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We shall develop algorithm for solving the rectanigle intersection Orobleat

on the SNM and on the CCC. As two intermediate steps in our approach,

we shall study the problem of reporting intersecting pairs of horizontal
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amount of parallelism, which can be exploited to substantially reduce the
computation time. Precisely, using the SM with a number of processors and
memory units linear in the problem size, algorithms are developed t solve

problems of reporting intersection of N rectangles in time O((logN) k), where
k is the mximmI number of ntersections per rectangle, intersection ?f N

rectangles In time 0((1. N)f), planar point location in time O((logN 'loglosN),

finding the two-dimensional convex hull of N points in time O((logN) ), the

three-dimensional convex hull of N points in time 0((logN)
3log1ogN), and con-

Fstructing the planar Voronoi diagram of N points in tim O((logN)3logloSN). Using
the CCC with a number of processors linear in the problem size, the parallel

algorithms developed for all of these problems, except reporting intersection of

rectangles and constructing the two-dimensional convex hull, have time complexity

increased only by a factor of logN/loglogN with respect to that on the SM.

The algorithms for reporting intersection of rectangles and for constructing the

two-dimensional convex hull on the CCC have the same time complexity as that on

the SNM. With an increase in the number of processors of the CCC to N
1
+*

(0 <a 1), all of these problems can be solved with algorithms of time com-

plexity improved by a factor of l/(oilogN) with respect to that on the CCC with N

processors.
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PARALLEL ALGORITHM FOR GEOMETRIC PROBLEM

~ \Anita Liu Chow
Department of Computer Science

University of Illinois at Urbana-Champaign, 1980

I, ABSTRACT

Ii The existence of parallel computing systems and the important

applications of geometric solutions have motivated our study on the design

Iand analysis algorithms for solving geometric problems on two parallel

computing systems: the Shared Memory Machine (SHM) and the Cube-Connected-

Cycles (CCC). The validity of the first SM resides in uncovering the

inherent data-dependence of the problems, while that of the CCC, which

complies with the VLSI technological constraints, is the development of

I. practical parallel algorithms. It is shown that solutions to geometric

-- problems can be organized to reveal a large amount of parallelism, which

can be exploited to substantially reduce the computation time.\( recisely,

L using the SlM with a number of processors and memory units linear in the

problem size, algorithms are developed to solve problems of reporting

intersection of N rectangles in time 0((logN)2+k), where k Is the

maximum number of intersections per rectangle,

intersection of N rectangles in time 0((logN) 2), planar point location

in t 0((logN) 2 1oglogN), finding the two-dimensional convex hull of N

points in time 0((iogN) 2 ), the three-dimensional convex hull of N.

points in time 0((logN)3 loglogN), and constructing the planar Voronoi
Sdiagram of N points in time O((ioSN) 3 10910N). Using the CCC with a

number of processors linear in the problem size, the parallel algorithms

Ideveloped for all of these problems, except reporting intersection of

g rectangles and constructing the two-dimensional convex hull,

have time complexity increased only by a factor of logN/loglogN with

I.]
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respect to that on the SM. The algorithm for reporting intersection

[i of rectangles and for constructing the two-dimensional convex hull on

the CCC have the same time complexity as that on the Si. With an

, ~; increase in the number of processors of the CCC to N (0 < a 5 1),

all of these problem can be solved with algorithm of tim complexity

improved by a factor of 1/(*IogN) with respect to that on the CCC with N

1. processors.
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ICHAPTER 1

INTRODUCTION

The existence of parallel computers [5,10,15,32,38] has motivated the

development of parallel algorithms for solving many problems. These prob-

Slems include both numerical and non-numerical problems like matrix problems

(11,14,36], polynomial evaluation (24,25], arithmetic computation (23],

1 graph problems [3,12,17,33], and sorting (16,29,37]. A recent development

in applied computation theory has been the solution of qeomtric problem

1by a uniprocessor system [6,8,20,27,34]. It is illustrated in (34] that

jj geometric problems are frequently encountered in operation research, pattern

recognition, computer graphics, and statistics.

L The topic of this thesis is the study of the solution of geometric

$ problem by parallel computing systems. We shall design and analyze parallel

algorithms with references to two systems: the shared memory machine [26]

4 and the cube-connected-cycles [311. The validity of the first model resides

in uncovering the inherent data-dependence of given problems, while that of

, the second is the development of practical algorithms.

r 1.1 Parallel Computing Systems

A meaningful study of the design and analysis of parallel algorithms

requires a precise model of computation. In this section, we shall

describe two systems which are adopted in this thesis.

1.1.1 The Shared Memory Machine (54)

Several workers have designed and analyzed efficient parallel

algorithms with reference to a shared memory machine [3,10,14,16,17,29,

133,37]. In this model (refer to Figure 1), the processors can comunicate

with each other through memory. Each processor is capable of performing

K ''. . . ,, 7 . ...
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arithmetic operations, boolean operations, comparisons and, possibly, the

* calculations of trigonometric functions in unit time. The main memory

consists of a number of parallel memocy units, each of which contains a

sufficient number of words. It takes constant time to transmit data

from any processor to any memory unit and vice versa. Processors are

allowed to simultaneously read from, but not write in, the same word.

However, two processors are not permitted to read or write into different

words of the same memory unit. (This situation is referred to as memory

conflicts.)

We shall assume that the processors are indexed 0 through n-l and the

memory units are indexed from 0 through m-1. Arrays A(0:m-1) of elements

A(O),...,A(m-l) are stored systematically in the main memory such that

A(i) is in memory unit i.

1.1.2 The Cube Machine (CM) and the Cube-Connected-Cycles (CCC)

In these models there is no shAred memory. Each processor has a

private RAM memory. Each processor, as in the SIM, is capable of per-

forming arithmetic operations, boolean operations, comparisons and

calculating trigonometric functions in unit time.

Assume that n - 2 and let BIT 2 (a) be the (J+l) h least significant

bit in the binary expansion of a. In the Cube Machine, the processors

are interconnected as a k dimensional cube, that is, processor i is

connected to processors i + (1-2BIT1 (i))2
j , 0!5 j < k. Data may be

transmitted from one processor tc another only via this interconnection

pattern.I

Ii
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Processor i can be identified by a pair of integers (1,p) such that

,2.r +p - i where r is the smallest integer for r+2 r 
Z k. In the cube-

connected-cycles, which was recently proposed by Preparata and Vuillemin

[28], processor (1,p) is connected to processor (L,(p+l)mod 2 r).

(A'(p -l)mod 2r) and 1 (1-2BITp(A))2P,p), (refer to Figure 2). The

geometric structure underlying the interconnection of the processors is

that of a k-dimensional cube, but the CCC requires only three connections

per processor. Once again, data transmission from processor to processor

is possible only via the available connections.

The development of algorithms with reference to the CCC, unlike that

on the SMM which considers only the data-dependence, concerns also the data-

movement. Moreover, this machine complies with the present technological

constraints of VISI design [22]. It is shown that the CCC is remarkably

suited for implementing efficient algorithms such as Radix-2 Fast Fourier

Transform, Bitonic Sorting, etc.

Algorithms for some interesting problems - such as bitonic merge and

cyclic shift - perform a sequence of basic operations on data which are

k-l k-2 0
su cessively 2 ,2,...,2 - 1 locations apart. This class of algorithms

is referred to as DESCEND class 131]. The dual class ASCEND consists of

algorithms which perform a sequence of basic operations on data that

are successively I - 2 0,2 ,...',2 k1 locations apart. Algorithms in

DESCEND class are of the form:

for i- k-l downto 0 do
foreach J, 0 j < 2 do

if BITi(j) - 0 then OPER(A(j),A(j +2));

where OPER(A(J), A(J+2 ))is some basic operation on the operands A(i)

.'
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and A(J +2 2). ASCEND differs from DESCEND only in the control loop. The

control loop of ASCEND is: for i - 0 to k-I do. In both cases, the number

of parallel steps on the CM is clearly k. In [28], Preparata and Vuillem-n

show that algorithms in both classes can be implemented on the CCC in k

parallel steps. They also show that other problems (such as peruitation,

shuffle, unshuffle, bit reversal, odd-even mere, Fast-Fourier-Transform,

convolution, matrix transposition) having programs consisting of short

sequence of algorithms in the DESCEND or ASCEND classes run in O(k) parallel

steps on the CCC. There are also applications - such as bitonic sort,

odd-even sort, and calculations of symmetric functions - for which the

combining step of the two results of a recursive call is itself an algorithm

in the DESCEND or ASCEND class. These algorithms run in 0((logn) 2) parallel

steps on the CCC.

1.2 Class of Problems Considered

In this paper, parallel algorithms are presented for several geometric

problems, based on the parallel computing systems described in Section 1.1.

The geometric problems which are considered here are the following.

We first consider a subproblem of the intersection problems. Given a

set of N rectangles with their sides parallel to the coordinate axes, we

want to report any pair of rectangles which intersect. Apart from being

interesting in its own right, this problem has an important application

in VLSZ circuitry design rule checking [4,19]. Bentley and Wood [71

recently investigated this problem for a uniprocessor system and developed

an O(NloSN4+k) time algorithm for reporting all k such intersecting pairs.

(1)All logarithms in this thesis are to the base 2. 1
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We shall develop algorithms for solving the rectangle intersection problem

on the SM1 and on the CCC. As two intermediate steps in our approach,

we shall study the problems of reporting intersecting pairs of horizontal

and vertical line segments and of two dimensional range searching. The

latter problem is also important in its own right and has applications in

the database systems.

The second problem to be studied is an inclusion problem. Given a

planar graph embedded in the plane as a straight line graph G [21] with

N vertices and a set of M points, for each of these M points, we have to

find the region of the planar subdivision induced by G which contains it.

In short, we shall refer to this problem as planar point location. This

problem is quite important in computational geometry. Indeed, point loca-

tion is a crucial step in our three-dimensional convex hull algorithms to

be developed. The most recent and prcia eunilresult is due t

Preparata 128]. This algorithm runs in time O(MlogN) on a data structure

which can be constructed in time O(NlogN).

The next two problems to be investigated are two-dimensional and

three-dimensional convex hulls. Given a set S of N points, the convex

hull CH(S) of S is the intersection of all convex sets containing S.

The convex hull CH(S) is a convex polyhedral region. Chapter 3 of [34]

demonstrates the importance of the convex hull problems, which arise in

statistics, numerical analysis, and image processing, as well as in many

other fields. Preparata and Hong (301 show that the convex hulls of

sets of points in both two dimensions or three dimensions can be

determined serially with O(NlogN) operations.

,_ __ _ __ _ __ __ _ __ _ __ _ __ __ _ __ _ __
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The last problem is the construction of the Voronoi diagram for a

set of N points in the plane. A Voronoi diagram is a partition of the

plane into N polygonal regions, each of which is associated with a given

point and is the locus of points closer to the given point than to any

other point. This problem arises in clustering analysis [13] and in the

context of several closest-point problems [35]. While optimal O(NlogN)

serial algorithms exist, we shall consider the construction of Voronoi

diagrams on the SLM and on the CCC.

We shall develop algorithms for the above problems on the SM

with a number of processors linear in the problem size and on the

cube machine with numbers of processors both linear and superlinear in

the problem size. The algorithms that we developed for the cube

machine are ASCEND and DESCEND programs, therefore they can be

implemented on the CCC without significantly increasing the time

complexity.

1.3 Outline of Thesis

In the next chapter we develop some basic tools which will be used

in later chapters. Each of the next five chapters is devoted to a

problem described in Section 1.2. Each chapter consists of three main

algorithms: the first for the S and the second for the CCC, both

with a number of processors linear in the problem size; the last one

for the CCC with a number of processors superlinear in the problem

size.

ii
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Chapter 3 is on intersection of rectangles. Chapter 4 Li on

F planar point location. Chapters 5 and 6 are on convex hulls in two

dimensions and three dimensions respectively. Chapter 7 is on the

construction of Voronoi diaErams. In Chapter 8 conclusions are

drawn.

I...
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CHAPTER 2

BASIC ALGORITHM

In this thesis, parallel algorithms are sought for various geometric

problems. The strategy used to develop an algorithm for a given problem

is to devise a technique which reduces the solution of the problem to

the solution of a sequence of problems for which efficient parallel

algorithms can be developed. In anticipation of later use, we develop

some basic parallel algorithms.

2.1 On the S2'M with N Processors

We shall discuss the problem of data extraction and the O((logN) 2 )

time solution for finding the minimum or maximum of a set of N numbers.

2.1.1 Data Extraction

We consider the following extraction problem. Given an ordered

array A(O:N-1) and an associated array t(O:N-1) of tags, we want to move

elements A(i), with t(i) a 1, to consecutive memory units in a stable

fashion, i.e., preserving the original order.

We first determine the rank R(i) of element A(i), which is the

number of elements preceding it and with tags being set to 1. Then

elements with tags equal to 1 are moved to consecutive memory units

defined by their ranks. We use Nassimi's ranking algorithm: The

k
algorithm is best described recursively. Divide a 2 element set into

2k- 1
two halves, each containing 2 consecutive elements. Let R(i) be the

rank of A(i) in the 2k-l-set. Let S(i) be the total number of elements

in the 2 k- se containing A(i) with tags equal to one. Then the rank

of an element in a 2k-set is R(i) if BITk.l() equals to 0 (note that I
BITkl(i) a 0 for the left 2k-lset of a 2kset) and R(i) + S(i-2 k-)

if BITk...(i) equals to I. (Note that S(i- 2k-l is constant for all terms

) i cnstntfo al trm

j I
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of the left 2 k-set.) Unfolding the recursion yields the iterative

procedure RANK:

Procedure RANK(A,t,R):

/* determine R() - number of A(j) for which t(j) - 1 and j < j */

foreach 1, 05 i < N do

begin R(i) -
if t(i) - 1 then Si 1 1 a (i) 0

end
for k - 0 jo logN- do

foreach i, 0:5 1 < N do
begin T(i +12B

T~i +(t-ZSTk(i))2 k)  S(.)

if BITk(i) - I then R(i)- R(i)+T(i)

S .)- S(i)+T(i)
end

end

It is easy to see that procedure RANK runs in time O(logN) on a SMM

with N processors and N memories. We are now able to describe the entire

procedure EXTRACT1. (IAI is the number of elements with tag - 1).

procedure EXTRACT1 (A,t):

/* extract elements A(i) with t(i) - 1 and move them to consecutive
memory units beginning at unit 0 */

begin

/* determine the rank R(i) of each element A(i) */
call RANK(A,t,R)

" /* route A(i) to R(i) */

foeach i, 0:5 1 < N do
begin T(i) -A~i)

if t(i) - 1 then A(R(i)) T(i)
end

/* determine JAI and fill the right end of A with null *1
if t(N-1) - 0 then IAI - R(N--) lse JAI R(n-l)+l
foreach i, IAI!5 i < N do A(L) - null

end

The time complexity of EXTRACT1 is mainly determined by the first step

which calls procedure RANK. Therefore, procedure EXTRACT1 runs in time

O(loSN) on a SMlK with N processors and N mmories.

I I .-
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Theorem 2.1. A selected subset of an ordered array A(O:N-1) of elements I.
can be moved to consecutive memory units in a stable fashion in time

O(logN) on a SM with N processors and N memory units.

2.1.2 Findins the Minimm O(tsimum) of N Numbers

We now review a well-known O(logN) time algorithm for finding the

minimm of a set S of N numbers: we first partition S into two subsets

S1 and S, of equal size. We then find the minima a, of S, and m2 of S2

simultaneously. The minimm of S is the smaller number between al and m2.

It can be written as follows.

function MINIMM (S)

/* returns the mini== of S */

begin foreach 1, 0:<i < N doS'(i) S(i) i
for k- 0 to logN-1 do

foreach i, 0 S i < N do
if BIT ()Ote

S'(i) > SI(i+ 2 -) then S'(i) - S (i+2 k )
return (S'(0))

end

Similarly, we can find the maximum of N numbers on a SIM with N

processors.

Theorem 2.2. The miniamu (maximum) of N numbers can be determined in time

O(logN) on a SIYM with N processors.

2.2 On the CCC with N Processors

We shall discuss some basic tools like data extraction, selected

broadcasting, parallel searching, and finding the minimum (maximam) of N

numbers. We shall develop efficient algorithms for these problems on a

CCC with a number of processors linear in the problem size.

I

S I' '



2.2.1 Data Extraction

Procedure EXTRACT1 described in Section 2.1.1 is not suitable for

implementation on the CCC. The step which is causing difficulties is the

routing of data to appropriate processors as determined by the data rank.

The routing will be referred to as concentration. During concentration,

selected data are moved to consecutive processors. Nassimi. 126] solved

this problem on a CM as follows: Let t(i), when it is equal to 1, be the

indicator that data item A(i) is to be moved to the R(i)th processor.

First, data A(i), with t(i) - L, are moved to processors such that the

processor index and R(i) agree in bit position 0. The next routing

assures that processor indices and R(i) agree in bit positions 0 and 1;

and so on until data are routed to the correct processors. Figure 3

is an example of concentration with t(i) - 1 for i - 1,2,4,7. Figure 3(a)

shows the initial values of R(i) in binary. TLhe first, second, and third

iterations of the above procedure yield the configurations of Figures 3(b),

3(c) and 3(d) respectively. The third iteration completes the concentration.

The formal description of the concentration algorithm is as follows:

procedure CONCENTRATE(A,R,t):

/* route A(i) with t(i) - 1 to processor R(i). This procedure will be
used to move data A(i) with t(i) - 1 to consecutive processors */

ben for k - 0 to logN-L do
foreach 1, 0:5 1 < Ndo

if t(i) -1 and BITk(i) 9 BITk(R(i))then eui T( (i)

then k i A(i+(l-BITk(i))2k)  A(i)

- R(i+(l-ITk(i))2k) . R(i)

en t(i+(l-BITk(1))2 ) t(i)
dend

1.
K 1iand

"5,W*-
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1 000 001 010 0Oi1 100 1.01 3.30 1311

RM 1 000 10011 010 1 i

(a) ini~tial. cofigurationl

1 000 001 010 011 100 101 110 il1l-

RMi 000 001 010 013.

4% t) C

(b) after one iteration

1 000 001 010 Oi1 100 101 110 ill

RMi 000 00 1010 011

(c) after two iterations

1 000 001 010 011 100 101 110 ill

RMi 000 001 010 011

(d) after three Iterations

Figure 3. Data extraction with t(I) *1 for 1 1,2,4,7.
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It is straightforward to set that procedure CONCENTRATE can be

implemented on a CCC with N processors in O(logN) steps; and procedure

RANK, which is introduced in Section 2.1.1 to deteri.ne the number of

elements with t(i) - I to the loft of each data, can also be carried out

on a CCC with N processors in O(logN) steps. We now describe an O(logN)

time data extraction algorithm on a CCC with N processors:

procedure EXTRACT2 (A, t):

/* extract AMi with t(i) - 1 and move them to consecutive processors
beginning at processor 0. *

begin call RANK(A,t,R)

/* determuine JAI - number of A(i) with t(i) = I *
if t(N-l) - 0 then JAI -R(N-l) else JAI -R(N-l)+l

Zall CONCENTRATE (A,R,t)

/* fill the right end of array A with null *

foreach i, JAj 5 i < N do A(i) -null

end

Theorem 2.3. A selected subset of an ordered array A(O:N-l) Of elements

can be moved to consecutive memory Units in a stable fashion on a CCC

with N processors-in O(logN) steps.

2.2.2 Selected Broadcasting

Being able to transmit data efficiently is essential for a fast algorithm.

We now consider a special case of selected broadcasting. Let P(O: N-I) be a

storage array and let Cal* ... #an) be a selected subset of CO,...,N-l], where

a < a i~'We denote the expression a i+t- a 1- by LVai) for i1,.nl and

N-a n 1 by L(a n). Our objective is to copy data D(ai) into P(ai),P(a i+ ).,

?(a i+ L(aid) for L -1,...- ,n. For example, letting N 9, n -a2, a 1 -2 and

a. 2 s5, we would copy D(2) into P(2), P(3), P(4) and D(5) into P(5), P(6),

P(7) andP()
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We shall describe the selected broadcasting procedure along with an

example. Let n - 1, N - 16, a1 - 5, and L(a1 ) - 5, that is we want to move

D(5) to P(5),P(6),...,P(10). In Figure 4 the shaded locations show the data

movement in selected broadcasting. Selected broadcasting is carried out by

the same routing as in concentration: during the k iteration, data D(i) is

k
to be copied into P(i+h),P(i+h+l),...,P(i+L(i)), where h - min(2L(i)).

Referring to the example, during the 0 th iteration, L(5) - 5 indicates that

D(5) is to be copied into P(6),P(7),...,P(l0); and during the 3
rd iteration,

L(0) - 10 indicates that D(O) is to be copied into P(8),P(9),P(10). If

L(i) 2k , we move data D(i) to the processor such that the processor index

and i+2 agree in bits 0,1,...,k. Raferring to the 1 iteration of the

example, D(4) is moved to processor 6; and referring to the 2ad iteration,

D(4) is moved to processor 0, such that 0 and 8 =4+22 agree in bits

0,1,2. During this routing, data may be moving backward (i.e., moving

to a processor with lower index) which is contrary to our objective of

forward broadcasting. We indicate this transitional state by setting the

flag BACKWARD(i) to 1. We have to adjust L(i) by ± 2k depending on whether

data is moved backward or forward. In the example, D(4) is moved to

processor 0 during the 2nd iteration, so the flag BACKWARD(0) is set to 1

and L(0) is assigned to be L(4)+ 22  10. When L(i) < 2k-I
, we know that 7

D(M) will not be moved in later iteration. Moreover, when 0 ! L(i) .< 2 + "

and D(i) is not in the backward transitional state, we can copy D(i) into

P(i) and set L(i) to -I. Referring to the 1 5t iteration of the example,

i
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D I I I __IL -1 -1 -1 -1 -1 5 -11-1 -1 -1 -1 -1 -11-11-1 1

BACKWARD 0 0 0 0 0 00000 0 0 0 0 0 0
p

initial configuration

D

BACKWA RD 0 - 0 - 1 1 - 1 - 1 _ _ _1- 1 - -1 -1 -1 - 1-

p I

after the 0 th iteration

D JL. -1 -1 -1 -11 1 4 -1-1 -1:-1 -1-1 -1-1 -1
BACKWARD 0 06 000 0 0 00 00 0 0 0 0

: after the 1
s 

iteration

i. SBACKWABDp 01 01 00 0 0 0 0 0 0 0

p

after the 2nd iteration

D
L 10l 1 -11I-11-11-1 1-1 1-11-11- - - -il

BACKWARD 1 0 1 0 0 0 01 0 0 0 0 0 0

rd
after the 3 iteration

Safter 'the 3 r d 
it:erati on

IF

Figre_. __oad ____n __)_____,P6)..,(0)

' 1w
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L(7) is first set to 3, so 05 L(7) < 2' and BACKWARD(7) is 0, then we

can copy D(7) into P(7) and set L(7) to -I. We claim that at the end of

(logN+l) iterations, the broadcasting is complete. The program for the

selected broadcasting is as follows:

2rocedure SELECTEDBROADCASTING (D,L,P)

/* when L(i) > 0, copy D(i) into P(i),P(i+l),...,P(i+L(i)).
BACKWARD will be a flag for backward transitional stage.

T,TL,BACKWARD will be used as temporary storage for D,L,
BACKWARD respectively *1

begin
foreach i, 0 < i < N do

begin TL(i) - -1, BACKWARD(i) - 0 end
for k - 0 to log N-l do

foreach i, 0 5 i < N do
begtin

/* move D(i) to the processor such that the
processor index and the destination agree in
bits 0,1,. .. ,k */

1. if L(i)-2 k then
- begin kT . (-2BITk(1))2 D(i)

TL(i+(I-2BIT k (1 ) )2 k L(i)+(2BIkk(i ) - 1) 2
k

ed TBACKWARD(i+(1-2BIT k(1 ) )2 
k )  BIT k(i )

P end
/* determine if data in D(i) is permanent,

discarded or have to be saved *

2. if 0 L(i) < 2 kil then
begin if BACKWARD(i) - 0 then P(i) - D(i)

L(i) - -l

end

/* determine if data in temporary location T(i) is
permanent, can be discarded or have to be saved * ,|

3. if 0 <- TL(i) < 2 k~ l then .

bgnif TBACKWARD(L) -0 the._n P(i) -- T(i)
T(L) -1

enad

-.. iI
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4. if TL(i) a 2
k+l then

bezin D(i) - T(i)
L(i) - TL(i)
BACWARD(i) TACKWARD(i)
TL(i) - -1

end
end

end

The correctness of SELECTED-BROADCAST is not immediate. We must show

that (1) whenever data is to be stored at some location, the previous

imformation at that location can be discarded; (2) D(ai) is moved to

P(ai),...,P(a+L(ai)) for i a t,...n at the termination of the procedure.

Theorem 2.4. Procedure SELECTED_BROADCAST is correct.

Proof. It is observed that at the beginning of each iteration TL(i) - -1,

Yi; so prior to step 1, information at T(i), TL(i) and TBACKIOARD(i) can be

discarded for Yi.

Suppose BITk(i) - 0 and L(2k+i) 2 2k at step 1. Then TL(i) is

assigned the value L(2k+i) +2kx 2k+ l and by the specifi4tion of the

problem, L(i) < 2 . At step 2, L(i) is then set to el whih implies

that prior to step 4, information at D(i), L(i), BAC1WARD(i) can be

discarded. Suppose BITk(i) - I and L(i) k 2k at step 1. By the

specification of the problem, L(i-2 k ) < 2k4l at step 1. TL(i) may be set

t to L(i-2k) - 2k < 2k or remains -1 depending on the value of L(i-2 k); in

either case TL(i) is -1 at the completion of step 3. Therefore, step 4

has no storage conflicts.

I-

*1

________

-
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To complete the proof, it is now sufficient to show for n 1 1, D(al)

is correctly moved to P(a1),...,P(al+L(a1)) and data D(a1 ) is never moved

to P(i), for 1 4 Cal , ...,al L(al)] during the process. It is simple to

see the routing in the algorithm guarantees D(a!) reaches processors

al)al+l,...,a+L(al). Indicators BAC.ARD(i) and TBACKWARD(i) determine

whether a piece of data arrives at processor i should be written into P(i).

If the data is arriving from a processor with higher index then this data

is in a transitional stage, otherwise this data is in its destination. C

Procedure SELECTED-BROADCAST runs in time 0(logN) on a CCC with N

processors.

Theorem.2.4. Given a subset (ai,...,an] of (0,...,N-1] and a <a.+,

data items D(ai) can be copied into P(a ),P(ai+l,...,P(ai+L(ai)), where

L(ai) = ai 1 -ai-l, for i - 1,...,n, in time O(logN) on a CCC with N

processors.

2.2.3 Parallel Searching

Given an array A(0:N-l) of N elements in ascending order and a set

Q(O:M-l) of test elements, we want to find for each i, 0 : i < M, A(Ji )

such that A(Ji) 1 QM < A(ji+l). We present the set of test elements

in descending order. Then A and Q are merged using Batcher's bitonic

merge. Then A(J) is broadcast to all the test elements between A(J) and

A(J+l) in the resulting merged sequence of A and Q. For example, N = 4,

- 5, A(0),...,A(3) are 1, 3, 4, 8 respectively, and Q(O),...,Q(
4 ) are

1, 2, 4, 5, 6 respectively. Figure 5(a) shows the sequences. Figure 5(b)

shows the merged sequence. Then A(O) is broadcast to Q(O), Q(1), and

A(2) is broadcast to Q(2), Q(3), Q(4). 3

' . . . .. - -.. . - - --T " .... .. .. . .. -- : ._ _......_ _ _ , , U-z - -. - ' - - . . . . .. .''
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A (0) A (1) A (2) A (3) Q (0) Q (1) Q (2) Q (3) Q (4)

1 3 4 81 2 4 S j6

(a) sequences A and Q

A(O) Q(O) Q(1) A(l) AM2 Q(2) Q(3) QM4 A(3)

(b) merged sequence

Figure S. Parallel searching.



22

The following program performs the parallel searching.

procedure SEARCH (A,Q,P):

/* determine P(i) - A(Ji) such that A(ji) S A(Ji+l) */
begin

/* merge sequenes A and Q */
foreach i, O i < N do D(i) - A(i)
foreach i, 0 5 1 < M do D(N+i) " Q(i)
apply bitonic merge to D;

/* determine the distance L(i) such that D(i) has to be broadcast */
foreach i, 0:5 S < NM do

§g~A t(i) 0 0; L() - -1
if D(i) E A and D(i+l) E Q

then begin t1 (i) - 1; FIRST() - i end
end

call EXTRACT2 (FIRST,t)
foreach i, 0-- i < N+14 do

if FIRST(i) 0 null then L(i) - FIRST(i+l)-FIRST(i)-l
move L(i) to processor FIRST(i) by a procedure similar to CONCENTRATE

/* broadcast D(i) to P(i),...,P(i+L(i)) */
call SELECTED-BROADCAST (D,L,P).

/* move P to origi- position */
foreach i, 0:5 1 < N*M do

if D(i) E A then t(i) - 1 else t(i) 0
call EXTRAT2 (P, t)

end

This procedure runs in time O(log(N+M)) with N+M processors. Therefore,

parallel searching runs in time O((logM) 2 + log(N+M)) on a CCC with N+M

processors.

Theorem 2.5. Given an ordered array A(O:N-1) of N elements and a set

Q(O:M-1) of test elemnts, for each 1, 0 S i < M, the element A(ji),

such that A(ji) S Q(i) < A(ji+l), can be determined in time
O((logM)2 4log(M+N)) on a CCC with N+M processors. I

I

I
1

A'!
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2.2.4 Findi n the Minimum (MaxinL) of N Numbers

The algorithm presented in Section 2.1.2 for finding the minim=

(max.-mm) of N numbers is directly within the ASCEUD class. Therefore,

we have the following result.

Theorem 2.6. The minium (maxia.m) of N numbers can be determined in

time O(logN) on a CCC with N processors.

_ -__ _-_
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CHAPTER 3

INTERSECTION OF RECTANGLES

Given a set of N rectangles (with sides parallel to the coordinate

axes) in the plane, we "are asked to report all pairs of rectangles which

intersect. An important application of the problem is in VLSI design rule

checking [4,19]. Bentley and Wood [7] presented an O(NlogN+k) (optimal)

time algorithm for reporting intersections of rectangles on a uniprocessor

machine, where k is the number of intersecting pairs found. In this

chapter we investigate this problem on parallel computing machines.

Our approach to a parallel solution of the problem follows the general

approach of Bentley and Wood and requires two intermediate steps: reporting

intersections of horizontal and vertical line segments, and two-dimensional

range searching. Two rectangles intersect if their edges intersect or one

rectangle entirely encloses the other. The problem of finding rectangle

enclosure can be reduced to that of two-dimensional range searching as

follows. We associate with each rectangle A a representative point a in

its interior, for example, its leftmost bottom vertex. If point a lies

within rectangle B, then either B entirely encloses A or A and B have an

edge intersection.

The rectangles in the given set are indexed 0 to N-l. Each

rectangle r is defined by four reals giving its bottom B(r), top T(r),

left L(r) and right R(r) extreme points.

3.1 On the SM( with N Processors

In this section we shall present an algorithm which solves the

rectangle intersection problem in time O((logN)2 +k) on a SM1 with N

processors, where k is the maxim= number of intersections per (7

"'
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rectangle. We shall discuss two intermediate problems: intersection of

horizontal and vertical line segments, and two-dimensional range

searching.

3.1.1 Intersection of Horizontal and Vertical Line Segments

Given a set V(O:n-1) of n vertical line segments and a set H(O:m-l)

of m horizontal line segments, we want to report all pairs of vertical and

horizontal line segments which intersect. V(i) and H(i) are records.

In addition to the endpoint information, each V(i) contains two redundant

fields B and T: V(i)[B] and V(i)[T] are the y-values of the bottom and top

endpoints of V(i), respectively. H(i) also contains two fields L and R:

H(i)(L] and H(i)[R] are the x-values of the left and right endpoints of

H(i), respectively. Let Y(O:N-l) be a sorted array of distinct y-values of

the endpoints of the vertical line segments, where N S 2n (refer to Figure

6(a)). We assume, for simplicity, that N +1 is a power of 2 and

Y(N+l) - Y(N)+l; the details of the general case are straightforward.

We now describe the search tree .r which can be produced for the set of

vertical line segments. r is a binary tree of height log(N+l). In

NODEi(J) denotes the j h leftmost node at height i; it represents an

i i
interval [B (J),T (J)] where BQ) -Y(J.2 ) and Ti(J) - Y((J+l)2).

If i > 0, NODE(j) has two sons: NODi. (2j) and NODEi.(2J+l). Each

N1DEi(j) contains a list of edges V(k) sorted in the positive x-direction

where V(k)(B] S B (J) and Ti(J) S V(k)[T]. Moreover V(k) does not belong

to any ancestor of NODEi(J). Figure 6(b) is the search tree r for the

set of vertical lines in Figure 6(a); pairs of integers in the circles

are values of J-2' and (J+l)2
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Y(7) , 10 2

Y(6) =9

Y((4) = 6r.

Y (3) = 3

Y (2) =4

3

Y (1) =2 T

Y (0) =1

0 )x

(a) A set of vertical line segments and the corresponding Y array.

(the "cuts" on the edges show the logarithm:ic segmentation for T and 8)

0qD~ 00 NODE, 0(1 NODE() NOE 6 ODE ()

(6) 15,3) 0 [41 [4,11 (21 C21 0 7

(b) Search tree T for the vertical line segments in (a) 1

Figure 6. Search tree 7f for vertical line segments. 3

II
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We define C as a list of candidate segments for NODEl(j) sorted

in the positive x-direction. We shall construct r level by level

beginning from the root. From Clog (N 1 ), 0 , which is a list of all the

vertical line segmnts sorted in the positive x-direction, we extract

segments which lie in the range [Y(O),Y(N)]. This list of extracted

segments is associated with NODE lo(N+I)(0). From the remaining segments

in Clo(N+) we detemine Clo(N+l)l, and C log(1+).ll as follows.

Edge C (k) belongs to C if

Clog(N.l),o(k)[B] < Tlo,(,.).(O) and to Clo(N+I). 1 , if

C log(N+1),0(k)[T] > Blog(N+l).l(1). We repeat this procedure for constructing

the set of NODE (j) for every j in each level i. Given C j, all of
i

the three lists NODE (j) , C and C cI,2J+I an be determined in

O(logiCij 1) steps with processors. At each level i, every line

2i.
2- 1

segment can belong to at most four C i j . Therefore r ICi i 1 4n.

Thus, 4n processors and O(logn) time are sufficient to construct one

level of .. . has log(N+l)+l levels, so .7 can be constructed in

2O((logN) ) time with 4a processors and 4n memories. The following program

CONSTRUCT.jl constructs .7 for vertical line segments. (A different program

CONSTRUCT,2 will be written to construct r for edges of a planar graph.)

procedure CONSTRUCT.I (V)

/* construct the point location tree . for the vertical line segments V */
being sort V(O:n-l) by x-values and y-values of bottom endpoints

foreach k, 05 k < n, do C1og(R 1 ) 0 (k) V(k)

/* construct f level by level */

foreach J, OS j < 2 - do
begin NODEi(j) - C- 1., 2j Cil,2j+l

if C 0 0 then

bauin
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/* determine NODEi(i) by extracting the

appropriate edges from C ,j */ i

foreach k, 0 S k < Cj ) do

begin Ci..1,2j (k) - Ci-..1,2j+l (k) C, ,j (k)

t(k) - 0
1f C [,j (k)(B] :r B£L(J) n

T (j) :5 Ci.j (k)[r]

then t (k) 1

end
call EXTRACM(C L'it)

NODE (j) - C ,j

/* determine C., 2 j and Ci, 2 j+i by extracting
edges from the remaining of C */

foreach k, 0 <5 k < 1C£.1,2jI do

begin
ei t-0 and CL.1 ,2j(k)[BI<Ti .1(2j)

then t- 1 else t . 0

if t-0 and C .i1,2j(k)(T] > Bi..(2j+l)

then t2 - 1 else t2 - 0

end
end

call EXTRACT(Ci.1 ,2j, t1 )

call EXTRACTl(C i.1,2J+l t 2)
eend

To find all the intersections of a horizontal line segment H(k) with the

set V of vertical line segments, we use ." as a two-dimensional binary search

tree: At a selected node NODE,(J) of .7, we report all the vertical segments

in the list of NODEi(J) which are in the interval [H(k)(L],H(k)[R]]. Since

the vertical segments at NODEi(j) are sorted by their x-values, the search

can be done in 0(logn+k'), where k' is the number of intersections per

segment reported in one level. In the next step, we proceed to one son or

[
* --C.

• + : + , + . *,,.
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both of NODEi(J) by comparing the y-value of 1,(k) with T i l(Zj): if

y-value of H(k) is less than, greater than or equal to T .(2j) then

we proceed respectively to the left son, the right son or both sons.

At the selected son, we again report all the vertical line sments in

the list of this node which intersect with the horizontal line segment

R(k). We continue this process until we reach the bottom of 7. Note

that the y-value of H(k) may be equal to only one T it(2j). Thus, we

trace a unique path, possibly two, from the root to the bottom level; at

that stage all intersections k" of segment H(k) are reported. Since

is of height O(logN), this process runs in time O((logn) +k"). We can

find intersections of all m horizontal lines with V simltaneously,

provided we search in one level of r for all horizontal lines before

going to the next level. The number of processors required is m for

parallel searching. Thus, we have the following result.

Theorem 3.1. All intersecting pairs of n vertical line segments and m

horizontal line segments can be reported in time O((logn) 2+k) on a SIM1

with max(4n,m) processors and max(4n,m) memory units, where k is the

maximum number of intersection of any horizontal line segment and the set

of vertical line segments.

The formal description of the intersection algorithm is as follows.

I

I

I , - [I- ..
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procedure INTUSECTI(V,H):

/* find all intersecting pairs of horizontal line segments in H and

vertical line segments in V */
begin

/* construct the point location tree T for V */

c&ll CONSTRUCTJ(V)
foreach k, 0:5 k < m do begin Jo(k) - 0 ; J1 (k) -1 end

/* search in " level by level */
for i - log(N+l) downto 0 do

for p - 0 to 1 do
foreach k, 0 5 k < m do

if J (k) 2 0 then

begin search in NODEi(J) all vertical lines

in the range [lH(k)(L,H(k)tR]]

if y-values of H(k) =Ti~j(2Jp(k))

then begin J p(k) - .Jp(k)

e al (k)(1 ) 2J p(k) + 1
I end

else if y-value of H(k) < T .(2J (k))

then J (k) - 2J (k)

else J (k) - 2J (k)+l

end p P

end

3.1.2 Range Searching

We are given a set S of n points in the plane and a set Q of queries:

report all points of S in the range Q(i)[L] S x :S Q(i)(R] and

Q(i)[B] :S y !S Q(i)(T]. We first organize the points in S so that we

can answer the queries efficiently.

(1)9 is the exclusive-or operator. I

I
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We assume that Y(0:N-l) is a sorted array of the distinct y-values

of points in S, where N : n. We also assume that N is a power of 2. We

construct a search tree K for the set of points. K is similar to J, but

with the following differences. Associated with NODEi(J) is a subset of

points with their y-values in the interval (Bi(j),Ti(j)], sorted by their

x-values, where Bi(j) -Y(J,2i) and Ti(J)-Y((J+)2i-$). Figure 7 is an

example of search tree K. NODE logN(0), the root, is the entire set S

sorted by x-values. We use procedure EXTRACT1 to partition NODE (ogN() into

NODEi 1 (2j) and IODES. 1(2j+l) such that all points in NODEi. (2j) have

y-values _ Ti- 1(2J) and those in NODEi 1 (2j+Il) have y-values k B il(2j $).

Again, like in the construction of .7, C is constructed level by level.

2 1.1
Since E INODEi(j)I - n for all i, K can be constructed in time 0((logn) )

J=O
with n processors.

procedure CONSTRUCTJ(S):

/* determine, from S, NODEi(j) of X
bestin

sort S(0:n-l) by their x-values
NODE logN(0) - S

/* determine nodes of 3C level by level */

for i - loN downto 1 d2 __

frahJ, 0:5 j <2do

/* partition points of NODEi(j) into NODEi.I(2j)

and NODEi. (2j+l) according to their y-values */

NODEi (2j) - NODEiI(2j+l) - NODE (j)

foreach a E NODEi (j) do

if y-values of a < Bi.1 (2j)

then t1 (a) - 1 ; 1l(a) - 0

else t2 (a) - 1 ; tl(a) - 0

call EXTRACT1(NODEi.I(2j), t1 )

end call EXTRACTl(NDEi.I(2J+l), t2 )

end

I i. .. ..' ... .., ,, , --- , ., ..... L i : ' = ,7 .= .... .r , .: : ....." -°
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y

Y(7) = 109

Y(5) = a .8

Y(4) =7 e4 .10

Y (3) =5 *1

Y(2) =4 @2

Y (1) =3 .

2

Y (0) =1 3 .7

0 __ _ _ _ _ _ _ _ _ _ _ _

(a) A set of points and the corresponding Y array

4,5111,57 ~, (46,7 9 6,93

(0 0g D ( NODE 0 4 NODE 0OE(5 NODEO (6 NODE (7)

(3,73 (5) (23 (13 (4,103 £81 (e3 (93

(b) Search tree XC for points in (a)

Figure 7. Search tree 3C for points in the plane.
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Given a query Q(k), we search in X starting with the root until we

reach a NODEi(j) such that Q(k)[B] <- Bi(J) 5 Ti(j) : Q(k)[T]. Then we

report all points in NODEi(J) with x-values in the interval [Q(k)[LI,Q(k)[R]].

Since points in NODEi(J) are ordered by their x-values, the query is

answered in O((logn) 2+k') time with 1 processor where k' is the number

of inclusions. All m queries can be treated in parallel if we search in

one level of 3C for all queries at a time. Therefore we have the following

result for range searching:

Theorem 3.2. The two-dimensional range searching problem for n data

and m queries can be solved in time O((logn) 2+k) on a SM4 with

max(n,m) processors and memory units, where k is the maximum number of

inclusions per query.

procedure RANGESEARCH1(S ,Q)

/* report all points a E S such that Q(i)(L] S x(a) 5 Q(i)[R] and
Q(i)[B] S y(a) I Q(i)(T], for every Q(i) E0 */

begin

/* construct the search tree X for the set S of points */
call CONSTUcr.JC(S)
foreach k, k:5 0 < m do io(k) - (0J

-logN

/* search in 3C, beginning at the root */
for i - logN downto 0 do

foreach k, k < 0 < m do
bsin Ji-1 (k) - T

for each j E J. (k) do

begin if Q(k)[B1 5 Bi(j) and Ti(J) S Q(k)(T]

then search in NODEi(J) and report any

pair (Q(k),a) where
Q(k)(LI t, x(a) S Q(k)[R], aENODE i(j)

else egin if Q(k)(B] S Tiol(2j)

4 _____________________________
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then Ji1 (k) J i.1 (k) U (2j)
if Q(k)[T T1B 1 .(2j+l)

thnJ i_1(k) - J i.1(k) U [2j+ll

end
end

end
end

3.1.3 The Rectangle Intersection AlsoritJm

In previous subsections of this section we have investigated the

rectangle intersection problem in a top-down fashion. Procedure RECTINT1(REC)

is the complete description of the entire algorithm for reporting all pairs of

intersections of rectangles REC. Another two programs (RECTTNT2 and RECTI'T3)

will be wri:tten for the CCC.

procedure RECTINT1(REC):

begin
V - all vertical edges of rectangles in EC
R all horizontal edges of rectangles in REC
call INTERSECTI(V,H)
S all left bottom points of rectangles in REC
Q EEC
call RANGE..SEACH1(S,Q)

end

Combining the results in previous subsections, we can show that RECTINTl

runs in time O((logN) +k) on a SM with 8N processors and memories, where

N is the number of rectangles and k is the maximum number of intersections

per rectangle. H~owever, a simple-minded processor-time tradeoff can

reduce the number of processors to N by increasing the time by a factor of 8

as follows. We can position the set of vertical edges into eight subsets,

each of which has N/8 edges. We then find the intersections of the set of

horizontal edges with each of these eight subsets of vertical edges

sequentially. We conclude this section by the following theorem. 1.

..
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Theorem 3.3. Given N rectangles with edges parallel to the coordinate

axes, all intersecting pairs of these rectangles can be reported in time

O((logN) 2 +k) on a S I with N processors and N memories, where k is the

ma3dam number of intersections per rectangle.

3.2 On the CCC with N Processors

In this section we shall present an algorithm which solves the

rectangle intersection problem in time O((loN) 2+k) on a CCC with N

processors, where k is the maximum number of intersections per rectangle.

We shall first discuss three intermediate problems: one-dimensional range

searching, intersection of horizontal and vertical line segments, and

two-dimensional range searching.

3.2.1 One-Dimensional Range Searchins

Given a set A(O:N-1) sorted in ascending order and a set Q(O:M-1)

of queries specified by two bounds [L] and (RI (left and right respectively),

we want to report all elements sf A which lie in the range [Q(i)[L],

Q(i)[R]] 0 5 i < M. We approach this problem by first finding A(ji) such

that A(ji-l) < Q(i)(L] s A(Ji), for each i, and then reporting sequentially

the pairs (Q(i),A(ji)),(Q(i),A(Ji+l)),...,(Q(i),A(ii)) where

A(ji) S Q(i)[R] < A(ji+1): we ass-m that Q is sorted by the values of the

left bounds in ascending order. We then merge A and Q. We perform a

parallel search, similar to the one introduced in Section 2.2.3, for

determining A(ji) for all Q(i). Before reporting any inclusions, we

eliminate those queries which do not have any inclusion (i.e., if

Q(i)Rj < A(J,)) from further consideration. We report sequentially all

* the inclusions for every query.
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1.
For example, consider the case where N - 7, M 4 4 and the sequences

of A and Q are as shown in Figure 8(a). Figure 8(c) is the merged

sequence with Q(l) eliminated as Q(l)[R] - 4 < A(3) - 5, i.e., none of

the A's lies in the range (Q(1)(L],Q(l)(R]]. We then start to report all

inclusions by looking to the right simultaneously for every query:

(Q(O),A(2)), (Q(2),A(3)) and (Q(3),A(5)) are reported first; next

(Q(O),A(3)), and (Q(2),A(4)) are reported at the saw time; then

(Q(O),A(4)), (Q(O),A(5)) are reported one at a time.

procedure RANGESEARCH_ILD (A, Q)

/* A(O:N-l) is a sorted array, Q(O:M-l) is a set of queries sorted
by values of Q(i)EL]. Report all elements of A which lie in
[Q(i)[LI,Q(i)[R]] for i - 0,...,M-1 */

beltin

/* copy information of A and Q into D */
foreach i, 0 S i < M do hegin D(i)[type] - query

D(i)(key] - Q(i)[L]
D(i)[k] - Q(i)(R]

end D(i)[value] - Q(i)

foreach i, 0:- i < M do begin D(M+1)[type] - data
D(M-1)[ky] . A(i)

_____ D(M*i)[value] - A(i)
end

apply bitonic merge to D
determine P such that P(i) - A(ji) and A(ji-l) < Q(i) a A(Ji)

/* eliminate those queries which do not have inclusions */
foreach i, 0 :5 i < N+M do

if D(i)[type] - query and D(i)[R] < P(i)
then t(i) 9- 0
else t(i) - 1

call EXTRACT2 (D,t)

/* report inclusions */
foreach i, 0 S i < N*M do

begin T(i) - null
if D(i)[typej - query then T(i) D(i)[valuel

end
whileTT(i) null do

l.

" .9' 7
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AM0 A(1) A(2 A(3 AM4 A(S A(S Q(0) QM1 Q(2) Q(3)

10 1 12 15 161 7 1 8 1 2II1I3I1I3Ii 7 (L]
7 4 6 7 [a]

(a) Initial sequences A and Q

AM0 AM1 Q(0) A(2 Q(1 Q(2) AM3 AM4 QM3 A(S A(S

0 1 2 2 3 3 3 6 7 7 8

7 4 6 7

(b) the merged sequence

A (0) A (1) Q (0) A (2) Q (2) A (3) A (4) Q (3) A (S) A (S)

0 1 2 2 3 5 S 7 7 8

7 6 7

(c) QM1 being eliminated

(Q(0),A(2)), (Q(2),A(3)), (Q(3),A(3))

(Q(0),A(3)),(Q (2),A(4) )

(Q(0),A(4))

(Q(0) ,A(3))

tims

(di) the Pairs In each row are reported simultaneously

Figure 8. One-dimensional rang, searching.
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begifor j 1 to I do /* I * loop length of ccc */
foreach J, 0 S i < N+M do

if :L mood A a J- & D(L)[Cyp] , dataa

then M T(i)[R] a D(i)[value] then
report (T(i) ,d(i)(value])

elso T(i) - null
T(i+l mod !,)- T(i)

end
end

All steps except the last while loop clearly require at most

O(los(N+M)) steps. The evaluation of the condition of the while loop and

step in this loop require 0(log(N-M)) time. But these are only performed

at most k/A times, where k is the maximum number of inclusions per query

and . is the loop length of the CCC, which is of order log(N+M). Therefore,

the time complexity of the while loop is k. Hence, procedure RANGESEARCH.lD

runs in time O(log(N+M)+k) on a CCC with N+M processors.

Theorem 3.4. Given a sorted array A(0:N-I) and a set Q(0:M-l) of queries

sorted by values of the left bounds, all elements of A which lie in the

range [Q(i)(L],Q(i)(R]], for i - 0,...,M-1, can be found in time

0(log(N+M) +k) on a CCC with N+M processors, where k is the maxinum number

of inclusions per query.

3.2.2 intersection of Horizontal and Vertical Line Segments

We revisit the problem of reporting intersecting pairs of horizontal

and vertical line segments as introduced in Section 3.1.1. We shall

revise procedure INTERSECT1 so that it will be suitable for implementation

on a CCC with linear number of processors. Most of the variables used

here will have the same meanings as those in Section 3.1.1.

Ii
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For the set V(O:n-1) of vertical line segnts, we construct a

search structure 4 which consiscs of logN +1 arrays E0,E1 , ...,ElogN,

whevr N is the number of distinct y-values of the endpoints of the

segments in V. Each E is a selected subset of vertical line segments in V.

The underlying structure of 8 is a binary tree similar to r except for

the indexing of the nodes. Instead of indexing the nodes, in soma level i,

from left to right, a node will be indexed as j if it is the right son of

NODEi+ (J) in level i+l for some J and it will be indexed as 21°gN'i-l+j if

it is the left son of NODEi+(J). Therefore, the left and the right sons

of NODE +1 (J) are NODE (j) and NODEi(21° Ii'+J) respectively. Suppose

NODE i+() is the kth leftmost node in level i+l, then NODEi(J) represents

the interval [Bi(J),Ti(j)] - [Y(2k.2i),Y((2k+1)21)], and NODE (2 logN-i- + J)

represents the interval [B (2lo&N-i-1+ iJ), (2 logN-i-1 + j) ] .

[Y((2k+ l)2 ),Y((2k+2)21 ). The left-to-right sequence of the node indices

at any level of 8 is the bit-reversal permatation of the node indices at the

corresponding level of r, where the bic-reversal permutation maps a binary

number anlan.2..a 0 into the binary number a0a... an. I* Figure 9(a) is the

underlying binary tree of 4 for the vertical line segments in Figure 6(a).

Note that Figure 9(a) is the same as .r in Figure 6(b) except for the node

indices. Te array EL of d is the concatenation of the lists of vertical line

*segments associated with the nodes in level i in the order of increasing node

I indices. We also associate with each element E i(J) the node number NO(J) such

F that Ei(J)CB 5 Bi(N#i(i)) and Ei(j)[TI 2 Ti(N i(j)) and Ei(j) does belong to

any ancestor of NODEi(N#i(J)). Therefore, ELi is a selected list of vertical

line segments sorted lexicographically by values of V i and their position in

the positive x direction. Figure 9(b) shows the arrays E3 ,E2 ,EIE0 for the

vertical line segments in Figure 6(a) (null elements are denoted by X).

j I. - I
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NoDE 3 (o)

i

NOE2 0 OD2()

NODIC1 (0) NODER1 (2) ND,()NODB 1l(3)

DE0 (O NODE0(4 NODE0 (2 NODE0(6 NO(l N0D10 (5) NODE (3 NODE (7)

(6] C5,31 0 (4) (4,13 (21 [2) 0

(a) the underlying binary tree.

E*3

K~~I 'V2'11
tv 1 1 21 21 2TT I I I I I I II

N#o 0  1 1 1 1 3 - 4  4 [ 5 1 6 1 1 IIIII - r

(b) the collection of arrays E3,...,E 0

Figure 9. Search structure d for vertical line segments in Figure 6(a).

[

K
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Construction of 4 is similar to that of J; the arrays Ei are constructed

one at a time:

procedure CONSTRUCT41 (V)

/* construct the search structure d i.e. Elog,...,E 0 for the set

V(0:N-l) of vertical line segments */
begin sort V by x-values and then y-values of the bottom endpoints.

foreach J, 0 S j < n do begin S (J) - V(J)
iT (j) - 0 end

foreach J, nS J < 4n do S (J) - null

/* determine ElogN,...,E 0 one at a time */

for i - logN downto 0 do
begin

/* determine Ei by extracting edges from S */

foreach J, 05- j < 4n do
begin t (j) - t 2 (J) - 0

E i(J) - S(j); NOi(J) - rr(j)

if S(J) null
then if S(J)[B] 5 Bi(TT(j)) and

TL(T(j)) S S(J)(T]

then tl(J) - 1

end else t 2 (j) - 1

call EXTRACT2 (Eitl); call EXTRACT2(N#i,tl)

call EXTRACT2 (S,t 2); call EXTRACT2(r,t2)

/* rearrange the order of elements in S according to
their node numbers in the next level */

foreach J, 0 J < 4n do
begin TE)IP(j) -S(J)

t l (j) - t 2 (J) - 0

if S(j)(B] < Ti. (rr(j)) then tl(j) - 1

if S(J)[T] > Ti 1 (17(j)) then begin
t 2 (j) -1

TEMP f(j) - 2 lQgN-i+()
end

.. ... - ... L
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call EXTRACT2(S,t 1); call EXTRACT2(yQ,y 1 )

call EXTRACT2 (TEMP, t 2 ); call EXTRACT2(TEMPr, t 2 )

foreach j, 0 d j < ITEMPI do begin S(J+IS 1) - TMP(J)
a (J+Sj) -TEMPf(j)end 1.

end
end

Analysis of procedure CONSTRUCT-J is similar to chat of CONSTRUCT T.

It is easy to show that CONSTRUCTJ can be implemented on a CCC with 4n

processors in 0((logn) 2 ) steps.

To find intersecting pairs, we use 8 as a binary tree. We associate

with each horizontal line segment 1(i) a node number NN(i) indicating

that 1(i) may intersect some vertical line in node NN(i). We start at

ElogN (the root). It is obvious that NN(i) - 0 for all i (there is only

node 0 at this level). The set of horizontal lines is maintained sorted

lexicographically by their node numbers and x-values of their left

endpoints. Since Ei is sorted in the same manner, we can use the one-

dimensional range searching algorithm in Section 3.2.1 to report all

intersecting pairs at level i. We then determine which node in the next

level should be associated with each horizontal line segment. We

continue this process which geometrically traces a unique path, possibly

two, from the root to a leaf. Since the depth of 4 is logN+l, this process

requires 0(logn.log(n+m)+k) time on a CCC with 4n + 2m processors. We

now present formally the intersection algorithm.

procedure tNTERSECT2(V,H):

/* search all intersecting pairs of horizontal line segments in H
and vertical line segments in V */

begin 1
/* construct the search structures Elo0N, .. ,E0 for V

call CONSTRUCTJI(V)

iI

] ,,.
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/* H', the set of horizontal line segments, is maintained sorted

lexicographically by their node number and x-values of their

left endpoints */
sort H by x-values of left endpoints
foreach J, 0S j < a do begin H'(J) - 1(J)

NN(j)- 0; end
foreach J, mS j < 2m do H'(j) null

/* search in 5 beginning at ElogN
for i - .oSg downto 0 do

____i call RANGE-SEARCELM1(E 11H')

/* determine node numbers for horizontal line segments
to be used in the next level; then H' is reordered
according to their node numbers */

foreach J, 0 j < 2m do
begin t (j) t 2 (J) 0

TMP(J) H' (j)
if H'(j) 0 null then

begin if y-value of H(J) 5 T 1 I-(NN(J))

then t1(j) " 1
if y-value of R(j) 2 Tii(NN(i))

then begin
t 2 ( j ) -1

edTMN(j)-21°Nim 
j

end
nend

end

call EXTRACT2(H',t 1 )

call EXTRACT2(NN,t 1 )

call EXTRACT2 (TEMP, t 2 )

call EXTRACT2 (TEMPNN, t2 )

foreach J, 0S j < ITEII do
besin H'(IH' I+J) - TEi(j)

NN(IH' I+J) -EMPNM(j)
end

end
end

Procedure INTERSECT2 gives the following theorem.

Theorem 3.5. All intersecting pairs of n vertical line segments and m

2
horizontal line segments can be reported in time 0((log(n+mn)) +k) on a

CCC with 4n +2m processors, where k is the maximum number of

intersections per vertical line segment.

I.,
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3.2.3 Two-Dimensional Range Searchina L
We now investigate the two-dimensional range searching problem dtated .

in Section 3.1.2 on a CCC with linear number of processors. Again, we

assume that Y(0:N-1) is a sorted array of distinct y-values of points of

S, where N:5 n and N is a power of 2. We construct a search structure 7

which consists of logN+l arrays FloN, F1 0 9l ....,F 0 . The underlying

structure of 9 is a binary tree similar to 3C (Section 3.1.2) except for the

indexing of the nodes. The nodes in the underlying binary tree of 7 are

indexed in the same manner as that of 4 (Section 3.2.2). Figure 10(a)

shows the underlying binary tree of 7 for the set of points in Figure 7(a).

Note that Figure 10(a) is the same as 3C in Figure 7(b) except for the node

indices. Suppose that NODEi+l(i) is the kth leftmost node in level i+l,

then its right son NODEi(J) represents the interval [Bi(j),Ti(j) ] =

[Y(2k-2i ) ,Y(2k+)2i)] and its left son NODEi(21logN'il +J) represents

the interval [Bi(2 1oNi'l+j ),Ti( 2logN'il+J)] - [Y(( 2k+l)2L),

Y((2k+2)2i-I)]. Therefore, Fi is the set S of points sorted lexico-

graphically by their node numbers and x-values. At level i, the node

number of Fi(k) is NNi(k), where the y-value of Fi(k) is in the range

[Bi(NNi(k)),Ti(NNi(k))]. Figure 10(b) shows the contents of Fi and NN,

for the example in Figure 7(a). The construction of 5 is similar to 5:

The set S of points is first sorted by their x-values. The resulting array

is F log N . We then determine the node numbers NN logN. for each point and

rearrange the order of points in the array according to their node numbers.

Since the cardinality of Fi is n for all i, 7 can be constructed in time

2
0((logn)2) on a CCC with n processors. The program CONSTRUCT.. fo-

constructing 7 is presented in the Appendix.

I
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NODE (0)

/MOD(0) NODE,(2) NODE,(1) NODEI(3)

0,1 [3,5,7) 2,3 [1,21 4,5 C4,8,101 6,7 [6,91

0 DE0(5 N~ODE 0(3 OE 7

(3,71 (51 (2) (1) (4,101 (a] (6) (91

(a) the underlying binary tree.

F3  1 2 3 4 51 61 71 8 9 10

NN3 0 0 0 0 0 01 0100

*F 211 21 31 51 71 41 61SI 8 Ii 910

I 2 1 01 01 oil 1 1 1 j1 j11

F 1  3 5 7 4 8 10J1 21 6 9

NNI - -0 0 0 1 1 21 2 3 3

No 0 01 olj 1 1 21 31 41 51.

(b) the collection of arrays F3"...:F O .

Figure 10. Search structure 5 for the set of points in Figure 7(a).

r - -.
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To answer the set Q of queries, we search in V for each k until we

reach level i such that Q(k)(B] S B i(j) and T i(J):5 Q(k)(T] for some *J.

Then we perform a one-dimensional range search to report all the

inclusions. Since we may visit at most four nodes on one level for a

particular query, 4m4.n processors are sufficient. We use the result in

Section 3.2.1 for one-dimensional range searching, so we have the following

result.

Theorem 3.6. The two-dimensional range searching problem for n data and m

queries can be solved in time O((log(n+m)) 2+k) on a CCC with n+4m

processors, where k is the maxizuim number of inclusions per query.

procedure RANGE..SEARCH2 (S ,Q)

/* report all points a E S such that Q(i)[L] S x(a) S Q(i)[R]
and Q(i)[B] S y(a) S QMi)TI for every Q(i) *

begin

/* construct the search arrays Y:F logN"..,F 0 for the set S *

call CONSTRUCT.7(S)

/* Q' is the set Q sorted by the values of left bounds *
Q Q

sort Q' by Q'(i)(L]
foreach J, 0OS j < m do NN(j) 0
foreach J, m 5 j < 4m do Q'(j) null

/* search in F logN ...'F 0 one at a time *

for i -logN downto 0 do
begin

/* determine Q" which is a subset of queries that can be
answered at this level. For the remaining queries,
determine their node numbers in the next level *
frahJ, O:S < 4m do

be Int(J) - 2 (J) t 3 (J) - 0

NN' (J) - bTN(j);TEMPNN(j) -NM(J) + 2 ogN-i

16f Q'(iM(BI S B i(NN(i)) and Ti(NN(j) S Q'(J)[TI)

i~ill!!NmCE M
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else beain
if Q' (J)[BS]5 T.(NN(j) then t 20) "-1

if Q' (J)[T] - Bi_(NN(j) +2 loSi)

he t3 0(j) - 1

end
e.nd

call EXTRACT2 (Q",t 1 ); call EXTRACT2 (iN', t1)

/* answer queries in Q" by performing a one-dimensional
range searching */

call RANG.SEARCI_D (Fi ,Q")

/* extract Q'-Q" from Q' and rearrange the order according
to their node numbers */

call EXTRACT2(Q',t 2); call EXTRACT2(NN,t2)

call EXTRACT2(TEHP,t3 ); call EXTRACT2(TEMPNN,t 3 )

foreach J, 0 - j < ITEMP I o

begin Q'(j+ IQ'I) - MW(j)
NN(J +IQ'I - MMPNN(j)

end
end

end

3.2.4 The Rectangle Intersection Algorithm

The rectangle intersection algorithm for a CCC is the same as that

for a S141 but uses different algorithms for finding the intersections of

horizontal and vertical line segments and for two-dimensional range

* searching.

procedure RECTINT2 (REC):

begin
V - all vertical edges of rectangles in REC
H - all horizontal edges of rectangles in REC
call INTERSECT2(V,H)

S - all left bottom endpoints of rectangles in REC
Q - REC
call RANGESEARCH2(S ,Q)

end

12I __________________ ____________ ____
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Theorem 3.7. Given N rectangles with edges parallel to the coordinate

axes, all intersecting pairs of these rectangles can be reported in

time O(1ogN2 +k) on a CCC with N processors, where k is the maxium

number of intersections per rectangle.

Proof: Combining results in Sections 3.2.2 and 3.2.3, we use some simple

processor-time tradeoffs similar to the one used in the previous section

to achieve the time complexity of O((logN) 2 +k) and processor complexity

of N. C

3.3 On the CCC with N Processors

In this section we shall develop an algorithm for reporting intersecting

pairs of N rectangles for a CCC with superlinear number of processors. This

algorithm can be implemented in 0(-1 logN +k) time requiring N processors,
a

where 0 < a 1 and k is the maxi-im number of intersections per rectangle.

3.3.1 Intersection of Horizontal and Vertical Line Segments

As in the algorithms developed for a CCC with N processors, we construct

a search structure .& for the set V(O: n-l) of vertical line segments so that

the intersections of horizontal line segments in H(O: a-I) and V(O: n-l)

can be found efficiently. Let N be the number of distinct y-values of the

endpoints of V. & consists of 1+1 arrays DI D/D Each D is

a selected subset of V sorted lexicographically by their node number

(as defined in Section 3.2.2) and their positions in the positive x

direction. The underlying geometric structure of . is a Ne-ary tree of

height -: there are NI ' ' nodes at height i, indexed as follows. At level

1, the root is indexed 0. Node j which is the k h leftmost node at level i
has N sons at level i-l; they are nodes J, N i + J , 2N a + J . . .

(N'-l)N 1-ia+ J representing respectively the intervals "

wldkiiik-_
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[I' N io-O C ' ) ,Y((kN' I)N i ' ) 1, [ Y kN ) N" ) , Y((kN+-'c 2) Ni )

~C Y ¢ k€.,.,+2)Nl'-*, Y ¢ktPv+3 )Nvi ' ],..., [Y((kNv N'-  . ), Y ¢v,, % 31,,N )N ].

Figure 11 shows an example with N - 16, a = 4. Figure 11(b) is the

underlying N -ary tree; pairs of integers in the circles are values of

Bi(j) and Ti(J), and the integers above the circles are node numbers.

The construction of arrays D1 , ... ,D0 runs as follows. Initially,

the node number of each vertical line segment is 0. Let S be the set V of

vertical line segments sorted lexicographically by their node numbers,

x-values, and y-values of bottom endpoints. We extract from S all the

segments which cover the range CY(O),Y(N)] and form the set Dl/,. After

the extraction, the remaining elements of S are duplicated Na-l times. Then

we determine to which of the Ia subtrees we should branch for each vertical

line segment, that is, we determine the node numbers for the remaining

elements of S in the next level as follows. We branch to the leftmost

subtree if the y-value of one or both endpoints of the vertical line segment

is in the range [B1/l.I(0),T,//,_(0)1; branch to the second leftmost sub-

tree if it is in range [B1/a (1),T 1 / l(1)l; and so on. We then repeat

the process until all arrays of . are determined. Let us analyze the

time and number of processors required. At each iteration i, a vertical

line segment may appear at most 2e times in S. After the extraction of Dig

S contains at most 2n elements. Then the elements of S are replicated into

Na copies. Therefore, at any time, the maximum number of elements in S is

2nN2 < n . Since data extraction and replication can be done in time

-[
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O(logn) on a CCC with a number of processors linear in the problem size

and .8 contains - + 1 arrays, & can be determined in time 0 (1 logn)

with 4n1 + a processors. We now present formally the construction

algorithm which we just described.

procedure CONS TRUCT.al (V)

/* construct the arrays Dl/a,Dl/l. ,...,D 0 for the set V of vertical

line seants */

/* maintain S as an array of vertical line segments sorted
lexicographically by their node numbers and their
x-coordinates */

sort V by x-values and then y-values of bottom endpoints
foreach J, 0 : j < n do begin S(J) - V(J); rr(j) - 0 end

foreach j, ni j < 2n: do S(J) - null

/* Dl/a,...,D O are constructed one by one in descending order */
0

for i downto 0 do

begin

/* for each vertical line segment of S, determine if
it belonRs to some node at this level; extract
those which do and assign them to Di */

foreach J, 0 : j < 2n? do
begin t (J) - t2 (J) - 0; Di(j) S(J);N#i(i) - Tr(j)

if S(J) 0 null
then if S(J)L 5Bi (,r(j)) and

Ti(T(J)) : S(J)T]
then t1 (j) - 1

else t2(J) - 1

end
call EXTRACT2(Diti) ; call EXTRACT2(VIi,% 1)

/* for the remaining of S, determine their node numbers

for the next level; and reorder them according to

their node numbers */

call EXTRACT2(S,t 2 ); call EXTRACT2(r,t 2) J
for k-1o82n to lo2?-I do /* duplicate Na times */

Lor J, 0 j < 2ni do I
I



53

if BITk(j) -0 t basin S( +2k) - S J)

(J +2 k ) " r(j)

end

foreah J, OiJ < 2n? do /* determine node numbers *1

begin (j) - (J) + LJ/2j 1N
t(j) 0
if 5(J) 0 null and (S (J)[B I<T l(i(J)) or

then~~~ t)-1 (j)[T] > it-l(-r(:)))
e..a t(J) .- 1

end
call EXTRACT2(S,t); call EXTRACT2(1r,t) /* reordering */

end
end

Searching in . for all intersecting pairs of horizontal and vertical

line segments is the same as searching in 8 except we have to choose one,

possibly two, out of e branches at one level of . for each horizontal

"" line. The procedure INTERSECT3 to be presented in the Appendix can be

implemented on a CCC with 4n +2mN* processors in (1 log(n+m)+k)

parallel steps, where k is the maxinum number of intersections per vertical

line segment. We state this result in the following theorem.

*Theorem 3.8. All intersecting pairs of n vertical line segments and

F 1
m horizontal line segments can be reported in time O(; log(n+m)+k) on a

CCC with 4(n+m)na processors, 0 < a 5 1, where k is the maximum number of

intersections per vertical line segment.

1 3.3.2 Two-Dimensional Range Searching

. - For the two-dimensional range searching problem, we arrange the set S

of points into the data structure 3 (similar to h), so that the set Q of

Iqueries can be answered efficiently. In J, G1/t,...,G O are arrays of

points in S. The points in array Gi are ordered by their node numbers at

i level i and x-values. The node number, at level i, of a point is j if

ii
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its y-value is in the range [Bi(j),Ti(i)I. Node j which is the k (for

soMe k) leftMost node in level i has N sons at level i-1; they are

nodes J, Nl'ia J,...,(o.l)Nlita +j representing respectively the

intervals [Bi. 1 (J),Ti. 1 (j ) I - CY (kf'"),((k +l)" -),

[Bt.,1(N -i. J),at..1(N "tia+ J) [Y((kN. +)Nt').Y((kP + 21-i'a.)
Isi-1 ( (

e -l ) N 1 t + J ) ' L-1 ( ( I ' 1 ' t + .J) -[Y(((k + -1)N'),

Y ( (kr + N )N'- 1) 1.

Figure 12 is an example of a set of 20 points and the corresponding

data structure k, with N - 16 and a = I. Figure 12(b) is the underlying

N -ary tree; the pairs of integers in the circles are values of B (j)

and Ti(J) , and the integer above the circles are node numbers.

The construction of J is similar to that of .8. Since the cardinality

of Gi is n for all i, ,1 can be constructed in time 0(3- logn) on a CCC

with fnNa processors. The program CONSTRUCTA for constructing Jr will be

presented in the Appendix.

Given a set Q of m queries, we search in J until we reach a node j such

that Q(k)[B] : B(iQ) and Ti(Q) 5 Q(k)(T]. Then we perform a one-dimensional

range searching on G W V e may have to search at most 2N nodes at one

particular level for a particular query. Therefore, we may need at most

2em+nNa processors. The analysis of time complexity of this range

searching is straightforward.

Theorem 3.9. The two-dimensional range searching problem for n data and

queries can be solved in time 0( 1 log(n +m) +k) on a CCC with 2(n +4m)no

processors where 0 < a <: 1 and k is the maximum number of inclusions per I

query. I
I
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The program RANGE..SEARCE3 will be presented in the Appendix.

3.3.3 The Rectangle Intersection Alsorithm

The rectangle intersection algorithm for a CCC with superlinear

number of processors uses results in Sections 3.3.1 and 3.3.2. The

1 +
running time is O(; logN+k) and the number of processors is iON

procedure RECTINT3 (REC):

begin
V- all vertical edges of rectangles in REC
R - all horizontal edges of rectangles in REC
call INTERSECT3(V,H)
S a all leftmost bottom points of EEC
Q - REC
call RANGE_.EARCH3(S ,Q)

end

We can use some processor-time tradeoffs similar to the one used in

Section 3.1.3 to obtain the following results.

Theorem 3.10. Given N rectangles with edges parallel to the coordinate

axes, all intersecting pairs of these rectangles can be reported in

time 0(; logN+k) on a CCC with N processors, 0 < o S 1, where k is

the maxi-. number of intersections per rectangle.

1.

i

I,

I. ... .......
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CHAPTER 4

PLANAR POINT LOCATION -.

The problem of planar point location is stated as follows: given a

planar graph embedded in the plane as a straight line graph (21] G with

N vertices and a point P, find the region of the planar subdivision

induced by G which contains P. This problem is quite important in

computational geometry. We shall show in later sections how it can be

applied to solve other problems. A recent and practical result for serial

computation on this problem is due to Preparata (281. His algorithm runs

in O(logN) time on a data structure which can be constructed in O(NlogN)

time.

Many times, point locations are performed repeatedly on the same

graph; therefore, it is beneficial to arrange the given graph into an

organized structure to facilitate searching. Furthermore, very often,

these searches are independent and can be performed simultaneously.

In this chapter we preprocess the given graph G - (V,E) so that we can

locate M points simultaneously on the SM and on the CCC. V(O: N-l) is

the set of vertices and E(O:IEI-l) is an array of records containing

information about each edge: its two endpoints and the regions lying on

either side of it (left and right). We shall assume that Y(O: N-l) is

the sorted array of distinct y-values of V and N is a power of 2.

Figure 13 shows a planar straight-line graph with 20 vertices and 16

distinct y-values, i.e., N = 16. 1
I
I
I
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4.1 On the SIM with max(N.M) Processors

In this section we describe two algorithms: (i) the construction of

a search structure for the set of edges on the SMl4 with N processors and

(ii) the concurrent location of M points with Mprocessors. The

construction and the location run in time 0((logN)2 loglogN) and

O((logN) 2 ) respectively.

4.1.1 Definition and Construction of the Point Location Tree

Recall the search tree . introduced in Section 3.1.1. We can produce

7, for the set of edges of the given graph, G, which will be referred to

as the point location tree for G. Figure 14 gives the point location tree

for the graph in Figure 13. Recall that the initial step of the procedure

CONSTRUCT.L developed in Section 3.1.1 is to obtain an ordering of the

set E(O:IEI-l) of edges such that if E(i) is the left of E(j) then E(i)

procedes E(J) in the ordering. Unfortunately, there is no known efficient

parallel algorithm for topological sorting. Therefore, we cannot use the

same procedure CONSTUCTTI to produce the point location tree Jr for the

edges. Since the list associated with node NODEi(J) consists of edges

which span the same y-interval [Bi(j),Ti(J)], these edges are comparable,

that is, every edge is either to the left or to the right of another edge

in the same list. We can sort the edges in the lists associated with each

node after the members of the lists have Ueen determined. Since each node

contains at most IJE edges (IJE < 3N) and each edge is contained in at

most two nodes at any one level, we can sort the edges in every node at I

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _!

,6!
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level in time O(logNloglogN) using N processors. Again we construct -

level by level beginning from the root. The procedure CONSTRUCTJr2,

which will be presented in the appendix, for the set of edges is the

same as CONSTRUCTJT1 for the set of vertical line segmnnts except we

do not initially order the edges in the entire set.

4.1.2 Point Location

To locate a point P(k) in the planar subdivision induced by G, we

use . as a binary search tree. We define two "dummy" vertical edges

E. and E. of infinite length which are at negative and positive infinity

respectively. Associated with P(k), we determine a pair of edges L(k) and

R(k) of E which bound P(k) on the left and on the right respectively.

Initially, we set L(k) and R(k) to E a and E respectively. We search Jr

until L(k) and R(k) bound the same region: at a selected node NODEi(j)

of . where the edges form an ordered set we perform a binary search, for

an edge immediately to the left (right) of P(k), compare this edge with

L(k) (R(k)); the one closer to P(k) is the new value of L(k) (R(k)). If

L(k) and R(k) bound the same region, P(k) is in this region: otherwise,

we have to choose a branch or both by comparing the y-value of P(k)

with Ti1l(J): if it is less than, greater than or equal to Ti_1 (Zj) then

we branch respectively to the left, the right or both branches (refer to

Figure 15). Note that the y-value of P(k) may be equal to only one Tit-(2i).

Thus, we trace a unique path, possibly two (when the y-value of P(k) is

equal to some Ti_1 (2j)), from the root to (at most) the bottom level of 7.

Since r is of height logN+1 and the edges in each node are sorted, this j

I

I
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root

Cs (j)(2J+1),

T- (2j+l))

1' Figure 15. Searching in the point location tree.
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2
process runs in time O((logN)2). We can locate all M points simultaneously,

provided we search in one level of 4' for all points before going to the

next level. The number of processors required is M for parallel searching.

We shall present the formal description LOCATE1 in the appendix.

We conclude this section by the following theorem.

Theorem 4.1. Given a planar straight line graph with N vertices, we can

locate M points in the planar subdivision induced by the graph in time

0((logN) 2 ) with O((losN)2 loglogS) preprocessing time on a SIU4 with

max(N,M) processors and memory units.

4.2 On the CCC with N +M Processors

In this section we revisit the problem of planar point location as

discussed in Section 4.1. We shall revise procedure LOCATE1 so that it

will be suitable for implementation on a CCC with linear number of

processors.

4.2.1 Construction of the Search Structure

In Section 3.2.2, we construct a search structure 5 (a set of arrays

E0EI,...,Eo) for a set of vertical line segments. We can produce the

E0,E1,. logN

same structure 6 for the set of edges. Figure 16(a) is the underlying

binary tree of 4 for the graph in Figure 13. Note that this tree is the

same as the point location tree in Figure 14 except for the node indices.

Figure 16(b) shows the collection of arrays E4 ,...,E 0 and the

corresponding node number of edges.

As discussed in Section 4.1.1, it is relatively time-consuming to

obtain initially a total ordering of the edges. Thus, we first determine

the edges in Et hen sort them lexicographically by their node numbers

and their positions in the positive x direction. We can develop a
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procedure CONSTRUCT J2 for producing d for the set of edges which will be

the same as procedure CONSTUCTJ1 in Section 3.2.2 for a sot of vertical

line segments except in CONSTRUCTJ2 we do not initially order the entire

set of edges, but order the edges in each Ei separately. Since the

cardinality of each Ei is at ost 21E1 (Il < 3N), we can easily verify

that the procedure CONSTRUCT.2 in the appendix runs in time O((logN) 
)

on a CCC with N processors.

4.2.2 Point Location

As a preliminary step, we sort the set P(O: M-1) points to be

located by their x-coordinates. Like point location on a SM in Section

4.1.2, for each point P(k), we search in 5 until the two edges L(k) and

R(k) bound the same region. We associate with each point P(k) a node

number NN(k) indicating that the y-coordinate of P(k) is in the range

(Bi(NN(k)),Ti(NN(k))] at some level i. We start at E1ogN (the root).

It is obvious that NN(k) is equal to 0 for all k at the root. The set

of points is maintained sorted lexicographically by their node numbers

NN(k) and their x-coordinates. Since Ei is sorted in the same manner, we

can use the parallel searching algorithm in Section 2.2.3 to determine

the pairs of edges L(k) and R(k). If L(k) and R(k) do not bound the same

I " region, we have to determine which node in the next level of 6 we should

continue to search. This process pictorially traces, in the underlying

binary search tree of 5, a unique path, possibly two, for each point,

j from the root to the bottom level. Since the parallel searching at each

!

I

I
L .. . . . '/ :.:, -. , -
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level requires O(log(N+M)) time and 8 has logN+l levels, the point

location described above runs in time 0(log(N +M)loSN) on a CCC with

N + M processors. We present the formal point ation procedure

LOCATEZ in the appendix.

Procedure LOCATE2 gives us the following theorem.

Theorem 4.2. Given a planar straight-line graph with N vertices, we can

locate M points in the planar subdivision induced by the graph in time

O((log(N+M)) 2) with O((loN) 3 ) preprocessing time on a CCC with N+M

processors.

4.3 On the CCC with (N +M) Processors

In this section we investigate the problem of point location on a

CCC with (N+M) processors, where N is the number of vertices of a

given graph, M is the number of points to be located, and 0 < a S 1.

4.3.1 Definition and Construction of the Search Structure

Recall the seacch structure . we constructed for a set of vertical

line segments in the algorithm for reporting intersection of vertical and

horizontal line segments (Section 3.3.1). The underlying geometric

structure of & is a N2-ary tree of height 1 (refer to Figure 18).

Figure 17 shows the same planar straight line graph as in Figure 13 but

with different edge segmentation. We can produce the same structure.5

for the set of edges. h will consist of _1 + 1 arrays D ./a,...,Do$ each

of which is a selected subset of edges sorted lexicographically by their

node numbers and their positions in the positive x direction. Here again,

for well known reasons, we first determine the edges in Di and then

i;
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sort them. By the sam argument as in Section 3.3.1, each Di contains

at most 2N1+a edges. Therefore . can be constructed in time O((o) 2 )

ona CCC with N 1+a processors. The procedure CONSTRUCT..02 which will be

presented in the appendix for the sot of edges is similar to the procedure

CONSTRUCT.2l for a set of vertical line segments with the following

difference. In procedure CONSTRUCT.J2, we do not initially order the

entire set of edges but we determine the members of each Di before we

order them.

4.3.2 Point Location

Point location , is the same as point location in 4 except we have to

choose one, possibly two, out of ? branches at any level of & for each

point. The procedure LOCATE3 to be presented in the appendix, can be

1+-a 1 2implemented on a CCC with (N+M) processors in O(;(log(N+H)) )

parallel steps. We state this in the following theorem.

Theorem 4.3. Given a planar straight line graph G with N vertices, we

can locate H points in the planar subdivision induced by G in time

11 2
0(i-- log(N +M)) with O(-(log(N+M)) )- processing time on a CCC with

a

(N +MH) +aprocessors.

Ii

S Ii

ii

lll l ll 1 1 I _ l i Jl i i.
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CHAPTER 5

CONVEX HULLS OF SETS OF POINTS IN TWO DIlENSIONS

Formally, the convex hull of a finite set S of points is the

intersection of all convex sets containing S. In the plane, the convex -.

hull of S, CH(S), is a convex polygon. Specifying a polygon unambiguously

requires giving its vertices in the order that they occur on the boundary.

A simple polygon is in standard form if its vertices occur in clockwise

order with all vertices distinct and no three consecutive vertices collinear,

beginning with the vertex that has largest y-coordinate.

The problem of convex hulls arises in many applications: finding

diameter of a set, determining the existence of a linear classifier of a

set, etc. Several optimal algorithms for determining sequentially the

convex hull of a set of N points in two dimensions have been developed

(2,9,30,35]. These algorithms use the well-known technique called "divide

and conquer" [1] and achieve the running time of O(NlogN). In a parallel

machine, the subproblems generated by the "divide and conquer" method can

be solved simultaneously, so an efficient algorithm for combining the

results of these subproblems is essential for an overall fast parallel

algorithm. We shall develop som preliminaries before designing convex

hulls algorithms on the SM and on the CCC.

5.1 Preliminaries

Given a convex polygon A(O: n-I) in standard form, let IA, s A, and r. "

be the indices () of the vertices with least x coordinate, least y

coordinates and largest x coordinate respectively. Given two points p

(1 )Indiceas of polygon A(O:n-l) are modulo n. 3

I
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and q in the plane, G(p,q) denotes the polar angle of q with p as the

origin. We define a i e(A(i),Aj)) ( 1 ) . Due to convexity, in the range

0: 1 < n-1, the sequence (aOl'."ai, i+l''") is decreasing.

Let A(O: n-1) and B(0: m-1) be two convex polygons where the

y-coordinate of A(i) is lass than that of B(J), for 0 5 1 < n and

0 J < m, so A and B are non-intersecting. We define yi,j -(A(L),B(J)) .

A sequence is V-bitonic if it consists of a decreasing sequence, which may

be empty, followed by an increasing sequence. A sequence is A-bitonic if it

consists of an increasing sequence, which may be empty, followed by a

decreasing sequence. Due to convexity, in the range 0 < i s A the sequence

Y , is V-bitonic and in the range sA' i < n the sequence

(Yi,S Yi's +i,..,Yi,m) is A-bitonic (refer to Figure 19). We define j

as min EJij5ik' 0:1c5r,] fori, 0 i5rA and as

min Cilyij :S Yik,rB ' k5 s B- for i, rA  i 1 a A . We also define j(i) as

.max (i yikSB 5 kS B] for i, s A < i < AA and as

max Jjyij 1 YikAB <_ k < m) for i, AA S i S n. We shall explore some

characteristics of JM and a)cSLemma 5.1. cti+l,i < Y iJ 1 M - ( M < J(i+l), 0 S 1 i

Proof: The condition i <  i ) implies A(il) is in the hatched

region (refer to Figure 20). Suppose J('+') < J('); this implies that

[- B(J(i+l)) is in the crosshatched region. Then it yields the contradiction

.Yi+l,j(i+l) > y,+l,j(i) on the definition of j

Ma (1 is defined as polar angle for explanatory purpose only; in the

implementation of the operation of comparing two angles, we shall avoid
computation of angles by replacing it with the operation of comparing
the negative values of their cotangents, where the function contangent:
[0,rr] - [ ,a] is an order-reversing mapping.

2 )Sam as (1).

.... ". .
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(a) 0 : ± rA

B(j

A(i+1)

(b) 7A !S 1 !5S

Figure 20. Illustration of the proof of Lemma S. 1.
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Lemma 5.2. .(i) < (i+) li < Yij(i) 0 S A

Proof: j(') < j('+') means B(j( '+ ')) is in the hatched region in Figure 21.

Suppose i+l, z yi,J (i) which implies A(i+l) is in the crosshatched region.

We then have YL+l,j (i+l) > yi+ij(i) which contradicts the definition of
j (i+.). C].

By similar arguments we have the following lemmas on 3(1).

Lemma 5.3. a ii+1 < -,(i) - J(i) a 3(i+ ) sA < 1 _- n,

Lemma 5.4. 3 ( ) > j(i+Il) i< ( )' s!-< i S a

We are going to use these lesmas to show an important property of

the sequence of J(i) (())

Theorem 5.1. In the range 0 S 1 < rA, if J(i-l) < J(i) for some i then
(i)_ (rA) (i-1) M

S-And in the range r A S1 A if j <

then "(i) < .(i+l) < . (A)A
Proof: We shall show that f j(i- j1) then < j for

< jI n k+ l~ k < k '

k -i-1, i,...,h, where h is rA for 0 < i < rA and sA for rA < i sA

We prove by induction on k. The basis a ii-i < Yi- 'j (i-l) is true by

Lemma 5.2. In the inductive step, we assume that ak,k-i < Yk-l (k-l).

Then by Lemma 5.1, j(k-1l) < j(k). Referring to Figure 22, we have

a , k j (k )  Due to convexity, k+l,k < 'k,k-l" Therefore, we have

ak,k+l < k'J (k) Hance, the statement in Lemma 5.1 completes the

proof. 3

S
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(a) 0 : ± rA

(b) rA 8 A

Figure 21. Illustration of the proof of Lemma 5.2.
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A (kk)1

*A M

(b) rA k I SA

Figure 22. Illustration of portion of the proof of Theorem 5.1.
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Using an argument similar to the one above, we can establish the

following theorem.

Theorem 5.2. In the range sA ! i s £AV if 3 (i-1) > 3() for some i then

V T (i) a (i+l) (LA).* And in the range LA " n' f(i ) (i)

then j j(n).

These two theorems can be interpreted as follows:
(rA)

Corollary 5.1. (j) ,...,J ) is a nonincreasing sequence followed by

a nondecreasing sequence: so is ( ,...,J ). (j ,..-,j ) is

a nondecreasing sequence followed by a nonincreasing sequence; so is
(3 (),A),••- () .

5.2 eraing Two Convex Hulls

Given two convex polygons A(O: n-i) and B(O: m-i), where the y-value

of A(i) is smaller than that of B(J) for 0! <i < n and 0: < j < m, by merging

of A and B we mean the determination of the convex polygon

C(O: j*-i* +i*-3*+m-l) which is obtained by tracing the two lines of

support (A(i*),B(3*)) and (A(i*),B(J*)) common to A and B, to be referred

to as left and right tangents respectively, and by eliminating the vertices

of A and B which becomes internal to the resulting polygon (refer to

Figure 23).

It is observed that if B(r.) is to the left of A(rA), then i* and J*

are in the ranges [O,rA] and [O,rB], respectively; otherwise, i* and J*

are in the ranges [rA,sA] and [rB'sBI respectively. It is also observed

that if B(AB) is to the left of A(AB), then * and J* are in the intervals

[sA,LAI and [sB,LBl respectively, otherwise, i* and J* are in the intervals

[1A,n] and [1,,m], respectively. Furthermore, the tangents (A(i*),B(J*)) and
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y

B(rB)

B B B

B (s)B

A (0) 4~

AWi)

A ArA

A AA(i*)

A(sA

x

Figure 23. Illustrat~ion of the merging of two planar convex hulls.
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(A( *),B(j*)) are characterized by the following properties:

(1) ]*ad -j (*)

(2) ci*,i*-l > Yi*J* and ai*,.*+i Yi*J* < Y;

!~*,I*+, < yj and yat*,I> TT.

Figure 24 clarifies these properties.

The index J* has another property which is not so obvious as those

above, as expressed by the following lama:

Lemma 5.5. j* 5 J) for 0 5 15 rA when 0 : j* < rB and for rA S ' ! sA

when rB : j* S sB .

Proof: Suppose J* > J (k) for some k in the appropriate range. Due to

property (2) of i* and J*, A(k) must be in the hatched region, and due

t to property (1) and the assumption J* > j(k) B(j (k) m st be in the

crosshatched region. We observe from Figure 25 that yk, (k) > YkJ* which

contradicts the definition of jtk). Therefore., J*: j(£) for all i in the

* specified range.

By a similar proof, we can show that the index 3* is largest among

Lama 5.6. 1 * 3 (i) for sA5 i : A when s 3 * : .1 and for .A 1 :S n

when I s :* M.

A marging algorithm for two convex polygons may consist of the

following three major steps:

1. find J* and J* ;

2. determine i* and 1* which, with J* and 3*, satisfy properties (1)

and (2);

3. rearrange the vertices of the resulting polygon.

I
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A(i*-1)

A~i*.A(

BI B(rB) is to the leftt of AMY (ii) B(rB) is to the right of A(r A

(a) cl ,i* 4! Yi *J* andy~i*,i*+1 - ij T

BU*)B -*

A(A i*1)

A~i**)

A~i*A A*i*)

(I) BStB) is to the loft of A(."A) (ii) B (A B Is to the right of AU(A)

(b) cl-. V+ < -*J and wl*j _ -* > I

Figure 24. I1lustration of properties of tangents.£
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1.B(j ()

A (k)

(a) B(r) is left of A(rA)

BAA

A(Ic

(b) B(r) Is right of A(rA)

Figure 25. Proof of Lemma 5.5.
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We shall describe the merging algorithm in more details in the t
following sections.

5.3 On the SM with N Processors

In this section we shall present a "divide and conquer" algorithm for

finding the convex hull of a set of N points in the plane on a SM( with

N processors. We shall study methods for finding the minimum (maximum)

of a V-bitonic (A-bitonic) sequence and for merging two convex polygons

on the SMM.

5.3.1 Findina the minimum (Maximum) of a V-bitonic (A-bitonic)

Sequence

Given a V-bitonic (A-bitonic) sequence D(O: n-l), we want to find

the smallest (largest) index k such that D(k) is a minimum (maximum)

of the sequence. The index k has the property that D(k-1) > D(k) < D(k+ 1)

(D(k-l) 5 D(k) > D(k+ 1)). Therefore, it is obvious that k can be found in "

constant time on a SM with n processors and n memory units.

We are going to solve this problem on a SM4 with ./ processors and n

memory units. We first find the smallest (largest) index i such that D(i4-)

is a minimum (maximum) of the sequence (D( ),D(2$),...,D((,/'T).)).

Note that this sequence is also V-bitonic (A-bitonic). It is observed that

k must be in the interval I(i-l)v+l,(i+l)-l] which is of length 2 i-l;

and D[,a),...,D(i+l)A -l)) are both V-bitonic

sequences of length qn. Therefore, the index k can be determined

£ in constant time with /a' p.iessors * The function ?aIL1/..ITONIC ie a

formal description of the above method to determine the index k.

I
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function MIN..YV3ITONIC (D(O: n-1))

/* this function returns the index k such that D(k-1) > D(k) S D(k+l),
when D is V-bitonic sequence *l

basin
foreach J, JE El,2,... _;-1)] do

if ' _ D((j1l ,W) > D(j/) and

then i -j
foreach J, j E L(io1i/n1,(ol)A;i+2,...,LIn do

if D(J-l) > D(J) and D(J) S D(J+l) then k j

foreach j, j E E__i 4l,.., (i+l),h/-11 do
if D(J-1) > D(J) and D(J) 5 D(J+l) then k J

return k

end

We can obtain the function MAX.LAITONIC for a A-bitonic sequence by

interchanging > and S in MINV._BI1VNIC.

5.3.2 Findins the Comnon Tangents of Two Convex Polygons

We now develop an algorithm for an SM for finding the left tangent

(A(i*),B(3*)) and the right tangent (A(i*),B(j*)), as defined in Section 5.2,

for a SM. Let us consider the determination of j*. Assume that B(rB) is

to the left of A(rA) (the other case can be treated in the same way).

Since j(i) where 0 : is: rA, is the smallest index of the mini-um of the

V-bitonic sequence (YiO'...,'i,r), J can be found in constant time with
B

*Vr+ rcsos We determine .j for i -/ 112Ir - +1 1 WrA-l t/Wr
By3  pocsos A A A A

(refer to Figure 26). This can be achieved in constant time with

W rA +-l- rB+l processors. Then we find the smallest index £ such that

(U) Al r l 1,/.
..is a mini- among A This can be done

I

1.
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0r~ 2frA3f

II A+ j* +fI~ rA

i* i inthis range

Figure 26. Determiniation of J*'.
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in time O((logG/rA-l)) 2 ) with r,,+-i processors (refer to Section 2.1.2).

A A

The index J* is the smallest in the set A , A

A ] of size 2#/A+1-1. Therefore J* can be found in 2((logn)2

time on an SIMK with , processors. The index j* can be determined in a

similar way. The indices i* and 1* are the two i's which satisfy properties

(1) and (2) as described in Section 5.2. Knowing j* and J*, the indices

i* and 1* can be determined in constant time with n processors. We shall

present formally, in the appendix, the procedure TANGENTS which determines

and returns the indices j*, i*, 3* and i*.

In conclusion, the left and right tangents can be determined in time

O((logn) 2 ) with at most m+n processors. Next, we shall consider the entire

convex hulls algorithm.

5.3.3 Convex Hulls Algorithm

As a preliminary step, we sort the set S of points by their

y coordinates in descending order. This can be done in O((logN) )

time with N processors. The convex hulls algorithm to be presented is

a recursive p ,gram. The major step is the merging procedure which

determines the left and right tangents of two convex hulls and

rearranges the vertices of the resulting hull.

ii . _li_ _I_ _-
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function CH21 (S)

/* returns CH(S); S is a set of N points in the plane */
bezin if N <- 2 then return (.)

return (MERGE(CH21(S(N/2: N-l)),CH2l(S(0 N/2-1))))

end

function MERGEl(A,B):

/* returns the convex hull of polygons A and B */
begin

(J*, i*, j*, i*) TANGENTS1(A,B)

foreach k, 0 S k <- J* do C(k) B(k)
foreach k, i* :5 k S i* do C(j*-i*+l+k) -A(k)
foreach k, j* < k < mdo C(j*-i*+2+*- j*+k) "-B(k)
return (C(O: j*-i*+i*-j*+m-1))

end

The running time T(N) of function CH21 can be obtained by

recurrence relation T(N)- -T(N/2) +M(N), where M(N) is the running time

of function MERGEL. We have shown that the tangents can be found in

O((logN/2) 2 ) with N processors, and it obvious that the rearrangement

can be done in constant time. Therefore, M(N) - 0((logN) 2). Hence

2
T(N) - 0((lo N)).

Theorem 5.3. The convex hull of a set of N points in the plane can be

determined in time O((1ogN) 2 ) on a S14 with N processors and N

memory units.

5.4 On the CCC with N Processors

In this section we discuss how the convex hulls algorithm developed

in Section 5.3 can be implemented on a CCC with N processors in O((logN) )

parallel steps. We shall discuss the data movement in detail. 1

[
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5.4.1 Findins the Left and Right Tauzents of Two Convex Polyzons

The function TANGENTS1 introduced in Section 5.3.2 for determining

the indices of the extremes of the left and the right tangents of two

convex polygons cannot be directly implemented on a CCC. We shall make

some modifications to TANGENTS1 so that it will be suitable for

implementation on a CCC.

Using the facts that J* is the minium among the J)'s and that the

sequences of Yi~j s are V-bitonic, we can determine J* as follows.

First of all (refer to Figure 27 for the following discussion), we

describe how to determine simultaneously a set of integers

where ,J)-

min(Yi, ,- ,Yc~~,, ,.if _(r 3 ) is to the left of

A(rA); and a set of integers EJ(i),i-rA +sA-rA+1,rA+2sA-rA+1,...,

AB A

y r+2S:r +l y ,whr r.L+ V37--- the

i ,r3+2% r+l,..i,ri+( /+ l+. 1.BrE ]if B(rB) is not to the

left of A(rA). We now consider two duplicating patterns of a data array

D(O: q-l); (i) the first pattern, to be referred to as P1(A) consists in

duplicating D £ times into ED(O),D(l),...,D(q-l),D(O),...,D(q-1),...)

(ii) the second pattern, to be referred to as P2(A), consists in

duplicating each element of D £ times into ED(O),D(),...,D(O),D(l),...,

D(l),...,D(q-l),...,D(q-1)]. Both patterns have q.1 elements. The first

pattern Pl(l) can be achieved by copying each element of (D(0),...,D(q-l)]

~~44,
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(b) j~ vs.± 0
Figuro 272. Graphics1 Illustration of the doterminton of .3 on the CC'C.
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into the module q positions away, then copying each element of

CD(O),...,D(q-1),D(O),...,D(q-1)I into the module 2q positions way,

and so on. It ril take logarithmic seeps to achieve the pattern Pl(A).

We achieve the second pattern P2(1) as follow. We copy D(O),D(1),...,

D(q-1) into modules 0,A,2,...,(q-l)L respectively by a reverse process

of the concentration procedure described in Section 2.2.1. We then

perform a selected broadcasting as described in Section 2.2.2 to achieve

pattern P2(A). Recall that both of these operations can be achieved in

logarithmic time. Therefore, both patterns can be achieved on a CCC with

q-A processors in O(log(q.A)) steps. We shall discuss only the case that

B(r B ) is to the left of A(rA); The other case can be treated in a similar

e manner. We duplicate eB(te),B(2/r7l) .... ovt) t . into

i.. 27in costhot time. Sitnl. sequences ( *'yi, (l,,/-- .. ),i for

B BB

pattrnl, r A +1-1..andrA)r A +L, a(rVbt oi, the r inie Jinsof

t, ,,,/ , 72,and the values of ,T~i). The index 1', the

mntnm of J(i), can be determined in O(log/) tim on the CCC.

W YioJ .1 ,j~i+2

**'~iA'*'"'ri~j A Bo

I.12
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Ii
in the same way as we determine J(i). We also find i which is the

smallest index such that J'(1) is a minimum amng Ej('(T/+E)J(2r 1 ),.,

J) r.+1-1%. r,+12 . It is easy to show that 1 be determined in 0(logq )AT
on the CCC. Now J* is the minimum of (j(1-k+l) j(1-k+2 ),*..Sj (Ik-i), and

can be found in a procedure.similar to the one given above. The

procedure LZANGENTLIDEX, which is a formal description of what we

discussed above, will be presented in the appendix.

In an analogous way, we can describe a procedure LTANGENT INDEX (A,B)

which returns J*. Knowing J* and j*, we can determine i* and 1* by

finding pairs of (i',J*) and (i",3*) which satisfy properties (1) and (2)

defined in Section 5.2.

function TANGENTS2 (AB)

/* return the indices of the extremes of left and right tangent
of A andB *

begin

/* determine J* and j* */

-ANGE T-INDEX(A,B)
L_,TAGENT.INDEX(A,B)

/* determine i* and 1* with which J* and j* respectively
satisfy property (1) and (2) */

if x-values of B(r) < x-values of A(rA)

then begn a- 0; b- rA; end; else begi a rA; b 5n; end

foreach i, a< 15 b do M
LYij*-lYiS ,jI.l /. J.,, ./

Sa i,i > YiJ* -n ai,i+l - Yi,j* < YT /* property (2) */

then i* - L.

if x-values of B(A ) < x-values of A(LA)

then begin a - A; b A; end; else begin a b n; end L

foreach i, a 1 i b do [.,i
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iL 'Lj..I ' "l,.* < Yi,3*+i /* ] -(i) *1

and .r < Y.,3, a . - ,i,

then L
return (J*,i*,J*,i*)

end

Therefore, the left and right tangents can be determined in time

O(log(n+m)) on a CCC with n+m processors. Next, we shall consider the

entire convex hulls algorithm

5.4.2 Convex Hulls Algorithm

We presort the set S of points by their y coordinates in descending

order. This can be done in time 0((logN) 2) on a CCC with N processors

[311. The convex hulls algorithm has the same structure as the one

described in Section 5.3.3. The main difference is in the mergin& step.

function 1ERGE2(A,B)

basin /* determine the tangents */
S- TA- N 2(AB)

/* reorder the vertices */

foreach 1, 0 : i < n do T2(i) - A(i)
foreach i, 0 :- i < m do Tl(i) - T3(L) - B(i)

if J*+l > i* then shift T2 forward by J*+l-i* positions

else shift T2 backward by i*-J*-l eositions
if (J*+l+1*-i*) > j* then shift T3 forward by 1*+i*-i*+2-J* positions

also shift T3 backward by J*-(J*+i*-i*.2)
positions

foreach 1, 0:5 15 
J* do C(i) - Tl(i)

foreach i, j*+l : i s J*4'i*-L*.l do C(i) ! T2(i)
foreach i, J*+!*-i*+2 6 i : J*+i*-*+2+m-j*

do C(i) - T3(i)_

r (C(O: J*-i*-i*-J*+-1))

end

Cyclic forward or backward shift of an array of data can be

implemented on a CCC with n+m processors in 0(log(n+m)) parallel steps.

Therefore, MERCE2 runs in time O(lo$(n+m)) on a CCC with n+m processors.

2
We imediately obtain an 0((lo&N) ) algorithm for finding the convex hull

of N points in the plane.

tI
-'
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function CR22 (S(0: N-1)): 1
/* returns CR(S); S is presorted by y coordinates in descending order */

bein if N <: 2 then return (S)
else return (NfG2(CH22(S(N/2:N-l)),CR22(S(O:N/2-1))));

end.L

Theorem 5.4. The convex hull of a sec of N points in the plane can be

determined in time O((logN) 2 ) on a CCC with N processors.

l4a
5.5 On zhe CCC with 2N Processors

In this section we shall develop a "divide and conquer" algorithm

for finding the convex hull of a set S of N points in the plane on a CCC

with 2Nl+a processors, 0 < axS 1. We partition S into l subsets

S0'SIS.'°"S -N of N 1- elements each. We then determine convex hulls

CH(5),... ,CH(S ) simultaneously. Finally CH(S 0),...,CH(S are

merged to give CR(S). Since the determinations of CH(S0),...,C(S

recursive calls, we obtain for the running time T(N) of this algorithm

the recurrence relation

T(N) - T(N ) + M(N),

where M(N) is the time to merge CH(So),...,CH(S I). f we can show that
4-l

l convex hulls can be merged in time O(logN) with 2N processors,

then we have T(N) - 0( log N).

We shall define some term and then describe the merger, which is a

major part of our convex hulls algorithm.

5.5.1 Notations and Definitions

Consider a set of polygons A0,A1,...,Anr.- (0 < a 5 1), each having at j
most n vertices. Each Ai is in standard form, that is Ai(O: ni-I)

is the clockwise sequence of its vertices starting with the one with largest -i

y coordinate. Variables ni,ri,sili denote the indices of the topmost

g-I
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rightmost, bottommost and leftmost vertices of A,. We assume that the

y-coordinates of Ak(0: nk-l) less than those of AA(O: ny-l) for k > A,

that is in any horizontal slab there will be only one Ai. The indices

of the extremes of the left and the right tangents of A, and AL(k > A)

are J*ku*kjJ*kAi~kA respectively (refer to Figure 28). We define

the polar angles 6I,, - O(A *k,),A (j*k,)) a

Ok,A a O (Ak(*kA),AA(J*kA)). 
(1)

5.5.2 Merging Multi le Convex Hulls

We shall discuss how to merge the set of t convex polygons,

A0,...,A N' i, as introduced in Section 5.5.1. Like merging two convex

polygons, we have to determine those vertices belonging to the resulting

convex hull and those becoming internal to the resulting convex hull; then

1 Iwe have to rearrange the vertices. We shall develop some preliminary tools

first.

1- Leona 5.7. If 6i'k < 8 , or &i,k = 6, and £ < k, for k and A < i, then

(A£(i* i,k),'Ak(i*i,k)) is not an edge of the resulting convex hull of

A0 ..•. NA

Proof: We have to consider two cases (a) A < k and (b) £ > k. Referring

to Figure 29, in both cases, the edge (A (i*£,k),Ac(i*£,k)) becomes internal

to the edge (Aii,*u.A(.*, ..

(1)In the implementation, the operation of comparing two angles will
be replaced by the operation of comparing the negative values of

t their cotangents as in the case of a and Yi,
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A A
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(a) A < k

A ej*) A
k i, k k

At

A (V

A iit

(b) A>k

*Figure 29. Proof of Lemma 5.7.

B *l*



We associate with each polygon Ai an index i(i)(< i) which is the

smallest index such that 6i,(i) a 6i,k' 0:9 k < i. Usin Lem& 5.7,

we have the following result.

Corollary 5.2. Among all edges (Ai('*i~k ),A k ( *ik)) (0 : k < i).

(to be referred to as edse candidate) is V
the only candidate for being an edge of the resulting convex hull of

We now consider polygons below Aj.

I&=& 5.8. If 6k,L > 8 ,£ or 6 - 8ka and k< I for k,L > i then

(A.(.*,,Ak*k,.)) is not an edge of the resulting convex hull of

Proof: We have considered two cases (a) k < £ and (b) k > £. Referring

to Figure 30, in both cases, the edge (A(j*k,),Ak(I*k,j)) become internal

to edge(Ai*,A(*£)..

We associate with each AL an index G(i) (> i) which is the largest

index such that &S(i),i :5 5 k,±' L < k S e-l. Again using Leams 5.8,

we have this result.

Corollary 5.3. Among all edges (Ai(J*k,i),Ak('*k,±)) (i < k S N-l),

(to be referred to as ede candidate)

is the only candidate for being an edge of the convex hull of

A0,...,A-1

We are now able to determine if the edge candidates are edges of I

the convex hull of A0 ,...,Aa. 1 as follows. I

4 1

I [ '-
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A k

(a) k < A

A~ (P

£ LAi

A G*)1-i k kyi

I Figure ~(b) k >ALma58
Fiue30. Proof of Lma38
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1.

Theorem 5.5. The edge candidates are edges of the convex hull of

A0 3...,A if and only if* > or - and

A (A±(*(i) i A. (i) ( ) e(Ai(!*i,;(i)) A(1)(3*,;(i) >T). ".

Proof: Suppose I*ii(i) < J*b(j), (refer to Figure 31(a)) or

i*i,i(i) - 3*;(1),1 and G < Tr (refer to Figure 31(b)). We have

6;(i),i < b6(i),(i) i )(i b(i),(i) Thus, by Lemmas 5.7 and 5.8,

edges (Ab (i)(*b (i),Ai (*b(i),i) and A (i) (i*, (i) ),A (i* ( )) are

not edges of convex hull of A 0 ... ,A 1

Suppose L* , (i) > J*b(),i (refer to Figure 31(c)) or i,(i)j*b(i)i

and 1 > Tr (refer to Figure 31 (d)). By the definitions of i(i) and b(i),

all A0 , ...,A N' . are on the same side of the edge candidates. Thus, the

candidates are edges of convex hull of A0 2,... AN-l

We now describe the analog for the right tangents. The index t(i) is

the smallest one such that , 5 -  0 < k < i. And the index
i't(i) -i,k' -

b(i) is the largest such that 0b(i),i k Ok,i' i < k _ N -1. We shall state

without proof the analogous le-as, corollaries, and theorems for the

right tangents.

Lem 5.9. if 0 > 0ilor Oi~k - 011and A < k, for k,A < £ then

(Ai(i*i,k),Ak(J*ik)) is not an edge of the resulting convex hull of

Corollary 5.4. Among all edges (Ai(i*ik),Ak(J*i,k)) (05 k < i),

(Ai(i*i,t(£)),At(i)(J'it(i))) is the only edge candidate. I
Lemma 5.10. If 0 k,i < 0,i or -k,i ,i and k < 1, for k, > i then

(Ai(J*k,i),Ak(i*k,i)) is not an edge of the convex hull of A0,...,A _.*

No'11
'V[

II * '" V
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Corollary 5.5. Among all edges (A (J*,)A(i,) (i < k S e-1), 1
(Ai(j*b(i),i),Ab(i)(i*b(i),)) is the only edge candidate.

Theorem 5.6. The edge candidates are edges of the convex hull of

O,...,As.x if and only if i* ,cti) < J*b(i),i or (±*i,t¢i)"J*b(i),i
IP- -IAi~~it(i))A(i)i ?((C)J*b(i))<IT)

and w - e(Ai(J*b(i),),Ab(i)(i*b(i),i))-(Aii*i t~i)),Atci)(j*it(i))) < rr).

Before discussing how to obtain indices t(i), b(i), t(i), and b(i),

etc., we present an example of merging five convex polygons in Figure 32.

In Figure 32, 620 > 8 21; therefore by Lemma 5.7 and Corollary 5.2,

(A 2("2, ) 'A0(J*2,0) ) is an edge candidate while edge (A2 (i' 2 , 
) A0 (j* 2 '1 ))

is eliminated. Also 642 > 8 32 therefore by Lema 5.8 and Corollary 5.3,

(A2 (3* 3 2 ),A 3 (1*32 )) is an edge candidate while edge (A2 (j*4 2 ),A4 (i'*4 2 ))

is eliminated. However, by Theorem 5.5, both of these edge candidates

will be eliminated because i* 2 < J*3,2" With similar arguments, all

lines of support, except those shown in the figure, will be eliminated.

The resulting convex hull is (A0(O),A 0(l),...,A 0(j*, 0),A1(i*,0 ),

AI (i*lo+l)...,A I (J* 4 1 ),(i* 4 , ,A, (i*, 1+l),...,A4 (* 4 , 3 )'A 3 (*, 3 )

A 3(3*4,3+l
) '."'A 3 ('* 3 , 1 ) A0 (J* 3 ,0 ) A0 (J* 3 ,0 +l ) '... 'A (n -) ). We now

discuss how to obtain the resulting convex hull in the general case.

We first copy A0 , .. ,A into the followin attern P3:

N' l

A0A1AA 2 ... AQA A A A A ...A A ... A AlA A2 ... .A A

Therefore, pairs of polygon A kAi, k < i and i a 0,...,Na-l, are adjacent.

We then use the procedure TANGE TS2(A Ak) in Section 5.4.1 to determine I
J* i,k' i*i,k'*i,k and '*i,k . The number of processors required in the

copying is N 2(N-1).N 1  < 2N1+ Y, and it can be achieved in 0(logN)

parallel steps with some simple-minded algorithm. Determination of the

I
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indices t(i), b(i), i(i), and S(i) involves finding mininm and maximum

of multisets of uniform size; so it can be achieved in O(logN) steps.-L

Using Theorems 5.5 and 5.6, we can determine whether A (i* ,t(i)),

Ai(J*b(i),i) Ai('*it(i)), and Ai(J!*(i),i) are vertices of the convex 
I

hull of AO,...'A N .-l Rearranging vertices of the resulting convex hull

involves order reversing and data extraction; both can be carried out in t.

time O(logN). Although the details of this algorithm are a bit tedious to

describe, it should be clear that merging N convex polygons, each having

at most N
1-- vertices, can be performed on a CCC with 2N processors

in time O(logN).

The entire convex hulls algorithm is a "divide and conquer" program.

The subproblems are solved recursively in parallel. Therefore, the

running time of this algorithm is 0(1 toSN).

Theorem 5.7. The convex hull of a set of N points in the plane can be

determined in time 0(- logN) on a CCC with N processors, 0 < a:5 1.

A I

0:



105

CHAPTER 6

CONVEX HULLS OF SETS OF POINTS IN THREE DLMENSIONS

The convex hull of a set of points in three dimensions is a convex

polyhedron. A convex polyhedron is specified completely by its edges

and faces. It is represented by the arrays of edges E(O: JEI -1) and of

faces F(O: IFI -1). It is a crucial observation that the set of edges

of a convex polyhedron forms a planar graph: if we exclude degeneracies, it

forms a triangulation. Thus, we know that IEI and IF are at most 3N-6

and 2N-4 respectively, by Euler's polyhedron theorem, where N(2 3) is the

number of vertices.

In [30], Preparata and Hong show that the convex hull of a set of N

points in three dimensions can be determined serially with O(NlogN)

c..ations. Their algorithm uses the "divide and conquer" technique and

recursively applies a merge procedure for two nonintersecting convex

hulls which consists of two major steps: (1) construction of a

"cylindrical" triangulation J, which is tangent to the convex hulls along

two circuits; (2) removal from both convex hulls of the respective portions

which have been "obscured" by 7. In this chapter, this solution is

reorganized so that parallel operations are possible.

6.1 Definitions and Preliminaries

We consider a convex polyhedron with edges E(O: JEJ-l) and faces

F(O: IFI-l). Element E(i) is a record consisting of fields: V1 and V2

which are the extremes of this edge; F1 and F2 which are indices of

the two faces bounded by this edge. Each element F(i) is also a record

of three fields: El, E2 , and E3 which are indices of the three bounding

edges of F(i).
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C
We can represent face Fi by an equation a x+oiy+yiz+6i-O with

normal vector (ai,bi,ci. pointing away from the polyhedron, where

iY
a, b. " Y, -, '

+  2 2 2 2 + + p2 +

The convex angle formed by faces Fi and Fj with normal vectors (ai,bi,ci)

and (ajsbiocj) respectively is cos -(ai bici)o(ajbjcj) which is

Cos (aa b b + cc). In the range 0 S 0 5 Tr, the function cos 9 is

decreasing from I to -1; so the inverse function cos 1a decreases as a

increases. Note that the distance between two points (ai,b±,ci) and
2, 2 2 . . 2 + 2 -2(ai,bi,cj) is W2(1-(aa + b cb + c)) snce a +b c a +b +c 1

Therefore, cos'(a aj, + b .bj + cLcj) decreases as 12(l-(a a +b:Lb j +cc) I

decreases and we conclude this discussion by the following theorem.

Theorem 6.1. The convex angle that face P i with normal vector "ai,bi,ci)

for= with face F with normal vector (aj 1b c ) decreases as the distance

between points (ai,b.,ci) and (ailbijc ) decreases.

6.2 Mertina Two Convex Polyhedra

Consider two nonintarsecting convex polyhedra A and B with edge sets

EA(O: IEAl-l) and EB(O: IE1-1) respectively, and with face sets

Y(O: IFAI1) and FB(0: IFBI-1) respectvely. We obtain the convex hull

CH(A,B) of A and B in tvo steps: removal from A and B of the faces which do

not belong to CE(A,B) (these faces will be referred to as internal faces);

and addition of faces which are tangent to A and B along two circuits

(which will be defined later).

01

[i
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6.2.1 Removal of Internal Faces

Consider the half-spaces bounded by FA(i) of A; we denote the

half-space that contains A by H(Ai) and denote the other one that does

not contain A by (AI). Face F () belongs to CH(A,B) if B lies in the

half-space H(Ai). Consider the pair of parallel planes of support PLI(i)

and PLy(i), which are parallel to face FA(i) and bounding the convex

polyhedron B. We define the two associated faces FB(i') and FB(i") of

FA(i) as follows: FB(4') is a face of B making the smallest angle with

PLI(i) among all the faces of B that intersect at the point of tangencyIA
with PL'(i); and FB(i") is a face of B making the smallest angle with PL"(i)

r iamong all the faces of B that intersect at the point of tangency with PLX(i).

Due to convexity, every face of B is in H(Abi) if FB( and FB(i') are in

H(Ai). We demonstrate what we have just discussed by a two-dimensional

analogy in Figure 33. FA(i) will belong to CH(A,B) because FB(i") and

FB(i') are in half-space H(Ai) while FA(J) will become internal to CH(A,B)

because FB (j') is in H(A,J).

We now describe how to determine the associated faces of FA(i).

We first transform faces FB(0: IFBl) of B into points PB(0: IFBl)

on the surface of the unit sphere, where P - (aj6bj) ~) and

W- -titit is the normal vector, pointing away from B, of F B(.J). We

search in PB(o: IFBI-1) for the nearest neighbors PB(i") and PB(i) of

(ailbilci) and (-ai,-bi,-ci) respectively, where (aibi,c) is the

normal vector of FA(i). By Theorem 6.1, FB(i") and FB(i') are the

F
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Figure 33. Two-dimensional analogy of associated faces.
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associated faces of FA(i). We shall perform repeatedly nearest neighbor

searches for all points + (ailbici) on PB(O: IFBI-1); therefore, it is

beneficial to arrange PZ(0: IF3 I-1) into an organized structure to

facilitate searching. Since PB(O: IFBI-1) is on the surface of the unit

sphere, we can construct a spherical Voronoi diagram [8] of PB(O: IFSI-1).

A spherical Voronoi diagram of a set of points P(O: n-l) on a sphere is a

partition of the surface of the sphere into n regions: region i for P(i)

is the locus of points on the surface of the sphere which are closer to

P(i) than to any other point in P(O: n-l). The problem of all nearest

neighbors se-rching is solved by performing point locations in the

spherical Voronoi diagram.

In [8], Brown presents an algorithm for constructing the spherical

Voronoi diagram of a set of n points P(O: n-l) on the surface of a sphere

by intersecting half-spaces. For each point P(i) there is a plane PL(i)

tangent to the sphere at point P(i). Let H(i) be the half-space bounded

by PL(i) which contains the entire sphere. The intersection of the n

half-spaces 1(i) forms a convex body C. The spherical Voronoi diagram is

,' now obtained by a simple projection of the edges of this polyhedron to the

surface of the sphere. This projection is a "radial" projection: the

1' projection of a point Q is the point where a line segnt connecting the

center of the sphere and point Q intersects the sphere. This projection

maps edges of the polyhedron to arcs of great circles on the sphere.

The vertices of the polyhedron are mapped to spherical Voronoi points and

the faces of the polyhedron are mapped to spherical Voronoi regions.£

I
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Let aix + %iy + j.z + .0 be the equation of face F3 (i) with

normal vector (;iPbi,ci) pointing from B. Then the plane PL(i) tangent

to the unit sphere at point (aibi,ci) has equation

~x+ 5iy + z- /d'+ + ,that is PL(i) is obtained from F (i) by

a translatioca. Figure 34 shows the two-dimensional analogy of the translation

of faces of B. Therefore, the intersection of PL(i) and PL(J) is an edge

of C if and only if FB(i) and F (J)'are adjacent.

6.2.2 Addition of New Faces

In addition to the removal of internal faces, we have to construct faces

which are tangent to A and B along tvo circuits CA and CB (refer to Figure

35). The circuit CA is composed of edges EA(i) of A such that EA(i)(Fl ] is
A  FA A

an internal face and E(i)[F ] is not or vice versa. The edges in are

determined in the same manner. We have to describe a criterion for uniquely

ordering the edges in CA and C B . We define observer B as an observer

placed at any point of B and oreinted like the negative z-axis; and observer

A as an observer placed at any point of A and oriented like the positive

z-axis. The edges in CA are numbered in ascending order so that they form

a clockwise sequence for an observer B. And the edges in CB are numbered

in ascending order so that they form a counterclockwise sequence for an

observer A. We start both sequences at the vertices with la-gest

y-coordinates in C A and CB accordingly. Let CA(i)[V1] and CB(j)(V 1] be the

vertices at which edges CA(i) and C (j) originate respectively. Then

(CA(O)[VllCA(l)[Vl],...) and (CB(O) [Vl,CB( 1) [ V I] ,...) are the sequences

II
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112

z

BB~

A an internal face

Figure 35. Merging two convex hulls in three dimensions.
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of vertices of CA and CB respectively. Due to convexity, the convex

angle formed by (CA(O)[Vl],CA(i)[Vl]) and (CA(O)[V1],CA(J)[Vl]) is

clockwise for an observer B, where i < J; the convex angle formed by

(C B (O)[V 1 l]]C(i) [V1 ] ) and (CB(O) [V1 ],CB()[Vl]) is counterclockwise for

an observer A, where i < J. Therefore, edges in C A can be ordered by

some simple sorting algorithm, and so those in CB.

We define an angle measure 6A(i~j),() associated with edge CA(i) and

vertex C (U)V 1I, as the convex angle formed by the plane determined by

CA(i) and CB(J)[V1 ] and the face bounded by CA(), which belongs to

CH(A,B). In an analogous manner, we define 8B(J,i) as the convex angle

formed by the plane determined by CB(J) and CA(i)[V1] and the face bounded
by CB(J), which belongs to CH(AB). We also define j(i) as the smallest

index such that BA(i,l(±)) is a maximum among all eA(i,j), 0 :S j < IC3 I;

i ( j ) as the largest index such that 8B(J,i(i)) is a maximum among all

8 B O(J,i), 0 S i < 1CAl. It is observed that j (O), j(1),...) and

(0),i ( 1 ) .. . .) are nondecreasing sequences. The faces determined by

CA(i) and CB(J10 )[V1 ] (or CB(j) and CA(i J')(V]) are tangent to A and B.

They are faces of CH(A,B).

6.3 On the SMM with N Processors

In this section we discuss the entire convex hulls algorithm in three

dimensions on the SM. The crucial step is the implementation of the

merging of two convex polyhedra as described in the previous section. We

show that the merging runs in time O((logN)2 loglogN) with N processors,

3
which gives us an O((logN) loglogN) three-dimensional convex hulls algorithm

on a SMt1 with N processors.

In the actual implementation, the operation of comparing two angles will be

replaced by the operation of comparing the negative values of their
cotanSents.
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6.3.1 Implemnting the Merge Algorithm

We now present a top-down implementation of the merge algorithm on

the SM . First we have to determine the internal faces. The following

procedure determines which faces of the convex polygon A are internal.

procedure INTERNIA(A,B, tA)

/* Given two nonintersecting convex polyhedra A and B, for each

face FA(i) of A, determines if it is internal to the convex

hull of A and B; it sets tA(i ) to I if FA(i) is internal and

0 otherwise *A A

1. transform each face FB(j) with normal vector (,ibj 1 cj into a point

P3 (J) - (aj,bj2cj).

2. construct the spherical Voronoi Diagram GB for the set PB"

3. transform each face FA(i) with normal vector (ai.,bi,ci) into two

points '(i) - (ai,bi,ci) and P'(i) (-a,-b-ci)

4. for each i, determine the nearest neighbors P B (i") and PB(i') of the

points PX(i) and P4 (i) respectively by point location in GB.

5. for each i, if both FB(i") and FB(i), the associated faces of

FA(i), are in H(A,i) (i.e., FA(i) is internal) set tA(i) to 1;

otherwise set tA(i) to 0.

The transformations in steps 1 and 3 of procedure INTERNALA can be

done in constant time with IFBI and IFAI processors respectively. As

discussed in Section 6.2.1, the construction of the spherical Voronoi

Diagram for PB is just a simple transformation from B, which can be done

in constant time. In Section 4.1, we have given a point location algorithm

which runs in time O((logn)2 loglogn) on a SbK with max(n,m) processors,

where n is the number of vertices in the graph and m is the number to be

located. Therefore, all the nearest neighbors in step 4 can be determined

[I
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in time o((logjF 3I)
2logog(FS1 ) with max(IFAI,IFB1) processors. Finally,

step 5 runs in constant time. Thus, the internal faces of A are
determined in time o((log[Fsl)2 loglosIql> on a s w m(IFAIIFBI)

processors. Similarly, we can have a procedure fITERNALB(A,B, tB) which

set tB(J) to 1 if face FB(J) is internal; and set to 0 otherwise.

Knowing the internal faces, the circuits CA and C as defined in
A B

Section 6.2.2, can be determined in time O(loglEAllogloglEAI) and

0(logIEBIlogloglEBI) respectively as follows.

procedure CIRCUITS (A,B)

/* determine the two circuits CA and CB for A and B

begin

/* CA contains edges of A, each of which is shared by an internal

face and an external face */

C A - EA

foreach i, 0 <- i < IEAI do

if EA(i)(F1I is internal and EA(i)[Fz] is external

hen t (i) - 1
else t(i) - 0

call EXTRACT(C,,t)

order the edges in CA as defined in Section 6.2.2

/* C. contains edges of B each of which is shared by an internal

" 1 face and an external face */

foreach i, i < EBI do

Sif EB(i)[FI] is internal and EB(i)(F2] is external

then t(i) -I
else t(i) - 0

call EXTRACTI(CB, )

edorder the edges in CB as defined in Section 6.2.2L end B

'I

,I
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The face determined by the edge CA(i) and the vertex CB(J )V 1] is a

new face of the convex hull. Since j(i) is the smallest index such that -

eACij i) is a maximum amnong all A (ij), 0 : j < ICB and using the

result in Section 2.1.2, j for a particular i, can be determined in

tim o(log I) on a SI. Since (jio) j(1),... is a nondecreasing

(Ickl/2) (Ickl/4)

sequence, we can first find j(; then find, in parallel, J

-(1¢A]/2) (IcAI/2)

in the intervals [O,j ] and [j c il-l respectively,

and so on. Tt is straightforward to see that it takes logiCAl iterations

to obtain all j (i)s. We can obtain all j)s by invoking the followng

procedure with a single call FINDJ 1(0,l kl-,O, lB -l).

procedure FND_.J(i)l(a,b,c,d)

/* determine j(1) in the range Lc,dJ for each i in Ca,b] */
begin if b-a - 0 then return

/* determine ji) where i is in the middle of [a,b] */

i - (a+b)/2

j(i) ._MNIMUM (CJic < j _< d and 9(ilj) -

MAMM ((9 (ik), c !5 k < d])])

/* partition the ranges at i and (i), and apply the procedure

recursively to these sub-ranges */

call FNJ(i)1(O,i-l,,J (i))

call F.ND-j ()l(i + l,b,J () ,d)

end

Similarly, we can have an 0(logICBl logICAl) time procedure

FIND i(J)l to produce all i(j)'s. We are now about to present the entire

2
merge procedure which runs in time 0((logN) loglogN) with N processors.

[

K:
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procedure MGINGl(A,B)

/* merge A and B, store the resulting convex hull in C */
begin FC "FA U FB; EC EA U EB

/* determine internal faces */

call INTERNALA(A,B,tA)

call IN ERNALB(A,B,t.)

/* determine the now faces formed by CA(i) and CB(j())V1 ]

or CB(J) and CA(i()V 1 ] */

call FINDj (±it(0, tAIlOIcBIl)

call FqDIM i()(0,jcA.-1,0, C).-11

/* remove all internal faces and edges bounding two internal
faces */

remove, from FC, faces with tA or t = I

remove, from EC, edges EA(i) such that both

EA(i)Fi] and EA(i)[F 2 1 have tag tA - 1,

and edges EB(i) such that E(i)[F1 ] and

EB(L)(F 2 ] have t -a 1.

/* add new faces and edges *M

add, to FC, faces determined by CA(i) and % (j )V]

and faces determined by CB(j) and CA(i ))[V1]

add, to EC, edges (CA(i)[Vl],CB(iU.)[V1]),

(CA(') V2 ],CB(j ()[VlI),(CB(j)[VlICA(i ())[V1]),

and (C(j 0I) ,CAO. (- )[VlI)
end

6.3.2 Three-Dimensional Convex Hulls Algorithm

As a preliminary step, we sort the set S of N points by their y

coordinates in ascending order. This can be done in time O(logNloglogN)

with N processors. We now present the recursive program for determining

j the three-dimensional convex hull of S.

!I
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function CR3(S)

/* return CH(S) where S is a set of N points in three dimensions */

bestin if N S 2 then reur CS)
else return (H.RGING(C3(S(O:NI2-1)),CE3(S(N/2:N-l)))

end -

The running time T(N) of function CH31 can be obtained from the

recurrence relation T(N) S T(N/2)+M(N), where M(N) is the running time

of function MERGINGi. In the previous section, we have shown that M(N) is

2 3
O((logN) loglogN) with N processors, thence, T(N) -O((logN) )loglosN).

Theorem 6.1. The convex hull of a set of N points in the three dimensional

3
space can be determined in time O((loN) logiogN) on a S14 with N

processors and N memory units.

6.4 On the CCC with N Processors

The main purpose of this section is to discuss the implementation of

the merge algorithm on a CCC. We shall first develop a parallel algorithm

for finding the maxima of several sets of numbers. This will be used in

the implementation.

6.4.1 Finding Maxima of Multiple Sets

Given an array D(O: n-1) of numbers, which is partitioned into m

subarrays D 0 ,D I ,...,D 3n l such that the concatenation D0 . D 1 * ... D. 1 -

D(O: n-l), we want to find the maximum of each Di. We asumne n is a power

of 2. We logarithmically partition each Di into at most 2 logn-l segments

by means of a segment tree T(O,n) [28], which consists of a root V

representing an integer interval [O,n], and of a left subtree T(O,Ln/2j) and

a right subtree T(Ln/2j l,n) (refer to Section 4.1 for more details). For

example, Di a [D(7),D(8),...,D(13)), a subarray of D(O: 31), is partitioned I
into C((7)],(D(8),...,D(ll)],[D(2),D(13)1J. We first find the maxi1 of

each of these segments (to be referred to as submaxima). We then find I
the maxinum M(i) among the submaxima of the sam array D.
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We now outline the procedure that determines the maxima M(J) of

D for 0 e j < m (we shall present the program in the appendix).
j

1. Logarithmically segment each subarray by means of a segment tree T(0,n).

2. Determine the maxima of the segments by an ASCEND program: at

iteration k, k - 0,...,logn-l, if D(i) and D(i+(l-BITk(i))2k) belong

to the same segment, change D(i) to the larger of the two; at the end

of logn iterations, every position of a segment contains the maxim=

of that segment.

3. Extract the submaxima obtained in step 2.

4. Determine the maxima of the sets of submaxina of same subarray.

As discussed in the planar point location algorithm, the intervals can

be logarithmically segmented in time O(logn) on a CCC with n processors.

Step 2 is an ASCEND program which runs in logn steps. Data extraction

discussed in Section 2.2.1 runs in time O(logn) on a CCC with n processors.

Since each subarray is segmented into at most 2logn-l segments, there are

at most 2logn-l submaxima in each subarray. Therefore, the maxima of the

of the same subarray can be determined in time O(logn).

Theorem 6.2. The maxima of each of subarrays D0 ,D 1 ... ,D .1 of D where

the concatenation D0 * D1 .... D M.1 is the array D of n elements, can be

found in time O(logn) on a CCC with n processors.

Ii

12

-
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6.4.2 Implementing the Merne Algorithm

We now discuss how the merge algorithm can be implemented on a CCC

with N processors in time O((logN) ). The procedures INTELMAUA and

INTERNALB in Section 6.3.1 for determining the internal faces of polyhedra

A and B can be implemented on a CCC with N processors. The most tima-

consuming step is determining all nearest neighbors which involves the

point location algorithm in Section 4.2. With the result in Section 4.2,

the internal faces can be determined in time O((logN) 3).

We have to modify slightly the procedure CIRCUITS in Section 6.3.1,

for determining the two circuits CA and C., so that it can be implemented

on a CCC. We have to use procedure EXTRACT2 in Section 2.2.1 for data

extraction and the ordering takes O((logN) ) time on a CCC. Therefore,

the circuits are determined in time O((lol8) 2 ) on a CCC with N processors.

In implementing the procedure for finding the M(i) and for the

circuits, we have to use the algorithm in the previous section for finding

the maximm of multiple sets on a CCC. Therefore, j) and i(i) can be

determined in time O((logN) 2 ) on a CCC with N processors. 1

The steps in the procedure MEGING1 (Section 6.3.1) can be modified

according to the above discussion and be implemented on a CCC with N

processors in time 0((logN) 3). Using the same recursive program CR3

in Section 6.3.2 with this modified merge procedure, we have an O((logN)
4 ) I

time algorithm for determining the three-dimensional convex hull. 3

I
I

I
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Theorem 6.3. The convex hull. of a set of N points in the three-dimensional

space can be determined in time O((1ogN) 4 on a CCC with N processors.

6.5 On the CCC with N 1 aProcessors

la the process of merging two convex hulls, the point location used

in determining all nearest neighbors is the most time-consuming step.

It can be done in time O(-I(lo$N)2) on a CCC with N'+ processors (refer

to Section 4.3), where 0 < a S 1. Therefore, we have a O(-(logN)2) time

1 3
merging algorithm which yields an 0(-(logN) ) time algorithm for finding

the three-dimensional convex hull.

Theorem 6.4. The convex hull of a set of N points in the three-dimensional

13 l4+a
space can be determined in time 0(~-(logN) )on a CCC with N processors,

where 0O< cr: .
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CHAPt A 7 i
VORONOI DIAGRAMS FOR POINTS IN THE EUCLIDEAN PLANE

A Voronoi diagram of a set S(0: N-i) of N points in the Euclidean

plane is a partition of the plane into N convex polygonal regions R(O: N-i)

(refer to Figure 36). For each point S(i), the convex polygonal region

R(i) is the locus of points closer to S(i) than the other N-1 points of S.

The vertices of the diagram are called Voronoi points; and the line segments

are Voronoi edges. The polygonal boundaries of the regions are called

Voronoi polygons.

The problem of the construction of planar Voronoi diagrams arises in many

areas; one of the most important applications is in nearest neighbor problems.

Shamos and Hoey [35] present an O(NlogN) "divide and conquer" algorithm for

construction of a planar Voronoi diagram. Brown [8] describes an O(NlogN)

time algorithm which can be extended to higher dimensions. His result is

that a two-dimensional Voronoi diagram of N points can be constructed by

transforming the points to three-dimensional space, constructing the

convex hull of the transformed points, and then transforming back to

two-dimensional space.

In this chapter we use Brown's technique to develop parallel

algorithms for constructing planar Voronoi diagrams on the SIM and on the

CCC. I

7.1 Definitions and Preliminaries

In this section we describe how to represent a Voronoi diagram, 1
review some important properties of the Voronoi diagram, and define the

inversion transform which will be used in the construction of the Voronoi

diagram. 3

LI
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Figure 36. The Voronoi diagram of points in the plan.



124

7.1.1 Representation of Voronol Diarams

Let V(O: IVI-l) and E(O: tEl-i) be the sets of Voronoi points and

of Voronot edges, respectively, of the Voronoi diagram of S(O: N-i),

where IVj S 2N-4 and JEJ S 3N-6. Each element V(i) contains the following

information: V(i)[x], V(i)[y] which are the coordinates of the Voronoi

points V(i), and V(i)(ADJ], the adjacency list of V(i). Elements E(i)

contains the two original points that determine Voronoi edge E(1). By

constructing the Voronoi diagram, we also mean obtaining the set of Voronoi

polygons in standard form; Pi(O: IPI-l) is the Voronoi polygon relative

to point S(i).

7.1.2 Properties of Voronoi Diasrams

We now review some important properties of Voronot diagrams which

are exploited in the algorithm of Brown. Each Voronoi point V(i) of the

Voronoi diagram for S is equidistant from the three points of S which

are closest to V(i). The circle determined by these three points is

centered at V(i) and contains no other points of S. Furthermore, if the

circle determined by any three points of S does not contain any other

points of S (these three points are said to be satisfying the circumacircle

property), then the center of the circle is a Voronoi point. A Voronoi

edge is the perpendicular bisector of the line segment joining two

points of S, which are on the same circumcircle.

I

I

I

..... . :I
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7.1.3 The Inversion Transform -

The geometric transform used by the algorithm is called inversion.

The inversion is an involutory point-point transformation determined by

two parameters, the center of inversion P0 and the radius of inversion r.

The image of a point Q under the inversion is another point Q', where

POQ and P Q are in the same direction and the magnitude I i 0Q I - r2/IPQI.

For example, that the center of inversion is the origin and that the radius

of inversion is one, then under this inversion, in the plane, the image

of a point with polar coordinates (R,8) is (l/R,B); and in the space, the

image of (R,8,0) is (1/R,8,0). The inversion transforms any sphere which

passes through the center of inversion to a plane which does not pass

through the center of inversion, and vice versa. For example with the

center of inversion at a point P0 not on the xy-plane and radius > 0,

the xy-plane transforms to a sphere with PO at the apex. Another property

of inversion is that the interior of the sphere transforms to a half-

space bounded by the plane which is the image of the sphere, and the

exterior of the sphere transforms to the other half-space.

7.2 The Voronoi Diasram Alsorithm

In this section, we shall describe how the techniques of embedding

[ &into three dimensions, inversion, and the three-dimensional convex hull

algorithm are used to construct the Voronoi diagram of a set S of points

in the xy-plane.

Let S' be the set of inversion points of S with center at an arbitrary

point P0 not in the xy-plane and radius 1. Since all points of the

xy-plane are mapped to a sphere with P0 at the apex, all points of S' are

on this sphere and they will be on the convex hull of S'. Observe that

A
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any three points of S satisfying the circumcircle property determine a

face F of the convex hull. This happens because the other N-3 points

of S are exterior to the circle determined by these three points, that

is, exterior to the sphere with PO at the apex and intersecting the

xy-plane in that circle (refer to Figure 37). Therefore, after the

inversion, the other N-3 points will be in the same half-space bounded

by the plane F. Therefore, we can find the Voronoi points as follows:

we invert each face Fi of the convex hull of S' into the corresponding

sphere, which will intersect the xy-plane in a circle. The center Vi of

this circle is a Voronoi point if P0 and the convex hull are in the same

half-space whose boundary plane contains face Fi.

The Voronoi edges are constructed by connecting appropriate pairs of

Voronoi points. Suppose faces Fi and F of the convex hull meet at an

edge of the hull, than there will be a Voronoi edge from V. to V when
1. j

both Vi and V are Voronoi points. However, if one and only one of Vi

and Vi. say VV is a Voronoi point, then there will be an infinite ray

starting at V in the direction of ViV (unbounded Voronoi polygon).

We now present the entire Voronoi diagram algorithm as follows:

procedure CONSTRUCTVD (S)

/* construct the Voronoi diagram of a set S(0: N-l) of points
in the xy-plane */

bestin

/* embed each point (x,y) of S into (x,y,0) */

1. foreach i, 0:5 i < N do begin

S*(i)(y] - S(i)(y]
S*(i)[zl 0

II
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[ Figure 37. Planar Voronoi diagram and correspondinig convex hull.
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/* choose the center and radius of inversion */

PO " some arbitrary point not on the xy-plane ap

r l 1

/* invert points in S* w.r.t. P0 and r */

2. foreach i, 0 : i < N do S'(i) - inversion of S*(i) w.r.t.

3. construct the convex hull CH of S'

/* determine the Voronoi points */
4. foreach face Fi of CH do

begin Ai -inversion of Fi

V, - center of the circle which is the intersection of
Ai and the xy-plane.

if P0 and CH are in the same half-space bounded by Fi

athen V is a Voronoi pointend_i

/* determine Voronoi edges and rays */

5. foreach each edge Ei, bounding Fi and F. of CH doif V i is a Voronoi point

then if Vj is a Voronoi point

then (ViVj) is a Voronoi edge

else there is a ray starting at V

in the direction of V.V.
L

else if V is a Voronoi point

then there is a ray starting at V

in the direction of V .VI

6. obtain the t of Voronoi polygons.

end

We shall show, in the next section, that this algorithm can be

implemented on a SL24 and a CCC.

AlIi]_U
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7.3 IgMlementing the Voronoi Diagram Algorithm on the S1^M and the CCC

We first show that the algorithm in Section 7.2 can be implemented on

a S1i with N processors and N memory units in time O((logN)3 loglogN). The

embedding into three dimensions is clearly achievable in constant time

with N processors and N memory units. Each independent inversion transform

can be done in constant time on one processor. Therefore, steps 1, 2 and 5

of the algorithm run in constant time. It is not difficult to show that

step 4 also runs in constant time. The most time-consuming step is step 5

of the algorithm which requires the construction of the convex hull. We

have shown in Section 6.3 that the three-dimensional convex hull can be

constructed on a SMM with N processors and N memory units in time

O((logN) 3loglogN). The final step which obtains all the Voronoi polygon

involves grouping and sorting the edges. This can be done in time

O(logNloglogN). Therefore, we have the following result.

Theorem 7.1. The Voronoi diagram of a set of N points in the plane can be

constructed in time O((logN 3loglogN) on a SlM with N processors and NJ

memory units.

As we discussed in the previous paragraph, the construction of the

convex hull in three dimensions is the most time-consuming step of the

algorithm. In Sections 6.4 and 6.5, we have presented an O((logN) ) and

1 3
an o(l(logN) ) three-dimensional convex hull algorithms for the CCC with

N processors and N processors, respectively. And it is straightforward

to show that all other steps of the algorithm require at most O((logN) 2N

for N processors and 0(- logN) for N processors. Therefore, we have

the following results.
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Theorem 7.2. The Voronoi diagram of a set of N points in the plane can

4
be constructed in time 0((logN) ) on a CCC with N processors.

Theorem 7.3. The Voronoi diagram of a set of N points in the plane can

1 31+
be constructed in time O(-(logN)3) on a CCC with N processors,

where 0 < a!S 1.

z(

11

LI.
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CHAPTER 8

CONCLUSION

It has been demonstrated in this thesis that in solving certain

geometric problems, operations can be performed in parallel to sub-

stantially reduce the computation time. Using the Shared Memory Machine

of Section 1.1.1, parallel algorithms have been developed to solve the

problems of reporting all intersecting pairs of rectangles in time

0((logN) 2), planar points location in time O((logN)2 loglogN), constructing

2
two-dimensional convex hulls in time 0((logN) ), three-dimensional

convex hulls in time O((logN)3 loglogN), and constructing planar Voronoi

3
7' diagram in time 0((logM) loglogN). Using the Cube-Connected-Cycles

"* with a number of processors linear in problem size, the parallel algorithms

developed for all of these problems, except reporting intersecting pairs

of rectangles and constructing two-dimensional convex hull, have time

-complexity only increased by a factor of logN/loglogN. The algorithms

for the two exceptional problems have time complexity O((logN) 2 ) which

.11
L is the same as that on the SMMI. With an increase in the number of

processors of the CCC to N (0 < a 1 l), all of the problems can be

solved with parallel algorithms of time complexity improved by a factor

I. of l/(alogN) with respect to the time complexity of the algorithms on the

I CCC with N processors. In contrast, the best sequential algorithms for

all of these problems, except planar point location, have a worst case

1. time complexity of O(NlogN). The best sequential algorithms for

locating M points in a graph of N vertices has time complexity O((M+.4)logN).

[
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In parallel computation, it is possible that some processors are not

always busy. It has been shown that the algorithms presented here for

finding the two-dimensional convex hulls and reporting intersecting pairs

of rectangles are not only fast, but involve relatively little waste

as well.

The results in this thesis indicate that geometric problem are

susceptible of being solved efficiently on parallel computer system.

Moreover, once again, the Cube-Conmected-Cycles is shown to be suitable

for implementing algorithms for an expanding class of problems.

We conclude this thesis by presenting the results in Table 1.
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models of 8304 CCC CCC

* 
ation 

U~ 
r c a o

tti utation Uniproceso N processors N processors '1+0 processors

intersections of O(NlgNk 1  O((ION 2 +k'f 2 0((logIN 2 k') O(lgNk' )
N rectangles

locating M points 2 3 1

in a planar graph 0((M+N)logN)O((logN) loglogN O((log(M+N) 0(,-lg(N+M))

with N vertices

convex hull of 2
N points In O(NlogN) O((I N) O(ICN) OQ1lgN)

the plane I

convex hull of 3 4 1
N points in O(NlogN) O((logN) loglogN) 0((logN) ) O(1 (logN) 3 )
the space

Voronoi diagram 3 4 1 3
for N points O(NlogN) ((logN)31ogloRN , O((logN) 4 )  0(o19)
in the plane

Table 1.

1k is the number of intersecting pairs.

(2) k' is the maximum number of intersections per rectangle.

I
1

SIi
! 1
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APPENDIX

procedure CONSTRUCT. (S)

/* determine FlogN,...,F 0 for the points inS */

bestin

/* the root F is the set S sorted by their x-values */

F S
logl

sort F by their x-values
logN

foreach j, 0 - j < n do N1 lo(J) - 0

/* determine FlogN.1 , . . .F 0 one at a time */

for L - logN downto 1 do

begin

/* determine the node numbers NO in the next level

i-i for each point */

foreach J,0 S j < n do

begin Fi 1 (J) F (J)

TEMP(j) Fi ( j )

N#i () N#i(j)

t (j) - t2(j) - 0

if y-value of F (J) 5 BiI(N#i(i))

then tl(j) - 1

else begin 20) - 1

TEPN#(J) - N# (J) +2

and end

/* rearrange the points according to their node number */

call EXTRACT2(Fi Lt 1 ); call EXTRACT2(I.Ii, t1 )

call EXTRACT2 (TEMP, t 2 ); call EXTRACT2 (TEZeN,t 2 )

foreach J, 0 S j < ITEP I Lo

begin F i 1l(j + F L 1 1) TEMP(i)

end NO (J) + IF L 11) TEMPN#(J)

end[ end
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procedure ITERSECT3(V,H):

/* search all intersecting pairs of horizontal line segments in H and
vertical line segments in V *1

begin

/* construct the search structures D1/aD/IT..O for V/

call CONSTRUCTi1(V) af

/* H', the set of horizontal line segments, is maintained sorted

lexicographically by their node numbers and the x-values of

their left endpoints. */

H' H
sort H' by x-values of left endpoints

foreach J, 0: j < m do NN(j) - 0

foreach J, m- j < 2m? do H'(J) - null

/* search in & beginning at D 1/a */

for i- downto 0 do

begin call RANGE..SEARCKID(diI' )

/* determine node numbers of the horizontal line segments
and reorder H' according to these node numbers */

for k- log 2m to log 2m?-l do /* duplicate H' ?a times */

if BITk(J) - 0 then begin R' (j +2 k) - '(j)
k

NN(j +2 ) - NN(j)
end

foreach J, 0 5 j < 2mNo' do /* determine node numbers *f
begin t(j) 0

NN(J) NN(j) + LJ/2mjNlia
if Bi l(NN(j))S y-value of H'(j) -Ti.(NN(j))

nd 
hen t(j) 

- 1

call EXTRACT2(H',t); call EXTRACT2(NN,t) /* reordering */
end

end

[I

t[
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procedure CONS TRU;CT_.k(S)

/* construct the arrays Gial.'.G 0 for the set S of points */

begin

!* the root, G/al is the set S sorted by x-coordinates */

G1/a -S

sort G1/a by their x-values

foreach J, 0 ! j < n do N 1r(J) - 0

/* determine Gl/a 1 , .. ,,G 0 one by one in descending order */

for - li/a downto 1 do

begin

/* G . Z is obtained by reorder G as follows */

foreach J, O: j < nN do

begin G i_10) NYDi

NOil(J) N# i(j)

t(j) - 0

end

/* duplicate Gi into N copies */

for k - logn to lognNa*- do

if BITk) - 0 then begin Gi( j +2) G i.(0)

end N (j 2k) " N#i'10)
i.

/* determine node numbers of each point in Gi.1

foreach J, 0 J < n1a do
beg N#i (J) - Nfi. 1 (j) + L J/nJN1 1 r

i Bi.L ( Nil))Sy-value of Gil(J),

then t(j) 1
end

/* reorder the points according to their node numbers
and x-coordinates */

call EXTRACT2 (G , t)

end end call EXTRACT2(N# .At)

'en

' :: --- -- : ' - ' ... = , -- . ...... . . . '. . ... " ".- --- ' i ... = - . i - .'- . = = I . .. ,, ' . . i : .:
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procedure RANGESEARCH3 (S,Q)

/* report all points a E S such that Q(i)[L] S x(a) Q(i)[R] -.

and Q(i)EB] y(a) < Q(i)[T] for every Q(i) */
begin

/* construct the search arrays J,:G / , ...,GO for S
call CONSTRUCTA(S)

/* Q' is the set Q sorted by Q(i)[L] */
Q' i4 Q
sort Q' by x-valuos of left endpoints
foreach J, 0:< j < m do NN(J) - 0

foreach J, m:5 j < 2mtP do Q'(J) - null

/* search in D1/,,...,D 0 one at a time */

for i - / downto 0 do

begin

/* determine Q" which is a subset of queries which can
be answered at this level. The remaining queries
determine the node numbers in the next level */

foreach J, 0< j < 2mPn do
begin t (J) t 2 (j) - 0

Q,,(0) -Q, (J)

NN"(J) NN(J)
if Q' (j- 0 null

then if Q'(j) [BI<--Bi(NN(j)) and

Ti(NN(j)) S Q'(j)[T]
then t1 (j) '-1

else t 2 (J) -1

end
call EXTRACT2(Q",t 1); call EXTRACT2(NN,t 1 )

S' /* answer queries in Q" by performing a one-dimensional
range searching on i */

call RANGESEARCILID(GiQ")

/* extract Q'-Q" from Q' and reorder the queries
according to their node number */

call EXTRACT2(Q',t 2 ); call EXTRACT2(NN, t 2 )

for k- log2n to log2mN'-l do

foreach J, 0:5 j < 2mN2 do

if BITk(J) -0 thenk
bein Q' (j + 2k ) - Q'(J)

NN(j+ 2 ) NN(j)

end|[

II
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foreach J, 0: J < 2mN2 do
begin t(J) 0 -r

NN(j) NN(j) + L J/ 2 mjNli
if (Q'(J)d(BI<T ii(NN(i)) or

and Q1(j) 0 null
then t(j) 1

end
call EXTRACTZ(Q',t); call EXTRACT2(NN,t)

end
end
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procedure CONSTRUCT- (E)

/* construct the point location tree for the set (0: IEI-1) of edges */
begin

/* Ci, j is a subset of edges which may belong to NODE(J) */"

foreach k, 0 : k < IE[ do Clo, 0g,(k) - E(k)

/* determine the nodes of r, level by level */
for 1 - logN downto 0 do

/* extract the appropriate edges from Ci j to form NDE i ( j ) ;

then form C L-,2j and Ci-1,2j l from the remaining edges */

foreach J, 0 S I < 2 11 do
begin NODE i (j) 0C i-1,2 j  C i',2j+l- C ,j

SL& , j  0 then

/* extract from Ci, j edges that belong

to NDE ( j ) */

foreach k, 0 <- k < I C ij d!o

f C1 j(k) [B] < B (J) and

T i(j) :5 C i~i(k)[T]

then t(k) - I

else t(k) - 0
call EXTRACTi Ci, t)

NODEi () - Ci

sort edges in NODEi(J) in the

positive x direction

/* determine CiJl,2j and C i.,2j+*/

foreach k, 0: k < IC il,2j do

begtin if t(k) - 0 anidC i-1,2J (k) [B] B Bi-l (2j)

then t (k) - L else tI(k) - 0

if t(k) 0 and Ci.,2j (k)[T ]  3
> B i-l (j+l)>!
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ahe_n t2 (k) - els. t2 (k)- 0

call EXTRACTl(C i.1,2jt1)

call EXTRACTI(Ci.-I,2j+l t

end 
2

end
end

procedure LOCATE1(G,P)

/* locate the set of points P(O: M-l) in the planar subdivision
induced by the graph G (V,E) */

begin

/* construct the point location tree r for the edges of G */

call CONSTRUCT. (E)

/* J0 (k) and J1 (k) are the indice of the nodes which we have

to search for point P(k); L(k) and R(k) are edges on the
left and right, respectively of P(k) */

foreach k, 0 : k < M do
b J0 (k) 0; 11 (k) -1

L(k) -E

R(k) -

end

/* search in T one level at a time */
for i - lcgN downto 0 dofor t - 1 to 1 do

foreach k, 0 : k < M do

if J k 0 then

begin TEMPL(k) -edge in NODEi(J(k)) that is

closest to and left of P(k)I. TEMPE(k) - edge in NODEi(Jt(k)) that is

closest to and right of P(k)
if TEMPL(k) is right of L(k) then

I. L(k) - TEMPL(k)
if TEHPR(k) is left of R(k) then

R(k) TEPR(k)

(..a qr- .. . . ! . m -r -' ' e'r " q ''
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if L(k) and R(k) bound the sam region .

then begin P(k) is the region bounded

by L(k) and R(k) "

J1 (k) - J1 1 (k) - -1

end
else if y-value of P(k) - Til( 2J,(k))

then beuin J -(k) - ZJ (k) + I

end

else if y-value of

P(k) < T i.(21 (k))

then J (k) - 2JA(k)

else JI(k) - 2J(k) +1

end
and

procedure CONSTRUCT-J2(E):

/* determine the search structure ElogN,*** E0 for the set E of edges */
besgin

/* S is the set of edges from which E1 is formed */

foreach J, 0 < j < JEI do begin S(j) - E(j); rr(j) 0; end

foreach j, JES J < 41E do S(J) - null

/* determine ElogN,...,E 0 one by one */

for i - logaN downto 0 do

begin

* determine the edges in E

foreach J, 0 5 j < 41EI !Lo-
betti t 1 0) -t 2 (j) -0

Ej(j) - S (j) ; Nsi(j) - r(j) I

ifL S(J) 0 null then
i.f S(j)[B :SB.(T(j)) and Ti(TT(j))S(j)ET]I

I

I
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then t 1 0) - I

and else t 2 0) 1

call EXTRACT2(E~it C1 ); call EXTRACT2(N#i,e 1)

sort both Eiand N# lexicographically by values of

N# (J) and positions of Ei(j) in the direction of

positive X.

1* determine edges which may belong to the next level
of 7 */

call EXTRACT2 CS,t t 2 ); call EXTRACT2(rr,t 2)

foreach J, 0 :5 j < 41E 42.
bestin TEMP(J) - S(J)

t t10) '- t2(J) -0

if SL(i)(B] < T1 -1(Tr(j)) then tj)- 1

then begin t2(Q) 1

end Er j-2 Tj

end
call EXTRACT2(S,t 1 ); call EXTRACT2(rT,t 1 )

call EXTRACT2(TEMP,t 2 ); call EXTRACT2(TMPrr,t 2)

I.foreachJ, 0:5j < TEMP Ldobegin S(j +SI) -TEP(J)

endI and
I end
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procedure LOCATE2 (G,P): .

/* locate the set of points P(O: M-1) in the planar subdivision

induced by G - (VE) */

/* construct the search structure E ,E E for the

set E of edges */ logN, 1oS l,...3EO f

call COrNTRUCTJ2(E)

/* P' is the set of points to be located; they are sorted by
their node numbers and then x-coordinates */

sort P by x coordiantes

foreach k, 0 5 k < 2M do

begin NN(k) 0; F'(k) - P(k)
L(k) -.

F(k)

end

foreach k, MS k < 214 do P'(k) - null

/* search in ElogN,...,E 0 one at a time until edges L(k) and

R(k), for each k, bound the same region */
for i - l.oN downto 0 do

begin call SEARCR(Ej.,P' ,TEMPL) /* parallel searching in

Section 2.2.3 */

call SEARCHl(E,,P' ,TEMPR) /* modified SEARCH */

foreach k, 0S k< 2M do
beam if TEMPL(k) is right of L(k) then

L(k) - TEMPL(k)

if TE1PR(k) is left of R(k) then

R(k) - TEMPR(k)
if L(k) and R(k) bound the same region

the nbam P'(k) is in the region bounded
by L(k) and R(k)

' (k) - null
end

t (k) - t 2 (k) - 0

TEM(k) - P' (k)

TEMPNN(k) - 2°log-i + NN(k)
If P'(k) 0 null then I

basin if y-value of P' (k) :S T .(NN(k))

then t (k) -1 3

I
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if y-value of P'(k) a Ti_.(NN(k))

end Q t2 (k) - I

call ExTRACT2(Pl,t1)

call EXTACT2 (N, 1)

cal EXTRACT2 (TM Pt 2)

call EXThCT2(EMPNN,t 2)

foreach k, 0 S k < I me I do
bein P' (IP' I +k) -TEMP(k)NN (P' I +k) -TEMPNN(k)
end

end

end nd

I . -

procedure CONSTRUCT.-2 (E).

begin foreach J, 0S J < lEt do begin S(j) E(J); rr(J) 0 end

foreach 1, Jz} S J < 21EzN~a do S(J) - null

for i " 1/a downto 0 do

foreach j, 0 5 j < 2EINa do
begin t1 (j) * t2 (j) - 0; Di(j) -S(J);Ni(j)-T(j)

if S(J) 0 null
then Lf S(j)[B] !S B (r(j)) S S(J)ETI

.han t2(j) - 1

ndalso 
t2(J) - 1

call EXTRACT2(Di,t); call EXTRACT2( it I)

sort both Di and NiO by 1 exicosraphically by values of

N i(j) and position of Di(j) in positive x direction

call EXTRACT2(S,t 2); call EXTRACT2 (7?, t 2 )

for k log 21E Lo log 2ZEIN*- l do

for J, 0 ! j < 21E O' do k

S- if BITk (j) 0 ten basi S(j+2 S(j)

end

Kmm
-
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foreachJ, 0OS j <21EN' do lia
begin wT(j) - (J) +L/'2nJ N

t(j) -0

if S(J) 0 null and (S(J)(BJ < T1 1QTr(j)) or

then t(j) J(T> jWJ)

end
call EXTRACT2(St); call EXTRACT2(fft)

end
end

procedure LOCATE3(G,P):

/* locate the set Of Points P(0: M-I) in the planar subdivision
induced by G */

bezin call CONSTRUCT.A)2E
sort P by x coordinates

foreach 0 S k < JEJ do
begin P'(k) P(k)

NN(k) ~o
L(k)

R(k) -E
and

foreach Et 1: k < 21Elte do P'(k) null
fo-r £ 1/a downto 0 do

begtin call SEARCH (D ,,P ',TEML) /* parallel searching in

Section 2.2.3 */
call SEARCHI(D,P.',TEMPR) /* modified SEARCH *
foreach k, 0: k <c 21E19P do
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if P(k) 0 null then
bezin if TEMPL(k) is right of L(k) then

L(k) - TEHPL(k)
if TEIR(k) is right of R(k) ten

R(k) - ITEWP(k)
if L(k) and R(k) bound the sim region

bhen k P'(k) is in the region
bounded by L(k)

and R(k)
P (k) - mull

and

end
for j log 21EI to log 21EINat-l do

if BIT )k) - 0 then in ' (K+2 J ) - P' (k)

NN(k+ 2J) - NN(k)

L(k+ 2 J ) - L(k)

R(k+2 J ) - R(k)
end

foreach k, 0 < k < 2 1 I I do
bei t(k) 0

1 )"(k) NN(k) + 1k/21EjJ N1i

if P'(k) # null and
B,-1 (NN(k)) S y-value of

then t(k) - 1
and

call EXTRACT2(P',t); call EXTRACT2(NNot)

end

endII

I

i

I 
iln*

MA;,....
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function TANGENTSI(AB)

/* returns the indices of the extrems of the left tangent and right
tangent of A,B where A and B are two non-intersecting convex
polygons and y-coordinates of vertices in B > those in A /

begin

/* determine the ranges in which J* and L* lie */

if x-value of 3(r B ) < :-value of A(rA)

then beain a - 0; b - rA; c - 0; d - rz; end;

else begin a- rA; b- sA; c - rB; d-sB; Ind;

/* determine ji) at selected values of i */

foresch i, i E ta+k,a+2k,...,a+(k-l)k) do
M ( - MINV..BITONIC [.,,,€,..yd)

/* i* is in the range [i-k+l,1+k-l], determine i* and j*

in this range */
mi m M ( ij(ML <S (h), h-a + ka + 2k, ,a +(k- 1)kj)

foreach i, i E CI-k+l, .- k+2,...,i+k- 1 doMi ,. ;,N..V..BITONI~C (ty , c, (i, €+lI...,. ,d})

J* - INAUMl(([(i)I i - -k+ ,.. , + k - 1)
foreach i, i E Li -k++,...,+k-l] doyi,j*-i > 

Y i,J*+l / * test J*''J:' Z */

!!A 01 a,i.1 > Y1 ,J* and *, +lIY ,J* < IT /* property (2) */

then i* - i

/* determine the ranges in which J* and 1* lie *1

if x-value of B(AB ) < x-value of A(A)

then begin a sA; b - A; c - sB; d - £B; Lad;

else b a -A; b - n; c -A; d -m; end;

/* determine J(i) at selected values of L */

foreach i, i E (a+k,a+2k,...,a+(.k-1)1 do "

' / I

IML-A..T ~j (C ,'icl**Y~)
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1* * is in the range (tkILk1,determine 3* and 1*
in this range*1

I AM3G~l(tii CI ) 2 J~) h - +k,a+2k,...,a+(k-l)kl)

foreach i, i E [I -k+l,.,+k -1 do

!(i) - W..A3ITONIC ((Cy .cYi,c+l..Syi,d])

frach i, i ;_ aniC_

Y -Y~j > Tr then *i*

and

* function L..ANGENTJINDEX (A,B):

-. /* returns ~J*/
basin /* determine the appropriate range for j* *

if ,c-value B(rB) < x-value of A~rA)

then bestin a -0; b - TA~ c -0; d -r,,; end

else begin a -rA* b -s c -rB d-SB; en

L* ~*demne J -min(J(i, here y ii(i) - ±flYi,c+h 'Yic+2hv .

4. duplicate (A(a+k),A(a+2k),...,A(a+(k-l)k)I into pattern P2(h-1)
5. let the resulting array be c(0: (h-1)(k-l)-l);

6. duplicate CB(c+h),B(c.I2h),...,B(C+(h-l)h)I into pattern Pl(k-l)Ii let the resulting array be D(0: (h-l)(k-l)-l);
7. foreach i, 0:5 1 < (h-l)(k-l) dLo GAMMM - (C(i),D(i))

r 8.reah 1, 0: i < (h-l)(k-1) do
I. besti J(i) - -

a"_e i mod (h-1) of
0: if GhAOMA(i) < GAMUA(i+l) te

L~J *-i C+((i mod h-l)+l)h
h-2: if GAM.MA(i-l) > G&04(i) then

J(i) C+((i mod h-l)+l)h
else : if GAM@MA(i-1) > GA2OMA(i) < GAMe1(i+l)

then J(i C+(( mod h-l)4.l)hI end
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/* determine tE Ca+k,a+2k,...,a+(k-l)k) such that is thej

smallest among Y i, for i E Ca+k,...,a+(k-l)kl I E

Cl-h+l,.L-h+2,...,I+h-11 and for som 3e th4,-+2.,L-l*/

10. duplicate EB(J-h+lB(J-h+2)1 ...,B(J)l into pattern PI(k-l)
11. let the resulting array be D(0: (h-l)(k-l)-l);
12. foreach i, 0~ i < (h-l)(k-l) do GAM(i) -e(C(i),D(i))
13. foreach if 0 -- i < (h-1)(k-1) do

begin J'(i)
case i mod(h-1) of

0: if GA~M&(i < GAMf(&(i+l) then
J'(i) -j -h+l+(i mod h-i)

h-2: if GAMA(i-l) > GhAi) then
J'(i) -j -h+1+(i mod h-i)

else: if GAMA(i-1) > GAHKA(i) < GAIVA(i+l)
the'n J'(i) -j -h +l+(i mod h-i)

end
14. ;E (J'(0: (h-1)(k-l)-l)1
15. i' min (i iJ(i) - l

16. duplicate CB(J),B(J+1),...,B(J+h-l)1 into pattern Pl(k-l)
17. let the resulting array be D(0: (h-1)(k-l)-l)
18. foreach if 0 S i < (h-1)(k-1) do GAMPA(i) - (C(i),D(i))
19. foreach 1, 0 S £ < (h-1) (k-l1) do

.4begin J' (i)
case i mod (h-i) of

0: if GMM M~i < GhZ.IZI(i+l) then

h-2: if GAM~A(i-i) > GAMA(i) then
J'(i) 4- j +(i mod(h-1))

else: if GAM(&(i-1) > GAM(A(i) < GAMt1(i+l)
then J I(i) -j + (i mod (h- 1))

end
20. Y. ~MmtJ' (0: (It-1) (k-1) -l)]
21. ill uinci I i (i) - ill
22. if if'-j" then t a + (Lm~da(i 0) /h-j + 1)k

alse if Cl< l then -a+ +(Li'/h-j + 1)k
else7 I a + (Lifl/h-l4 + 1)k

/* J* a JW~ for sams J E [I-k+l,!-k+2,...,I+k-1] *
23. duplicate CA(!-Ic+l),A(I-k+2),...,A(i)) into pattern P2(h-1)

let the resulting array be C(0: (h-1)(k-l)-l)
24. repeat steps 6-20

A25. J-min (j'IIjil)
26. duplicate (A(I),A(1+1),..,A(Igk-l)) into pattern P2(h-1) I

let the resulting array be C(0: (h-1)(k-l)-l)
27. repeat steps 6-20
28. J* un(j*,jIjfl)[
29. retur (J*)

end
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procedure MILTt.YAX (D,ir,FIRST,LAST)

/* D(O: n-1) is an array of numbers. 1(i) is the index of the subarray
to which d(i) belongs, that is D(i) E DT(i) Partition D into sub-

sets such that elrmnts in each subset have the sam w-values; find
iE CIDJIDDjll +IDjIl] and ID 11 -0, FIRST(i) and LAST() are the

indices of the first and the last elemsents of the subset D7 (i)

begin

/* logarithmically partition each subset: first determine the

first element of each partition */
foreach i, 0:5 i < n do

if F ST(i) - i then t(i) - 1
else begin L- 0

R - n-i

t(i) - 0

while FIRST(i) > L or LAST(i) < R do

i t- L(L + R)/2J + 1

then besin t(i) - 1

L - FIRST(i)

R - LAST(i)

end

else if i < L(L+ R)/2J
then R - L(L + R)/2J
else L4- L(L+R)/2j +1

end

/* classify each partition */
2. call RAZ4K(D,t,CLASS)
3. foreach i, 0 S i < n do

if t(i) # 1 then CLASS(i) -CLASS(i)-l

/* determine the submaxnimm in each partition, i.e., maximum

of the elements in the same class */
4. foreach i, 0 : i < n do begin SM(i) - D(i), ?T'(i) - i'(i) end
5. for j - 0 to los n-l do

foreach 1, 0:5 i < n do
if CLASS (i) - CLASS (i+ (1-2BIT (i))2 j )

then SM(i) - max(SM(i),SM(i+ (1-2BIT (i))2J))

/* concentrate the submaximums into consecutive processors */
6. call CONCETRATE(SM,CLASS,t)
7. call CONCENTEATE(rr',CLASS,t)

,
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/* determine sequentially the madnim of the (at most 2 logn-l)

of the same subset */ 1,
8. o -r J to 2 logn-1 do

begin J - j +
foreach 1,0 : £ < n-i do

if TO (±) - TT'(i + 1)
then SM(i) - max(SM()SM(i+ (l-2BIT(i))2 j ))

end

/* concentrate the maximums into consecutive processors */
9. foreach i, 1 < i < n do

if r'(i-1) < n' (i) then t(i) - 1

else t(i) - 0
t(0) I

10. call CONCENTRATE (SM,',t)
end

I "

[
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