in A. Here, "mini_

mum" can be replaced by any associative operation.

The element argument (resp., set argument) of an operation like 1nsert(x,A) is x

(resp., A). Without loss of generality, one may assume that none of the operations in S

are inconsistent (e.g., a Delete(x) issued when :t: is not in any set), since these can all be

eliminated by a simple pre-processing step in which one sorts all the elements referenced

in S.

Suppose we are given a sequence S = 0 10 2 , •• On of operations from the above

collection. In this section we show how to evaluate 0S in O(log n) time using O(n)

processors. We begin by creating a union tree U from S, where the nodes of U are

labeled with the set names used in S and there is an edge from a node v, whose label is

A, to a node w, whose label is B, iff there is an operation Ot = Union(A, B) in S. For

the time being, let us assume that U is a proper binary tree (i.e., all internal nodes have

exactly two children). We will show later how to relax this condition. For each internal

node v whose label is A, the extinction time of v (denoted tv), is the time of evaluation of

the operation Union(A, B), j.e., Ot. = Union(A, B) (note that A is the first argument).

The tree U can easily be created in O(log n) time using O(n) processors, by sorting [9].

Intuitively, our method is to construct a subsequence 1(v) of S for each set node v

in U, which consists of all the operations in S whose element argument (say, x) was

originally inserted in the set (say, A) labeling v (i.e., the earliest reference to x in S is an

Insert(x,A». We then "percolate" the l(v)'s up and down the tree U to construct for

each v in U a list (which we will denote by ! I 1 ~ ) of all (t,m) pairs such that Ot involves

the set name labeling v (call it A), and m is the minimum value that would be stored in

A at that time t (i.e., after a hypothetical sequential evaluation of 001 ••• Qd. We call

this the minimum-history vector for v. We store the M ~ lists sorted by t values. Given

these J l . 1 ~ lists it is trivial to then print out a solution to 0S. Specifically, the solution to

an operation Ot = Find(x) is simply the set name labeling the node v such that the list

M ~ contains a pair,of the form (t,*), and a solution to an Ot = Min(A) is the m value

of the pair (t, m) in, the M ~ list for the node v that A labels.

We give below an overview of our method for constructing these M ~ lists.
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High Level Description:

Step 1. In this step we convert the union tree U into a binary tree T that has O(n)

nodes and O{log n) height (U does not necessarily have O(log n) height). For each v in U

let 1(11) denote the subsequence of S consisting of all Insert, Delete, and Find operations

Ot such that the element argument of Ot was originally inserted in the set name labeling

v. Let Tv be a complete binary tree built lion top" of I(v)} where each leaf of Tv is

associated with an operation in I(v). We perform a tree-contraction procedure on U} in

which we iteratively combine pairs of nodes in U} until U has been reduced to a single

node z. Each time we combine two nodes v and w into a node 1£ we combine Tv and Tw

into a tree Tu by creating a root for Tu and making the roots of Tv and Tw its children.

We let T denote the final tree T",. We implement this using the tree-contraction scheme

of Abrahamson et al. [1] and Kosaraju and DeIcher [22]} which build on the "rake-and

compress" paradigm of Miller and Reif [28]. This scheme implies that the resulting T

has O(n) nodes and O(logn) height.

Step 2. In this step we perform a cascade merging procedure on T, similar to that

used for the array-of-trees construction, computing for each node v the list of all elements

stored in descendents of v sorted by their execution times. In addition} for each element

in each such list we store the min of the elements present at the execution time associated

with that element (as we did in the array-of-trees). For each'll we let M v denote the list

of (t}m) pairs} where t is an execution time and m is the minimum for that time. We

also compute for each node v the maximum of all the extinction times of nodes that were

contracted to form v. (Recall that, if v is labeled by set name A} then its extinction time

is the time t such that Ot = Union(A,B).)

Step 3. In this step we perform a reversal of the tree-contraction step (Step I)} in

which we iteratively reconstruct the union tree U from T in the reverse order in which

T Was obtained from U (by IIun-contracting" nodes, etc). As we perform the reversed

tree-contraction we maintain a list} M~} of (t, m) pairs with each node v in the llcurrent"

tree Ui (i.e., the i-th tree in the contraction, i = O(log n)). As mentioned above} we

define the M ~ lists so that when the procedure completes and we have reconstructed the

tree U, M~ will contain a "history" of all the minimum values stored in the set that labels

v.

End of High-Level Description.

Having given a',high-Ievel description of our algorithm, we now are ready to give

the details for implementing each of the above steps. We begin with some notational

conventions.
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Notation: Given a sorted list A of records, and two values k and I taken from the universe

of keys for records in A (with k .:s; I), we let AI[k,l) denote the sublist of A consisting of

all records whose key value falls in the interval [k, IJ. Given two lists of records A and B

whose keys come from the same universe, we let AU B denote the sorted merge of A and

B.

4.1 Step 1: Contracting the Union Tree

Recall that, for each v in U, I(v) denotes the subsequence of S consisting of all operations

Ot such that Ot has an element argument which was initially inserted in the set labeling v.

Also recall that Ttl is a binary tree built "on top" of I(v). We perform a tree-contraction

procedure on U, in which we iteratively combine pairs of nodes in U, until U has been

reduced to a single node. We store a pointer in each v to the root of its associated Ttl

tree, denoted v. Ea.ch time we combine two nodes u and w into a. new node v we combine

TI.l and Tw into a tree Ttl by making u and w be the children of v.
As mentioned earlier, we implement this step using the tree-contraction scheme of

[1,22]' which is built upon the rake-and-compress paradigm of [28]. We let Uo denote

the initial tree U and iteratively contract Uo, producing U1 , U2 , and so on, until we reach

a U. that is a single node (8 = O(logn)). Specifically, we assign an index variable i:= 0

and perform the following steps:

1. Number the leaves of Ui from left to right 1, 2, 3, etc.

2. Combine each odd-numbered leaf v of Ui with its parent z, provided v is a left

child. This is commonly called raking v [28]. We also combine T1J and Tz into a

single tree, as mentioned above. We don't de-allocate the space used for the nodes

v and z, however. Instead, we store the records for v and z with the nodes v and

z, which were previously the roots of Ttl and Tz., respectively, and llsplice" v and z

out of Ui by changing the pointers that point to them. (We shall use these records

to help the contraction-reversal step (Step 3).) Let Ui+l denote the resulting tree,

and assign i :::::; i + 1.

3. For each node v of Ui that had one of its children raked, combine v with its remain

ing child w (if there is one). This is commonly called a compre.ss operation [28].

We also combine T1J and Tw as in the previous step. Let Ui+l denote the resulting

tree, and assign i := i + l.

4. Repeat the previous two steps for odd-numbered leaves that are right children.
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5. If the tree Ui resulting from the above four steps has more t'han one node} then

repeat the previous four steps for Ui •

It should be clear that, given a processor assigned to each leaf, each iteration of the

above procedure can be implemented in 0(1) time. In addition, since each iteration

eliminates half of the leaf nodes, there are at most O(log n) iterations. This implies that

the tree T == Tz resulting from the last execution of steps 2-3 has O(logn) height and

O(n) nodes. (In fact, it follows from Abrahamson et al. [1] and Kosaraju and DeIcher [22]

that the entire procedure can be implemented in O(log n) time using only O(nJ log n)

processors. )

4.2 Step 2: Cascading in the tree T

In this step we perform a cascade merging procedure on T} computing for each node v

in T the list of all elements stored in descendents of v sorted by their execution times.

In addition} for each element in each list we store the min of the elements present at the

execution time of that element (as in the array-of-trees section). For each v in T we let

M;; denote the list of (t}m) pairs, where t is an execution time and m is the minimum

for that time. We also compute for each node vin T the maximum of all the extinction

times of nodes in U associated with descendents of it (including itself).

Let v be a node in some Ui , and let Nodes(v) be the set of nodes of U that were

combined to form v. Let us generalize the definition of lev) to nodes in U, 50 that lev)

denotes the subsequence of 8 consisting of all the operations Ot such that Ot has an

element argument which was initially inserted in the set labeling one of the nodes in

Nodes(v). Since v is both the root of TlI and a node in T, it stores a list M;;} which can

be viewed as the history of minimums for l(v) as if all the operations in I(v) were for

the same set. In addition, M;; = .Ma U M,1;, where a. and bare the children of it. So, just

as with the array-of-trees data structure, we can compute each (t}m) pair in each M;; by

applying the cascading divide-and-conquer scheme [9, 4] to achieve a running time that

is O(log n) using O(n) processors.

In the next step we take advantage of the properties of T and its M;; lists to complete

the evaluation of 08.

4.3 Step 3: Reversing the Tree-Contraction to Reconstruct U

In this step we perform a reversal of the tree-contraction step (Step 1). Let v be a node

in some Ui • We let Ops(v) denote the subsequence of 8 consisting of all the operations
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"

Figure 3: illustrating the definition of M ~ .

Ot such that Ot has an element argument which was initially inserted in the set labeling

a node in Nodes(w) for some descendent w of v in Ui (including v itself). Note that the

operations in Ops(v) are all the operations that could possibly affect v. We let Up(v)

denote the minimum-history vector for the operations in Opsev) as if they all applied to

the same set, restricted to the range [tul +00], where t" denotes the maximum extinction

time of nodes in N odes(v). (This minimum history vector corresponds to .information

that must be passed up from v to nodes higher in U;.)

For each node v with parent z in the current tree Ui , we maintain a list M ~ , which is

defined as follows (recall that A I [ h l ~ denotes the sublist of a sorted list A consisting of all

records whose key value falls in the interval [k, l]):

1. If v has no children, then M ~ = MvIIO,t.)'

2. If v has one child, u, then M ~ == M iJ I[O,t.) U Up(u) I[t.. ,t.).

3. Ifv has two children, u and w (see Figure 3), then M ~ = MVI[o,t~) U Up(u)!rt.,t.] U

Up(w) 11"".1'

The m value for each (t,m) in M ~ is determined in the obvious way: namely, by taking

the minimum of the m values of the (t', m) pairs in the sets unioned to define M ~ , where

t' is the immediate 'predecessor of t.

As mentioned ahove, 0UI' method is based on the observation that if Ui == U, then, for

each v in U, the list M ~ will contain a history of ail the minimum values stored in the set
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that labels 11. We iteratively reverse the tree-contraction step (Step 1), converting Ui+l

back to Ui , while maintaining M ~ lists for each 11 in the current tree. In the next lemma

we establish an important relationship between the M and M' lists, which we exploit for

quickly reconstructing U in parallel.

Lemma 4.1: Suppose a and b are the two nodes of Ui that were combined to form some

11 in Ui+l' WLOG, let b be the c11ild of a (so tb < ta). Suppose further tlIat z is the

parent of a in Ui (if z does not exist, then take tz. = +00). (See Figure 4.) Then we have

the following relationships for M ~ and M{,:

Case 1: The node 11 has no children in Ui+l' Then M ~ = M .. 110,tzl UMii Iltb,tzl' and

Mt = MiiIIO,t"j'

Case 2: The node 'V has a child, w, in Ui+l'

Case 2.a: a and b were combined by a rake operation. Then M ~ = M .. ]{O,tzl U

Mi, IILb,tzl U M~I[L",.tzj' and M{, = Mi, IIO,t"j'

Case 2.b: a and b were combined by a compress operation. Then 111; =

1I1al/o,t,,] U Mblrlb.t.] U M~lrtb.t.l' and M{, = Miil ro.t ,,] U M~llt""t,,]. In

addition, we can assign M ~ := M ~ I[O,tbj in Ui , since b is the parent

of win Ui (the old M:., extended to t" = ta).

The m value for each (t,m) in M; (resp., M£) is determined by taking the minimum

of the m values of the U1,m) pairs in the sets unioned to define M ~ , where t l is the

immediate predecessor oft.

Proof: The proof is by induction on the iteration number i of the reversed contraction

procedure (note that i decreases as the algorithm progresses). Initially, Ui+l is a single

node. Thus, Case 1 applies. The lemma follows from the fact, then, that b is a leaf and

a has no other children. Suppose, then, that the lemma holds for the nodes in Ui +1
•

Consider Ui . If a node 11 is a leaf in Ui +1 , then Case 1 applies, and is clearly correct. So

suppose 11 has a child w in Ui+1 • Case 1: a and b were combined by a rake operation.

In this case a has children band w in Ui . The lemma follows in this case, since b is a

leaf, and, by induction, 111:" restricted to [tWI tz.J must be the same as Up(w) restricted

to [t w ,tz.l. Case 2:'· a and b were combined by a compress operation. In this ease, in

Ui , w is the only child of b, which is, in turn, the only child of a. The formula for

.Al~ follows, by induction, from the fact that U p ( b ) l r t b , t ~ j = Miilrtb.tzl U Al:"lrLb,tzJ! since
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Figure 4: illustrating Lemma 4.1.

Up(b) = M&I[t6,CO] U Up(w)lrt 6'lX>]' The formulas for Mt and M:n follow immediately from

induction. This completes the proof.•

Thus, we have a method for constructing Ui with all its M ~ lists, given U
i
+

1
and its

M ~ lists. We have yet to describe how we implement each step of the reversed contraction

routine in 0(1) time using O(n) processors, however.

Initially, we assign two processors, which we call a processor pair, to each element in

M ~ , where z is the single node to which U was contracted. As we reverse each iteration

of the tree-contraction step (Step 1) we maintain the M ~ lists as mentioned above and

two important ranking invariants: (i) that M ~ is ranked in M ii , for each 1.1 in U
i
, where v

is the root of Ttl, and (ii) that M ~ is ranked into M:n, for each v in Uj" where w is a child

of 1.1. (Recall that a list A is ranked in a list B if we know the rank of the predecessor

in B of each element a in A [9].) We can easily maintain these ranking invariants as

the procedure progresses, since, for each invariant of the form "A is ranked in B" that

we wish to maintain, we have B ~ A. In addition to these two ranking invariants, we

assume that M ii is ranked in Ma and lilli' where a. and bare the children of v, the root of

Tv, since this comes for free from the cascading procedure (recall that M v = M a U M
li
).

Let us, then, describe how to implement each of the un-contract steps. Let a and b

be the two nodes of Ui that were combined to form 1.1 in Ui+l' with b being the child of

a. Let us consider i·he possible cases:

Case 1: 1.1 is a lea.f in Ui+1' In this case we can construct M ~ in 0(1) time, since (i) M ~

is ranked in M,:;, and (ii) Mv is ranked in M ii and Mli " In addition, there is an element in
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M~ for each element in M,; (hence, each element of Mal[o,tzJ and M&'!ltb,t.j). This implies

that we can use the processors associated with the elements of M ~ to construct M ~ , and

assign these processors to M ~ . Some of these processors may be needed in Mt, however.

In particular, the elements in Mbl!tb,t"j are needed for both M ~ and l.lt. In this case, we

split the processor pairs for these elements, assigning a single processor to the copy of

each element from M&I[tb,t,,] in M ~ and a processor to each element from Mbl[tb,t,,] in Mt.
We will show later that once a processor pair has been split for an element t, we will

never again attempt such a split again for t (in any list). This does not give us all the

processors needed for Mt, but, fortunately, for Mt, there is an element in M ~ for each

element in M&lro,tbl' and none of these elements are needed to form M ~ . Thus, we can

Ie-assign the processors assigned to these elements to their counter-parts in Mt.

Case 2.a: a and b were combined by a rake operation, and v has a child, w, in Ui+l'

We can construct M ~ in 0(1) time in this case, since (i) M ~ is ranked in M:", (ii) M ~ is

ranked in M\i' and (iii) M,; is ranked in M a and M t . In addition, there is an element in

M ~ for each element in M,; (hence, each element of Alal[o,t"l and Mblrtb,t,,]) and for each

element in M:" !It...,t
z

]" This implies that we can use the processors associated with the

elements of M ~ to construct M ~ , and in turn assign these processors to M ~ . As in the

previous case, we may need some of these processors for Mt, however. As before, for Mt,

there is an element in M ~ for each element in Mtl[o,tbl' and none of these elements are

needed to form M;, but the elements in Mb!rtb,t"l are needed for both M ~ and Mt. So, as

before, we split the processor pairs for these elements, assigning a processor to the copy

of the element from M t Irtb,t,,] in M ~ and a processor to the copy in Mt.

Case 2.b: a and b were combined by a compress operation, and v has a child, w, in

Ui +1 • Let z be the parent of a in Ui • We can construct M; in 0(1) time, by essentially

the same method as in the previous case. A similar method constructs Mt in 0(1) time.

The processor assignments are more involved, however. As before, there is an element

in M ~ for each element in M ~ . Thus, if we were only interested in constructing M ~ the

processor assignment would be trivial. Recall, however, that Mt = Mtllo,t,,] U M:"!rt""t"l'

and, since b is a child of a, M t h t ~ , t " l must be a subset of M ~ . In this case we do not

resolve the overlap by processor-pair splitting alone. We only split processor pairs for

the elements in M & l r t ~ , t " l (giving a processor to each copy in Alt and M ~ of each element

from M&lrtb,t"J). We do not need to split processor pairs for the elements from M:"lit,..,t"j.

Instead, we can locate a sufficient number of processors assigned to elements in lists of

U'+l such that these processors are no longer needed in the corresponding lists of Ui •

Specifically, the elements in M:" Irt... ,tb] werc in M ~ of U;+l' but these elements are not in
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M~. Thus, we can re-allocate the processors for the copies of these elements in M ~ (of

Ui+I) to their copies in Mb(of Ui ). In addition, the elements in M ~ I [ t 6 , t ..] (of Ui+I) need

no longer be stored in M ~ (of Ui ), since w's parent in Ui is b. Thus, we can re.allocate

the processors for the copies of these elements in 1 l 1 ~ (of Ui+I) to their copies in Mb
(of Ui ). This completes the description of the method for implementing each round of

the reversed tree-contraction in 0(1) time using O(n) processors. The following lemma

completes the proof of correctness of this implementation.

Lemma 4.2: At no point in the computation will we ever try to perform a processor-pair

split {or an element that is assigned only one processor.

Proof: Any time we split a processor pair for an element t, we do so only if t is in

an interval. [tb, ta] where b is the child of a in the tree Ui • Since tb is the extinction

time for h, all the extinction times for nodes (in Nodea(b)) that were combined to form

b must necessarily be less than tb. Thus, all the future processor-pair splits done for

nodes in N odes(b) must involve elements that are not in the interval [tb, tal. So, the only

possible illegal processor-pair splits must come from nodes in Nodes(a). But we will

have performed processor splits only for the elements of MbhL
6,t,,] (which are also in M ~ ) .

These elements are not in Ma, however. Thus, these elements are not in Me for any node

c in N odes(a). This completes the proof.•

Thus, we have the following lemma:

Lemma 4.3: Suppose one is given a sequence S of Insert(x, A), Delete(x)J

Union(A, B), Find(x) , and Min(A) operations. H the tree determined by the

Union(A, B) operations in S is a proper binary tree, then one can evaluate 0S in O(log n)

time using O(n) processors in the GREW PRAM model.•

In the next subsection we show how to extend this lemma to arbitrary union trees.

4.4 Allowing for Non-binary Union Trees

The tree, U, determined by the Union(A, B) operations in S does not have to be a proper

binary tree for us to be able to evaluate S in O(log n) time using O(n) processors. In this

subsection we show how to transform U into a proper binary tree U/, such that applying

the above procedure on U' can easily be converted into a solution for U. The method for

converting U into U! consists of two steps. The first step adds a "dummy" child to each
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node with only one child, and the second step adds dummy descendents to a node v if v

has more than two children, so as to (Cfan in" the sets coming from the children of v.

Step 1. Let v be a node in U that has only one child, w. Let Ot = Union(A, B) be

the union operation in S that determines the edge from w to v, i.e., A is the set name

labeling wand B is the set name labeling v. We add an operation Union(Z,B) just

before Ot in S, where Z is a set not referenced by any operation in S. Let 8 1 denote the

resulting sequence.

Comment: It is easy to see that Step 1 forces v, the node labeled by B, to have two

children in the union tree determined by S'. Moreover, since Z is not referenced by any

other operation in S, the response to an operation 0 in E is the same as its response in

S'.

Step 2. Let U be the union tree determined by the operations of E'i so each node

in U has at least two children. Let v be a node in U that has children WI, W2,"" Wi<

such that k ~ 3. Order these children of v so that tUl; < tW;+l for i E {I, 2, ... ,k _ I}.

We modify U by building a complete binary tree B'U whose leaves are WI, W2, ••• ,Wi< and

whose root is v. For each internal node u in B'U we make the extinction time for u,

denoted t u , be the maximum of the extinction times of u's descendents in B". Let U'

denote the resulting union tree. Clearly, U' is a proper binary tree.

Comment: U' clearly has O(IU!) nodes. The only difference between U' and the union

tree of this algorithm is that for any c h i l d ~ p a r e n t pair (b, a) in U1 we have tf> $ t
a

, instead

of t b < tao This does not change the correctness of Lemma 4.1, however. Thus, we can

implement the algorithm of Lemma 4.3 on U' so as to still run in O(1og n) time using

O(n) processors. So we have only to convert the solution to U1 to a solution for U.

For any node v in the (nonbinary) union tree determined by S, if v has at most two

children, then, by arguments give above, the list M; for the corresponding node v in U1

is the same as M~ would be in the union tree determined by S. So, let v be a node that

has has children WI, W2,"" Wi< in U such that k ~ 3. We show how to construct the M ~

list for v in U, given the M ~ list for each node u in B" of U'.

Let (t,m) be a pair in some M ~ list for an internal node u of B'U (u may be v). Since

(t,m) is in an M ~ list for an internal node of B'U, there must be a pair (t,m·) in M ~ in

U (i.e., with the same first coordinate). Thus, we have only to determine the minimum

value, m·, associated with this pair. Let IT be the path from u to v in B'U. Since the

leaves of B" are l i s t ~ d left-to-right by increasing extinction times, any leaf Wi that is the

descendent of a node on the left fringe of 7r must have tUl ; < t. In addition, any leaf

Wi that is the descendent of a node on the right fringe of IT must have t
Wi

> t. (Recall
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that a node is on the left fringe. (resp., right fringe) of a path 71" if it is not on 7r but is

the left child (resp., right child) of a node on 7r.) If m < m-, then m- must belong to a

pair (t', m-) in some M ~ list, where z is on the left fringe of 7r and i' is the immediate

predecessor of t in M ~ . This is because t has no immediate predecessors in any of M ~ list

if z is on 71" or the right fringe of 7r. Thus, to determine the value of m" we have only

to assign a processor to the pair (t, m) and have that processor locate the immediate

predecessor of t in each M; list such that z is on the left fringe of 7r. If we were to

implement the query for this processor by performing a binary search in each M ~ list

such that z is on the left fringe of 7r, then the running time of our algorithm would grow

to be O(log2 n ). Thus, we must be more clever in how we implement this query.

To perform the query for a pair (t, m) in M ~ it certainly is sufficient for the processor

for (t, m) to locate in each M ~ the pair (tt, m') such that if is the immediate p ~ e d e c e s s o r

of i, where z is a node on the walk w in Bv that starts from u, and traverses up B
VI

visiting ea.ch node on 7r and each node on the left fringe of 7r. Such a traversal is known

as a multilocation of i in w [4]. Atallah, Cole, and Goodrich [4] show that one can perform

such a multilocation of t in w in O(log N + Iw]) time, where Iwl is the number of nodes

in w, given a pre-processing step that takes O(log N) time using O(Njlog N) processors,

where N is the total size of the graph being searched, including all the lists it contains. In

our ease, N is O(n), since there can be at most two pairs in M ~ lists of U with the same

t value (i.e., in the M ~ list for a node v and in the M; list for its parent, z). In addition,

lwl is O(logn). Thus, we can determine the value of m- for each (t,m) pair such that

(t, m) is in some M ~ list for a node u in U' in O(log n) time using O(n) processors. This

gives us the correct M ~ list for each node v in Uj hence, gives us the following theorem.

Theorem 4.4: Given a sequence S of Insert(:z:,A), Delete(:z:), Union(A,B), Find(:z:),

and Min(A) operations, one can evaluate 08 in O(logn) time using O(n) processors in

the GREW PRAM model.•

In the next section we address the off-line priority queue problem.

5 The Off-Line Priority Queue Problem

In this section we show that one can evaluate S in O(log n) time using O(n) processors

when the operation"s in S are 1(:z:) and E, i.e., an off-line priority queue problem. This is

optimal, because one can easily reduce sorting to this problem. Our algorithm generalizes

an algorithm by Dekel and Sahni for processor scheduling [10] that can be applied to this
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problem, which ran in 0(log2 n) time using O(n) processors. The main contribution of

our algorithm is the development and application of generalized cascade merging to the

off-line priority queue problem.

Let S = Ol02· .. On be a sequence of lnsert(x) and Extract1l1in operations. We

wish to evaluate 0S. As mentioned earlier, in [10] Dekel and Sahni study a related

processor scheduling problem, namely, that of finding a schedule for n jobs, specified by

release times and deadlines, so as to minimize the maximum lateness. Their solution

amounts to a reduction of this scheduling problem to the {1(x),E} evaluation problem,

which is essentially the sequential method used by Horn in [21]. If the sequence S does

not contain any redundant E's, then the method used by Dekel and Sahill can be applied

directly to solve the {l(x), E} evaluation problem, resulting in a solution running in

O(log2 n ) time using O(n) processors. If there can be redundant E's, then one must

precede their algorithm by a parallel prefix computation to eliminate the redundant E's.

The main idea of the Dekel-Sahni algorithm is to build a complete binary tree lion

top" of the operations in S and then perform two "passes" over this tree--the first flowing

up the tree and the second flowing down the tree. Our method uses a similar approach,

except that each pass is implemented by a generalized cascade merging procedure. We

perform this procedure in two directed acyclic graphs (dag's), rather than using a tree.

The dag we use for the first pass is derived from a recursive merging procedure similar

to that used in the first pass of the algorithm by Dekel and Sahni. Since some nodes

in this dag have out-degree 2 (i.e., two "parents"), one of the important aspects of our

implementation is showing how to perform cascade merging in this dag using only O(n)

processors. This is also true for the dag we use to implement our second phase, for it

too contains nodes that have out-degree 2. This second dag is derived from a "merge_

and-purge" procedure that is quite different from the second phase of the Dekel-Sahni

algorithm (in fact, it is not clear that one can efficiently implement their second phase

with a cascade merging procedure). We give the details of our algorithm below.

We begin by constructing a complete binary tree T Clon top" of S so that each leaf of

T is associated with a single operation Ot (listed from left to right). For each node 'lJ let

e(v) denote the number of ExtraetMin operations stored in the descendent leaves of v.

One can compute e(v) for each 'lJ in T in O(log n) time using D(n/ log n) processors by

a simple bottom-up summation computation in T. For every leaf of T cQrresponding to

an E operation we , ~ e p l a c e that leaf with a node 'lJ with two leaf-node children such that

its left child corresponds to an 1(00) operation and its right child corresponds to an E.

This allows us to assume that each E has a response. That is, the 00 's are added so that
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the response to an E is 00 if and only if its response should be Uset"empty" in 0S.

For each v in T let S(v) denote the substring of S that corresponds to the descendents

ofv. For each v in T we will compute two sets A(v) and L(v): A(v) will be the sorted

list of answers to all the E's in /lIS(v) (recall that this denotes performing S(v) with the

set of elements initialized to 0), and L(v) will be the sorted list of elements left in the set

after we perform /lIS(v). For any list B and integer m, we let Prefizm(B) denote the list

consisting of the first m elements in B (if IB] < m, then Prefizm(B) = B). Similarly, we

let Suffixm(B) denote the list consisting of the last m elements in B (if IBI < m, then

S u f f i . ~ ( B ) = B).

Lemma 5.1: Let S be a sequence of I and E operations, and Let L be a sorted list of

elements. If A is the sorted list of answers from 0S, then PrejizlAI(L U A) is the list of

answers from LS.

Proof: The proof follows from arguments given in [10J.•

This immediately implies the following corollary.

Corollary 5.2: Let v be a node in T with left c1lild :z: and right child y. Then we have

the following relationships:

A(v) A(x) U Prefix,(,)(L(x) U A(y)),

L(v) - L(y) U Suffix"._.(.)(L(x) U A(y)).

In words, this states that the answers in A(v) that are for ExtractAfin operations that

are stored in descendents of y come from the first e(y) elements of L(x) U A(y). We shall

use this lemma to construct A(v) and L(v) for every v in T. We begin by constructing a

dag G £rom T by expanding each node v into T into five nodes: [Av], [Lv], [Sv], [Axv],

and [Lyv], where x and yare the left and right children of v, respectively. For each

such node v of T, the following are edges in G, ([Ax], [Axv]), ([Lx], [Sv]), ([Ay], [Sv]) ,

([Ly], [Lyv]), ([Axv], [Av]), ([Sv], [Av]), ([Sv], [Lv]), and ([Lyv], [Lv]). (See Figure 5.)

Before we explain the role of each of the five nodes of G that correspond to a node vET,

we observe that G consists a number of layers equal to twice the height of T (hence G

has O(log n) layers). This is because the definition of the edges of G is such that, if v

is on levell in T, then the nodes [Av] and [Lv] are on level 2l- 1 in G and the nodes

[Sv], [Axv] and [Lyv] are on level2l. We now discuss the roles played by each of the five

nodes of G corresponding to a vET. We will construct a single sorted list for each node

in G by a cascade merging procedure [4J. We generalize the method of [9, 4], however,
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Figure 5: The upward cascade merging procedure.

in that the input to a. node v in G will not necessarily be strictly a sorted merge of the

lists at the in-nodes of v. The set we will build at [Av] is A(v) and the set we will build

for [Lv] is L(v). Intuitively, [Sv] is a "splitter" node, as its output will be split between

[Avl and [Lv]. The nodes [Axvl and [Lyv] axe added so as to synchronize the How from

level to level. We perform a cascade merging computation in G that proceeds in stages,

where, for each stage t, each node [a] in G will store a list Ut([aJ). Initially, Ut([a)) is

empty for all but the nodes that correspond to leaves of T. Specifically, if v is a leaf of

T, then (i) Uo([Av]) = {oo}, and (ii)Uo([Lv]) equals {x} if O. = I(x), {oo} if O. = E.

We say that a node v of G becomes full in stage t if Utev) will equal Utl(v) for all t' > t.

Intuitively, v is full when Ut(v) contains all the elements it was intended to have. In our

procedure, which we describe below, we can easily test if a node becomes full in stage t

as soon as it happens (because we know the final size of the sorted list we are building

at each such node).

Let Sampv,t(Ut(v)) denote the sample of Ut(v) at node v, defined as follows: if v

was not fUll at the end of stage t -1, then SampvAUt(v)) consists of every 4th element

from Ut(v)j if v just became full at the end of stage t -1, then Sampv,t(Ut(v)) consists

of every other element from utCv)j and if v was full at the end of stage t - 2, then

Samp.,t(U,(v)) = U,(v).

The five nodes for v have the following merge equations:
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U'+l([Lv])

U'+l ([Axv])

U'+l([Sv])

U'+l([Lyv])

Sampls.j,.(Suffixn._.(.){U,([SvJ))) U SamPIr.,;.j" (U,([LyvJ))

- SamPIA.!,,(U,([AxJ))

- SamPIL.j,,(U,([LxJ)) U SamPIA,j,,(U,([AyJ))

SamPI"j" (U,( [Ly]))

(5.2)

(5.3)

(5.4)

(5.5)

Note that, if both children of a node are full in stage t, then that node is full in stage

t + 3.

Comparing the above five equations to the two equations of Corollary 5.2, we have that

in the stage. t, when [Av] and [Lvi become full, then U,([Av]) = A(v) and U,([Lv]) = L(v).

Since G has twice as many levels as T I if we can perform our cascade merging procedure

in G so that each stage can be implemented in 0(1) time, then we will have an O(logn)

time algorithm.

In [9, 4] it was shown that in a cascade merging procedure as above, but without

Prefir: Il.nd SuJJiz functions, one clI.n ma.intn.in a. rank Ib.bel foJ' C1Ach t:llemcnt e of U'_l(-V)

that gives the rank of e's predecessor in Ut(v), as well as similar labels from Ut(-v) to

the samples at v's in-nodes (i.e., its "children") in stage t - 1 (which were merged to

form Ut(v)). Moreover, [9, 4] show that these labels can be used to perform the merge at

node v for stage t + 1 in 0(1) time using O(IU,+>(v)[) processors in the CREW PRAM

model, provided the sample that came from each of v's in-nodes in stage t - 1 is a a

"good approximation" of the sample coming from that node in stage t. In particular,

if e and f are elements of the sample that came from v in stage t - 1 such that there

are k elements of this sample in the interval [e,1), then there must be at most c(k + 1)

elements in [e, f) from the sample coming £rom v in stage t, for some constant c (in the

[9, 4] scheme, c = 2). This is called the c-cover property.

The only difference between our merge equations and those of [9, 4] is that in Equa

tion (5.1) we use the Prefiz function and in Equation (5.2) we use the Suffix function.

Thus, had we not added the Suffiz and Prefix functions, we would have satisfied the

c-cover property. These functions do not upset the crucial c-cover property, however, as

we see from the following observation:

Observation 5.3: Let e and f be two elements of SamPIs.j.'_l(Prefiz.(,j(U._l([SVJ)))

witb e < f· If tbere are at most d elements of SamPls.j.,(U,([SvJ)) in tbe interval Ie, fl.
tben tbere are at most d elements of SamPls.j.,(Prefuc.,(,) (U.([SvJ))) in tbe interval [e, f).

A similar observation can be made for equations involving the Suffix function. Thus, if

a cascade merging procedure without Prefix and Suffix functions has the c-cover property,
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taking prefixes or suffixes before taking samples will not upset this. "Note, however, that

this might not be the case if we were to take prefixes or suffixes after taking samples.

Therefore, we can implement each stage in 0(1) time, provided we have enough processors

assigned to each active node.

To show that our method can be implemented in O(log n) time with only D(n) proces

sors we must show that we can perform the processor allocation with only an O(I)-time

overhead per stage. Our method is to "send" processors along with elements. Specifi

cally, if we send mt elements from a node w to a node v in stage t (as a part of the merge

for node v), then we send mf - mt_l processors to accompany them, where mt_l is the

number of elements we sent in the previous stage. Thus, each non-full node v receives

new processors for all the "extra" elements it receives in stage t and sends a fourth of

the processor assignments it had in the previous stage. By a simple inductive argument

it is easy to see that this maintains nt - mt_l processors assigned to such a v, where nt

ill the lIize of the lilt Itored A-t v ",t thCl Clnd of Ita.gCl t. For if lL node v bef;:OmClI full in

stage t - 1, then it sends nt/4 - mt_l processors in stage t, nd2 - nt/4 in stage t + 1,

and nt - nd2 in stage t + 2. Since nt - mt_l is O(nt), this scheme is sufficient to solve

the processor assignment for our method.

When the cascade merging procedure in G terminates, each vET can just "read"

from G its A(v) and L(v) lists. This does not yet give us the response to each specific

ExtractMin in S, however. It only gives us the total set of answers. To determine the

answer which is the response to each extractmin, we perform one more cascade merging

procedure, this one derived from proceeding down the tree T, as follows.

Let L'(v) denote the set of elements that is left over after performing the operations

in 08 up to, but not including, the operations in 8(v). In other words, L'(v) is the set of

elements that are actually left over just before performing the operations in S(v). The

following lemma gives us the main idea for performing the downward sweep.

Lemma 5.4: Let v be a node in T with left child x and riglIt child y. Suppose we have

L'{v) at v and A { ~ ) and L ( ~ ) a t ~ . Then

L'(x) - L'{v)

L'{y) - Suffix,.._.(.)(L'(~) U A(~)) U L{~),

where m. = IL'(~) U A(~)I.

Proof: The prooflhat L ' { ~ ) = L'(v) follows from the definition of L ' { ~ ) and L'(v). The

proof that L'{y) = Suffixm._,(.){L'(~) U A(~)) U L{~) follows from Lemma 5.1, with S(v)

playing the role of S in the Lemma and L' (x) playing the role of L .•
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We can use these definitions to define a top-down computation "to construct all the

possible true lCleft-over" sets. The response of an E operation at leaf-node v is simply

the fust element in the left-over set L'(w) for v's parent w. This approach is not enough

to give us an efficient algorithm, however. As it is expressed now, it would be impossible

to construct the necessary left-over sets in O(log n) time using D(n) processors. This is

because for each level of the tree we would essentially be doubling the amount of space

we need to represent all the left-over sets. We can get around this problem, however, by

noting that for any node v we need only send its children as many left over elements as

the number of E's that are descendents of that child. That is, if x and yare the left and

right children of '11, respectively, then we need only send the first e(x) elements of ~ ' ( v )

to x and only the first e(y) elements of L'(x) to y.

The details of the construction are as follows. We obtain a dag G from T, as follows.

Let v be a node in T with left child x and right child y. Corresponding to each such

vET a.rc the following six nodcs of G: [L'vJ, [L'xJ, [L:llJ, [A~h [Suf:z:], a.nd [L'1/J. (See

Figure 6.) The idea is to define Ut lists so that, when it becomes full Ut([L'v]) = L'(u),

U,([Ax)) = A(x), and U,([Lx)) = L(x). Fo, each such node v of T, the following "e

edges in G: ([L'v], [L'xJ), ([L'v), [SuftJ), ([Ax], [SuftJ), ([Lx], [L'y)), and ([Suft], [L'yJ).

In addition, there is a complete binary tree that feeds into [Ax] (resp., [Lx]) and contains

all the elements of A(x) (resp., L(x» in its leaves. The flow equations in each of these

two [Ax] and [Lx] trees are just as in the sorting algorithm of Cole [9]. Initially, there is

a complete binary tree feeding into [L'rootJi it has n leaves, each containing {oo}. The

flow equations for the other nodes of G are as follows:

U,+,([L'x))

U,+,([Suft))

U'+1([L'yJ)

SamPIL'.j.,(Prefix,(.) (U,( [L~])))

SamPIA.JAU,([Ax))) U S amPIL'.JAPrefix,(y)(U,([L~))))

SamPIL.J,'(U'( [Lx])) U SamPIs."J,'(Suffix ,(y)(U,([Suft]))).

The reader should note that these flow equations satisfy the constraints determined by

Lemma 5.4. Also recall that the Samp functions are synchronized so that a node becomes

full three stages after both of its children become full.

It is not hard to show that the graph G that results from this construction contains

D(n) nodes and has O(log n) height. As with the first pass, the Prefix and Suffix functions

do not upset the c-cover property. Moreover, even though each node [L'v] has out-degree

2, the number of elements that we send from [L'v], when [L'v] is full, does not exceed the

total number of elements stored in Ut([L'vJ). Thus, the cascading flow problem can be

solved for Gin O(logn) time using O(n) processors. This, in turn, gives us a solution to
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Figure 6: The downward cascade merging procedure.

the sequence evaluation problem that runs in these bounds, because for each leaf node v

associated with an E ~ t r a e t M i n operation, we can simply examine the L'(w) list for v's

parent w to determine the response for this E ~ t r a c t M i n . Thus, we have the following

theorem.

Theorem 5.5: Given a sequence 8 of Insert(x) and ExtractMin operations) one can

evaluate 08 in O(logn) time using O(n) processors in the CREW PRAM model, which

is optimal.•

In the next section we study a generalization to the E ~ t r a e t M i n operation that can

be used to parallelize certain types of "lexicographic" sequential algorithms.

6 The Off-Line Barrier-ExtractMin Problem

Let the operation ExtraetMin(y) (E(y) for short) return and simultaneously remove

from the set the smallest element:;::: y (if there are many copies of it then, by convention,

the one inserted latest gets removed). This section concerns itself with the case where

the operations appearing in 8 are 1(x) and E(y). Before we give our method for evalu

ating 0S, let us give:; an application of this sequence-evaluation problem to an important

matching problem, so as to motivate our study of the E(y) operation.
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6.1 Application: Maximum Matching in a Convex Bipartite

Graph

One additional problem that can be formulated as an off-line sequence of set manipulation

operations is that of computing a maximum matching in a convex bipartite graph. An

O(log2 n) time algorithm for solving this problem on an .ERE'V PRAM model was given

by Dekel and Sahni [ll]. In this section we show how to formulate this problem as the

evaluation of a sequence of I( x) and Eey) operations. This reduction can be implemented

in O(log n) time.

First recall that a convex bipartite graph is such that its vertex set can be written

as AU B where A = {all"" ap } and B = {b1l ... I bqh where (i) every edge has one

endpoint in A and the other endpoint in B, and (ii) if (ail bj ) and (a;l bj +/<) are edges

then so is (a;,b j+.) for every 1.$ oS < k. Let Ii (1';) be the smallest (largest) j such that

(a;,b j ) is an edge. Glover's algorithm [17J for finding a maximum matching in such a.

graph works as follows: Consider the vertices of B one by one, starting at b
1

• When

bj is considered, match it against a remaining ale that is adjacent to it and whose rle is

smallest, and then delete ale from the graph. It is Glover's algorithm that we formulate

as a sequence of 1(x) and E(y) operations, as follows.

Without loss of generality, we assume that the ai's are re-named so that 7"1 s; ... S; 1'
p

•

Let Lj (Hj ) denote the set that contains every ai whose Ii (ri) equals bj . Then Glover's

algorithm is equivalent to the problem of evaluating the sequence S created by considering

the vertices of B one by one, starting at b1 with 5 ::;: @ and (3 = -00. When b
j

is

considered, we append to the end of 5 an 1(ai) for every ai E L j , followed by an E({3).

Then (before moving to bj +1 ) we set (3 equal to the max of its old value and the largest

element in R j . If, in 5, the response to the j-th E(y) is ai, then the edge (ai, bj ) is in the

maximum matching. It is easy to prove that this procedure results in exactly the same

matching as Glover's algorithm. We can construct the list of ai's by sorting [9] and then

construct all the corresponding {3 values by a parallel prefix computation [24,25]. Thus,

we have the following.

Theorem 6.1: The maximum matching problem for convex bipartite graphs can be re

duced to the problem of evaluating 05 in O(log n) time using O(n) processors in the

EREW PRAM model, where 5 contains 1(:c) and E(y) operations, andwhere the argu

ments to the E(y) operations are non-decreasing.•

In the next subsection we show that the problem of evaluating a sequence of 1(x)

and E(y) operations is in the class NC2
• In the subsequent subsection, using a com-
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pletely different technique, we show that if the arguments to the B(y) operations are

non-decreasing then the evaluation problem is in NC1
• Thus, as a simple corollary, we

get that the maximum matching problem for convex bipartite graphs is in NC1 .

6.2 The General Off-Line Barrier-ExtractMin Problem

In this subsection we show how to evaluate a sequence S of Insert(x) and ExtractMin(y)

operations in O(logZ n) time using O(n3
/ log n) processors in the CREW PRAM model.

For expository reasons, we first concern ourselves with proving membership in NC by

giving a rather inefficient algorithm that runs in O(logZn) time with O(nS ) processors.

The next lemma reduces the problem to that of determining which E(y)'s have an empty

response.

Lemma 6.2: Let S be a sequence ofn l(x) and E(y) opera.tions. Let 0 be a.ny one of

the E(y) operations in S, and let T EST(S, 0) be any algorithm that solves the problem

of determining whether 0 has an empty response in 0S. Let T(n) and P(n) be the

time and processor complexities ofTEST(S, 0). Then determining the actual responses

to all tbe E(y) operations in 0S can be done in time O(T(n) + log n) witb O(n'P(n))

processors.

Proof: To every operation 0 that is an E(y), assign Pen) processors that perform

TEST(S,O) to determine whether it has a nonempty response in 08. If TEST(S,O)

determines that the response to 0 in 0S is empty, then that is the correct response for

O. However, if T EST(S, 0) determines that 0 has a nonempty response in 0S, then 0

gets assigned nP(n) processors whose task it will be to determine the actual response of

O. We now show how these nP(n) processors can find the (nonempty) response of such

an 0 in time O(T(n) + log n). We need only consider the prefix of S that ends with 0,

i.e., if S = OlOZ'" On and 0 = OJ = E(y) then we need only look at 0Sj where Sj is

Ol OZ ... OJ. Let (Xl, Xz, ... ,xq ) be the elements inserted in 5 j that are 2:: :l:, sorted from

worst to best (and hence :l:l 2:: :l:z 2:: ••• ~ :tq 2:: y ). In other words, if there are, in Sj, q

insertions of elements ~ y, then the sequence (Xl' :l:z, ... ,:l:q) is the sorted version of

{x: I(x) E S; and x ~ y}

One of these Xi'S is the correct response to O. To determine which one it is, we create

q sub~problems wh~re the the kth sub-problem is that of determining whether 0 has a

nonempty response in

(6.1)
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I.e., the kth sub-problem is obtained by putting just before OJ in 0Sj the sequence

E(x,)E(x,) ... E(x.). Each such kth sub-problem is solved in T(n) time with P(n)

processors using the TEST procedure (there are enough processors for this because OJ

has nP(n) processors assigned to it). We claim that the response of OJ in 0Sj is then x"

where s is the maximum k such that the response of 0; in the kth sub-problem is not

empty. We now show that x. is indeed the response of OJ in 08j. Let 1'10 be the response

to OJ in the kth sub-problem (possibly 1'10 is an empty response, i.e., 1'10 ="set empty").

Observe that the sequence 1'1, 1'2, ••. ,Tq is initially monotonically decreasing, then at some

threshold index, consists of Uset empty" responses (this monotonicity follows from the

way the q sub-problems are defined). Let Xt be the response to OJ in 08j . Then surely

the response to OJ is still Xt in every kth subproblem for which k < t (because the k E(y)

operations just before OJ in that sub-problem remove elements about which OJ "doesn't

care" because they are worse than its own response Xt). On the other hand, if k ;::: t,

then surely the response to OJ in the kth sub-problem is empty, because otherwise that

response is better than Xt, a contradiction (the response to OJ in any kth sub-problem

cannot be better than its response in 0Sj ). Therefore t = s, completing the proof (the

additive logn term in the time complexity comes from the max operation needed for

computing s).•

Next, we focus on describing a procedure TE8T(S, 0) that has a T(n) = 0(log2 n )

and a P(n) = O(n'(logn).

This will imply a weaker version of Theorem 6.4, one with 0(n6 /logn) processors.

We then show how to bring down the processor complexity to 0(n3 /logn) by exploiting

similarities between the n 2 copies of the T E8T-ing problem that are created.

Without loss of generality, we may describe T EST(S, 0) assuming that 0 is the last

operation in S, i.e., 8 = 0 10 2 ••• 0 .. where 0 ::; 0 ... We begin with the observation

that solving T EST(S, 0) amounts to determining the cardinality of a maximum up-left

matching problem [26]. Create n distinct points in the plane, as follows: for every

operation OJ in S, create a corresponding planar point whose x-coordinate is i ~d

whose y-coordinate is the parameter of Oi (i.e., z if OJ = I(z) or OJ = E(z)). The

points corresponding to E(z)'s are called plusses, those corresponding to I(z)'s are called

minuses. The responses to the E(z)'s in 08 can be viewed as being the result of the

following matching procedure: scan the plusses in left to right order (i.e., by increasing

x coordinates), m a ~ c h i n g the currently scanned plus with the lowest unmatched minus

that is to the left of it and not below it. The correspondence between the matching

so produced and the responses in 08 should be obvious: a plus at (i, a) is matched
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Figure 7: illustrating Region(p).

with a minus at (j,b), j < i and a ::; b, if and only if the E(a) corresponding to the

plus has as its response in 08 the element b inserted by the I(b) corresponding to the

minus. Furthermore, one can show [26] that this greedy left-to-right matching procedure

produces a matching of maximum cardinality among all possible up-left matchings (up

left matchings are ones in which a plus can be matched with a minus only if that minus

is to its left and not below it). These remarks imply that in order to determine whether

o has a response in 08, it suffices to compare the cardinality c of a maximum matching

for the configuration of plusses and minuses corresponding to 8, with the cardinality c'

of a maximum matching for the configuration of plusses and minuses corresponding to

8 - 0 = 0 1 0 2 ", On_I' If c = d then the presence of 0 does Dot make a difference

and hence its response in 08 is empty, while c = c' + 1 implies that it has a nonempty

response.

This reduces the problem of designing T EST(S, 0) to that of designing a procedure

for computing the size of the maximum cardinality up-left matching of a configuration

of n plusses and minuses. We now give a sketch of such a procedure.

If p = (a, b) is a plus, then Region(p) is the region (-00, a] X [b, +(0), i.e., the closure

of the region of the plane that is to the left of p and above it.

See Figure 7.

If P is a set of ~ l u s s e s , then Region(P) = UpEPRegion(p).

The deficiency of any region of the plane is the number of plusses in it minus the

number of minuses in it. The deficiency of a set of plusses P is that of Region(P) and is
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Figure B: Here max{def(P): P ~ II} = 4 and occurs for P = {u,v,w}.

denoted by def(P).

For example, in Figure B, def( {u,v,w}) = 5 -1 = 4.

Lemma 6.3 [26J: Let II denote the set ofplusses. The cardinality of a maximum up-left

matching is then equal to

IIII- max{def(P) : P f: II}.

Proof: A straightforward application of Hall's Theorem (see [26] for details) .•

The above lemma implies that one can compute T EST(S, 0) in 0(log2 n) time using

O(n
3
/1ogn) processors provided we can compute the quantity max{def(P) : P f: II}

within those same bounds. This is what we show how to do next.

Let G(S) be the weighted directed acyclic graph whose vertex set is the set of plusses

and two new special vertices s and t , and whose edge set is defined as follows. For every

two vertices p and q, there is an arc from p to q if and only if one of the following

conditions (i)-(iii) holds:

(i) p = s and q # t.

(ii) p # s and q = t.

(iii) p is a point (a:, b) and q a point (c,d) such that a ~ C and b ~ d (i.e., q is to the

right and above p).
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In case (i) the cost of the arc (s,q) is equal to def(q). In case (ii) the· cost of the arc (p,t)

is zero. In case (iii) the cost of the arc (p, q) is the deficiency of the region [a, cJ x [d, +00).

For the situation shown in Figure 8, the cost of arc (s,u) is 2 -1 = I, that of (u,v)

is 2, that of (v, w) is 1, and that of (w, t) is 0 (s and t are fictitious vertices to which no

points correspond in the figure).

It is not hard to see that the cost of a longest s-to-t path in G(S) is precisely equal to

the quantity ma.x{def(P) : P ~ II}. Since G(S) is acyclic, computing its longest s-to.t

path is trivial to do in 0(10g2 n) time with 0(n3 j log n) processors.

The above 0(log2 n) time, 0(n3 jlog n) processor algorithm for T EST(S, 0) imme

diately implies (by Lemma 6.2) an 0(log2 n) time, O(n6 j log n) processor algorithm for

evaluating sequence S.

However, this is extremely inefficient: we would be creating all n 2 instances of the

TEST-ing problem suggested by the proof of Lemma 6.2, i.e., all n 2 graphs G(S), one

for each S of the form 6.1 (in the proof of Lemma 6.2). Instead, we save a factor of n2

in the processor complexity as follows:

Step 1. We create a graph G(S): the one for S equal to the original sequence of n

operations.

Step 2. We solve the a l l ~ p a i r s longest paths problem on the G(S) created in Step

I, obtaining an all-pairs longest paths matrix M. This is trivial to do in time 0(log2 n)

and with 0(n3 jlogn) processors.

Step 3. We partition our n 3 flog n processors into n groups of n 2flog n processors

each, and assign one group to each E(y) in the original (input) sequence S. We now

describe the algorithm performed by one typical such group, say, the group assigned to

.OJ. The task this group of n 2 jlogn processors faces is to use the matrix M computed in

Step 2 to determine the response of OJ in 08. Refer to 6.1, in the proof of Lemma 6.2,

and recall that the response of OJ is one of Xl, ... , x q • To determine which one it is, we

already know that it suffices to compute the length of a longest s-to-t path in each of the

q + 1 graphs G1 , •.. , Gq+l where

G. = G(O, ... O;_,E(x,) ... E(x.)),

using the notational convention E(Yq+l) = OJ (= E(y)). We therefore need only con

cern ourselves with the problem of computing the lengths of these s-to-t paths. Ob

serve that no path ·can go through more than one of the q + 1 plusses corresponding to

{E(y,), ... ,E(YO+l)} (because y, 2 ... 2 Yo 2 y). Let Plus(E) denote the plus corre

sponding to E. The length (call it Best(k,l)) of a longest s-to-t path in G
k

that goes
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through Phts(E(Yl)) (I :s k) i, equal to the maximum, over all i 'E {I, ... ,j - I} for

which Oi is an E, of the quantity

M(s,Plus(O,)) + the co,t of the Plus(O,)-to-Plus(E(Yl)) arc in Gk •

We use the n
2
jlogn processors available to compute Best(k,l) for all pairs k,l in

O(logn) time. Then we use n/logn processors for each k to compute, in O(logn) time,

the length of a longest s-to-t path in GJ., which is equal to

max Best(k, 1).
1$1$1.

The time and processor complexities of the above algorithm are clearly dominated by

those needed for the all-pairs longest paths computation of Step 2. This establishes the

following theorem.

Theorem 6.4: Given a sequence S of n I(:z:) and E(y) operations, one can evaluate 08

in O(log2 n) time using O(n3Jlogn) processors in the GREW PRAM model.•

In the next subsection we study an important special case of this evaluation problem.

6.3 A Special Case of the Off-Line Barrier-ExtractMin Prob

lem

The main result of this subsection is an NC1 algorithm for the special case of evaluating

08 when 8 contains I(:z:) and E(y) operations, where the E(y) operations in S are such

that the sequence of y's is in non-decreasing order. As a consequence of this result, we can

obtain an NC
1

algorithm for finding a maximum matching in a convex bipartite graph,

a time improvement by a factor of log n over the previous fastest parallel algorithm for

this problem, by Dekel and Sahni [11].

Let m denote the number of E(y) operations in S, and let E(Yi) denote the i·th such

operation. Note that, by hypothesis, we have Yl $ Y2 $ ... $ Ym' Let Ai denote the

set of elements inserted by the I(z) operations between E(Yi_l) and E(Yi), so that the

sequence S can be written S = A,E(y,)A,E(y,) ... AmE(Ym) (,orne of the A;', may be

empty). Without loss of generality, we assume that no Ai contains an element less than

Yi (such an element would be useless anyway).

The longest-paths characterization of the previous section apparently does not result

in an O(log n) t i m e ~ algorithm: that Yl 5 yz $ ... $ Yrn implies that the plusses form

an increasing chain, but this in itself does not give an O(log n) time algorithm for the
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resulting longest-path problem. Our solution actually avoids the ch'aracterization of the

previous section. Instead, we replace the problem with a polynomial number .of sub

problems each of which is such that the first E(y) occurs after the last f(z). The next

lemma observes that this type of problem is solvable in O(log n) time.

Lemma 6.5: If S is of the form AE(ydE(Y2)E(Ym), then all the responses can be com

puted in O(logn) time using O(n) processors in the EREW PRAM model.

Proof: Let L(i,k), 1 ,$ i::; m, 0 ,$ k,$ JAI, denote the set consisting of the largest

k elements of A. Note that L(O,IAI) = A. Let the successor of L(i,k) be the set

obtained by removing all the elements that are less than Yi from the set resulting from

L(i,k)E(y;). It is easy to see that the successor of L(i,k) is equal to L(i + 1,p) for

some integer p < k , since all the E(Yi)'.s come after A and the Yi'S are monotonically

non-decreasing. An L(i, k) with i < m has exactly one successor and hence the successor

function defines a tree whose O(n2
) nodes are the L(i,k)'s and such that the parent of

L(i, k) is its successor. The root of this tree is L(m, q) for some integer q. The successor

function is easily computed, since the successor of L(i, k) is L(i + 1, k - 1) if k ,$ ni and

is L(i + l,ni) otherwise, where ni is the number of elements in A greater than or equal

to Yi. In the tree defined by the successor function, consider the path originating from

the leaf L(O, IAI) and terminating at the root L(m, q). This path constitutes a complete

description of the responses to the E(Yi)'S, as follows. If L(i, k) is on this path and k > 0

then the response to E(Yi) is the smallest element in L(i, k). If L(i, k) is on this path

and k = 0 then E(Yi) has a "set empty" response. Tracing this path is trivial to do

in time O(logn) with O(n2
) processors. We can achieve O(logn) time using only O(n)

processors, however. The method is very similar to that used in Subsection 3.2. In this

case, however, one merges singleton sets instead of lists, so that the time is O(log n)

instead of O(log nlog log n). This is because for any collection of columns i, i +1, ... , j

there is only one critical rank, namely the rank that has LU, nj) as its successor.•

We now show how to solve the problem for S = A,E(y')A,E(y,)AmE(Ym) by solving

a polynomial number of problems each of which is of the type considered in Lemma 6.5.

Notation. Let A ij - Ai U Ai+l U ... U A j • Let Tij be the response

to E(y;) in A;;E(y,)E(y,+,) ... E(y;). Let Z'; be the response to E(y;) in

A,E(y,)A'+lE(y'+l)'" A;E(y;).

Note that in tl#s notation the response to E(Yj) in S is Zlj. Also note that the

Ti;'S can be computed in O(log n) time because of Lemma 6.5. The following theorem
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establishes a crucial link between the T;/S and the z]j'S and implies that the z]l's can

also be computed in O(logn) time.

Lemma 6.6: For every j, 1::; j::; m, Zlj = minl$'S;T;j.

Proof: The proof is in two steps (claims 1 and 2).

Claim 1. Zlj::; minI::;;::;; Tij.

Proof of Claim 1. First, note that Zlj ::; Zij for every i ::; j. Hence it suffices to prove

that Zij ::; Tij for every i ::; j. We prove this by induction on j -i, the basis (j = i) being

trivial. For the inductive step, we distinguish two cases.

Case 1. In A'jE(Yi)E(Yi+d ... E(Yj) no element of Ai gets extracted. In this case we

have

Ti; the response to E(y;) in A,.";E(Yi)E(Yi.,),,. E{y;)

> the response to E(y;) in Ai+";E{Yi+,)E(Yi+2),,, E(y;), (6,2)

Let Ai be obtained from Ai by removing from it the smallest element, and all the elements

< Yi+l· The definition of Z;j implies:

Z,; - the response to E{y;) in A;., U A,E(Yi+l)Ai+2E{Yi+2)" ,A;E(y;)

< the response to E(y;) in A;+lE(Yi+l)A;+2E(Yi+2) ... A;E{y;),

which, using the induction hypothesis, gives us the following:

Zi; S the response to E(y;) in Ai+1,;E(Yi.,)E(y'+2) ... E{y;).

This and (6.2) imply that Zi; S T,;.

Case 2. In AijE(Yi)E(Yi+l)'" E(Yj) at least one element of Ai gets extracted. Since

YI :s Y2 ::; ... :5 Ym the smallest element in Ai gets extracted. Let Ai be obtained from

Ai by removing from it the smallest element, and all the elements < Yi+1' The definition

of Tij implies

T"0' the response to E{y;) in Ai.,,; U AiE(Yi.,)E(Yi+2)'" E(y;) (6.3)

The definition of Zij implies

which l using the induction hypothesis
l

in turn, implies
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where (6.3) was used. This completes the proof of Claim 1.

Claim 2. Zlj ~ min1$i$j Tij.

Proof of Claim 2: We prove, by induction on j, that for every j there is an i ::; j

such that Zlj ~ 'T"i.j. The basis (j = 1) holds trivially. For the inductive step, we again

distinguish two cases.

Case 1. Z11 > Zlj' Let .4.2 = A2 U A 1 - {zn}, and let Ai = Ai if 2 < i ::; j. Then we

have that

Z,; = the response to E(y;) in A,E(y,)A,E(y,)A, ... A;E(y;).

By the induction hypothesis, there is an i, 2 ::; i ::; j, such that

Zl; ~ the response to E(y;) in (A; U AiH U ... U A;)E(y,)E(y'+l)'" E(y;). (6.4)

If i ~ 3, then the right hand side of (6.4) is Tij, and hence Zlj ?: Tij. If i = 2, then

Zl; ~ the response to E(y;) in (A,- {zn}) U A, U. ooA;)E(y,)E(y,)E(y;).(6.5)

Since Z11 > Zlj and Z11 is the smallest element of All all the elements of A
1

- {Z11}

are larger than Zlj and hence, by (6.5), larger than the right·hand side of (6.5).

Consequently, the right-hand side of (6.5) is the same as the response to E(Yj) in

A,;E(y,)E(y,) ... E(y;), i.e., T,;.

Case 2. Z11 ::; Zlj. Let .4.2 = A1 U A2 - {Z11} - {all elements < Y2}, and let Ai = Ai

if 2 < i :5 j. Then we have the following:

Z'; = the response to E(y;) in A,E(y,)A,E(y,)A•... A;E(y;).

By the induction hypothesis, there is an i, 2 ::; i $ j, such that

Z'; ~ the response to E(y;) in Ai U A'H U ... U A;)E(Yi)E(YiH)E(y;). (6.6)

If i ~ 3, then the right-hand side of (6.6) is 'T"ij, and hence zlj ~ Tij. If i = 2, then

z'; ~ the response to E(y;) in (A, U A, U 00. U A;)E(y,)E(Y3)' 00 E(y;). (6.7)

From (6.7), and the fact that any element in A 1 U A2 - A2 is::; Zlj, it follows that

z'; ~ the response to E(y;) in (A, U A, - A,) U (A, U A3 U ... U A;)E(y,)E(Y3)E(y;)

the response to E(y;) in (A , U A, U A, U ... U A;)E(y,)E(Y3)E(y;)

This completes the proof of Claim 2, and hence of Lemma 6.6.•

We are now ready to state the main result of this subsection.
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Theorem 6.7: Given a sequence 8 = A1E(ydA2E(Y2)AmE(ym.) where Yl :5 Y2 :5 ... :5

Ym, one can evaluate 08 in O(logn) time using O(n3 ) processors in the EREW PRAM

model.

Proof: Assign n processors to every pair i and i, i :5 i, and use them to compute

r;j in O(logn) time. Then assign nflogn processors to every E(Yi) and use them to

compute Zlj = minl<i<; rij. The overall time complexity is clearly O(log n) using O(n3 )

processors.•

Corollary 6.8: The problem of computing a maximum matching for B. convex bipartite

graph is in NC1.

Proof: An immediate consequence of Theorems 6.1 and 6.7.•

7 Final Remarks

The problem of efficiently evaluating an off-line sequence of data structure operations

has been extensively studied for sequential models of computation. However, surprisingly

little work had previously been done on the parallel complexity of such problems. This

paper provides a first step in the study of the parallel complexity of these problems. Here

we focussed primarily on problems whose membership in NC was nonobvious, due to

the behavior of ExtractMin and ExtraetMin(y) operations. The main open question

that remains is whether the problem is in NC when 8 contains I(x), D(x) and E(y)

operations.
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