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We shall develop algorithms for solving the rectangle intersection problem
on the SMM and on the CCC.

As two intermediate steps in our approach,
va shall study the problems of veporting intarsecting pairs of horizontal
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PARALLEL ALGORITHMS FOR GEOMETRIC PROBLEMS
Anita Liu Chow
Department of Computer Science
University of Illinois at Urbana-Champaign, 1980
\\/ ABSTRACT
The existence of parallel computing systems and the important
applications of geometric solutions have motivated our study on the design
and analysis algorithms for solving geometric problems on two parallel
computing systems: the Shared Memory Machine (SMM) and the Cube-Connected-
Cycles (CCC). The validity of the first SMM resides in uncovering the
inherent data-dependence of the problems, while that of the CCC, which
complies with the VISI technological comstraints, is the development of
practical parallel algorithms. It is shown that solutions to geometric
problams c;n be organized to reveal a large amount of parallelism, which
can be exploited to substantially reduce the computation :imexf’ recisely,
dsing the SMM with a number of processors and memory units 11n;:§\2;\252“-~\
problem size, algori:hma.are developed to solve problems of reporting
intersection of N rec;angles in time 0((103N)2+k), where k 1s the

maximum number of intersections per rectangle,

intersection of N rectangles in time O((logN)z), planar poiat location
in time 0((logN)21oglogN), finding the two-dimensional convex hull of ¥
points in time O((logN)z), the three-dimensional convex hull of N .
points in time 0((103N)3103103N), and constructing the planar Voronmoi
diagram of N points in time O((logN)sloglogN). Using the CCC with a
number of processors linear in the problem size, the parallel algorithms
dgvnloped for all of these problems, except reporting intersection of
rectangles and constructing the two-dimensional convex hull,

have time complexity increased only by a factor of logN/loglogN with




respect to that on the SMM. The algorithms for reporting intersection
i of rectangles and for constructing the two-dimensional convex hull on
- the CCC have the same time complexity as that on t:he'sm. With an

l+a

increase in the number of processors of the CCC to N (0<asl),

1" all of these problems can be solved with algorithms of time complexity
I improved by a factor of 1/(alogN) with respect to that on the CCC with N

. processors.
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CHAPTER 1
INTRODUCTION

The existence of parallel computers [5,10,15,32,38] has motivated the
development of parallel algorithms for solving many problems. These prob-
lems include both numerical and non-numerical problems like matrix problems
{11,14,36], polynomial evaluation [24,25], arithmetic computation (23],
graph problems [3,12,17,33], and sorting (16,29,37]. A recent development
in applied computation theory has been the solution of geomecric problems
by a uniprocessor system [6,8,20,27,34]. It is illustrated ian [34] that
geometric problems are frequently encountered in operation research, pattern
recognition, computer graphics, and statistics.

The topic of this thesis is the study of the solution of geometric
problems by parallel computing systems. We shall design and analyze parallel
algorithms with references to two systems: the shared memory machine [26]
and the cube-connected-cycles {31]. The validity of the firs:vmodel resides
in uncovering the inherent data-dependence of given problems, while that of
the second is the development of practical algorithms.

1.1 Parallel Computing Systems

A meaningful study of the design and analysis of parallel algorithms
requires a precise model of computation. In this section, we shall
describe two systems which are adopted in this thesis.

1.1.1 The Shared Memory Machine (SMM)

Several workers have designed and analyzed efficient parallel
algorithms with reference to a shared memory machine (3,10,14,16,17,29,
33,37]. 1In this model (refer to Figure 1), the processors can commnicate

wich each other through memory. Each processor is capable of performing

g - e e AN T e T = R




:

memory units

Figure 1. The Shared Memory Machine.
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arichmetic operations, boolean operations, comparisonms and, possibly, the
calculations of trigonometric functions in unit time. The main memory
consigts of a aumber of parallel memocy units, each of which contains a
sufficient number of words. It takes constant time t¢ transmit data
from any processor tO0 any memory unit and vice versa. Processors are
allowed to simultaneously read from, but not write in, the same word.
However, two processors are not permitted to read or write into different
words of the same memory unit. (This situation is referred to as memory
conflicts.)

We shall assume that the processors are indexed O through n-1 and the
memory units are indexed from O through m=l. Arrays A(O:m-1l) of elements
A(0),...,A(m=1) are stored systematically in the main memory such that
A(1) is in memory unit 1.

1.1.2 The Cube Machine (CM) and the Cube-Congected-Cycles (CCC)

In these models there is no shared mgméry. Each processor has a
private RAM memory. Each processor, as in the SMM, is capable of per-
forming arithmetic operations, boolean operations, comparisons and
calculating trigonometric functions in unit time.

Assume that n = 2° and let BIT,(a) be the (j+1)> least significant

3
bit in the binary expansion of a. In the Cube Machine, the processors

are interconnected as a k dimensional cube, that is, processor i is

connected to processors i + (1-2BIT (1))21, 0SS j<k. Data may be

3

transmitted from one processor tc another only via this intercoanection

pattern.

"




Processor i can be identified by a pair of integers ({,p) such that
zo2‘-+p = i where r is the smallest integer for r+2° 2 k. In the cube-

connectad-cycles, which was recently proposed by Preparata and Vuillemin .

{28], processor ({,p) is connected to processor (£,(p+ 1)mod Zr). .

(4,(p - 1)mod 27) and £_(1-2BIT (£))2P,p), (refer to Figure 2). The
t P ;

geomatric structure underlying the interconnection of the processors is

that of a k-dimensional cube, but the CCC requires only three connections
per processor. Once again, data transmission from processor to processor
is possible only via the available connections.

The development of algorithms with reference to the CCC, unlike that
on the SMM which considers only the data-dependence, concerns also the data-
movement. Moreover, this machine complies with the present technological
constraints of VIST design [22]. It is shown that the CCC is remarkably -
suited for implementing efficient algorithms such as Radix-2 Fast Fourier
Transform, Bitonic Sorting, etc.

Algorithms for some interesting problems - such as bitonic merge and
cyclic shift - perform a sequence of basic operations on data which are
su cessively Zk -1 k 2,...,20 = 1 locations apart. This class of algorithms
is referred to as DESCEND class [31]. The dual class ASCEND consists of
algorithms which perform a sequence of basic operations on data that

0,1 k-1

are successively 1= 2°,27,...,2 locations apart. Algorithms in

DESCEND class are of the form:
for 1 = k-1 downto 0 do x

foreach §, 0 3 <2 do
if BITifj) = Q chen OPER(A(]) A(j+2 )

where QPER(A(]j), A(J+2 )) is some basic operation on the operands A(i) 5_




R

[

r(j"b'D"“'Uj coe

Figure 2. The Cube-Connected-Cycles.




and A(j-bzi). ASCEND differs from DESCEND only in the control loop. The
control loop of ASCEND is: for 1 = O to k-1 do. In both cases, the number
of parallel steps on the CM is clearly k. In [28], Preparsta and Vuillemin
show that algorithms in both classes can be implemented on the CCC in k
parallel steps. They also show that other problems (such as permutation,
shuffle, unshuffle, bit reversal, odd-even merge, Fast-Fourier-Transform,
convolution, matrix transgosition)Ahaving programs consisting of short
sequence of algorithms in the DESCEND or ASCEND classes run in O(k) parallel
steps on the CCC. There are also applications - such as bitonic gort,

odd-even sort, and calculations of symmetric functions - for which the

combining step of the two results of a recursive call is itself an algorithm

in the DESCEND or ASCEND class. These algorithms run in 0((103n)2) parallel -

P s B a3

i steps on the CCC. i
f}‘ 1.2 Class of Problems Considered

In this paper, parallel algorithms are presented for several geomectric

problems, based on the parallel computing systems described in Section 1.1.

—

The geometric problems which are considered here are the following.

We first consider a subproblem of the intersection problems. Given a

- set of N rectangles with their sides parallel to the coordinate axes, we
want to report any pair of rectangles which intersect. Apart from being
: interesting in its own right, this problem has an important application

in VISI circuitry design rule checking [4,19]. Bentley and Wood (7]

recently investigated this problem for a uniprocessor system and developed

an O(NlogN+k)(1) time algorithm for reporting all k such intersecting pairs.

(1)A11 logarithms in this thesis are to the base 2.

omg MBS il -




We shall develop algorithms for solving the rectangle intersection problem
on the SMM and on the CCC. As two intermediate steps in our approach,

we shall study the problems of reporting intersecting pairs of horizontal
and vertical line segments and of two dimensional range searching. The
latter problem is also important in its own right and has applications in
the database systems.

The second problem to be studied is an inclusion problem. Given a
planar graph embedded in the plane as a straight line graph G [21] with
N vertices and a set of M points, for each of these M points, we have to
find the region of the planar subdivision induced by G which contains it.
In short, we shall refer to this problem as planar point location. This
problem is quite important in computational geometry. Indeed, point loca-
tion is a crucial step in our three-dimensional convex hull algbrithms to
be developed. The most recent and practical sequential result is due to
Preparata [28). This algorithm runs in time O (MlogN) on a data structure
which can be constructed in time O(NlogN).

The next two problems to be investigated are two-dimensional and
three-dimensional convex hulls. Given a set S of N points, the coavex
hull CH(S) of S is the intersection of all convex sets containing S.

The convex hull CH(S) is a convex polyhedral region. Chapter 3 of [34]
demonstrates the importance of the convex hull problems, which arise in
statistics, numerical analysis, and image processing, as well as in many
‘other fields. Preparata and Hong [30] show that the convex hulls of
sets of points in both two dimensions or three dimensions can be

determined serially with O(NlogN) operationms.




The last problem is the construction of the Voronoi diagram for a
set of N points in the plane. A Voronoi diagram is a partition of the
plane into N polygonal regions, each of which is associated with a given
point and is the locus of points closer to the given point than to any
other point. This problem arises in clustering analysis [13] and in the
éan:cx: of several closest-point problems [35]. While optimal O(NlogN)

serial algorithms exist, we shall consider the construction of Voronoi

diagrams on the SMM and on the CCC.

We shall develop algorithms for the above problems on the SMM

‘ with a number of processors linear in the problem size and on the

cube machine with numbers of processors both linear and superlinear in

[

N

‘ the problem size. The algorithms that we developed for the cube
A machine are ASCEND and DESCEND programs, therefore they can be -
implemented on the CCC without significantly increasing the time

i complexity.

1.3 Outline of Thesis

4 In the next chapter we develop some basic tools which will be used {
‘ in later chapters. Each of the next five chapcters is devoted to a
problem described ia Section 1.2. Each chapter consists of three main
algorithms: the first for the SMM and the second for the CCC, both
X with a number of processors linear in the problem size; the last one . !
for the CCC with a number of processors superlinear i{n the problem

.size.

> "




E:hAp:er 3 is on intersection of rectangles. Chapter 4 is on
i planar point location. Chapters 5 and 6 are on convex hulls in two
dimensions and three dimensions respectively. Chapter 7 is on the

construction of Voronoli diagrams. In Chapter 8 conclusions are

drawn.
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CHAPTER 2
BASIC ALGORITHMS

In this thesis, parallel algorithms are sought for various geometric
problems. The strategy usad to develop an algorithm for a given problem
is to devise a technique which reduces the solution of the problem to
the solution of a sequance of problems for which efficient parallel
algorithms can be developed. In anticipation of later use, we develop
some basic parallel algorithms.

2.1 On the SMM with N Processors

We shall discuss the problem of data extraction and the O((logu)z)
time solution for finding the minimum or maximum of a set of N numbers.

2.1.1 Data Extraction

We consider the following extraction problem. Given an ordered
array A(O:N-1) and an associated array t(O:N-l) of tags, we want to move
elements A(i), with t(i) = 1, to consecutive memory units in a stable
fashion, i.e., preserving the original order.

We first determine the rank R(1) of element A(l), which is the
number of elements preceding it and witch tags being set to 1. Then
elements with tags equal to 1 are moved to consecutive memory units
defined by their ranks. We use Nassimi's ranking algorithm: The
algorithm is best described recursively. Divide a Zk element set into

two halves, each containing Zk'l consecutive elements. Let R(1) be the

rank of A(L) in the 2%l get. Let S(L) be the total number of elements

2k-l

in the -set containing A(L) with tags equal to one. Then the rank

of an element in a Zk-set is R(1) Lf BITk-l(i) equals to 0 (note that

-1
1 k )

BIT, (1) = O for the left 2 l-sec of a 2“-set) and R(1) + S(i-2

if BIT, _1(1) equals to 1. (Note that S(i-zk-l) is constant for all terms
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k-1

of the left 2= ~-set.) Unfolding the recursion yields the iterative

procedure RANK:

procedure RANK(A,t,R):

/* determine R(i) = number of A(j) for which t(j) = 1 and j < i #/

begin
foreach 1, 0= { < N do
begin R(1) = 0
1f ¢(1) = 1 then S(i) - 1 else S(1) = O
end
for k = 0 to logN-1 do
foreach 1, 01 < N do

begin T(L+ (1-znzrk<1))zk) - 5(1)
L€ BIT (1) = 1 then R(1) = R(1+T(1)

S{1) = s)+r(d)
end
end

It is easy to see that procedure RANK runs in time O(logN) omn a SMM
with N processors and N memories. We are now able to describe the entire
procedure EXTRACT1. (|A| is the number of elements with tag = 1).
procedure EXTRACT1 (A,t):

/%* aextract elements A(i) with t(i) = 1 and move them to consecutive
memory units beginning at unit Q0 */

begin

/* determine the rank R(i) of each element A(L) */
call RANK(A,t,R)

/* route A(1) to R(L) */
foreach 1, 0 S { < N do
begin T(1) -~ A(1)
if £(1) = 1 then A(R(1)) = T(1)
end

/* determine |A| and £i1l the right end of A with null */
if t(N-1) = O then |A| = R(N-1) else |A| = R(n-1)+1
foreach 1, |A| SL < N do A(L) - null
end
The time complexity of EXTRACT1 is mainly determined by the first step

which calls procedure RANK. Therefore, procedure EXTRACT1 runs in time

0(logN) on a SMM with N processors and N memories.
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Theorem 2.1. A selected subset of an ordered array A(0:N-1l) of elements
can be moved to consecutive memory units in a stable fashion in time

0(logN) on a SMM with N processors and N memory units.

2.1.2 Finding the Minimum (Maximum) of N Numbers B
We now review a well-knowm O(logN) time algorithm for finding the i

minimum 0f a set S of N numbers: we first partition § into two subsets j
| Sl and 82 of equal size. We then find the minima my of S1 and n, of S2
E ! simltaneously. The minimm of S is the smaller number between m, and m,.

It can be written as follows.

Q function MINIMUM (S)

/* returns the minimum of S */ P
begin foreach i, 0 S 1 < NdoS'(i) - s(1) S ?
' for k - 0 to logN-1 do
foreach 1, 01 <N do - i
if BIT¥(1) = 0 then f

$'(L) > 8’ (1+2¥

retura (S'(0))
e end

) thea S'(1) - §' (1+25) I

Similarly, we can find the maximum of N numbers on a SMM with N
processors.
Theorem 2.2. The minimum (maximum) of N numbers can be determined in time

O(logN) on a SMM with N processors.

2.2 On the CCC with N Processors

We shall discuss some basic tools like data extraction, selected Y

broadcasting, parallel searching, and finding the minimum (maximum) of N

numbers. We shall develop efficient algorithms for these problems on a

CCC with a number of processors linear in the problem size.




2.2.1 Data Extraction
7 Procedure EXTRACT1 described in Section 2.l1.1 is not suitable for

| implementation on the CCC. The step which is causing difficulties is the
4 - routing of data to appropriate processors as determined by the data rank.
| | The routing will be referred to as concentration. During concentration,

selected data are moved to consecutive processors. Nassimi [26] solved

this problem on a CM as follows: Let t(i), when it is equal to 1, be the
indicator that data item A(L) i3 to be moved to the R(:l.)Ch processor.

First, data A(i), with t(i) = 1, are moved to processors such that the

RN

processor index and R(i) agree in bit position 0. The next routing

assures that processor indices and R(1) agree in bit positions 0 and 1;

[
.

) and so on until data are routed to the correct processors. Figure 3

[YPSr
N '

is an example of concentration with t(i) = 1 for 1 = 1,2,4,7. Figure 3(a)

shows the initial values of R(1) in binary. The first, second, and third

oot 0 b
s

iterations of the above procedure yleld the configurations of Figures 3(b),
{ 3(c) and 3(d) respectively. The third iteration completes the concentration.
. The formal description of the concentration algorithm is as follows:
. procedure CONCENTRATE(A,R,t):

- /%* route A(1) with t(1i) = 1 to processor R(i). This procedure will be
used to move data A(1) with t(i) = 1 to consecutive processors */
begin for k = 0 to logN-~l do

foreach i, 0s1 <N do
if c(i) = 1 and BI'rk(i.) $ BITk(R(i))

then begin A(i+(1-BI’rk(:L))2 ) =~ A(L)
R(£+(1-BI'Ik(i))2 ) =~ R(L)

’ e(L+(1-BIT, (1))2 ) - (i)
- end

l"‘]:v‘ - , Ly v - TR
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 donl

_ 1 000 001 010 011 100 101 110 111
% R(L) 000 [ ool o010 011 ]

H

L SN

'

(a) initial configuration

B

1 000 001 010 011 100 101 110 111
R(1) 000 ool | o0 o11
T T F O (&

(b) after one iteration

1 000 00l 010 011 100 101 110 111
| R(1) | 000 | oo1 [ o1 | on |
' [ 2 S| L 0

(¢) after two iterations

i - 000 001 010 011 100 101 110 111
r(1) |[o00 | 001 | o010 | 011 ]
(&) O 7 1 — _]

(d) after three iterations

Figure 3. Data extraction with t(1) =1 for i =1,2,4,7.
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It is straightforward to see that procedur_c CONCENTRATE c;n be
implemented on a CCC with N processors in O(logN) steps; and procedure
RANK, which is introduced in Section 2.1.1 to determine the number of
elements with t(1) = 1 to the left of each data, can also be carried out
on & CCC with N processors in 0(logN) steps. We now describe an O(logN)

time data extraction algorithm on a CCC with N processors:

procedure EXTRACT2 (A,t):

/% extract A(Li) with t(1) = 1 and move them to consecutive processors
beginning at processor 0. */
begin call RANK(A,t,R)

/* determine |A| = number of A(1) with t(i) = 1 */
if t(N-1) = O then |A| =~ R(N-1) else |A| - R(N-1)+1
call CONCENTRATE (A,R,t)

/* £111 the right end of array A with null */
foreach i, |ao] S 1 < N do A(1) -~ aull

end
Theorem 2.3. A selected subset of an ordered array A(0:N-1) of elements
can be moved to consecutive memory units in a stable fashion on a CCC

with N processors .in O(logN) steps.

2.2.2 Selected Broadcasting
Being able to transmit data efficiently is essential for a fast algorichm.

We now consider a specizl case of selected broadcasting. Let P(0: N-1) be a
scoraﬁo array and let {al,...,an} be a selected subset of {0,...,8-1}, where
a, < ai1° We denote the expression 41" ai-l by L(ai) for i=1,...,n-1, and
N-an_l by L(an). Our objective is to copy data D(ai) into P(ai)’P(‘i"' D,...,
P(‘L+L(‘i)) for i=1,...,n. For example, letting N=9, n=2, 31-2 and
a2-5, we would copy D(2) into P(2), P(3), P(4) and D(5) into P(5), P(6),

P(7) and P(8).
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We shall describe the selected broadcasting procedure aloang with an

example. let n=1, N = 16, a = 5, and L(al) = 5, that is we want to move
D(5) to P(5),P(6),...,P(10). In Figure 4 the shaded locations show the data -
movement in selected broadcasting. Selected broadcasting 1s carried out by

th iteration, data D(1i) is

the same routing as in concentration: during the k
to be copied into P(i+h),P(i+h+l),...,P(i+L(1)), where h = nd.n(zk.l.(i)).
Referring to the example, during the 0':h iteration, L(5) = 5 indicates that
D(5) is to be copied into P(6),P(7),...,P(10); and during the 3‘:d {iteration,
L(0) = 10 indicates that D(0) is to be copied into P(8),P(9),P(10). If

L(L) = 2%

, we move data D(1) to the processor such that the processor index
and 1.4-2k agree in bics 0,1,...,k. Referring to the 1“ iteration of the
example, D(4) is moved to processor 6; and referring to the an iceration,

D(4) is moved to processor 0, such that 0 and 8 -4-0-22

agree in bits

0,1,2. During this routing, data may be moving backward ({.e., moving

to a processor with lower index) which is contrary to our objective of
forward broadcasting. We indicate this transitional state by setting the
flag BACKWARD(L{) to 1. We have to adjust L(i) by + 2k depending on whether
data is moved backward or forward. In the example, D(4) is moved to
processor O during the an iceration, so the flag BACKWARD(0) is set to 1

and L(0) 1s assigned to be L(4)+22- 10. when L{1) < Zkﬂ', we know that

D(1L) will not be moved in later iteration. Moreover, when 0 S L(i) < 2k+1

and D(1) is not in the backward transitional state, we can copy D(i) into

P(1) and set L(i) to -1. Referring to the 1“ iteration of the example,
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01 2 3 4 5 6 7 8 910111213 1418

o
«l}~l]=1}=1]=1} Sj-l|=1]|=1|{=1l|{~-1|{~-1{=1]-1]=1]~-1
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zf/ 1/" zc,

after the 3rd iteration

Figure 4. Broadcasting D(3) to P(S),P(6),...,P(10).
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2
L(7) is first set to 3, so 0 < L(7) < 2" and BACKWARD(7) is O, then we
can copy D(7) into P(7) and set L(7) to -1. We claim that at the end of
(logN+1l) iterations, the broadcasting is complete. The program for the -

selected broadcasting is as follows: = H

procedure SELECTED_BROADCASTING(D,L,P) A

/% when L(i) > 0, copy D(i) into P(i),P(i+l),...,P(i+L(1)). ‘
BACKWARD will be a flag for backward transitional stage.
T,TL,BACKIWARD will be used as temporary storage for D,L,
BACKWARD respectively */

begin
foreach i, 0= i < N do

begin TL(i) = -1, BACKWARD(i) = 0 end t!
i for k = 0 to log N-1 do
1 foreach i, 0 < i < N do

begin

[ /* move D(i) to the processor such that the
processor index and the destination agree in
bits 0,1,...,k */

1. if L(1) 2 2% then o
begin T(i+(1-ZBIT i) ) = D()

TL(i+(1- ZBIT (L))2 ) - L(1)+(ZBIT (i)- 1)2
TBACKWARD(1+(1 ZBITk(i))Z ) - BITk(l)

—— L':;_L- sy

end

/% determine if data in D(i) is permanent,
: discarded or have to be saved */

; 2. i 0 L(d) < 25! then
2. begin if BACKWARD(L) = Q then P(i) = D(1)
T) = -1

end

/* determine if data in temporary location T(i) is
permanent, can be discarded or have to be saved */

3. if 0= TL(L) < 25*! then |

begin if TBACKWARD(i) = 0 then P(1) = T(1)
TL(L) = -1

end

3
i
i
i




4. 1f TL) 2 2%*! then

begin D(1) = T(1)
L{1) - TL{D)
BACKWARD (1) =~ TBACKWARD(i)
TL{A) =~ -1

end
end
end

The correctness of SELECTED_BROADCAST is not immediate. We must show

that (1) whenever data is to be stored at some location, the previous
imformation at that location can be discarded; (2) D(ai) is moved to
P(ai),...,P(ai+L(ai)) for i = 1,...,n at the termination of the procedure.
Theorem 2.4. Procedure SELECTED_BROADCAST is correct.
Proof. It is observed that at the beginning of each iteration TL(i) = -1,
7i; so prior to step 1, information at T(i), TL(i) and TBACKWARD(i) can be
discarded for Vi.

Suppose BITk(i) = 0 and L(2k+i) 2 2k at step 1. Then TL(1) is

assigned the value L(2k+i)+2k 2 21"“"1 and by the specificition of the

problem, L(i) < 2k+1. At step 2, L(1) is then set to <! which implies

that prior to step 4, information at D(i), L(i), BACKWARD(i) can be

discarded. Suppose BITk(i) = 1 and L(1L) 2 Zk at step 1. By the

specification of the problem, L(i-Zk) < 2k+1

to L(t-2%) - 2F < 2¥

at step 1. TL(i) may be set
or remains -1 depending on the value of L(i-Zk); in

either case TL(i) is -1 at the completion of step 3. Therefore, step 4

has no storage conflicts.
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To complete the proof, it is now sufficient to show for n = 1, D(al)
is correctly moved to P(al),....P(a1+L(al)) and data D(al) is never moved

to P(1), for L & {al,...,al-t-L(al)} during the process. It is simple to

see the routing in the algorithm guarantees D(a,) reaches processors

al,a1+1,...,al+L(al). Indicators BACKWARD(i) and TBACKWARD(i) determine
whether a piece of data arrives at processor i should be written into P(i).

If the data is arriving from a processor with higher index then this data

is in a transitional stage, otherwise this data is in its destinmation. O
Procedure SELECTED.BROADCAST runs in time O(logN) on a CCC with N

processors.

Theorem.2.4. Given a subset {ai,...,an] of {o,...,N=1} and a;, <ag., o
data items D(ai) can be copied into P(ai),P(ai+1),...,P(ai+L(ai)), where

L(ai) = a1+l-ai-1, for 1 = 1,...,n, in time O(logN) on a CCC with N -

processors. :

2.2.3 Parallel Searching

Given an array A(O:N-1) of N elements in ascending order and a set
Q(0:M=1) of test elements, we want to find for each i, 0 €1 < ), A(ji)
such that A(ji)‘S Qi) < A(ji+1). We present the set of test elements -
in descending order. Then A and Q are merged using Batcher's bitonic

merge. Then A(j) is broadcast to all the test elements between A(j) and

A(j+l) in the resulting merged sequence of A and Q. For example, N = &,

M=5, A(0),...,A(3) are 1, 3, 4, 8 respectively, and Q(0),...,Q(4) are

shows the merged sequence. Then A(0) is broadcast to Q(0), Q(l), and

1, 2, 4, 5, 6 respectively. Figure 5(a) shows the sequences. Figure 5(b) '
A(2) is broadcast to Q(2), Q(3), Q(&). .
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A(0) A1) A(2) A®Q) Q(0) Q1) Q(2) Q(3) Q4)

1 3 4 8 1 2 4 S 8

(3) sequences A and Q

A(0) Q(0) Q1) A() A(2) Q(2) Q(3) Q(4) A

1 1l 2 3 4 4 L] 8 8

(b) merged sequence

Figﬁre S. Parallel searching.
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The following program performs the parallel searching.

procedure SEARCH (A,Q,P):

P /* determine P(1) = A(j,) such that A(j,) S A(j+1) */
’ begin
: /* merge sequences A and Q */
foreach i, 0 S { < Ndo D(i) - A(1)
4 foreach 1, 0 < i < Mdo D(WiL) = Qi)
apply bitonic merge to D;

/* determine the distance L(i) such that D(i) has to be broadcast */
foreach i, 0 S i < N#M do
begin t(i) = 0; L(1) -~ -1
1£ D(1i) € A and D(i+l) € Q
then begin tl(i) * 1; FIRST({) = 1 end
end
call EXTRACT2 (FIRST,t)
( foreach i, 0 S i < WM do
' : if FIRST(L) ¥ null then L(L) =~ FIRST(i+1)-FIRST(1)-1
move L(i) to processor FIRST(i) by a procedure similar to CONCENTRATE

y I /* broadcast D(1) to P(1),...,P(A+L(1)) */
1 call SELECTED_BROADCAST (D,L,P).

‘ /* move P to origi-~ position */
3 foreach i, 0 s 1 < ™M do
' i£ D(1) € A then t(i) -~ 1 else t(i) - O
call EXTRACT2(P,t)

end

This procedure runs in time O(log(N+M)) with N+M processors. Therefore,
parallel searching runs in time O((logM)2 + log(N+M)) on a CCC with N+&M
processors.

| Theorem 2.5. Given an ordered array A(O:N-1) of N elements and a set

Q(0:M=1) of test alemants, for aach {, 0 £ { < M, the element A(ji),

such that A(ji) < Q) < A(ji+1), can be determined in time
0((103M)2+10301-1-N)) on a CCC with N+M processors.

e -




2.2.4 Finding the Minimum (Maximum) of N Numbers
The algorithm presented in Section 2.1.2 for finding the minimum

(maximum) of N oumbers is directly within the ASCEND class. Therefore,

we have the following result.

Theorem 2.6. The minimum (maximum) of N numbers can be determined in ;
» time O(logN) on a CCC with N processors. t
l
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CHAPTER 3
INTERSECTION OF RECTANGLES

Given a set of N rectangles (with sides parallel to the coordinate
axes) in the plane, we are asked to report all pairs of rectangles which
intersect. An important application of the problem is in VISI design rule
checking [4,19]. Bentley and Wood {7] presented an O(NlogN+k) (optimal)
time algorithm for reporting intersections of rectangles on a uniprocessor
machine, where k is the number of intersecting pairs found. In this
chapter we investigate this problem on parallel computing machines.

Our approach to a parallel solution of the problem follows the general
approach of Bentley and Wood and requires two intermediate steps: reporting
intersections of horizontal and vertical line segments, and two-dimensional

range searching. Two rectangles intersect if their edges intersect or one

crait inall i il e el i
= Wty

rectangle entirely encloses the other. The problem of finding rectangle

:‘ enclosure can be reduced to that of two-dimensional range searching as
| follows. We associate with each rectangle A a representative point a in
}’ its interior, for example, its leftmost bottom vertex. If point a lies
within rectangle B, then either B entirely encloses A or A and B have an
edge intersection.
The rectangles i{in the given set are indexed 0 to N-1l. Each

A rectangle r is defined by four reals giving its boctom B(r), top I(r),

: left L(r) and right R(r) extrems points. l

3.1 On the SMM with N Processors

In this section we shall present an algorithm which solves the

[Py

rectangle intarsection problem in time 0((103N)2+k) on & SMM wicth N

processors, where k is the maximum number of intersections per {'
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rectangle. We.shall discuss two intermediate problems: intersection of
horizontal and vertical line segments, and two-dimensional range
searching.

3.1.1 Intersection of Horizontal and Vertical Line Segments

Given a set V(0:n-1) of n vertical line segments and a set H(O:m-1)
of m horizontal line segments, we want to report all pairs of vertical and
horizontal line segments which intersect. V(i) and H(i) are records.

In addition to the endpoint information, each V(i) contains two redundant
fields B and T: V(1){B] and V(i)[T] are the y-values of the bottom and top
aendpoints of V(1), respectively. H(1) also contains two fields L and R:
H()[L] and H(1)[{R] are the x-values of the left and right endpoints of
H(1), respectively. Let Y(O:N-1l) be a sorted array of distinct y-values of
the endpoints of the vertical line segments, where N < 2n (refer to Figure
6(a)). We assume, for simplicicy, that N+ 1 is a power of 2 and

Y(N+1) = Y(N)+1; the details of the general case are straightforward.

We now describe the search tree J which can be produced for the set of
vertical line segments. J is a binary tree of height log(¥+1l). In J
NDDEi(j) denotes the jCh leftmost node at height i; it represents an
interval (B, (§),T;(3)] where B, (J) =¥(J -21) and T, (§) = Y((J+1)2").
I£f1>0, NODEL(j) has two sons: NODEi_l(Zj) and NODEt_l(Zj+1). Each
NODEt(j) contains a list of edges V(k) sorted in the positive x-direction
where V(k)[B] S Bi(j) and ‘ri(j) < V(k)[T]. Moreover V(k) does not belong
to any ancestor of NDDBi(j). Figure 6(b) is the search tree J for the

set of vertical lines in Figure 6(a); pairs of integers in the circles

are values of j°2i and (j+1)21.
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(a) A set of vertical line segments and the corresponding Y array.
(the "cuts" on the edges show the logarithmic segmentation for J and &)

NODE3 (0)

NOI)]":2 (1)

{e}  (s,3} ¢ {4} {4,1] {2} {2} @

P

(b) Search tree J for the vertical line segments in (a)

Figure 6. Search tree J for vertical line segments.

G ;O e e




27

We define ci_.1 as a list of candidate segments for NDDEi(j) sorted
in the positive x-direction. We shall congtruct J level by level

beginning from the root. From C which is a list of all the

log(N+1),0’
{. vertical line segments sorted in the positive x-direction, we extract

i' segments which lie in the range [f(O),Y(N)]. This list of extractad
segments 1s associated with NDDElog(N+1)(°)' From the remaining segments

as follows.

s’
D in clog(N+1),0’ we determine clog(N+1)-l,0 and Clog(N+1)-1.1

(k) belongs to C £

Edge

Clog(#+1),0 log(¥+1)-1,0 &

.

£

C1logw1), 00 (B] < Tyogpaq)-1(0) and €0 Cypppnyan,1 t
clog(N+1),o(k)[T] > Bl°8(N+1)-1(1)' We repeat this procedure for comnstructing

the set of NODEt(j) for every j in each level i. Given Ci j? all of
3

the three lists NODEi(j), c and C can be determined in

1-1,23 i-1,2j+1

} 0'(log|ci jI) steps with |Ci j| processors. At each level i, every line

b E ? ?

Y 2ty

z _ segment can belong to at most four C; ;. Therefore L ]ci jl < 4n.
. b j-o ’

Thus, 4n processors and O(logn) time are sufficient to construct one

level of J. J has log(M+1l)+l levels, so J can be constructed in
0((logN)2) time with 4n processors and 4n memories. The following program
ﬁ CONSTRUCT.S 1 constructs J for vertical line segments. (A different program

ﬁ P CONSTRUCT.J2 will be written to construct J for edges of a planar graph.)

procedure CONSTRUCT.JL(V)

/%* construct the point location tree J for the vertical line segments V */
being sort V(0:n-l) by x-values and y-values of bottom endpoints

i k, 0 < -

i foreach k, 0 s k < n, do Clog(ml),o(k) V(k)

/%* construct J level by level */

- foreach 3, 0 j < 21-1 do
o begln NODE; (3) = Cy_y 25 7 Ci.1,2541 = @
ifc, j # ¢ then
1

begin
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/* determine mosi(j) by extracting the
appropriate edges from C, j */
?
foreach k, 0 S k < ‘ci,j) do
begin ci.-].,Zj(k) - Ci-1,2j+1(k) - Cz,j(k)

Josamo .y
. .

tk) =0
if Ci’j(k)[B] s 31(1) and
HOETAN e
then t (k) = 1

end
call EXTRACTL(C

NODE, (§) = C

i’j’t)
1,3

*
/% determine ci-l,Zj and °1-1,21+1 by extracting

| edges from the remaining of C:L j */
£ k, < '
‘ foreach k, 05k < |C; ; ,,| do
" ‘ begin
§,.‘ ' if £=0 and Ci-l,Zj (k)[B] <Ti,1(2j) .
then tl = 1 else :1 -0 :
i
f 1f t=0and Gy , (B)[T] > B, ,(23+1)
\ ]
) thentz-1else t:2°-0
end
end
! call EXTRACTL(C; ; ,4,%)
b}
{ call EXTRACTL(C; ; 5.4;5%)
3

¢ end
‘. end

To find all the intersections of a horizontal line segment H(k) with the

set V of vertical line segments, we use J as a two-dimensional binary search
3 : tree: At a selected node mDE-i(j) of J, we report all the vertical segments
in the list of NDDEi(j) which are in the interval [H(k){L],H(k)[R]]. Since
the vertical segments at NODEi(j) are sorted by their x-values, the search

can be done in O(logn+k'), where k' is the number of intersections per

segment reported in one level. In the next step, we proceed to one son or

pum—y  rpmmemy ey
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both of NODEi(j) by comparing the y-value of H(k) with Ti_l(Zj): if
y-value of H(k) is less than, greater than or equal to T1-1(21) then
we proceed respectively to the left son, the right son or both sons.
At the selected son, we again repért all the vertical line segments in
the list of this node which intarsect with the horizontal line segment
H(k). We continue this process until we reach the bottom of J. Note
that the y-value of H(k) may be equal to only cne T1-1(23)' Thus, we
trace a unique path, possibly two, from the root to the bottom level; at
that stage all intersections k" of segment H(k) are reported. Since J
is of height O0(logN), this process runs in time O((logn)2+k"). We can
find intersections of all m horizontal lines with V simultaneously,
provided we search in one level of J for all horizontal lines before
going to the next level. The number of processors required is m for

parallel searching. Thus, we have the following result.

Theorem 3.1. All intersecting pairs of n vertical line ségments and m
horizontal line segments can be reported in time O((logn)2+k) on a SMdM
with max(4n,m) processors and max(4n,m) memory units, where k is the
maximum number of intersection of any horizontal line segment and the set

of vertical line segments.

The formal description of the intersection algorithm is as follows.
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procedurs INTERSECT1(V,H):

/% find all intersecting pairs of horizontal line segments in H and
vertical line segments in V */

begin

/* construct the point location tree J for V */
call CONSTRUCT_J1(V)
foreach k, 0 < k < m do begin J,(k) = 0 ; J;(k) = -1 end

/* search in J level by level */
for L = log(W1l) downto 0 do
for p- 0 to ldo
foreach k, 0 < k < m do
if Jp(k) 2 0 then

begin search in NODEi(j) all vertical lines

in the range [H(k)[L],H(k)(R]]
if y-values of H(k) .TL-I(ZJp(k))

then begin Jp(k) - ZJp(k)

1) -
J pel(lc) ZJP (k) +1
end

else if y-value of H(k) < Ti-l(ZJp(k))
then Jp(k) - ZJP(k)

else J (k) - ZJP(k) +1
end P
end

3.1.2 Range Searching

We are given a set § of n points in the plane and a set Q of queries:
report all points of S in the range Q({)[L] € x £ Q(1)(R] and
QL)[(B]l €y s Q({)[T]. We first organize the points in S so that we

can answer the queries efficiently.

(1)6 is the exclusive-or operator.

[N —
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We assume that Y(O:N-1) is a sorted array of the distinct y-values
of points in S, where NS n. We also assume that N is a power of 2. We
construct a search tree X for the set of points. X is similar to J, but
with the following differences. Associated with M)DEi(j) is a subset of
points with their y-values in the interval [Bi(j),'ri(j)], sorted by their
x-values, where Bi(j) -Y(j-zj') and T, (§) =Y((J+1)21-1). Figure 7 is an

example of search tree . NODE (0), the root, is the entire set S

logN
sorted by x-values. We use procedure EXTRACT1 to partition mDElo gN(0) into

MDEi_l(.?.j) and ‘mDEi_l(Zji-l) such that all points ia NODEi_l(Zj) have
y-values < T1-1(25) and those in NODEi_l(2j+1) have y-values 2 Bi_l(Zj+1).
Again, like in the construction of J, X is constructed level by level.

i
2”°=-1

Since I |NODEi(j)| = n for all i, ¥ can be constructed in time O((logn)z)
i=0

with n processors.

procedure CONSTRUCT_K(S):

/* determine, from S, NODE, (j) of X */

begin
sort S(0:n-1) by their x-values

NODElogN(o) ~-Ss

/* determine nodes of X level by level */
for i = logN downto 1931
foreach j, 0 j < 2" do

begin . |
/* partition points of NODE, (§) iato MDEi_l(ZJ)

and NODEi_l(Zj+1) according to their y-values */
NODEi_l(Zj) - mnzi,_l(2_1+1) - mDEi(j)
foreach a € NODEi(j) do
1f y-values of a S B, 121
then :l(a) -1; tl(a) -0
else tz(a) -1; cl(a) -0
call EXTRACTL(NODE, ,(21), ¢,)
call EXTRACTI(MDEi_l(Zj+l), t

)
end 2

end
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Y(7) =
Y(6) =
Y(5) =
Y(4) =

-
o

.9

o4 «10 =

¥(3) =
Y(2) =
YQ) =

2

Y() =

O = N W N o O
®
[

~

(a) A set of points and the corresponding Y array

e

NODE, (1)
4,7) {4,6,8,9,10}

NODE1(2)

NODE1(3)
{s,9}

NODEO(7)

{3,7} {s} {21 {1} {4,10} {8} {6} {9}

(b) Search tree X for points in (a)

Figure 7. Search tree X for points in the plane.
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Given a query Q(k), we search in X starting with the root until we
reach a NODEi(j) such that Q(k)(B] < Bi(J) < 'I,‘i(j) <€ Q(k)[T). Then we
report all points in NODEi(j) with x-values in the interval [Q(k)[L],Q(k)[R]].
Since points in mDE;(j) are ordered by their x-values, the query is
answered in O((logn)2+k') time with 1 processor where k' is the number
of inclusions. All @ queries can be treated in parallel if we search in
one level of XX for all queries at a time. Therefore we have the following
raesult for range searching:
Theorem 3.2. The two-dimensional range searching problem for n data
and m queries can be solved in time 0((logn)2+k) on a SMM with

max(n,m) processors and memory units, where k is the maximum number of

| inclusions per query.
B procedure RANGE_SEARCHI1(S,Q)

/* report all points a € S such that Q(1)[L] = x(a) < Q(1)[R] and
Q(1)(B] = y(a) = Q) (T], for every Q(i) € Q */
begin
/* construct the search tree X for the set S of points */

call CONSTRUCT.}(S)
foreach k, kS 0<mdoJ

-

logN (k) = {0}

/* search in ¥, beginning at the root */
for i = logN downto O do
foreach k, k < 0 < m do

begin Ji-l(k) -9
for each j € J, (k) do
i begtn Lf Q(k)(B] S B (§) and T, (§) < Q(K)(T]
i then search in NODEi(j) and report any

pair (Q(k),a) where
Q(k){L] = x(a) S Q(k)([R], SEWDEL(J)

else begin if Q(k)[B] = 11_1(21)
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then J, (k) = J, (k) U {23}
Lf QUOLTI 2B, (24+1) L
then J, , (k) =3, _; (k) U {25+1}

end 4

end
end

3.1.3 The Rectangle Intersection Algorithm

In previous subsections of this section we have investigated the
rectangle intersection problem in a top-down fashion. Procedure RECTINT1(REC)
is the complete description of the entire algorithm for reporting all pairs of
intersections of rectangles REC. Another two programs (RECTINT2 and RECTINT3)
will be writtea for the CCC.

procedure RECTINT1(REC):
begin

V - all vertical edges of rectangles in REC
H =~ all horizontal edges of rectangles in REC Ny
call INTERSECT1(V,H)
S ~ all left bottom points of rectangles in REC
Q ~ REC
call RANGE_SEARCH1(S,Q)

e . A — 1

end

Combining the results in previous subsections, we can show that RECTINT1
runs in time 0((logN52+k) on a SMM with 8N processors and memories, where
N is the number of rectangles and k is the maximum number of intersections
per rectangle. However, a simple-minded processor-time tradeoff can
reduce the number of processors to N by increasing the time by a factor of 8
as follows. We can position the set of vertical edges into eight subsets,
each of which has N/8 edges. We then find the fintersections of the set of
horizontal edges with each of these eight subsets of vertical edges

sequentially. We conclude this section by the following theorem. i

et
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Theorem 3.3. Given N rectangles with edges parallel to the coordinate
axes, all intersecting pairs of these rectangles can be reported in time
0((103N)2-rk) on a SMM with N processors and N memories, where k is the
maximum number of intersections per rectangle.
3.2 On _the CCC with N Processors

In this sec:ién we shall present an algorithm which solves the
rectangle intersection problem in time 0((103N)2-bk) on a CCC wicth N
processors, where k is the maximum number of intersections per rectangle.
We shall first discuss three intermediate problems: one-dimensional range
searching, intersection of horizontal and vertical line segments, and
two-dimensional range searching.

3.2.1 One-Dimensional Range Searching

Given a set A(O:N-1) sorted in ascending order and a set Q(0:M-1)
of queries specified by two bounds [L] and [R] (left and right respectively),
we want to report all elements =f A which lie in the range [Q(i)[L],
Q(1)[R]] 0 < i <M. We approach this problem by first finding A(ji) such
that A(ji-l) < Q)({L] s A(ji), for each i, and then reporting sequentially
the pairs (Q(1),A(J;)),(Q(L),A(4;+1)), ..., (Q(1),A(S,)) where
A(ji) < Q)R] < A(jii-l): we assume that Q is sorted by the values of the
left bounds in ascending order. We then merge A and Q. We perform a
parallel search, similar to the one iatroduced in Section 2.2.3, for
determining A(ji) for all Q(1). Before reporting any inclusions, we
eliminate those queries which do not have any inclusion (i.e., if
Q(L)[R] < A(ji)) from further consideration. We report sequentially all

the inclusions for every query.
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For example, consider the case where N = 7, M = 4 and the sequences
of A and Q are as shown in Figure 8(a). Figure 8(c) is the merged
sequence with Q(l) eliminated as Q(1)[R] = 4 < A(3) = 5, i.e., none of
the A's lies in the range [(Q(1)[L],Q(1){R]]. We then start to report all
inclusions by looking to the right simultaneously for every query:
(Q(0),A(2)), (Q(2),A(3)) and (Q(3),A(5)) are reported first; next
(Q(0),A(3)), and (Q(2),A(4)) are reported at the same time; then

(Q(0),A(4)), (Q(0),A(5)) are reported one at a time.

procedure RANGE_SEARCH_1D(A,Q)

/* A(O:N-1) 1s a sorted array, Q(0:M-1) is a set of queries sorted
by values of Q(i){L]. Report all elements of A which lie in
(Q(L)(L],Q(1)(R]] for i = 0,...,M~1 */

begin

/* copy information of A and Q into D */
foreach i, 0 =i < M do begin D(i){type] -~ query
D(i)(key] -~ Q(i)[L]
D(£)[k] - QD) ([R]
end D(i)[value] ~ Q(i)

foreach i, 0 = i < M do begin D(M+1l)[type] - data
D(M+1)(key] ~ A(L)
D(M+i){value] = A(i)

end
apply bitonic merge to D
determine P such that P(i) = A(ji) and A(ji-l) < Q) = A(ji)

/* eliminate those queries which do not have inclusions */
foreach i, 0 S { < M do
1f D(1)[type] = query and D(i)[R] < P(i)
then t(L) = 0
else t(i) -~ 1
call EXTRACT2 (D,t)

/%* report inclusions */
foreach i, 0 S { < N+M do
begin T(i) *~ null
1f D(1)[type] = query then T(i) = D(i)[value]

& ey

end
while I T(i) # null do

22 e o TSR, MY QTR < 0 e b s e S
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ACO) AQQ) A(2) A(3) A(e) A(S) A(®) QO Q1) Q2 Q3
0 1 2 ) 8 7 s 2 3 3 71 (L)
7 4 6 71 [r]

(a) initial sequences A and Q

A(0) A(1) Q(0) A(2) Q@) Q(2) A(3) A(4) Q(3) A(S) A(S)

0 1 2 2 3 3 S ¢ 7 7 8

7 4 ] 7

(b) the merged sequence

i A(0) A@Q) Q0) A(2) Q(2) A(@3) A(4) Q(3) A(S) a(e)

0 1 2 2 3 S 6 7 7 8

iy 7 6 7

(¢) Q(1) being eliminated

‘ (Q(0),A(2)), (Q(2),A(3)), (Q(3),A(S))
(Q(0),A(3)), (Q(2),A(4))
(Q(0),A(4))

(Q(0),A(5))
7

time
(d) the pairs in each row are reported simultaneously

Figure 8. One-dimensional range searching.
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begin for j - 1 to L do /* ¢
foreach i, 0 S { < N M
begin
£ 1 mod L 2 j-1 & D(L)(cypes] = data
then if T(1)(R] 2 D(1){value] then
report (T(1L),d(i)(valus])
else T(1) = null
T(i+l mod L) ~ T(1)

loop length of CCC */

end

end

All steps except the last while loop clearly require at most
0(log(N+M)) steps. The evaluation of the condition of the while loop and
step in this loop require O(log(N+M)) time. But these are only performed
at most k/4 times, where k i{s the maximum number of inclusions per query
and £ is the loop length of the CCC, which is of order log(N+M). Therefore,
the time complexity of the while loop is k. Hence, procedure RANGE_SEARCH-1D
runs in time O(log(N+M) +k) on a CCC with N+M processors.
Theorem 3.4. Given a sorted array A(O:N-1) and a set Q(0:M-1) of queries
sorted by values of the left bounds, all elements of A which lie in the
range {Q(1)([L],Q(1){R]], for i = 0,...,M=1, can be found in time
0 (log(N+M) +k) on a CCC with N+M processors, where k is the maximum number
of inclusions per query.

3.2.2 Intersection of Horizontal and Vertical Line Segments

We ravisit the problem of reporting intersecting pairs of horizontal
and vertical line segments as introduced in Section 3.1.1. We shall
revise procedure INTERSECT1 so that it will be suitable for implementation
on a CCC with linear number of processors. Most of the variables used

here will have the same meanings as those in Section 3.1.1.
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For the set V(0:n-1) of vertical line segments, we construct a
search structure & which consists of loghN+ 1 arrays EO’EI""’ElogN’
where N is the nmumber of distinct y-values of the andpoints of the
segments in V. Each Ei is a selected subset of vertical line segments in V.
The underlying structure of § is a binary tree similar to J except for
the indexing of the nodes. Instead of indexing the nodes, in some level {i,

from left to right, a node will be indexed as j L{f it is the right son of

NODE,,(j) in level i+l for some j and it will be indexed as 21°5N'1'L+j if

it is the left son of NODEi+1(j). Therefore, the left and the right sons i

logN-i-1

of NDDEi+1(j) are NODEt(j) and NODEi(Z + 1) respectively. Suppose P

NDDEi+1(j) is the kch leftmost node in level i+l, then NODEi(j) represents

the interval (B, (1),T,({)] = [¥(2k2"),¥((2k+1)2")], and voDE, (2'°8%1 14 y)
i logN-i-1 logN=-i-1

£ represents the interval [ni(z +j).T1(2 +i)] =

v+ 124y ,v((2k+2)2Y)]. The left-to-right sequence of the node indices

# at any level of § i{s the bit-reversal permutation of the node indices at the
E corresponding level of 7, where the bit-reversal permutation maps a binary
¥
H

number a into the binary number agdqe-2 - Figure 9(a) is the

n-1%n-2""%0
i underlying binary tree of & for the vertical line segments in Figure 6(a).
’ I- Note that Figure 9(a) is the same as J in Figure 6(b) except for the node
indices. The array E1 of § is the concatenation of the lists of vertical line !

segments assoclated with the nodes in level i in the order of increasing node

B ———
. . , .

indices. We also associate with each elament Ei(j) the node number N#i(j) such

- that Ei(j)[B] < Bi(N#i<J)) and Ei(j)[T] 2 TL(N#i(j)) and Ei(j) does belong to

any ancestor of NODEi(N#i(j)). Therefore, E, 1s a selected list of vertical

i
line segments sorted lexicographically by values of N#i and their position in

the positive x direction. Figure 9(b) shows the arrays E3,EZ,EI,E° for the

vertical line segments in Figure 6(a) (null elemants are denoted by A).
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NODE, (0)
@

{5,31 ¢ {4} {4,1} {2} {2} o

(b) the collection of arrays Es,...,Eo

Figure 9. Search structure § for vertical line segments in Figure 6(a).
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i

Construction of 8 is similar to that of J; the arrays Ei are constructed
one at a time:
procedure CONSTRUCT_S1(V)

/* construct the search structure J i.e. E].ogN""'EO for the set

V(0:N-1) of vertical line segments */
begin sort V by x-values and then y-values of the bottom cndpoi.nts.
foreach j, 0 < j < n do begin S (J) =~ V(3)
m™m(j) - 0end

foreach j, n S j < 4n do S (j) - mull
/* determine ElogN""’EO one at a time */

for 1 = logN downto 0 do
begin

! , /* determine E; by extracting edges from § */
1 foreach j, 0 % § < 4n do
= begin £, (J) = ¢ (j) -0
, E,(4) - S); M, (1) = m(9)
{ | L£5() # mll
i then Lf S(§)(B] < B, ("(})) and
Y T, (M) S S(HIT]
i then ¢, (§) ~ 1

else t:z(j) -1
end

call EXTRACT2 (E,t,); call EXTRACT2(M,,t,) ;
call EXTRACT2 (s,tz); call EX‘IRACTZ(ﬂ,tz) :

" /* rearrange the order of elements in S according to ‘
t their node numbers in the next level */

CoL foreach j, 0S j < 4n do
3 ' begin TEMP(}) = S(})
8,3 = e, () = 0
if s(j)(B] < T,__l(ﬂ(J)) then ¢t,(j) = 1
L£s(PIT] > T, (")) then b:gj(.g) o
2
TEMPr () - 21088 Lin(y)
end

e i s SR AT 0 P
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call EXTRACT2(S,:1); call EXTRACT2(T,y,)
call EXTRACTZ(TEMP,tz); call EXTRACT2(TEMPﬂ,t2)

foreach j, 0 S j < |TEMP| do begin S(j+|S|) = TEMP(J)
m(3+{s|) - TEMPT(Y)

Gormsrean |

[

end
end

end

Analysis of procedure CONSTRUCTS is similar to that of CONSTRUCT J.
It is easy to show that CONSTRUCT.S can be implemented on a CCC with 4n
processors in 0((logn)2) steps.

To find intersecting pairs, we use § as a binary tree. We associate
with each horizontal line segment H(1) a node number NN(i) indicating
that H(1) may intersect some vertical line in node NN(i). We start at

% ElogN (the root). It is obvious that NN(i) = O for all { (there is only

' node 0 at this level). The set of horizontal lines is maintained sorted

y lexicographically by their node numbers and x-values of their left -

endpoints. Since Ei is sorted in the same manner, we can use the one-
dimensional range searching algorithm in Section 3.2.1 to report all
intersecting pairs at level i{. We then determine which node in the next
level should be associated with each horizontal line segment. We

continue this process which geometrically traces a unique path, possibly
two, from the root to a leaf. Since the depth of & is logN+l, this process
requires O(logn.log(n+m)+k) time on a CCC with 4n + 2m processors. We

now present formally the intersection algorithm.

procedure INTERSECT2(V,H): {

p /* search all intersecting pairs of horizontal line segmencts in H
: and vertical line segments in V */

begin

/* construct the search structures ElogN""’EO for V */
call CONSTRUCTS1(V) [
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/* H', the set of horizontal line segments, is maintained sorted
lexicographically by their node number and x-values of their
left endpoints */ a ;

sort H by x-values of left endpoints

foreach }, 0 S j < m do begin H'(3) ~ H(J)

- NN(j) = 0; end

foreach j, mS j < 2m do H'(j) ~ null

/* search in 8 beginning at E} 0N */

for 1 = logN downto 0 do §

begin call RANGEdSEARCH_ID(Ei,H')

/* determine node numbers for horizontal line segments
to be used in the next level; then H' is reordered
according to their node numbers */

foreach j, 0S5 J < 2m do

begin £;(3) = €,(3) -~ 0
' TEMP(j) = H'(J)
| if H'(j) # null then
‘ begin if y-value of H(J) S T, ;(NN(}))

then t,(J) = 1
if y-value“of H(j) 2 T, ,(NN(}))

- SR

S IO Vi)

| . then begin
i t,(1) = 1
! TEMPNN (1)-2 108 L ()
- end
» end
end

call Eiikacrzcn',:l)
, call EXTRACT2(NN,t,)
L call EXTRACT2(TEMP,t,)
" call EXTRACT2 (TEMPNN,t,)

foreach j, 0 < j < |TEMP| do
begin B'(|H'[+]) = TEMP(J)
NN(|R'|+]) ~ TEMPNN(J)

end
£ i s_n_d.
- end

Procedure INTERSECT2 gives the following theorem.

Theorem 3.5. All intersecting pairs of n vertical line segmeats and m i
L 2
T horizontal line segments can be reported in time 0((log(ntm)) +k) on a
CCC with 4n+ 2m processors, where k is the maximum number of '

intersections per vertical line segment.
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3.2.3 Two-Dimensional Range Searching i'
We now investigate the two-dimensional range searching problem stated i ?
in Section 3.1.2 on a CCC with linear number of processors. Again, we .
assume that Y(O:N-1) is a sorted array of distinct y-values of points of i-

S, where N < n and N 1s a power of 2. We construct a search structure F
which consists of logN+l arrays FlogN’FlogN-l""’FO' The underlying
structure of ¥ is a binary tree similar to X (Sectiom 3.1.2) except for the
indexing of the nodes. The nodes in the underlying binary tree of ¥ are
indexed in the same manner as that of & (Section 3.2.2). Figure 10(a)
shows the underlying binary tree of F for the set of points in Figure 7(a).

Note that Figure 10(a) is the same as X in Figure 7(b) except for the node

th

indices. Suppose that NODE1+1(j) is the k=~ 1leftmost node in level i+l,

then its right son NODEi(j) represents the interval [Bi(j),Ti(j)] =

logN-i-1

(v2ke2ty,v2x+1)2%)] and its left son NODE, (2 +§) represents

logN-i-1 logN-i-1

the interval [Bi(Z +3),T; (2 +j)] = [Y(<2k+1)2i),

Y((2k+2)21-1)]. Therefore, F, is the set S of points sorted lexico-

i
graphically by their node numbers and x-values. At level i, the node
number of Fi(k) is NNi(k), where the y-value of Fi(k) is in the range

[Bi(NNi(k))’Ti(NNi(k))]' Figure 10(b) shows the contents of 1-‘i and NNi

The set S of points is £irst sorted by their x-values. The resulting array

is F We then determine the node numbers NN for each point and

logN® logN-1
rearrange the order of points in the array according to their node numbers.

Since the cardinality of Fi is n for all i, ¥ can be constructed in time
0((logn)2) on a CCC with n processors. The program CONSTRUCT.F for !

i
b
i
for the example in Figure 7(a). The construction of ¥ is similar to §: ’
constructing ¥ is presented in the Appendix. }

WA i, e Reryiar shon AR PRI T T R




ﬁ
§
{
3

45

NODE (0)
@ {1,2,...,10}
ODE, (0) NODE, (1)
, 0,3) {1,2,3,5,7} 0 {4,8,8,9, 10}
.l
NODE, (0) NODE, (2) NODE, (1) NODE, (3)
{3,s, 7} 2,3) 1,2} 4,5 {4,8,10} 6,7 ) (6,9}

NODEO(O. NODE°(4) NODEO( NODEO(G NODEO(I NODEO(S NODEO(S- ODEO(7)
\,

{3,7} {s} {2} {1} {4,10} {8} {6} {9}

(a) the underlying binary tree.

P, | 2] 2 10
' w. [ o] o 0 0
F, | 1 4| 6 10
' NN | 0 1| 1] 1] 1
F, 8|10
N, 1| 2
( 7, | 3] 7] 4[10] 2
! NN, of o] 1] 1} 2| 3| 4| s

(b) the collection of arrays F,,...,F,.

Figure 10. Search structure F for the set of points in Figure 7(a).

R ——

S




e paganis o g i e A

Mk ) dmeioms 22
K

e e R~

46

To answer the set Q of queries, we search in ¥ for each k until we
reach level i such that Q(k)(B] < Bi(j) and I‘i(j) < Q(k)[T] for some j.
Then we perform a one-dimensional range search to report all the
inclusions. Since we may visit at most four nodes on one level for a
particular query, 4mtn processors are sufficient. We use the result in
Section 3.2.1 for one-dimensional range searching, so we have the following
result.

Theorem 3.6. The two~-dimensional range searching problem for n data and m
queries can be solved in time O((log(n+m))2+k) on a CCC with n+ém
processors, where k is the maximum aumber of inclusions per query.
procedure RANGE_SEARCH2(S,Q)

/%* report all points a € S such that Q(i)[{L] < x(a) < Q(1)[R]

and Q(1)[B] = y(a) = QAL)[T] for every Q(i) */
begin

/* construct the search arrays F:F
call CONSTRUCT.F(S)

logN""’FO for the set § */

/* Q' is the set Q sorted by the values of left bounds */
Q' = Q

sort Q' by Q' (1)(L]

foreach j, 0= j < m do NN(j) - O

foreach j, m =< j < 4m do Q' (j) ~ null

/* search in FlogN,“”Fo one at a time */

for 1 = logN downto 0 do
begin

/%* determine Q" which is a subset of queries that can be
answered at this level. For the remaining queries,
determine their node numbers in the next level */

foreach j, 0= j < 4m do

begin t,(J) - tz(.‘l) - t=3(J) -0

Q"(J) — TEMP(J) ~ Q'(I)

NN"(§) = NN(3);TEMPNN(]) = N(j) +2108N-L

1£ Q'(J)(B] = B, (NN(})) and T, (N\W(J) < Q"(DI[TD

LX)

Fom. ¢
.
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then £,(§) = 1

else begin
L1£ Q' (1)(B1ST,_; (N(J)) them £,(§) -1

logN-t)

1f Q'(HIT] SBi_l(NN(J) +2
then t3(j) -1

end
end
call EXTRACTZ(Q",tI); call EXIRACTZ(NN",:I)

/% answer queries in Q" by performing a one-dimensional
range searching */
call RANGE_SEARCH_ID(F, ,Q")

/* extract Q'-Q" from Q' and rearrange the order according
to their node numbers */
call EXTRACT2(Q',t2); call EXTRACTZ(NN,:Z)

call EXTRACTZ(TEMT,t3); call EXTRACT2 (TEMPNN,t

foreach j, 0 < j < |TEMP| do
begin Q' (§+]Q'|) = TEMP(J)
NN(j+ Q'] = TEMPNN(J)

3)

end
end
end

3.2.4 The Rectangle Intersection Algorithm

The rectangle intersection algorithm for a CCC is the same as that
for a SMM but uses different algorithms for finding the intersections of
horizontal and vertical line segments and for two-dimensional range
searching.

procedure RECTINT2 (REC):
begin

V ~ all vertical edges of rectangles in REC
H = all horizontal edges of rectangles in REC
call INTERSECT2(V,H)
S =~ all left bottom endpoints of rectangles in REC
Q - REC
call RANGE_SEARCH2(S,Q)

end
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Theorem 3.7. Given N rectangles with edges parallel to the coordinate
axes, all intersecting pairs of these rectangles can be reported in
time 0(103N24-k) on a CCC with N processors, where k is the maximum

number of intersections per rectangle.

Proof: Combining results in Sections 3.2.2 and 3.2.3, we use some simple
processor~time tradeoffs similar to the one used in the previous section
to achieve the time complexity of 0((logN)2-#k) and processor complexity

of N. a

1+

3.3 On the CCC with N « Processors

In this section we shall develop an algorithm for reporting intersecting
9 pairs of N rectangles for a CCC with superlinear number of processors. This
algorithm can be implemenced in 0(% logN +k) time requiring Nl'ha processors,

where 0 < o £ 1 and k is the maximum number of intersections per rectangle.

3.3.1 Intersection of Horizontal and Vertical Line Segments

As in the algorithms developed for a CCC with N processors, we construct

a search structure £ for the set V(0: n-1) of vertical line segments so that

. -w“*-—-—

the intersections of horizontal line segments in H(0: m-1) and V(0: n-1)
can be found efficiently. Let N be the number of distinct y-values of the

1
endpoints of V. 2 consists of a4—l arrays Dl/a’Dlla-l""’DO' Each Di is

a selected subset of V sorted lexicographically by their node number
T (as defined in Section 3.2.2) and their positions in the positive x

direction. The underlying geometric structure of & is a Na-ary tree of

height é: there are Nl-uz nodes at height i, indexed as follows. At level !

%, the root is indexed 0. Node j which is the kch leftmost node at level i .
has X* sons at level i-1; they are nodes j, Nl'ia-bj, 2N1'ia-rj,..., *-
] leicx :
(N -1)N + j representing respectively the intervals ,

A¥ ]
A, PPTrh oS TRy, TP 5o T T L
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[ 4

(), v DNN ) 1, (e N ) v a0 ]

[T (QP+2)N %), Y P+ )N ) 1, L., [ (P - ™)y )Nt .
Figure 1l shows an example with N = 16, o = 5, Figure 1l1(b) 1is the
underlying Na-ary tree; pairs of integers in the circles are values of
Bi(j) and 'ri(j), and the integers above the circles are node numbers.

The construction of arrays Dl/a""’DO runs as follows. Initially,
the node number of each vertical line segment is 0. Let S be the set V of
vertical line segments sorted lexicographically by their node numbers,
x-values, and y-values of bottom endpoints. We extract from S all the
segments which cover the range [Y(0),Y(N)] and form the set Dl/a' After
the extraction, the remaining elements of § are duplicated N¥-1 times. Then N
we determine to which of the N° subtrees we should branch for each vertical
line segment, that is, we determine the node numbers for the remaining
elements of S in the next level as follows. We branch to the leftmost
subtree if the y-value of one or both endpoints of the vertical line segment
is in the range [Blla_l(O),Tl/a_l(O)]; branch to the second leftmost sub-
tree 1f it is in range [Bl/a_l(l),'rlla_l(l)]; and so on. We then repeat
the process until all arrays of 2 are determined. Let us analyze the
time and number of processors required. At each iteration {, a vertical
line segment may appear at most 28" times in S. After the extraction of Di’
S contains at most 2n elements. Then the elements of S are replicated into
N copies. Therefore, at any time, the maximum number of elements in S is

2nN¥ < 4n1+°'. Since data extraction and replication can be done in time
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(a) a set of vertical line segments (the ''cuts" on the edges
show the segmentation for J).

Figure ll. Search structure & for a set of vertical line segments.
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0(logn) on a CCC with a number of processors linear in the problem size
and £ contains %4- 1 arrays, S can be determined in time 0(51‘- logn) ;
with 4n1+a processors. We now present formally the comstruction .

algorithm which we just described. X

procedure CONSTRUCT.ZL(V)

/* construct the arrays Dl/a’Dlla-l"“’DO for the set V of vertical

line segments */

begin

/* maintain S as an array of vertical line segments sorted
lexicographically by their node numbers and their
x-coordinates */

, sort V by x-values and then y-values of bottom endpoints
1 foreach j, 0 S J < n do begin S(j) =~ V(j); m(j) <~ O end

foreach §, n £ § < 2aN* do S(j) =~ aull
! /* Dl/a”"’DO are constructed one by one in descending order */

b ]
ori-jdowntoOd_o

L

\ /* for each vertical line segment of S, determine if ﬁ
it belongs to some node at this level; extract
those which do and assign them to Di *

i foreach j, 0S j < 2a° do |

i begin t;(3) = £,(3) = 0; D, () = S(I); ™ (§) - ™)

i if S(j) # mll

then if S(j)[B]SBi(ﬂ'(j)) and

T, (7(1)) S ST
then tl(j) -1

L, else :2(_1) -1
i end
call EXTRACTZ(DL,:I); call EXTRACTZ(N#i,cl)

/* for the remaining of §, determine their node numbers
for the next level; and reorder them according to
their node numbers */

call ExTRAC'r2(S,t2); call EXTRACTZ(n,t:Z)

for k= log2n to 1ogzu°’-1 do /* duplicate N times */

i

1
for §, 05 3 < 2aN* do ' :

|




1f BIT,(§) =0 then begin S(§ +2% - 5(9)
w3 +2%) = n(j)

end
foreach j, OSJ<2nNa do /* determine node numbers */

begin 120) - n(3) + 4/2a) N
t(j) = 0
L£5()) #mull and (S(IBI<T,_,(m(3)) or

S(HITI>B,_, (M1
then ¢(j) ~ 1
end '
call EXTRACT2(S,t); call EXTRACT2(m,t) /* reordering */
end

end

Searching in £ for all intersecting pairs of horizontal and vertical
line segments is the same as searching in 4 except we have to choose one,
possibly two, out of N branches at one level of & for each horizontal
line. The procedure INTERSECT3 to be presented in the Appendix can be

implemented on a CCC with 4n1+a

+2mN” processors in (;1- log(n+m) +k)
parallel steps, where k is the maximum number of intersections per vertical
line segment. We state this result in the following theorem.
Theorem 3.8. All intersecting pairs of n vertical line segments and
m horizontal line segments can be reported in time o% log(n+m) +k) on a
CCC with 4(n+m)na processors, 0 < o € 1, where k i{s the maximum number of
intersections per vertical line segment.

3.3.2 Two-Dimensional Range Searching

For the two-dimensional range searching problem, we arrange the set S
of points into the data structure 4 (similar to B), so that the set Q of
queries can be answered efficiently. In 4, Gl /a"“’GO are arrays of

points Lin §S. The points in array G, are ordered by their node numbers at

i
level i and x-values. The node number, at level i, of a point is j if
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[ J
its y-value is in the range [Bi(j),'ri(j)]. Node j which is the kth (for
some k) leftmost node in level i has Na sons at level i-l; they are

l-ia laie

nodes j, N +j,...,(Na-1)N + j representing respectively the

tatervals [B,_,(1),T,_, (1] = (YN, v(aarnl®%-1)),

(3, 0 e gy 1, 0% )] = (v (o NI v + N D,
By (OF-DN" M4 3,7 (of-DN 4 ) = (-,

YO + N ],

Figure 12 is an example of a set of 20 points and the corresponding
data structure 4, with N = 16 and o = %. Figure 12(b) is the underlying
Nd-u'y tree; the pairs of integers in the circles are values of Bi( kD)
and Ti (j), and the integer above the circles are node numbers.

The construction of & is similar to that of B. Since the cardinality
of Gi is n for all 1, 4 can be const;'ucted in time 0(& logn) on a CCC
with aN® processors. The program CONSTRUCT.# for comnstructing 4 will be
presented in the Appendix.

Given a set Q of m queries, we search in 4 until we reach a node j such
that Q(k)[B] = BL(J) and Ti(j) € Q(k)(T]. Then we perform a one-dimensional
range searching on Gi' We may have to search at most 28 nodes at one
particular level for a particular query. Therefore, we may need at most
2¥m + aN® processors. The analysis of time complexity of this range
searching is straightforward.

Theorem 3.9. The two-dimensional range searching problem for n data and
m queries can be solved in time 0(% log(n+m) +%k) on a CCC with 2(a + 4m)n®

processors where 0 < o S 1 and k 1s the maximum aumber of ianclusions per

query.
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Figure 12, Search structure & for a set of points.
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The program RANGE_SEARCH3 will be presented in the Appendix.

3.3.3 The Rectangle Intersection Algorithm
The rectangle intersaction algorithm for a CCC with superlinear

number of processors uses results in Sections 3.3.1 and 3.3.2. The

\ running time is Oq% logN+k) and the number of processors is IONI'FQ.

procedure RECTINT3(REC):
begin

V =~ all vertical edges of rectangles in REC
H = all horizontal edges of rectangles in REC
call INTERSECT3(V,H) |
S =~ all leftmost bottom points of REC
Q =~ REC
call RANGE_SEARCH3(S,Q)

end

We can use some processor-time tradeoffs similar to the one used in
Section 3.1.3 to obtain the following results.
Theorem 3.10. Given N rectangles with edges parallel to the coordinate
axes, all intersecting pairs of these rectangles can be reported in

l+o

b time Oq% logh+k) on a CCC with N processors, 0 < @ € 1, where k is

the maximum number of intersections per rectangle.

e e P A =7 P

4
{
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CHAPTER 4 -
PLANAR POINT LOCATION

The problem of planar point location is stated as follows: given a
planar graph embedded in the plane as a straight line graph [21] G with
N vertices and a point P, find the region of the planar subdivision
induced by G which contains P. This problem is quite important in
computational geometry. We shall show in later sections how it can be B
applied to solve other problems. A recent and practical result for serial
computation on this problem is due to Preparata [28]. His algorithm runs
f in O0(logN) time on a data structure which can be constructed in O(NlogN)

time.

} Many times, point locations are performed repeatedly on the same

graph; therefore, it is beneficial to arrange the given graph into an

v
e

i organized structure to facilitate searching. Furthermore, very often,

} these searches are independent and can be performed simultaneously.

In this chapter we preprocess the given graph G = (V,E) so that we can

locate M points simultaneously on the SMM and on the CCC. V(0: N-1) {s
the set of vertices and E(0:|E|-1) is an array of records containing

- information about each edge: its two endpoints and the regions lying on

>

either side of it (left and right). We shall assume that Y(0: N-1) is ” !
the sorted array of distinct y-values of V and N is a power of 2.

Figure 13 shows a planar straight-line graph with 20 vertices and 16

distinct y-values, i.e., N = 16.

g G m el
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Figure 13, A planar straight line graph. ( the "cuts” on the edges show

the segmentation for J and & )
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4.1 On the SMM with max(N,M) Processors

In this section we describe two algorithms: (i) the construction of
a search structure for the set of edges on the SMM with N processors and
(i1) the concurrent location of M points with M processors. The
construction and the location run in time 0((logN)zloglogN) and
O((logN)z) respectively.

4.1.1 Definition and Construction of the Point Location Tree

Recall the search tree J introduced in Section 3.1.1. We can produce
J, for the set of edges of the given graph, G, which will be referred to
as the point location tree for G. Figure 14 gives the point location tree
for the graph in Figure 13. Recall that the initial step of the procedure
CONSTRUCT... developed in Section 3.1.1 is to obtain an ordering of the
set E(0:|E|-1) of edges such that if E({) is the left of E(j) then E(i)
procedes E(}) in the ordering. Unfortunately, there is no known efficient
parallel algorithm for topological sorting. Therefore, we cannot use the
same procedure CONSTRUCT.J1 to produce the point location tree J for the
edges. Since the list associated with node NODEi(j) consists of edges
which span the same y-interval [Bi(j)’Ti(j)]’ these edges are comparable,
that i3, every edge is either to the left or to the right of another edge
in the same list. We can sort the adges in the lists associated with each
node after the members of the lists have veen determined. Since each node
contains at most |E| edges (|E| < 3N) and each edge is contained in at

most two nodes at any one level, we can sort the edges in every node at
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level in time O(logNloglogN) using N processors. Again we construct J
level by level beginning from the root. The procedure CONSTRUCT.JZ2,
which will be presented in the appendix, for the set of edges is the
same as CONSTRUCT.J1l for the set of vertical line segmunts except we
do not initially order the edges in the entire set.

4.1.2 Point Location

To locate a point P(k) in the planar subdivision induced by G, we
use J as a binary search tree. We define two "dummy' vertical edges
E__ and E_ of infinite length which are at negative and positive infinity
respectively. Associated with P(k), we determine a pair of edges L(k) and
R(k) of E which bound P(k) on the left and on the right respectively.
Initially, we set L(k) and R(k) to ﬁ_c and Ea, respectively. We search J
until L(k) and R(k) bound the same region: at a selected node NODEi(j)
of J where the edges form an ordered set we perform a binary search, for
an edge immediately to the left (right) of P(k), compare this edge with
L(k) (R(k)); the one closer to P(k) is the new value of L(k) (R(k)). If
L(k) and R(k) bound the same region, P(k) is in this region: otherwise,
we have to choose a branch or both by comparing the y-value of P(k)
with Ti-l(j): if it is less than, greater than or equal to Ti-l(zj) then
we branch respectively to the left, the right or both branches (refer to
Figure 15). Note that the y-value of P(k) may be equal to only one Ti-l(zj)‘ -
Thus, we trace a unique path, possibly two (when the y-value of P(k) is

equal to some T1-1(ZJ)>' from the root to (at most) the bottom level of J.

Since J is of height logN+ 1 and the edges in each node are sorted, this

iy g bod
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[BIO‘N(O),TIO‘N(O)]

\
W\
\\

(B, ,(23+1),
T,.,(23+1)]

Figure 15. Searching in the point location tree.




process runs in time 0((logN)2). We can locate all M points simultaneously,

provided we search in one level of J for all points before going to the

next level. The number of processors required is M for parallel searching.

We shall present the formal description LOCATELl in the appendix.

We conclude this section by the following theorem.
Theorem &.1l. Given a planar straight line graph with N vertices, we can
locate M points in the planar subdivision induced by the graph in time
O((logN)z) with 0((logN)zloglogN) preprocessing time on a SMM with
wax(N,M) processors and memory units.

4.2 On the CCC with N+M Processors

In this section we revisit the problem of pianar point location as
discussed in Section 4.1. We shall revise procedure LOCATEl so that it | i
will be suitable for implementation on a CCC with linear number of -
processors.

.4.2.1 Construction of the Search Structure

In Section 3.2.2, we construct a search structure & (a set of arrays

E "’ElogN) for a set of vertical line segments. We can produce the

O’El"
same structure & for the set of edges. Figure 16(a) is the underlying
binary tree of & for the graph in Figure 13. Note that this tree is the
same as the point location tree in Figure 14 except for the node indices.
Figure 16(b) shows the collection of arrays Ea""’EO and the
corresponding node number of edges.

As discussed in Section 4.1.1, it is relatively time-consuming to

obtain initially a total ordering of the edges. Thus, we first determine

- rame 4

the edges in Ei then sort them lexicographically by their node numbers

and their positions in the positive x direction. We can develop a

o Te—mn ‘. :_‘““Im - L s i
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procedure CONSTRUCT.S2 for producing § for the set of edges which will be
the same as procedure CONSTRUCT.S1 in Section 3.2.2 for a set of vertical
line segments except in CONSTRUCT.S2 we do not initially ord;t the entire
set of edges, but order the edges in each Ei saparately. Since the
cardinality of each E, is at most 2|E| (|E| < 3N), we can easily verify
that the procedure CONSTRUCT-S2 in the appendix runs in time O((logu)s)
on a CCC with N processors.

4.2.2 Point Location

As a preliminary step, we sort the set P(0: M-1l) points to be
located by their x-coordinates. Like point location on a SMM in Section
4.1.2, for each point P(k), we search in & until the two edges L(k) aand
R(k) bound the same region. We associate with each point P(k) a node
oumber NN(k) indicating that the y-coordinate of P(k) is in the range

[Bi{NN(k)),Ti(NN(k))] at some level i. We start at E (the root).

logN
It is obvious that NN(k) is equal to O for all k at the root. The set
of points is maintained sorted lexicographically by their node numbers
NN(k) and their x-coordinates. Since Ei is sorted in the same manner, we
can use the parallel searching algorithm in Section 2.2.3 to determine
the pairs of edges L(k) and R(k). If L(k) and R(k) do not bound the same
region, we have to determine which node’in the next level of 4 we should

continue to search. This process pictorially traces, in the underlying

binary search tree of §, a unique path, possibly two, for each point,

from the root to the bottom level. Since the parallel searching at each
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level requires O(log(N+M)) time and § has logN+ 1 levels, the point

location described above runs in time O(log(N+M)logN) on a CCC with
N + M processors. We present the formal point “ation procedure
LOCATE2 in the appendix.

Procedure LOCATEZ gives us the following theorem.
Theorem 4.2. Given a planar straight-line graph with N vertices, we can
locate M points in the planar subdivision induced by the graph in time
0((log(N-bM))2) with 0((logN)3) preprocessing time on a CCC with N+M
processors.

l+a

4.3 On the CCC with (N+M) Processors

In this section we investigate the problem of point location on a

cce with (N+m)i+Y

processors, where N is the number of vertices of a
given graph, M is the number of points to be located, aﬁd O<ac<sl.
4.3.1 Definition and Construction of the Search Structure
Recall the search structure J we constructed for a set of vertical
line segments in the algorithm for reporting intersection of vertical and
horizontal line segments (Section 3.3.1). The underlying geometric
structure of B is a Na-ary tree of height é (refer to Figure 18).
Figure 17 shows the same planar straight line graph as in Figure 13 but
with different edge segmentation. We can produce the same structure 2
for the set of edges. B will consist of 5 + 1 arrays Dl/a""’DO’ each
of which is a selected subset of edges sorted lexicographically by their

node numbers and their positions in the positive x direction. Here again,

for well known reasons, we first determine the edges in Di and then




Figure 17. A planar straight line graph. ( the "cuts” on the edges show

the segmentation for 5 )
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sort them. By the same argument as in Section 3.3.1, each D, contains

i
l+a edges. Therefore B can be constructed in time 0(%(103N)2)

on a CCC with N“'a processors, The procedure CONSTRUCT_82 which will be

at most 2N

presented in the appendix for the set of edges is similar to the procedure
CONSTRUCT.S1 for a set of vertical line segments with the following
difference. In procedure CONSTRUCTJ2, we do not initially order the
entire set of edges but we determine the members of each Di. before we
order them.

4.3.2 Point Location

Point location B is the same as point location in & except we have to
choose one, possibly two, out of N braaches at any level of & for each
point. The procedure LOCATE3 to be presented in the appendix, can be

implemented on a CCC with (N+M):*?

processors in O (-:'-‘( log (N+ M) )2)
parallel steps. We state this in the following theorem.

Theorem 4.3. Given a planar straight line graph G with N vertices, we
can locate M points in the planar subdivision induced by G in time

0(% log(N +M)) with O(&]‘(log(N+M))2) processing time on a CCC with

(N+M) l+a processors.
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CHAPTER 35
CONVEX HULLS OF SETS OF POINTS IN TWO DIMENSIONS
Formally, the convex hull of a finite set S of points {s the

intersection of all convex sets containing S. In the plane, the convex i

hull of S, CH(S), is a convex polygon. Specifying a polygon unambiguously
requires giving its vertices in the order that they occur on the boundary.

A simple polygon is in standard form if its vertices occur in clockwise
order with all vertices distinct and no three consecutive vertices collinear,

beginning with the vertex that has largest y-coordinate.

; The problem of convex hulls arises in many applications: finding

‘ diameter of a set, determining the existence of a linear classifier of a

‘ set, etc. Several optimal algorithms for determining sequentially the

i convex hull of a set of N points in two dimensions have been developed

% {2,9,30,35]. These algorithms use the well-known technique called "divide
| and conquer'" [l) and achieve the running time of O(NlogN). In a parallel
machine, the subproblems generated by the "divide and conquer" method can
'? be solved simultaneously, so an efficient algorithm for combining the

i results of these subproblems is essential for an overall fast parallel.
algorithm. We shall develop some preliminaries before designing convex

hulls algorithms on the SMM and on the CCC.

5.1 Preliminaries -
Given a convex polygon A(0: n-l) in standard form, let ‘AR sA.and T) M

be the indices(l) of the vertices with least x coordinate, least y

coordinates and largest x coordinate respectively. Given two points p

(I)Indices of polygon A(O:n-1) are modulo n. l
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and q in the plane, €(p,q) denotes the polar angle of q with p as the

origin. We define o j-G(A(i.),A(j))(l). Due to convexity, in the range
?

0= i < n-1, the sequence (“01’ . "’ai,i+1’ «..) i3 decreasing.
Let A(0: n~1l) and B(0: m-1l) be two convex polygons where the
y~coordinate of A(L{) i3 less than that of B(j), for 0 € i < n and

=8(A(1),B(1)) P,

0= j<m so A and B are non-intersecting. We define Yi 3
?

A sequence i3 V-bitonic if it consists of a decreasing sequence, which may
be empty, followed by an increasing sequence. A sequence is A-bitonic if it
consists of an increasing sequence, which may be empty, followed by a

decreasing sequence. Due to convexity, in the range 0 £ i < s, the sequence

A

(Yi,O’Yi,l""’Yi,sB) is V-bitonic and in the range sAS i < n the sequence

@)
(Yi,SB,Yi,an-l”"’Yi,m) is A-bitonic (refer to Figure 19). We define j

as min {jlyij S Yy 0SksS rB} for i, 0Si<r, and as

(L)
min [jIY“ S ¥yt S kS sB} for i, r, i Ss,. We also define ] as

max {§|vyy 2 ¥yp,5y SkSag) fori, s, S 14, and as

max {jlyij 2 Yy olgSks m} for i, 4, S 1S n. We shall explore some
@) and 3(1).

characteristics of j
(1) ¢ ;(1+1)
Lemma S5.1. ai+1’i<*{i’j(i)?j <] , OSiSSA

Proof: The condition & < Yg j(i.) implies A(i+1) is in the hatche:
?

i+1,1
region (refer to Figure 20). Suppose j(iﬂ') < j(i‘); this implies that
B(3 (1+1) ) 13 in the crosshatched region. Then it yields the contradiction

Yepq, 30+ > Yy y(1) on the definition of U+ -

(1)

a is defined as polar angle for explanatory purpose only; in the

i,
implementation of the operation of comparing two angles, we shall avoid

computation of angles by replacing it with the operation of comparing
the negative valuas of their cotangents, whare the function contangent:
{0,7] = [«m»,»] i3 an order-reversing mapping.

(2)same as (1).
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A(sA)

(a) illustration of Y1J

[
{
|
: 1
|
)
!

> 3
0 1 2 j(i) 4 S
(v) Yij vs, J
Figure 19, Illustration of the V-bitonic sequence (Y ) and J(i).

10""’Y1,sB




(a) 0=1iS T,

Figure 20. Illustration of the proof of Lemma S.1l.
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- ;@) < j(i+l)

Lemma 5.2. =cxi+1,i<yi,j(i), 0_<.1.§.sA

Proof: j(i) < j(iﬂ') means B(j (i+1)) is in che hatched region in Figure 21.

Suppose « (1) which implies A(i+l) is in the crosshatched region.

1+1,1 = Vi,
We then have Yi+1,j(i+1) > Yi+1,j(i) which contradicts the definition of

JE*D o

By similar arguments we have the following lemmas on j(i).

(1) 4 (1) 5 ;(i+1)
Lemma 5.3. di,i+1<Y1’j » 2 j , SASiSn,

Lemma S.‘b- j(i) > 3(i+1) g ai i+l < Yij(i)s SAS i<n.

We are going to use these lemmas to show an important property of

the sequence of j(i) (j(i)).

Theorem 5.1. In the range 0<isr,, if 372 < 3 for some 1 then

(r,) i
j(i) < j(i+1)5 ea S A" And in the range r, Si<s,, if j(1'1)<j(")

. (s,)
then i) < D < <y A
. ,(1-1) 1) (k)
Proof: We shall show that if j <j then ak+l,k < Yk’j for

2 je e < <
k =ji-l, i,...,h, where h is 1.'A for OSi_rA andsAfor rA_iSsA.

We prove by induction on k. The basis & Yi_l,j(i-l) is true by

=1

<
i,i-1
Lemma 5.2. In the inductive step, we assume that ak,k-l < Yk-l’j
Then by Lemma 5.1, j(k'l) < j(k). Referring to Figure 22, we have
(k)

(k)
Okl < Verd e

proof. =

¥, kel < Yol Due to convexity, w1,k < % g1 Therefore, we have

Hence, the statement in Lemma 5.1 completes the
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Figure 21.

<
(b) rAS i s

Illustraction of the proof of Lemma S.2.
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(k-1)
(k) B(J

) r, SkSs

Figure 22, Illustration of portion of the prcof of Theorem 5.1.

o

(I S——

s naa

e R Y i B 2

S




79

Using an argument similar to the one above, we can establish the
following theorem.

Theorem 5.2. 1In the range s, S1i<4,, if 3(i°1) > 3(1) for some i then

“,)
j(i) 2 j(“'l) 2 j A" And 1n the range LAS isn, if i(i-l) > 3(1)

then j1) 2 JA+D 2 2 (@),

These two theorams can be interpreted as follows:
(r,)
A

Corollary 5.1. (J (0),...,j ) is a nonincreasing sequence followed by
(r,) (s,) _(s,) @)
a nondecreasing sequence: so is (j O | Yo (3 R | ) is

a nondecreasing sequence followed by a nonincreasing sequence; so is
_(IA) <(n)

a4 seees ).
5.2 Merging Two Convex Hulls

Given two convex polygons A(O: n-l) and B(O: m-1), where the y-value
of A(1) is smaller than that of B(j) for 0€i <nand 0= j < m, by merging
of A and B we mean the determination of the convex polygon
C(0: j*=i* +i* - j*+m-1) which is obtained by tracing the two lines of
support (A(I*),B(3*)) and (A(i*),B(j*)) common to A and B, to be referred
to as left and right tangents respectively, and by eliminating the vertices
of A and B which becomes internal to the resulting polygon (refer to
Figure 23).

o

It is observed that if B(rB) is to the left of A(rA), then 4i* and j*
are in the ranges [O,rA] and [O,rB], respectively; otherwise, i* and j*
are in the ranges [rA,sA] and [rB,sB] respectively. It is also observed
that Lf B(LB) is to the left of A(LB), thea i* and j* are in the intervals

[sA,LA] and [sB,LB] respectively, otherwlse, i* and j* are in the intervals

[I.A,n] and [LB,m], respectively. Furthermore, the tangents (A(i*),B(j*)) and




®
Figure 23. Illustration of the merging of two planar convex hulls.
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L et

(A(i*),B(j*)) are characterized by the following properties:

b~

Q W g* o= 50 ang Jr e g
! | @) @ gue1 > Yosge 359 O gun) " Yguge <

- - - - - - - - - é
U, Twrl < YI#Tw 399 9w Fuoy = YIagw ”

[

i Figure 24 clarifies these properties.
. The index j* has another property which is not so obvious as those

f ‘ above, as expressed by the following lemma:
Lemma 5.5. j*< i) foro0si < r,vhen 0S j*<r and forr, S1ss,
when LY < j* < S

! : Proof: Suppose j* > j(k) for some k in the appropriate range. Due to

- property (2) of i* and j*, A(k) must be in the hatched region, and due
| 1 : to property (1) and the assumption j* > j(k), B(J (k)) must be in the

) crosshatched region. We observe from Figure 25 that y %) > Y g which
' ’ ksj ’

contradicts the definition of j(k). Therefore, j* < j(i) for all 1 in the

v

specified range. c

S s i e e T

: By a similar proof, we can show that the index 3* is largest among
‘ o j(i)'s.

f ‘ l Lemma 5.6. j.*Zj(i) forsASi.SLAwhens sj*sz andforl.ASiSn

B B

! Lo { whenzBSS*Sm-

A merging algorithm for two convex polygons may conaist of the

S ] ' following three major steps:
1. find j* and j* ;
| i 2. determine i* and i* which, with j* and j*, satisfy properties (1) l
S ( and (2);

3. rearrange the vertices of the resulting polygon.

P o OO IR T T v N g s e
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B(J" A(1%-1) B(i"
!
£
A4 -1) »*
‘ A(L™ AS
~N A(1%41). P
N -’
N Vg
~ 7/
A(1*+1) N 7
) B(rB) is to the left of A(rA) (11) B(rB) is to the right of A(rA)
{ . (a) ai‘,i‘-].) Yi*J"' and ai*,i*q'l - Yi*J* <
. B(3"
-
A(1*+1)
2 -
} ;
t
‘ |
” (1) B(gg) 1is to the left of A(¢,) (11) B(4p) 1s to the right of A(L,) :
|
: (®) ogs 3o < Yrgrandagr Iyt G ||

e

Figure 24. Illustration of properties of tangents.
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By ®

(a) B(rB) is left of A(rA)

(b) B(rB) is right of A(rA)

Pigure 23. Proof of Lemma S.S5,.
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We shall describe the merging algorithm in more details in the
following sections.
5.3 On_the SMM with N Processors

In this section we shall present a "divide and conquer" algorithm for
finding the convex hull of a set of N points in the plane on a SMM with
N processors. We shall study methods for finding the minimum (maximum)

of a V-bitonic (A-bitonic) sequence and for merging two convex polygons

on the SMM.
5.3.1 Finding the Minimum (Maximum) of a V~-bitonic (A-bitonic)
Sequence

Given a V-bitonic (A-bitonic) sequence D(0: n-l), we want to find
the smallest (largest) index k such that D(k) is a minimum (maximum)
of the sequence. The index k has the property that D(k-1) > D(k) €< D(k+1)
(D(k=-1) < D(k) > D(k+1)). Therefore, it is obvious that k can be found in
constant time on a SMM with n processors and n memory units.

We are going to solve this problem on a SMM with J/a processors and n
memory units. We first find the smallest (largest) index i such that D(i4 n)
is a minimum (maximum) of the sequence (D(oﬂ;) ,D(Z./E),...,D((,J:-f)./r-x)).

Note that this sequence is also V-bitonic (A-bitonic). It is observed that
k must be in the interval [(i-1)/a+1,(1+1W/n - 1] which is of length 2. n-1;
(OE-1Wa+1),...,0(4/a) and D(L/A),...,D({+1)W/a-1)) are both v-bitonic
sequancaes of length ./- . Therefore, the index k can be determined

in constant time with ,/a prucessors. The function MIN.V_BITONIC ie a

formal description of the above method to determine the index k.
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function MIN_V_BITONIC (D(0: n-l1))

/%* this function returns the index k such that D(k-l) > D(k) < D(k+l),
when D is V-bitonic sequence */
begin
foreach 3, § € {1,2,...,4/a-1)} do
Lf D((3~1)/n) > D(/n) _and
D(/n) S D((3+1Wh)
then 1 = j
foreach j§, § € T{-1Wn+l, (L-1)0/n+2,...,1/0} do
1f D(j-1) > D(J) and D(j) S D(j+1) then k - }§

foreach j, j € {L/m,L/otl,..., (i+1W0-1} do
if D(j-1) > D(j) and D(j) = D(j+1) then k - j

return k
and

We can obtain ‘the function MAX A _BITONIC for a A-bitonic sequence by
interchanging > and € in MIN.V_BITONIC.

5.3.2 Finding the Common Tangents of Two Convex Polygons
We now develop an algorithm for an SMM for finding the left tangent

(A(i*),B(j*)) and the right tangent (A(i*),B(j*)), as defined in Section 5.2,
for a SMM. Let us consider the determination of j*, Assume that B(rB) is
to the left of A(rA) (the other case can be treated in the same way).

Since j(i), where 0 S 1 € r,, is the smallest index of the minimum of the

1)

V-bitonic sequence (Y Y can be found in constant time with

seeey ), 3
i,0 B

JrB«l-l processors. We determine j(i) for & -JrA+1,2./rA+l, ey (./rA+1-1 )./rA-l-l

(refer to Figure 26). This can be achieved in constant time with

i,r

Q/rA+l-1)JrB+1 processors. Then we find the smallest index i such that

(',./rAi-l) ((A/rA-I- -1)./rA+1)}

j(i) is a minimum among (j yeses] This can be done
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(1)

J

A

|
-
iy ' !
i ,
1 i
!
1* is in this range

Figure 26, Determination of j*.
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in time 0((103(4%A+1-1))2) with JrA+l-l processors (refer to Sectiom 2.1.2).

(L L FLr) E~T Rasc)

The index j* is the smallest in the set {j i yeeos

dn/r \T1-1)

] } of size ZJrA+1-1. Therefore j* can be found in O((logn)z)

time on an SMM with ./om processors. The index j* can be determined in a i
similar way. The indices i* and i* are the two i's which satisfy properties
(1) and (2) as described in Section 5.2. Knowing j* and j*, the indices
i* and i* can be determined in constant time with n processors. We shall
present formally, in the appendix, the procedure TANGENTS which determines
and returns the indices j*, ix*, 5* and ix*,

In conclusion, the left and right tangents can be determined in time
0((103n)2) with at most m+n processors. Next, we shall consider the entire

convex hulls algorithm. !

5.3.3 Convex Hulls Algorithm

As a preliminary step, we sort the set S of points by their
y coordinates in descending order. This can be done in 0((103N)2)
time with N processors. The convex hulls algorithm to be presented is
a recursive p->gram. The major step is the merging procedure which

determines the left and right tangents of two convex hulls and

rearranges the vertices of the resulting hull.
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function CH21 (S)

/* returns CH(S); S is a set of N points in the plane */
begin if N < 2 then return ()
return (MERGE1(CH21(S(N/2: N-1)),CH21(S(0 : N/2-1))))

end
function MERGE1(A,B):
/* returns l:he. convex hull of polygons A and B */
begin
(j*, 1%, j*, i*) — TANGENTS1(A,B)
foreach k, 0 = k = j* do C(k) =~ B(k)
foreach k, i* = k < i* do C(j*-i*+1+k) < A(k)
foreach k, j*<k<nm _do C(j* i*+2+i*-Jj*+k) - B(k)

return (C(O j* - i*+i*-3*+m 1))
end

The running time T(N) of function CH21l can be obtained by

recurrence relation T(N) S T(N/2) +M(N), where M(N) is the running time

of function MERGEl., We have shown that the tangents can be found in
0((logN/2)2) with N processors, and it obvious that the rearrangement
can be done in constant time. Therefore, M(N) = 0((logN)2). Hence
TN = 0((log¥)?).

Theorem 5.3. The convex hull of a set of N points in the plane can be
determined in time 0((1ogN)2) on a SMM with N processors and N

memory units.

5.4 On the CCC with N Processors

In this section we discuss how the convex hulls algorithm developed
2\
in Section 5.3 can be implemented on a CCC with N processors in 0 ((logN) )

parallel steps. We shall discuss the data movement ia detail.
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5.4.1 Finding the Left and Right Tangents of Two Convex gc;xg%!

The function TANGENTS1 introduced in Section 5.3.2 for determining
the indices of the extremes of the left and the right tangeants of two
convex palygons cannot be directly implemented on a CCC. We shall make
some modifications to TANGENTS1 so that it will be suitable for
implementation on a CCC.

Using the facts that j* is the minimum among the j(")'s and that the
sequences of Yi, J's are V-bitonic, we can determine j* as follows,

First of all (refer to Figure 27 for the following discussion), we
describe how to determine simultaneously a set of integers
3,1 -.ﬁF,ZﬁF, e (,/tA+1-1)./rA+1], where Yi,J(i) =
mn{yi@’yi,ﬁr""’yi,@-lﬂaﬁ} if B(rB) is to the left of

A(r,); and a set of integers [J(i),i-rA+JsA-rA+1,rA+2JsA-rA+1,...,

T, + (JsA-rA-i-l-l),,[s_A-rAﬁ-l} » where Y, 1., -min(yi’rn+ ,——53"3*1'

Y 2/ g +1°°° Y - - = } 1f B(r,) is not to the
i,rB+ g rB+ ’ i,rB-!-(,./sB rB+1 1)./3B rB+1 B

left of A(rA). We now consider two duplicating patterns of a data array
D(0: q-1); (i) the first pattern, to be referred to as Pl(L) consists in
duplicating D 4 times incto (D(0),D(L),...,D(q-1),D(0),...,D(q~1),...}
(11) the second pattern, to be referred to as P2(L), consists in
duplicating each element of D £ times into {D(0),D(0),...,D(0),D(1),...,
D(1),...,D(q=1),...,D(q=1)}. Both patterns have q°{ elements. The first

pattern P1(L) can be achieved by copying each element of {D(0),...,D(q-1)}

LT L N N D AT £ 31 g o 8 0 -t O T
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Figure 27. Graphical illustration of the determination of J" on the CCC.
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into the module q positions away, then copying each element of
{p¢0),...,D(q=1),D(0),...,D(q=1)} into the module 2q positions away,

and so on. It will take logarithmic steps to achieve the pattern P1({).
We achieve the second pattern P2(L) as follows. We copy D(0),D(1),...,
D(q-1) into modules 0,4,2%,...,(q=1)L respectively by a reverse process
of the concentration procedure described in Section 2.2.1. We then
perform a selected broadcasting as described in Section 2.2.2 to achieve
pattern P2(L). Recall that both of these operations can be achieved in
logarithmic time. Therefore, both patterns can be achieved on a CCC with
q°4 processors in 0(log(qet)) steps. We shall discuss only the case that
B(rB) is to the left of A(rA); The other case can be treated in a similar
manner. We duplicate [B@),B(Zﬁ;ﬁ),...,s(cf;f_l-l)@)} iato
pattern Pl(«/r?-?—l) and {A(./rA-'-l) ,A(Z.;chi'l),...,A((,fr-‘::]—.-l)./t-';-l-_l)] into

pattern P2 Q/rni-l-l). Now we can °°“"““{Y~F:A+l.«/r3+1’YJrA+1.2/:3*-1’ cees

Y _ .Y yesesy - yeool}
VT At (,JrB-ﬁ-l. l)JrB-i-l Z./rA+1,;/rB+1 N?l, (JrB+1 I)J?A+1
in constant time. Since sequences (Y, "’/;BT]" oYy, @'1)@} , for

i -./rA+1,erA+1, ceey er+1'1)“/rA+1’ are V-bitonic, the indices J(i)'s of

the minima of the sequences can be determined in 0(105};) time. Figure

27(a) shows three V-bitonic ;equcncas (Yi @,yi’ut_n—_'_—,...), for

L-JrA-i-l,z./r;-t-l,NrAﬁ-l, and the values of J(1). The index j', the

minimm of J(1), can be determined in 0(105./;:\) time on the CCC.

We then determine J'(i), where i1 () -nn{yi’j.@ﬂﬂi’j'mﬂs
B

ceesYy groeeea¥y g0 +@_1} for 1-JrA+1,2JrA+l,...,(JrA+ -l.)./rA-ﬁ-l




e

92 E

pans——y
i

in the same way as we determine J(i). We also find i which 1s the

=

smallest index such that J'(I) is a minimum among (J'c./tA+1),J'(z./rA+1),...,

J'(,JrA+1-.1)JrA+1)} . It is easy to show that i be determined in 0(log./nm)
({-ktl) j(i-m»z) j(i+k-
» geeey

i can be found in a procedure-similar to the one given above. The

& vt §

X on the CCC. Now j* is the minimm of {J D} and

Pomsnn
.

procedure R_TANGENT_INDEX, which is a formal description of what we

discussed above, will be presented in the appendix.

In an analogous way, we can describe a procedure L_TANGENT_INDEX (A,B)
| which returns j*. Knowing j* and j*, we can determine i* and i* by

‘ finding pairs of (L',j*) and (i",j*) which satisfy properties (1) and (2)

defined in Section 5.2.
{ ' function TANGENTS2(A,B)

i /* return the indices of the extremes of left and right tangent L
of A and B */ '

begin
/* determine j* and j* */

3* = R-TANGENT_INDEX(A,B)
* ~ L_TANGENT_INDEX(A,B)

=

| /* determine i* and I* with which j* and j* respectively 3

; satisfy property (1) and (2) */

if x-values of B(r ) € x~values of A(rA)

g -~ then begin a = 0; b - r,; end end; else begin a - T, b*~s

foreach 1, aS1{ S b do

-3*1 a1 > Yq, j*sYi J+l

and @ ;3 >Y; g 804 g -V . <T /* property (2) */
then i* -1

A;_

/* j*.j(i') */

—— N
e

’”—
.

if x-values of n(z ) € x-values of A(L A)

| g

then begin a =~ s,; b= 4,; end; else begin a = £,; b ~ n; end

g | foreach i, aS 1< b 19_




93

- 1)
LY, el Y e S Yy Ja M
808 Ay 44 <Y e 8Bd Oy gy T Y TP
en i¥* =~ {

Therefore, the left and right tangents can be determined in time.

O(log(n+m)) on a CCC with n+m processors. Next, we shall consider the

entire convex hulls algorithm

5.6.2 Convex Hulls Algorithm

We presort the set § of points by their y coordinates in descending
order. This can be done in time 0((103N)2) on a CCC with N processors

{31]. The convex hulls algorithm has the same structure as the one

described in Section 5.3.3. The main difference i{s in rhe merging step.

function MERGE2(A,B)
begin /% determine the tangents */
(j*,i*,j*,i*) = TANGENTS2(A,B)

[%* reorder the vertices */
foreach i, 0s i <n do T2(1) =~ A(1)
foreach i, 0 =i < mdo T1(i) = T3(L) -~ B({)
1f j*+1 > i* then shift T2 forward by j*+1l-i* positions
clse shift T2 backward by i*-j*-1 positions
if (j*+1+i*-1*) > j* then shift T3 forward by 1*+i*-i*+2-j* positions
else shift T3 backward by j¥-(ji+ik-iis+2)
positions

foreach i, 0S4 S §* do C(1) = T1(1)
foreach i, j**+1s i s j*-l-i.*-i.*-o-l do C(i) = T2(1)
foreach 1, j*+i*-i*+2 <1 < j*+i*-i*~+2+m- j*
do C(i.) - T3(1) i
return (c (0: j*-i.ﬂ-i*-j*mi-l))
end
Cyclic forward or backward shift of an array of data can be
implemented on a CCC with n+m processors in O(log(ntm)) parallel steps.
Therefore, MERGE2Z runs in time O(log(n+tm)) on a CCC with n+m processors.
We immediately obtain an O((logN)z) algorithm for finding the convex hull

of N points in the plane.




function CH22 (S(0: N-l)):

/% returns CH(S); S is presorted by y coordinates in descending order */ ’
begin if NS 2 then return (S)
; else return (MERGE2(CH22(S (N/2:N-1)),CH22(S(0:N/2-1)))); :
S end . .

E Theorem 5.4. The coanvex hull of a set of N points in the plane can be

determined in time O((logN)z) on a CCC with N processors.

5.5 On the CCC with 2N1+a Processors

[_ In this section we shall develop a '"divide and conquer" algorithm

for finding the convex hull of a set S of N points in the plane on a CCC

1+

with 2N processors, 0 < a<sS 1. We partition S into N subsets

SO’SI""’SNQ-I of N elements each. We then determine convex hulls :
CH(SO)""’CH(SNQ_I) simultaneously. Finally CH(SO),...,CH(SN‘,-I) are
'~4 merged to give CH(S). Since the determinatioms of CH(SO),...,CH(SN §
i, recursive calls, we obtain for the running time T(N) of this algorithm '

the recurrence relation

1

g ) = T + MY,
f .

where M(N) is the time to merge CH(SO),...,CH(S ). If we can show that

N convex hulls can be merged in time O(logN) with ZN:H"2 processors,

i = then we have T(N) = 0(51' log N).

We shall define some terms and then describe the merger, which is a
. major part of our convex hulls algorithm.
5.5.1 Notations and Definitions

Consider a set of polygons AO,AI, ceesh (0 <a=1), each having at
-1
leg n

most n vertices. Each Ai is in standard form, that is Ai(O: ni-l.)

is the clockwise sequence of its vertices starting with the one with largest L

y coordinate. Variables ni.’ri."i"i denote the indices of the topmost E
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rightmost, bottommost and leftmost vertices of Ai.' We assume that the
y-coordinates of Ak(O: n.k-l) less than those of AL(O: n‘-l) for k> ¢,

that is in any horizoatal slab there will be only one A The indices

1.
of the extremes of the left and the right tangents of Ak and Az(k > 1)
are 3*k, ‘,i*k’ o3, ‘,1*k’ 4 Tespectively (refer to Figure 28). We define
the polar angles Gk.l. = e(Ak(i*k,z)’Al.(j*k,l.)) and

¢k,£ = 9 (Ak(i*k,‘) ’Al(j*k,l) ). (1)

5.5.2 Merging Multiple Convex Hulls
We shall discuss how to merge the set of ¥ convex polygons,
Ao,...,A , as introduced in Section 5.5.1. Like merging two convex
-1
polygons, we have to determine those vertices belonging to the resulting
convex hull and those becoming internal to the resulting convex hull; then
we have to rearrange the vertices. We shall develop some preliminary tools
first.
Lemma 5.7. If 51,1: < 61’z or ai’k = 61,.& and £ < k, for k and £ < i, then
(Ai(i*i,k) ’Ak(j*i,k)) is not an edge of the resulting convex hull of
A L ] A L ]
(+ N-1
Proof: We have to consider two cases (a) £ < k and (b) £ > k. Referring
to Figure 29, in both cases, the edge (Ai(i*i.,k) ’Ak(j*i,k)) becomes internal

to the edge (AI(I*i’ ‘),A‘(j*i")). a

1

( )In the implementation, the operation of comparing two angles will
be replaced by the operation of comparing the negative values of
their cotangents as in the case of o

1,5 %0 Yy g
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{ Figure 29, Proof of Lemma S5.7.
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We associate with each polygon A, an index t(1) (< 1) which {s the
smallest index such that 61’5“) 2 ai,k, 0Sk<4i. Using Lemma 5.7,
we have the following result.

Corollary 5.2. Among all edges (Ai(i*i’k) ,A.k(j*i’k)) (0Sk<1i),

i - - 3 -

(A:I.(i*i.,:(i))'At(i)(j*i.t(i))) (to be referred to as edge candidate) is
the only candidate for being an edge of the resulting convex hull of

A ...’A L]
0 W

We now consider polygons below A:L‘

Lemma 5.8. If 5k,i > 6"1 or Gk,i - 5!"1 and k < ¢ for k,2 > i then
(Ai(j*k i),Ak(f*k :L” is not an edge of the resulting convex hull of
L 4 3

A ’ooo,A .
0 Na-l
Proof: We have considered two cases (a) k < £ and (b) k > £. Referring

to Figure 30, in both cases, the edge (Ai(j*k i),A.k(f.*k 4)) become iaternal
4 ?
to edge (A (J*, ,).a, (1%, /). m

We associate with each A, an index b(i) (> i) which is the largest

i

index such that &- s 6k 10 1 <k s N-1. Again using Lemma 5.8,
?

b(1),1i
we have this result.
Corollary 5.3. Among all edges (A, (3% ,).A (% () ( <ks¥-D),
(Ai(J*S(i),i)’AS(i)(1*5(1),1)) (to be referred to as edge candidate)
is the only candidate for being an edge of the convex hull of
Ao, eoesA 1.

We are now able to determine if the edge candidates are edges of

the convex hull of AO""'Aa-l as follows.
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S (a) k< £
A
!
i;
i
;
9

(b) k > 2

Figure 30, Proof of Lemma S.8.
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Theorem 5.5. The edge candidates are edges of the convex hull of
. {* - J*- i* - - 3=
Borerih o  LEandonly LEIY Ry 2 PRy, oF WLEw T,

© = 8 G*5 ey, A5y Py, 1) " AL Oy Ry Ay UFy k) 2™

Proof: Suppose i* < jxe { (refer to Figure 31(a)) or

i,t(L) b(1),
i*1,5(1) = 3*5(1),1 and @ S 1 (refer to Figure 31(b)). We have

and § Thus, by Lemmas 5.7 and 5.8,

S5y, <%y, t@) 1,8) > %@, i@
edges (Ap ., (I%g 0y ;)08 %5y, 1) 30d Az gy (%) 2q)) 8 (% g(q))) are

not edges of convex hull of A,,...,A .
0 o

N -1

-* - T4 -* - -- -

Suppose 1 1,8¢) > j*b(i),i (refer to Figure 31l(c)) or i 1,8) j*b(i),i

and @ > (refer to Figure 31 (d)). By the definitions of E(i) and 5(:‘.),

a
N -1
candidates are edges of convex hull of Ags-eend o . a
N -1

We now describe the analog for the right tangents. The index t(i) is

all Ao,...,A are on the same side of the edge candidates. Thus, the

the smallest one such that ¢ 0<k<i. And the index

<

1,e(1) =%,1
o

b(i) is the largest such that ¢b(i),i 2 ¢k,i’ i <k<N-1l. We shall state

without proof the analogous lemmas, corollaries, and theorems for the

right tangents.

Lemma 5.9. If ¢i,k > ¢:L,l. or ‘”i,k = ¢i,1, and £ < k, for k,4 < i then

(Ai(i*i,k) ’A'k(j*i,k)) is not an edge of the resulting convex hull of

A P oo,A .

0 ¥¥-1

Corollary 5.4. Among all edges (Ai.(i*i,k)’A'k(j*i,k)) (0€k<1i),

(Ai(i‘*i,:(i))’At(i)(j*i,t(i))) is the only edge candidate.

Lemma 5.10. 1If ¢k i <9 and k < £, for k,£ > i then
?

2,0 %% Pt T %4

(Ai(j*k,i)’Ak(i*k,i)) is not an edge of the convex hull of Ao,...,ANa.l.

T P el ol ed
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Figure 31, Illustration of proof of Theorem 5.5.
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i
Corollary 5.5. Among all edges (A;(J*% ;).A (1% 1)) (L <kS -1y, !.
(Ai(j*b(i),i)’Ab(i)(i*b(i),i)) is the only edge candidate. .
Theorem 5.6. The edge candidates are edges of the convex hull of %.

Aoa-u-,ANa-l if and only if i*i,t(i) < j*b(i),i or (i*i,t(i)"J*b(i),i
and o = 8 (AL (% (g, 1) oA (1) W ey, 170 ~O B A%y o)) Aoy W' ey <™
Before discussing how to obtain indices t(i), b(i), t(i), and B(1), |

etc., we present an example of merging five convex polygons in Figure 32.

In Figure 32, 6 > 521; therefore by Lemma 5.7 and Corollary 5.2,

20
(AZ(i*Z,O)’AO(j*Z,O)) is an edge candidate while edge (Az(i*z,l)’Ao(J*z,l))
is eliminaced. Also 642 > 632, therefore by Lemma 5.8 and Corollary 5.3,
(A2(3*32),A3(f*32)) is an edge candidate while edge (A2(3*42),Aa(i-*42))

is eliminated. However, by Theorem 5.5, both of these edge candidates
will be eliminated because i*z,o < j*3,2‘
lines of support, except those shown in the figure, will be eliminated.

With similar arguments, all

The resulting convex hull is <Ao(°)'Ao(1)’""Ao(5*1,o)'A1(1*1,o)'
Apd*y F1)sesh (3%, 1)HA (%, ),A, (1%, +1), ... WA, A%, 3)08,(3%, )
Ay (3%, H1)se ey (B%y 1),80(F% 5)iag(J%g G*1),..es8p(ag-1)) . We now
discuss how to obtain the resulting convex hull in the general case.

We first copy Ao,...,Aﬁa into the follawiné.pattern P3: E.

-1
AAAA,...A AAAA,...AJA _ ...A_ AA oA _ A _ . *
e R T o Y T S, L P s ;

Therefore, pairs of polygon AkAi’ k<iand i = 0,...,Na-1, are adjacent.
We then use the procedure TANGENTSZ(AIAR) in Section 5.4.1 to determine
j*i,k’ i*i,k’j*i,k and i*i,k' The number of processors required in the
copying is NQZ(Na-l)-Nl'a < 2N1+“, and it can be achisved in 0 (logN)

parallel steps with some simple-minded algorithm. Determination of the l




*
A (11,0)

*
AI(JQ,I)

r Figure 32. An example of merging five convex polygons.
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indices t(i), b(i), t(i), and b(i) involves finding minimum and maximum
of multisets of uniform size; so it can be achieved in O(logN) steps.
Using Theorems 5.5 and 5.6, we can determine whether Ai(i*i,t(i))’
A (% eqy,4) Ai(i*i,:(i))’ and Ai(j*i(i),i) are vertices of the comnvex

? hull of Ao""’Aﬁ“.1. Rearranging vertices of the resulting convex hull
involves order reversing and data extraction; both can be carried out in

; time O(logN). Although the details of this algorithm are a bit tedious to
describe, it should be clear that merging ¥ convex polygons, each having

| at most Nl'a vertices, can be performed on a CCC with 2N1+a processors

in time O(logN).

The entire convex hulls algorithm is a "divide and conquer" program.
The subproblems are solved recursively in parallel. Therefore, the
running time of this algorithm is 0(% logWN).

Theorem 5.7. The convex hull of a set of N points in the plane can be

4o

determined in time OQ§ logN) on a CCC with N processors, 0 < o = 1.
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CHAPTER 6
CONVEX HULLS OF SETS OF POINTS IN THREE DIMENSIONS

The convex hull of a set of points in three dimensions is a convex
polyhedron. A convex polyhedron is specified completely by its edges
and faces. It is represented by the arrays of edges E(O: IEI -1) and of
faces F(0: |F| -1). It is a crucial observation that the set of edges
of a convex polyhedron forms a planar graph: if we exclude degeneracies, it
forns a triangulation. Thus, we know that |E| and |F| are at most 3N-6
and 2N-4 respectively, by Euler's polyhedron theorem, where N(2 3) is the
mumber of vertices.

In [30], Preparata and Hong show that the coanvex hull of a set of N
points in three dimensions can be determined serially with Q(NlogN)
¢ .-rations. Their algorithm uses the "divide and conquer" technique and
recursively applies a merge procedure for two nonintersecting convex
hulls which consists of two major steps: (1) construction of a
"cylindrical" triangulation J, which is tangent to the convex hulls along
two circuits; (2) removal from both convex hulls of the respective portions
which have been ''obscured" by J. 1In this chapter, this solution is
reorganized so that parallel operations are possible.
6.1 Definitions and Preliminaries

We consider a convex polyhedron with edges E(0: |E|-1) and faces

F(O: lFI-l). Element E(1) is a record consisting of fields: V. and V2

1
which are the extremes of this aedge; Fl and Fz which are indices of

the two faces bounded by this edge. Each element F(i) is also a record
of three fields: El’ 32, and 83 which are indices of the three bounding

edges of F(i).

ey ey S v A -
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We can represent face 1-‘1 by an equation aix-l-aiy-ryiz +51-0 with

normal vector (‘L’bi’ci> pointing away from the polyhedron, where

a P Y
.-——4—’b. L c, = %

’

i [T, 2.2 Y I ] L 33
g FRL+ Yy ’Az"”i**f. '/"1*'51""1

The convex angle formed by faces Fi and F

4 vith normal vectors (a, ,b,,c,)

and <aj’bj’°j> respectively is °°'-1<‘1’b1’°1>'<‘j’bj’°j) which is

cmdufj+%%+cﬁﬁ.In&cnmeOSGSn,&eﬁmdmcuais

decreasing from 1 to =1; so the inverse function coa'la decreases as a

increases. Note that the distance between two points (ai’bi’ci) and

2.2, 2_2,_.2_ 2,
(aj,bj,cj) is ,.ﬁ(l-»(aiaj + b,b, +¢,¢,)), since a, +b +ey =al+bl+c 1.

173 17y i 4 S I B
Therefore, cos'l(aiaj, +* bibj + cicj) decreases as v@?l-(aiaj-bbibj-+cicj)

decreases and we conclude this discussion by the following theorem.

Theorem 6.1. The convex angle that face F, with normal vector'(ai,bi,ci)

i

forms with face F, with normal vector (‘j’bj’°j> decreases as the distance

|
between points (‘1’bi’°i) and (aj,bj,cj) decreases.
6.2 Merging Two Convex Polyvhedra

Consider two nonintersecting convex polyhedra A and B with edge sets
E, (O: IEAI-I) and E4(0: \!,l-l) respactively, and with face sets
F,(0: IFA|-1) and Fg(0: |rB|-1) respectively. We obtain the convex hull
CH(A,B) of A and B in two steps: removal from A and B of the faces which do

not belong to CH(A,B) (these faces will be referred to as internal faces);

and addicion of faces which are tangent to A and B along two circuits

(which will be defined later).

—

P,
.




6.2.1 Removal of Internal Faces

Consider the half-spaces bounded by FA(L) of A; we denote the
half-space that contains A by H(A,1) and denote the other one that does
not contain A by H(A,1). Face FA(i) belongs to CH(A,B) if B lies in the
half-space H(A,i). Consider the pair of parallel planes of support PLA(i)
and Pyx(i), which are parallel to face FA(i) and bounding the convex
polyhedron B. We define the two associated faces FB(i') and FB(i") of
FA(i) as follows: I-‘B(!.') is a face of B making the smallest angle with

PLA(i) among all the faces of B that intersect at the point of tangency

with PLi(1); and Fg(1") is a face of B making the smallest angle with PLY(L)
among all the faces of B that intersect at the point of tangency with PLx(i).
Due to convexity, every face of B is in H(A,i) if FB(i") and FB(i') are in
H(A,1). We demonstrate what we have just discussed by a two-dimensional
analogy in Figure 33. FA(i) will belong to CH(A,B) because FB(i") and
FB(i') are in half-space H(A,i) while FA(j) will become internal to CH(A,B)

because FB(j') is in H(A,J).

We now describe how to determine the associated faces of FA(L)}
We first transform faces FB(O: ‘Fsl-l) of B into points PB(O: |F3|-1)
on the surface of the unit sphere, where P (j) = (a,,b,,c,) and
e b R R |
(;j’sj’aj> is the normal vector, pointing away from B, of Fy(J). We
search in PB(O: IFB|-1) for the nearest neighbors PB(i") and Pn(i') of

(‘i’bi’ci) and ("i"bi"ci) respectively, where (ai,bi,ci) is the

normal vector of FA(i). By Theorem 6.1, Fn(i") and FB(i') are the




rA(i)

Figure 33,

FA(J)

—:=.=.=~ are parallel to FA(i)

=== = ~=are parallel to F,(J)

Two-dimensional analogy of associated faces.
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associated faces of FA(i). We shall perform repeatedly nearest neighbor
searches for all po?nts + (ai,bi,ci) on PB(O: |FB|-1); therefore, it is
beneficial to arrange B, (0: |FB|-1) into an organized structure to
facilitate searching. Since Py(0: |Fy|-1) 1s on the surface of the unit
sphere, we can construct a spherical Voronoi diagram [8] of Py (0: |FB|-1).
A spherical Voronoi diagram of a set of poiants P(0: n-l) on a sphere is a
partition of the surface of the sphere into n regions: region i for P(i)
is the locus of points on the surface of the sphere which are closer to
P(i) than to any other point in P(0: n-1l). The problem of all nearest
neighbors se~rching is solved by performing point locations in the
spherical Voronoi diagram.

In [8), Brown presents an algorithm for constructing the spherical
Voronoi diagram of a set of n points P(0: n-l) on the surface of a sphere
by intersecting half-spaces. For each point P(i) there is a plane PL(i)
tangent to the sphere at point P(1). Let H(i) be the half-space bounded .
by PL(i) which contains the entire sphere. The intersection of the n
half-spaces H(i) forms a convex body C. The spherical Voronoi diagram 1is
now obtained by a simple projection of the edges of this polyhedron to the
surface of the sphere. This projection is a "radial" projection: the
projection of a point Q is the point where & line segment connecting the
center of the sphere and point Q intersects the sphere. This projection
maps edges of the polyhedron to arcs of great circles on the sphere.

The vertices of the polyhedron are mapped to spherical Voronoi points and

the faces of the polyhedron are mapped to spherical Voronoi regions.
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Let &ix + ﬁiy + §1z + 51 = 0 be the equation of face F (1) with $
normal vector (;1,51,51) pointing from B. Then the plane PL(i) tangent

to the unit sphere at point (;1,51,51) has equation !

- - - 2 2 -2
ax+ 8y +¥z=Ja +F + ¥ , chat Ls PL({) Ls obtained from Fy(1) by

a translatioa. Figure 34 shows the two-dimensional analogy of the translation
of faces of B. Therefore, the intersection of PL(L) and PL(j) is an edge
of C 1€ and only 1if FB(i) and FB(j)'are adjacent.

6.2.2 Addition of New Faces

In addition to the removal of internal faces, we have to construct faces
which are tangent to A and B along two circuits CA and CB (refer to F?gure
35). The circuit CA is composed of edges EA(i) of A such that EA(i)[Fll is
an internal face and EA(i)[FZ] is not or vice versa. The edges in CB are
determined in the same manner. We have to describe a criterion for uniquely

ordering the edges in CA and C We define observer B as an observer

B
placed at any point of B and oreinted like the negative z-axis; and observer
A as an observer placed at any point of A and oriented like the positive
z-axis. The edges in CA are numbered in ascending order so that they form

a clockwise sequence for an observer B. And the edges in cB are noumbered

DY

in ascending order so that they form a counterclockwise sequence for an
observer A. We start both sequences at the vertices with largest
y=-coordinates in CA and cB accordingly. Llet CA(L)[VI] and CB(j)[vll be the

vertices at which edges CA(i) and CB(j) originate respectively. Then

(CA(O)[VI]’CA(I)[VI]"") and (CB(O)[VI],CB(I)[VI],...) are the sequences




F
S

PL(0)

PL(S) - - =
P a(a;,5,,¢,)
Q)
7\
PL(4)
PL(2)

PL(3)

Figure 34. Two-dimensional analogy of the transformation from B to C.
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Figure 33. Merging two convex hulls in three dimensions.
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of vertices of CA and CB respectively. Due to convexity, the convex

angle formed by (C,(0)(V,1,C,(1)[V,]) and (C,(0)(V;1,C,((V,]) 1s
cloclorise for an observer B, where i < j; the convex angle formed by
(CB(O)[vlll’cB(i)[VI]) and (CB(O)[Vll,CB(j)[Vll) is counterclockwise for
an observer A, where i < j. Therefore, edges in CA can be ordered by
some simple sorting algorithm, and so those in CB‘

We define an angle measure GA(i,j),(]') associated with edge C, (1) and

vertex CB(j)[Vll, as the convex angle formed by the plane determined by

CA(i) and CB(J)[VI] and the face boundéd by CA(i), which belongs to

CH(A,B). In an analogous manner, we define BB(j,i) as the convex angle

formed by the plane determined by CB(j) and CA(i)[Vi] and the face bounded
| ' by CB(j), which belongs to CH(A,B). We also define j(i) as the smallest
ﬁ‘: i index such that GA(i,j(i)) is a mgximum»among all SA(i,j), 0sj< |CB|;
i(j) as the largest index such that OB(j,i(i)) is a maximum among all

- 85(3,1), 0s1i< lc,|. It is cbserved that G9,5M, ..y and

{ (i(o),i(l),...) are nondecreasing sequences. The faces determined by

¢, () and cy(310)(v,] (or cp(4) and ¢, (t47)(v,1) are tangent to A and B.

i f } They are faces of CH(A,B).
} 6.3 On the SMM with N Processors
In this section we discuss the entire convex hulls algorithm in three
. ;» dimensions on the SMM. The crucial step is the implementation of the
merging of two convex polyhedra as described in the previous section. We
\. show that the merging runs in time 0((logN)zloglogN) with N processors,
l‘ which gives us an O((logN)sloglogN) three~dimensional convex hulls algorithm

on a SMM with N processors.

(I)In the actual implementation, the operation of comparing two angles will be
‘ [ replaced by the operation of comparing the negative values of their

cotangents.
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6.3.1 Implementing the Merge Algori chm

We now present a top-down implementation of the merge algorithm on
the SMM. First we have to determine the internal faces. The following
procedure determines which faces of the convex polygon A are internal.
procedure INTERNALA(A,B,t,)

/* Given two nonintersecting convex polyhedra A and B, for each
face FA(i) of A, determines if it is internal to the convex

hull of A and B; it sets tA(i) to 1 1f F, (1) is internal and
0 otherwise */ A

1. transform each face Fy(j) with normal vector (Ej,ﬁj,éj) into a point
= (a,,b.,c,)-
EB(J) .( 3723 j)
2. construct the spherical Voronoi Diagram GB for the set PB.
3. transform each face FA(i) with normal vector <ai’bi’ci> into two
points B/(i) = (a;,b,,¢c;) and B (L) = (-a3,by,¢;)
4, for each i, determine the nearest neighbors PB(i") and PB(i') of the
points Px(i) and ?A(i) respectively by point location in GB’
5. for each i, if both FB(i") and FB(i'), the associated faces of
FA(i), are in H(A,L) ({.e., FA(i) is internal) set tA(i) to 1;
otherwise set tA(i) to 0.

The transformations in steps 1 and 3 of procedure INTERNALA can be

done in constant time with \FB[ and \ | processors respectively. As

Fa
discussed in Section 6.2.1, the construction of the spherical Voronoi
Diagram for PB is just a simple transformation from B, which can be done

in constant time. 1In Section 4.1, we have given a point location algorichm
which runs in time 0((logn)2loglogn) on a SMM with max(n,m) processors,

where n is the number of vertices in the graph and m i{s the number to be

located. Therefore, all the nearest neighbors in step 4 can be determined




L in time 0((103|FBl)zloglcg\FB|) with max(lFA|,|FB‘) processors. Finally,
step 5 runs in constant time. Thus, the internal faces of A are

L detarmined in time O((log|Fy|)*10g10g|F,|) on a MM with max(|¥, |, |7y])

) 3 processors. Similarly, we can have a procedure INTERNALB(A,B,cB) which
) set tB(j) to 1 if face FB(j) is {nternal; and set to 0 otherwise.

Knowing the internal faces, the circuits CA and CB as defined in
; Section 6.2.2, can be determined in time O(logl|E,|loglog|E,|) and
0(log|EB|IOglog|EB|) respectively as follows.
procedure CIRCUITS {A,B)

/* determine the two circuits Cy and Cy for A and B */
1 begin
! /* CA
' face and an external face */

CA"EA ‘

foreach 1, 0<1 < [E,| do
1 if EA(i)[FI] is internal and EA(i)[FZ] is external

, then t(i) = 1
. else t(i) - 0
L call EXTRACTI(CA,t)

order the edges in CA as defined in Section 6.2.2

contains edges of A, each of which is shared by an internal

e

o iAo e iRl P e
i

/* cB contains edges of B each of which is shared by an internal
. face and an external face */
]- Cg ~Eg

foreach 1, L < |EB| do

I if EB(L)[FI] is internal and EB(i)[FZ] is external
then t(1) - 1

- else t(i) - 0
‘ call EXTRACTI(CB,C)

order the edges in C_, as defined in Section 6.2.2

B
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The face determined by the edge CA(L) and the vertex CB(j(i))[V]_] is a
new face of the convex hull. Since j(i) is the smallest index such that
6,4,3)) 1s o maximun among 411 6,(1,3), 05 3 < |Cy| and ustng the
result in Section 2.1.2, j(i), for a particular i, can be determined in
time o(1og|cB\) on a SMM. Since (3(°), (1),...) is 2 nondecreasing
(le,172) (e, [/4)

sequence, we can first find j ; then find, in parallel, j

Cle,1/2) cle,1/2)
in the iatervals [0, ] and [j ,|CB|-1] respectively,

and so on. It is straightforward to see that it takes 1og|CA| iterations
to obtain all j(i)'s. We can obtain all j(i)'s by invoking the following

procedure with a single call FIND_j (1)1(0,|C -1,0,|CB|-1):

Al
procedure FIND_j 1) 1(a,b,c,d)

/* determine j(i) in the range (c,d] for each i in {a,b] */
begin if b-a = 0 then return

/% determine §) where 1 is in the middle of [a,b] */
i~ (a+b)/2
1D —wavnam ((]e <5< d and 9,(1,1) =
maxnim ({8, (1,k), ¢ < k=dhl)
/* partition the ranges at i and j(i), and apply the procedure
recursively to these sub-ranges */
ca1l Fovo~gP1¢0,1-1,¢,3 %))
ca1l FIo—3 1t +1,0,31),0)
end

Similarly, we can have an 0(loglCB| loglCAl) time procedure

FIND_*L(j)l to produce all i(j)'s. We are now about to present the entire

merge procedure which runs in time 0((logN)2loglogN) with N processors.

Bosatw- §
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end

6.3.2

with N processors.
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procedure MERGING1(A,B)

/* merge A and B, store the resulting convex hull in C */

begin Fh - FA UF,; %C - EA U EB

/* determine internal faces */
call INTERNALA(A,B,t )

call INTERNALB(A,B tB)

/* determine the new faces formed by Cy (i) and C (j(i))[vll
or C4(j) and C (1(3))[v1] */

call FIND_J(i)l(O,ICA|-1,0|CB|-1)

ca1 Fo_1 921(0, ¢, |-1,0,1¢, | -1)

/* remove all internal faces and edges bounding two internal
faces */
remove, from EC’
remove, from EC’ edges EA(i) such that both

EA(i)[FI] and EA(i)[le have tag t, = 1,
and edges EB(i) such that EB(i)[Fl] and
EB(i)[FZ] have tg * 1.

faces with tA or tB = 1

/* add new faces and edges */ @)
)V

add, to F., faces determined by CA(i) and CB(:] 1]

and faces determined by CB(j) and CA(i(j))[VI]

add, to Ey, edges (C,(1)(V,],c,(3"")(v,D),

CROIARRILSITE PHCRINTARNCASUITA I
and (CB(j)[Vzl,CA(i(j))[Vll) .

Three-Dimensional Convex Hulls Algorithm

As a preliminary step, we sort the set S of N points by their y

coordinates in ascending order. This can be done in time O(logNloglogN)

the three-dimensional convex hull of S.

We now present the recursive program for determining

SV S
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function CH3(S)

/* return CH(S) where S is a set of N points in three dimensions */

begin if N S 2 then return (S)

else return (MERGING1(CH3(S(0:N/2-1)),CH3(S(N/2:N-1)))

end

The ruaning time T(N) of function CH31l can be obtained from the
recurrence relation T(N) < T(N/2) +M(N), where M(N) is the running time
of function MERGINGl. In the previous section, we have shown that M(N) is
0((logN)zloglogN) with N processors, thence, T(N) = 0((logN53)loglogN).
Theorem 6.1. The convex hull of a set of N points in the three dimensional
space can be determined in time 0((103N)3103103N) on a SMM wich N
processors and N memory units.
6.4 0On the CCC with N Processors

The main purpose of this section is to discuss the implementation of
the merge algorithm on a CCC. We shall first develop a parallel algorithm
for finding the maxima of several sets of numbers. This will be used in
the implementation.

6.4.1 Finding Maxima of Multiple Sets

Given an array D(0: n-l) of numbers, which is partitioned into m
subarrays DO’DI""’Dm-l such that the concatenation DO- Dl ¢ ... Dm-l =
D(0: n-1), we want to find the maximum of each Di’ We as u?e n is a power
of 2, We logarithmically partition each Di into at most 2 logn-1 segments
by means of a segment tree T(O,n) [28], which consists of a root V
representing an integer interval [0,n], and of a left subtree T(O, ln/2j) and
a right subtree T(|n/2) +1,n) (refer to Section 4.l for more details). For
example, D, = {p(7),D(8),...,D(13)}, a subarray of D(0: 31), is partitioned
taco {{D(7)},{D(8),...,0(11)},{D(12),0(13)}}. We first find the maximm of

each of these segments (to be referred to as submaxima). We then find

the maximum M(i) among the submaxima of the same array D, .

o b =)
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We now outline the procedure that determines the maxima M(j) of
D j for 0 € § < m (we shall present the program in the appendix).

1. Logarithmically segment each subarray by means of a segment tree T(O,n).
2. Determine the maxima of the segments by an ASCEND program: at

iteration k, k = 0,...,logn-1, 1€ D(1) and D(1 + (I-BI‘rk(i.))Zk) belong

to the same segment, change D(L{) to the larger of the two; at ths end
of logn iterations, every position of a segment contains the maximum

of that segment.

3. Extract the submaxima obtained in step 2.
4, Determine the maxima of the sets of submaxima of same subarray.

As discussed in the planar point location algorithm, the intervals can
be logarithmically segmented in time O(logn) on a CCC with n processors.
Step 2 is an ASCEND program which runs in logn steps. Data extraction
discussed in Section 2.2.1 runs in time O0(logn) on a CCC with n processors.
Since each subarray is segmented into at most 2logn-l segments, there are
at most 2logn-1l submaxima in each subarray. Therefore, the maxima of the
of the same subarray can be determined in time 0(logn).

Theorem 6.2. The maxima of each of subarrays DO’DI’ ...,Dm__1 of D where

the concatenation Doo Dlo 'Dm-l is the array D of n elements, can be

found in time O(logn) on a CCC with n processors.
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6.4.2 Implementing the Merge Algorithm

We now discuss how the merge algorithm can be implemsented on a CCC
with N processors in time 0((103N)3). The procedures INTERNAIA and
INTERNALB in Section 6.3.1 for determining the internal faces of polyhedra
A and B can be implemented on a CCC with N processors. The most tima-
consuming step is determining all nearest neighbors which involves the
point location algorithm in Section 4.2. With the result in Section 4.2,
the internal faces can be determined in time 0((logN)3).

We have to modify slightly the procedure CIRCUITS in Section 6.3.1,
for determining the two circuits CA and CB’ so that it can be implemented
on a CCC. We have to use procedure EXTRACT2 in Section 2.2.1 for data
extraction and the ordering takes o((logN)z) time on a CCC. Therefore,
the circuits are determined {n time 0((1033)2) on a CCC with N processors.

In implementing the procedure for finding the j(i) and i(j) for the
circuits, we have to use the algorithm in the previous section for finding
the maximums of multiple sets on a CCC. Therefore, j(i) and 1(1) can be
determined in time 0((103N)2) on a CCC with N processors.

The steps in the procedure MERGINGl (Section 6.3.1) can be modified
according to the above discussion and be implemented on a CCC with N
processors in time 0((logN)3). Using the same recursive program CH3

in Section 6.3.2 with this modified merge procedure, we have an 0((103N)4)

time algorithm for determining the three-dimensional convex hull.




Theorem 6.3. The couvex hull of a set of N points in the three-dimensional

space can be determined in time 0((logN)4) on a CCC with N processors.
l+a

6.5 On_the CCC with N Processors

In the process of merging two convex hulls, the point location used

) in determining all nearest neighbors is the most time-consuming step.

lta processors (refer

f | It can be done in time o%(usmz) on a CCC with N
to Section 4.3), where 0 < ¢ £ 1. Therefore, we have a O(é(logN)z) time
merging algorithm which yields an O(&(logN):’) time algorithm for finding
the three-dimensional convex hull.

Theorem 6.4. The convex hull of a set of N points in the three-dimensional 1

space can be determined in time 0(&(1031!)3) on a CCC with N1+°' processors,

where 0 < a < 1.

[N
N .
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CHAPTEX 7
VORONOI DIAGRAMS FOR POINTS IN THE EUCLIDEAN PLANE
A Voronoi diagram of a set S(0: N-1) of N points in the Euclidean
plane is a partition of the plane into N convex polygonal regions R(0: N-1)
(refer to Figure 36). For each point S(i), the convex polygonal region
R(1) is the locus of points closer to S(i) than the other N-1 points of S.
The vertices of the diagram are called Voronoi poiants; and the line segments

are Voronoi edges. The polygonal boundaries of the regions are called
Voronoi polygons.

The problem of the construction of planar Voronoi diagtamb arises in many
areas; one of the most important applications is in nearest neighbor problems.
Shamos and Hoey [35] present an O(NlogN) ''divide and conquer' algorithm for A
construction of a planar Voronoi diagram. Brown [8] describes an O(NlogN)
time algorithm which can be extended to higher dimensions. His result is
that a two~dimensional Voronoi diagram of N points can be constructed by
transforming the points to three-dimensional space, constructing the
convex hull of the transformed points, and then transforming back to
two-dimensional space.

In this chapter we use Brown's technique to develop parallel
algorithms for constructing planar Voronoi diagrams on the SMM and on the
ccc.

7.1 Definitions and Preliminaries

In this section we describe how to represent a Voronoi diagram,
review some important properties of the Voronoi diagram, and define the
inversion transform which will be used in the comstruction of the Voronoi

diagram,
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Figure 36. The Voronoi diagram of points in the plane.
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7.1.1 Representation of Voronoi Diagrams
Let V{(0: |v]-1) and E(0: |E|-1) be the sets of Voronoi points and

of Voronoi edges, respectively, of the Voronoi diagram of S(0: N-1l),

where |V| < 2N-4 and |E| < 3N-6. Each element V(i) contains the following

information: V(1)(x], V(1)[y] which are the coordinates of the Voronoi
points V(1), and V(1)[ADJ], the adjacency list of V(1). Elements E(1)

contains the two original points that determine Voronoi edge E(1). By

constructing the Voronoi diagram, we also mean obtaining the set of Voronmoi

polygons in standard form; P, (0: |Pi"1) is the Voronoi polygon relative
to point S(i).

7.1.2 Properties of Voronoi Diagrams

We now review some important properties of Voronoi diagrams which
are exploited in the algorithm of Brown. Each Voronoi point V(i) of the
Voronoi diagram for S is equidistant from the three points of S which
are closest to V(1). The circle determined by these three points is
centered at V(i) and contains no other points of S. Furthermore, if the

circle determined by any three points of S does not contain any other

points of S (these three points are said to be satisfying the circumcircle

property), then the center of the circle is a Voronoi point. A Voronoi
edge is the perpendicular bisector of the line segment joining two

points of S, which are on the same circumcircle.
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7.1.3 The Inversion Transform °

The geometric transform used by the algorithm is called iaversion.
The inversion is an involutory point-point transformation determined by
two parameters, the center of inversion Po and the radius of inversion r.
The image of a point Q under the inversion is another point Q', where
P;Q and P;Q' are in the same direction and the magnitude lFEQ'|-:2/|P;Q|.
For example, that the center of inversion is the origin and that the radius
of inversion is one, then under this inversion, in the plane, the image

of a point with polar coordinates (R,8) is (1/R,8); and in the space, the

image of (R,9,¢) is (1/R,8,9). The inversion transforms any sphere which

passes through the center of inversion to a plane which does not pass

through the center of inversion, and vice versa. For example with the

center_of inversion at a point Po not on the xy-plane and radius > 0,

the xy-plane transforms to a sphere with Po at the apex. Another property

of inversion is that the interior of the sphere transforms to a half-

space bounded by the plane which is the image of the sphere, and the

exterior of the sphere transforms to the other half-space.

7.2 The Voronoi Diagzam Algorithm

In this section, we shall describe how the techniques of embedding

.linto three dimensions, inversion, and the three-dimensional convex hull

algorithm are used to construct the Voronoi diagram of a set S of poiats

in the xy-plane.

Let S' be the set of inversion points of § with centér at an arbitrary

point Po not in the xy-plane and radius 1. Since all points of the
xy-plane are mapped to a sphere with Po at the apex, all points of S' are

on this sphere and they will be on the convex hull of S'. Observe that




e

126

any three points of S satisfying the circumcircle property determine a

face F of the convex hull. This happens because the other N-3 points .
of S are exterior to the circle determined by these three points, that --
is, exterior to the sphere with Po at the apex and intersecting the

xy-plane in that circle (refer to Figure 37). Therefore, after the

inversion, the other N-3 points will be in the same half-space bounded

by the plane F. Therefore, we can find the Voromoi points as follows:

we ipvert each face Fi of the convex hull of S' into the corresponding

sphere, which will intersect the xy-plane in a circle. The center Vi of

this circle is a Voronoi point if Po and the convex hull are in the same
half-space whose boundary plane contains face Fi'
The Voronoli edges are constructed by connecting appropriate pairs of

Voronoi points. Suppose faces Fi and F, of the convex hull meet at an

h]
edge of the hull, then there will be a Voronoi edge from Vi to Vj when

both V, and V, are Voronoi points. However, if one and only one of Vi

i 3

and Vj’ say Vi’ is a Voronoi point, then there will be an infinite ray

starting at Vi in the direction of V;V (unbounded Voronoi polygon).

3

We now present the entire Voronoi diagram algorithm as follows:
procedure CONSTRUCT_VD(S)

/* construct the Voronoi diagram of a set S(0: N-1) of points
in the xy-plane */

begin

/* embed each point (x,y) of S into (x,y,0) */
foreach i, 0= 1 < N do begin
s*(A){x] -~ s()
s (L) (y] = s()(y]
S*(1)[(z) ~ O
end
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[ 4 -
/* choose the center and radius of inversion */
! Po ~ some arbitrary point not on the xy-plane -
! r-1 -
/* invert points in S* w.r.t. PO and ¥ */ -
2. foreach i, 0 €4 < N do S'(i) ~ inversion of S*(i) w.r.t. i

3. construct the coanvex hull CH of S'
/* determine the Voronoi points */
4, foreach face F, of CH do
begin Ai ~ inversion of Fi

Vi ~ center of the circle which is the intersection of
Ai and the xy-plane.
if Po and CH are in the same half-space bounded by Fi
then Vi is a Voronoi point
end

/* determine Voronoi edges and rays */
5. foreach each edge Eij’ bounding Fi and Fj of CH do
if Vi is a Voronoi point
then if Vj is a Voronoi point
then (Vi’vj
else there is a ray starting at Vi
in the direction of V;Vj

) is a Voronoi edge

else if V, is a Voronoi point

3

then there is a ray starting at V

- J
- in the direction of Vjvi

6. obtain the ®t of Voromoi polygons.
end

We shall show, in the next section, that this algorithm can be

implemented on a SMM and a CCC. ’




7.3 lmplementing the Voronoil Diagram Algorithm on the SMM and the CCC
We first show that the algorithm in Section 7.2 can be implemented on

a SMM with N processors and N memory units in time O((logN)3loglogN). The
embedding into three dimensions is clearly achievable in constant time
with N processors and N memory units. Each independent inversion transform
can be done in constant time on one processor. Therefore, steps 1, 2 and 5
of the algorithm run in constant time. It is not difficult to show that
step 4 also runs in constant time. The most time-consuming step is step 5
of the algorithm which requires the construction of the convex hull. We
have shown in Section 6.3 that the three-dimensional convex hull can be
constructed on a SMM with N processors and N memory units in time
AO((logN)3loglogN). The final step which obtains all the Voronoi polygon
involves grouping and sorting the edges. This can be done in time
0(logNloglogN). Therefore, we have the following result.

Theorem 7.1. The Voronoi diagram of a set of N points in the plane can be
constructed in time 0((103N310glogN) on a SMM with N processors and N
memory units.

As we discussed in the previous paragraph, the construction of the
convex hull in three dimensions is the most time-consuming step of the
algorithm. 1In Sections 6.4 and 6.5, we have presented an 0((logN)4) and
an Oq%(logN)a) three-dimensional convex hull algorithms for the CCC with
N processors and Nl'bd processors, respectively. And it is straightforward
to show that all other steps of the algorithm require at most 0((103N)2)
for N processors and b(é logN) for Nl'ka processors. Therefore, we have

the following results.
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Theorem 7.2. The Voronoi diagram of a set of N points in the plane can
be constructed in time 0((105N)4) on a CCC with N processors.
Theorem 7.3. The Voronol diagram of a set of N points in the plane can

be constructed in time O(é(logN)s) on a CCC with N1+°' processors,

where 0 < ¢ < 1.
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CHAPTER 8
CONCLUSION
It has been demonstrated in this thesis that in solving certain
geometric problems, operations can be performed in parallel to sub-

stantially reduce the computation time. Using the Shared Memory Machine

of Section 1.1.1, parallel algorithms have been developed to solve the
problems of reporting all intersecting pairs of rectangles in time
0((103N)2), planar points location in time 0((logN)2loglogN), constructing
two-dimensional convex hulls in time O((logN)Z), three-dimensional

convex hulls in time 0((103N)3103103N), and constructing planar Voronoi
diagram in time 0((logN)3loglogN). Using Ehe Cube-Connected-Cycles

with a number of processors linear in problem size, the parallel algorithms --
developed for Qll of these problems, except reporting intersecting pairs
of rectangles and constructing two-dimensional convex hull, have time
complexity only increased by a factor of logN/loglogN. The algorithms

for the two exceptional problems have time complexity 0((103N)2) which

is the same as that on the SMM. With an increase in the number of
processors of the CCC to Nl'ka (0 <a < 1), all of the problems can be
solved with parallel algorithms of time complexity improved by a factor

of 1/(alogN) with respect to the time complexity of the algorithms on the
CCC with N processors. In contrast, the best sequential algorichms for

all of these problems, except planar point location, have a worst case

time complexity of O0(NlogN). The best sequential algorithms for

locating M points in a graph of N vertices has time complexity O((M+~N)logN).
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In parallel computation, it i3 possible that some processors are not
always busy. It has been shown that the algorithms presented here for !

finding the two-dimensional convex hulls and reporting intersecting pairs -

ey = o e et e

of rectangles are not only fast, but favolve relatively little waste T

as well.

The results in this thesis indicate that geometric problems are

susceptible of being solved efficiently on parallel computer systems.

Moreover, once again, the Cube-Connected-Cycles is shown to be suitable
for implementing algorithms for an expanding class of problems.

We conclude this thesis by presenting the results in Table 1.




\

SMM ccce cce
Uniprocesso leot
N processors N processors | N processors
0<¢x<l
intersections of 0(N1ogn+k§1" 0((1o¢N)2+k'f2]O((logN)2+k') oélogm-k')
N rectangles
locating M points 2 3 1
in a planar graPh| O((M+N)1logN)O((logN) “loglogNYO((log(M+N)")| O(zlog(N+M))
with N vertices
convex hull of 2 2 1
N poiats in O(NlogN) o((1ogN) ™ O(logh) ™) O(zlogN)
the plane
convex hull of . 3 4 1 3
N points in O(NlogN) O((logN)“loglogNY O((logN) ") 0(z (logN)™)
the space
Voronoi diagram i 3 4 1 3
for N points O(NlogN) 10((logN) loglogN)Y O((logN) ) 0@ (2og™) ™)

in the plane

1)

Table 1.

k is the number of intersecting pairs.

2)

k' is the maximum number of intersections DPer rectangle.




Gl

ST Traer o

10.

11.

14.

134

REFERENCES

Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and
Apalysis of Computer Algorithms, Addison-Wesley, Reading,
Massachusetts, 1974. .

Akl, S. G. and Toussaint, G. T., "A fast convex hull algorithm,"

Information Processing letters, vol. 7, no. 5, August 1978,

Arjomandi, E., "A study of parallelism in graph theory,” Ph.D. thesis,
Department of Computer Science, University of Toronto, December 1975.

Baird, H. S., "Fast algorithms for LSI artwork analysis," Design
Automation & Fault-Tolerant Computing, 1978, pp. 179-209.

Barnes, G. H., Brown, R. M., Kato, M., Kuck, D. J., Slotnick, D. K.,

and Stoker, R. A., "The Illiac IV computer,'" IEEE Trans. on Computers,
vol. C-17, 1968, pp. 746-757. .

Bentley, J. L. and Shamos, M. I., '"Divide-and-conquer in multidimen-

sional space," Proc. 8th ACM Symp. on Theory of Computing, May 1976,
pp. 220-230.

Bentley, J. L. and Wood, D., "An optimal worst-case algorithm for
reporting intersection of rectangles," Computer Science Technical
Report, McMaster University, 1979.

Brown, K. Q., "Geometric transforms for fast geomectric algorithms,"
Ph.D. thesis, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1979.

Bykat, A., "Convex hull of a finite set of points in two dimensions,"
Information Processing Letters, vol. 7, no. 6, October 1978,
pp. 296-298.

Cray Research, Inc., "Cray-l computer,”" Chippewa Falls, Wisconsin,
1975.

Csanky, L., "Fast parallel matrix inversion algorithms," SIAM J.
Computing, vol. 5, No. 4, December 1976, pp. 618-623.

Eckstein, D., "Parallel graph processing using depth-first search
and breadth-first search," Ph.D. thesis, Department of Computer
Science, University of lowa, Iowa City, 1977.

Hartigan, J. A., Clustering Algorithms, John Wiley & Sons,
New York, 1975.

Heller, D., "A determinant theorem with applications to parallel
algorithms,' Department of Computer Science Tech. Report, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 1973.

’

—/ ™




16.

17.
18.
19.
20.
21.

22.

23.
24.
25.
j 26.
‘ 27.

28‘

138

Hintz, R. G. and Tate, D. P., "Control data STAR-100 processor deisgn,"
COMPCON=72 Digest of Papers, IEEE Comp. Soc., 1972, pp. l=4.

Hirschberg, D. S., "Fast parallel sorting algorithms," CACM, vol. 21,
no. 8, August 1978, pp. 657-661.

Hirschberg, D. S., "Parallel algorithms for the transitive closure and

the connected component problems," Proc. 8th ACM Symp. on Theory of
Computing, May 1976, pp. 55-537.

Kuck, D. J., The Structure of Computers and Computations, Department
of Computer Science, University of Illinois, Urbana.

Lauther, U., "4-dimensional binary search trees as a means to speed
up associative searches in design rule verification of integrated

circuits," Design Automation & Fault-Tolerant Computing, 1978,
pP. 241-247.

Lee, D. T., "Proximity and reachability in the plane," Ph.D. thesis,
Department of Computer Sciemce, University of Illinois, Urbana,
November 1978.

Lee, D. T. and Preparata, F. P., "Location of a point in a planar
subdivision and its applications,'" SIAM J. Computing, vol. 6, 1977,
pp. 594-606.

Mead, A. M. and Convay, L. A., Introduction to VISI Systems, 1978,
Textbook in preparation.

Muller, D. E. and Preparata, F. P., "Restructuring of arithmetic
expressions for parallel evaluation," J. ACM, vol. 23, no. 3,
July 1976, pp. 534-543.

Munro, I. and Paterson, M., "Optimal algorithms for parallel polynomial

evaluation," J. of Computer and System Sciences, vol. 7, no. 2,
1973.

Muraoka, Y., ""Parallelism exposure and exploitation in programs,"
Department of Computer Science Tech. Report No. 424, University of
Illinois, Urbana, 1971.

Nassimi, D. and Sahni, S., "Parallel permutation and sorting algorithms
and a new generalized-connection-network,'" Computer Science Department,
Tech. Report 79-8, University of Minnesota, Minneapolis, April 1979.

Preparata, F. P., ed., Steps into Computational Geometry, Coordinated
Science Laboratory Report R-760, University of Illinois, Urbana,

March 1977.

Preparata, F. P., "A new approach to planar point location,”
submi tted for publicationm, 1979.




29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

136

Preparata, F. P., "New parallel sorting schemes,”” IEEE Trans. on
Computers, vol. C-27, no. 7, July 1978, pp. 669-673.

Preparat#, F. P. and Hong, S. J., "Convex hulls of finite sets of
points in two and three dimensions,” CACM, vol. 20, no. 2, February
1977, pp . 87‘93 .

Preparata, F. P. and Vuillemin, J., "The cube-connected-cycles: A
versatile network of parallel computation," Proc. 20th Annmual IEEE

Symp., on Foundations of Computer Science, October 1979.

Rudolph, J. A., "A production implementation of an associative array
processor-staran,'" AFIPS Fall 1972, AFIPS Press, Montvale, N. J.,
vol. 41, pt. 1, pp. 229-241.

Savage, C. D., "Parallel algorithms for graph theoretic problems,”
Ph.D. thesis, Department of Mathematics, University of Illinois,
Urbana, August 1978.

Shamos, M. I., Computational Geometry, Department of Computer Science,
Yale University, 1977, to be published by Springer-Verlag.

Shamos, M. I. and Hoey, D., "Closest-point problems,"” Proc. 1l6th Annual

IEEE Symp. on Foundations on Computer Science, October 1975,
pp. 151-162.

Stone, H; S., "An efficlent parallel algorithm for the solution of a
tridiagonal system of equations,” J. ACM, vol. 20, no. 1, 1973,
pp. 27-38.

Valiant, L. G., "Parallelism in comparisoan problems," SIAM J. on
Computing, vol. 4, no. 3, September 1975, pp. 348-355.

Wulf, W. A. and Bell, C. G., "C. mmp, a multi-mini-processor,"
AFIPS Fall 1972, AFIPS Press, Montval, N. J., vol. 41, pt. 2,
pp. 765-777.

~P




137

APPENDIX

procedure CONSTRUCT_F (S)

/* determine Flo;n""’FO for the points in § */
begin

/%* the root FlogN is the set S sorted by their x-values */

FlogN -~ S

sort FlogN
foreach j, 0< j < n do N#logN(j) -0

/* determine FlogN-l""’FO one at a time */
for 1 = logN downto 1 do
begin
/* determine the node numbers N#i-l in the next level
i-1 for each point */
foreach j, 0= j<ndo
begin F, _,(3) = F (D)
TEMP(§) = F, (§)
N#i-l(j) - N#i(j)
(1) = £, = 0
if y-value of F, (j) S B, (¥, (1))
then tl(j) -1
else begin &£,(j) -~ 1
TEMPNH (1) = M, (§) +2

by their x-values

logN=-i
end
end
/* rearrange the points according to their node number */
call EXTRACT2(F; ,,t,); call EXTRACT2(M, ,,t,)
call EXTRACTZ(TEMP,:Z); call EXTRACTZ(TEM?N#.tZ)

foreach j, 0 £ j < |TEMP| do I
begin F, (3 +|F, ;) = TEMP(}) '

WD HIF D - TEMPM ()

end
end
e o
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procedure INTERSECT3I(V,H): 3

/* search all intersecting pairs of horizontal line segments in H and
vertical line segments in V */ )

begin s

/* construct the search structures D,, ,D yeoe 0 fOr V %/
call CONSTRUCT_S1(V) l/a’"1/a-1 0

rr— 4
»

/* H', the set of horizontal line segments, is maintained sorted
lexicographically by their node numbers and the x-values of
their left endpoints. */ ‘

b H' - H :

sort H' by x-values of left endpoints

foreach j, 0= j < m do NN(j) - O

foreach j, m< j < ZmNad_oH'(j) = mull

/* search in J beginning at Di/u */
for i~ downto 0 do
begin call RANGE_SEARCHID(d,,H')
/* determine node numbers of the horizontal line segments
and reorder H' according to these node numbers */ . [
for k- 1log 2m to log 2a™-1 do /* duplicate H' N times */ l
Lf BIT, () =0 then begin H'(j+2%) = &' ()
(g +25) - W)

end
foreach j, 0 < j < 2mN* do /* determine node numbers */
begin t(j) = O e

NN(3) - NN(J) + Uf/2m)N
LE B, ; (N(J)) Sy-value of H' (ST, _; (N())

then t(j) - 1
b end
call EXTRACT2(H',t); call EXTRACT2(NN,t) /* reordering */
end
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procedure CONSTRUCT_#(S)

/%* construct the arrays Gl/ck""’GO for the set S of points */

begin

/* the root, Gl /o’ is the set S sorted by x-coordinaces */

Ci/a ~ §
sort Gl Ja by their x-values

foreach j, 0< j <n g_gu#lla(j) -0

/% determine Gl/a-l”"’GO one by one in descending order */

for 1 = 1/a downto 1 do
begin

/% Gy, is obtained by reorder G, as follows */
foreach j, 0< j < aN® do
begin G, _, () =~ M, (J)
L FPRLS Ml G )
e~ 0
end
/* duplicate 6; into W copies */
for k -~ logn to lognN”-1 do
L£ BIT, () = O then begin G, (3 +2°) = G, ()
W, (42 -8 )

end

/* determine node numbers of each point in G */

foreach j, 0< § < oX° do loia
Begin W, _ (1) = M,__ (3)+ L 1/nl¥

if 31.1(““1-1“” Sy-value of Gi_l(j) <

i-1

then t(j) = 1
end =

/* reorder the points according to their node numbers
and x-coordinates */
call EX‘IRACTZ(Gi_l,:)

call EXTRACT2(MF, _;,¢)
end
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procedure RANGE_SEARCH3(S,Q)

/* report all points a € S such that Q(i)(L] = x(a) S Q(1)[R] ) .
and Q(1)[B] < y(a) € Q(1L)[T] for every Q) */
begin

o /* construct the search arrays J:Gl/ »+++3Gy for s */
[ call CONSTRUCT_#(S) «

/* Q' is the set Q sorted by Q(i){L] */
Q' - Q

sort Q' by x-values of left endpoints
foreach j, 0 < § <mdo NN(j) = 0

foreach j, m S j < 2mN” do Q'(j) = null

F .
/* search in Dy/q?*-*1Dg One at a time */
for L = 1l/a downto 0 do
i begin

/* determine Q" which is a subset of queries which can
. be answered at this level. The remaining queries
y ' determine the node numbers in the next level */
foreach j, 0S5 j < ZmNad_o
begin tl(J) - tz(j) -0
Q"(3) = ' (D
NN"(§) = NN(J)
if Q' (j~ # null
then if Q'(j) [B]1=B, (NN(j)) and
T, (NN($)) < Q' ()(T]
then tl(_j) -1

else tz(j) -1

end

call EXTRACT2(Q",t,); call EXTRACT2 (NN",t

Y Y

e /* answer queries in Q" by performing a one-dimensional
range searching on i */

. call RANGE_SEARCH_ID(G,,Q")

/* extract Q'-Q" from Q' and reorder the queries
according to their node number */
call EXTRACTZ(Q',:Z); call EXTRACT2 (NN, ¢t

2)

for k -~ log2n to lomeNa-l do

foreach j, 0 < j < 2mN” do i

if BIT, (}) = O then K
Begin Q' (J+2,) = Q' (§)

NN(j+27) = NN(J) l

and

_;_ yusi BN S0+ |t w e YA, SN
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L J
foreach j, 0 S j < 2my° do
begin t(j) = 0 leia

NN(§) = NN(j) + L j/2m]N
if (Q"(3)-[B]<T,_;(WN())) or

Q' (§)+(T] > B, _, AW(3)))

and Q'(j) # null
then t(j) - 1

end
call EXTRACT2(Q',t); call EXTRACT2(NN,t)
end

end




. i T— -
b - et e e FT— - ——

procedure CONSTRUCTT2(E)

/* construct the point location tree for the set (0:|E|-1) of edges */
begin

/* ¢, .3 is a subset of edges which may belong to NODE, (J) */
foreach k, 0 < k < |E| do Ciogn,0) = EC®)

ae

/%* determine the nodes of J, level by level */
for i -~ logN downto O do

/* extract the appropriate edges from C; g to form NODE, (1);
?

then form Ci-l,Zj and Ci-1,2_1+1 from the remaining edges */
foreach j, 05 § < 2i 1l do
begin NODE, (§) ~ ¢

Ca1,25 7 Cia1,2441
if ci,j # ¢ then

egin

1.1

| aad

/* extract from c; i, edges that belong .
to NODE, (§) */ | ﬂ
foreach k, o Sk < |c, j| do
if Ci,j(k)[B] = B,(j§) and
T, s Ci,j(k)['l‘l

then t(k) = 1
else t(k) = 0
call EXIRACTl(Ci jt:)

NODE, (j) - C
i' i’J 3
sort edges in NODEi(j) in the . i
positive x direction

: , /* determine Ci 1,2 and C,. 1,25+1 */

i foreach k, 05k< |Ci lel do -
begin 1if t(k) = 0 and
- i 1, zj(k)[B] < Bi. 1(2.1)

then t (k) 1 else cl(k)-o
if t(k) = O g_:g ci-l 2j(k)['l.‘]
> Bi_1(2j+l)
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then tz (k)= 1 else tz (k)=-0

end
call EmACTl(Ci-l,Zj,cl)

call EmAcn(ci_l’zjﬂ':z)

end

procedure LOCATE1(G,P)

/* locate the set of points P(0: M=l) in the planar subdivision
induced by the graph G = (V,E) */
begin .

/* construct the point location tree J for the edges of G */
call CONSTRUCT.J2(E)
/% Jo(k) and Jl(k) are the indice of the nodes which we have

to search for point P(k); L(k) and R(k) are edges on the
left and right, respectively of P(k) */

foreach k, 0 < k < M do
besin Jy(k) = 05 J, (k) = -1

L(k) - E__
R(k) -~ E_ !

end

/%* search in J one level at a time */
for i = lcgN downto 0 do
for £~ 1ol do
foreach k, 0<sk<M do
if J (k) 20 t:hen

begin TEMPL(k) - edge in NODEi (Jl’(k)) that {s

closest to and left of P(k) E
TEMPR(k) = edge in mDEi(JL (k)) that is j

: clogsest tc and right of P(k)

~ 1f TEMPL(k) is right of L(k) then

. L(k) = TEMPL(k)
if TEMPR(k) is left of R(k) then

R(k) = TEMPR(k)
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if L(k) and R(k) bound the same region
then begin P(k) is the region bounded
by L(k) and R(k)
Jz(k) - le(k) -1(
end
else if y-value of P(k) = T1-1(2“'1.(“”

en begin JL@I (k) - ZJ!‘ (k) +1

end
else if y-value of
P(k) < T, _,(23,()

then Jz(k) - ZJL(k)
else Jl.(k) - ZJL(k)d-l

end

procedure CONSTRUCT.82(E):

/* determine the search structure E
begin

..,E, for the set E of edges */

logN’’ 0

/* S is the set of edges from which E, is formed */
foreach j, 0 < j < |E| do begin S(j) -~ E(3); ™(§) = 0; end
foreach j, |E| < j < 4|E] do 5(J) - mull
/* determine ElogN""’EO one by one */
for 1 -~ logN downto 0 do
begin
/* determine the edges in E, */
foreach j, 0 < j < 4|E| do
begin ¢t,(j) = £,(3) —~ 0
E; () = 8W); M (J) = m(D)

1£ S(j) # null then
1f () (BI<B, (m(J)) and T, (7(}))=S(J)IT]

t Gultigr § pa—— |
[ [ I - .

P
.

p o
M '
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then tl(j) -1

else t,(j) - 1
end
call EXTRACTZ(Ei,tl); call EXTRACT2(N#i,c

1

sort both Ei. and N#i lexicographically by values of
N#i(j) and positions of Ei(j) in the direction of
positive x.

/* determine edges which may belong to the next level

of T */
call EXTRACTZ(S,tz); call EXTRACT2(m,t

foreach j, 0< j < 4|E| do
begin TEMP(j) -~ S(j)
£, T -0

LE S(D(B] < T, ("(1)) them t,(§) = 1
LES(IB] > T,_ (1)
then begin t,(j) = 1
EMPT(3) - 2108 hn(y)

2)

end
end
call EXTRACT2(S, cl); call EXTRACT2(w, tl)

call EX‘I‘RACTZ(TE}Q,:z); call EXTRACTZ(TEMPH,:Z)

foreach j, 0S j < |TEMP| do begin s(j+Isl) - TEMP(§)
. n(j+(s|) ~ TEMPT(])
@ n




procedure LOCATE2 (G,P):

/* locate the set of points P(0: M-l) in the planar subdivision
induced by G = (V,E) */

begin
/* construct the search structure E

set E of edges */
call CONSTRUCT_82(E)

logN’ElogN-l”"’EO for the

/* P' is the set of points to be located; they are sorted by
their node numbers and then x-coordinates */
sort P by x coordiantes
foreach k, 0 s k < 2M do
begin NN(k) -~ _O; P (k) = P(k)
L(k) = E_

R(k) - E_
end
foreach k, M < k < 2M do P'(k) = null

/* search in ElogN""’EO one at a time until edges L(k) and

R(k), for each k, bound the same region */
for 1 = logN downto O do
begin call SEARCH(Ei,P' ,TEMPL) /* parallel searching in
Section 2.2.3 */
call SEARCHl(Ei,P' ,TEMPR) /* modified SEARCH */

foreach k, 0S k < 2M do

begin if TEMPL(k) is right of L(k) then
L(k) = TEMPL(k)

i1f TEMPR(k) is left of R(k) then
R(k) - TEMPR(k)

1f L(k) and R(k) bound the same region

then begin P'(k) is in the region bounded
by L(k) and R(k)
P'(k) = null

and
tl(k) - cz(k) -0
TEMP(k) = P'(k)

TEMPNN(K) = 229881 L avck)
if P'(k) ¥ null then
begin if y-value of P'(k) S Ti_l(NN(k))

then t:l(k) -1




procedure CONSTRUCT_S2(E):

e e ey

if y-value of P'(k) 2 T, .1 (NN (Kk))

end
call EXTRACT2(P', tl)

call EXTRACT2(NN,t,)

call EX‘L‘RAC‘I.‘Z(TEMP,tz)
call EXTRACT2 (TEMENN,t,)
foreach k, 0 S k < |TEMP| do
begin P' (|P'| +k) - TEMP (k)
MN(|P'| +k) ~ TEMPNN (k)

end
end

begin

foreach j, 0S j < |E| do begin S(j) = E(j); m(j) = 0 end
foreach §, |E| S 3 < 2|E|N* do S(§) =~ mll

for 1 = 1/a downto 0 do

begin
foreach j, 0s j < ZIElNa do
begin t, () = £5() = 0; Dy (§) = S(I);¥, (1) =7(d)
if S(J) ¥ null
then 1f S(4)(B] S B, (m(})) S SN (T]
then cl(j) -1

else :z(j) -1

end
call EXTRACTZ(Di,tI); call EXTRACTZ(N#i,:l)

sort both D { and N#i by lexicographically by values of
N#i(j) and position of Di(j) in positive x direction

call EXTRACTZ(S,:Z); call EXTRACT2(m,t

for k = log 2|E| £o log 2|E|x¥ -1 do

for §, 0 § < 2|E|x* do .
if BIT,(J) = O then begin S(J+2°) = S(j)

(] +2k) - n(J)

2?

and

T e TN T v s



foreach j, 0S j < 2|E|N* do
begin m(3) - () + L 3/2a) N
t(j) -0
1£S(J) ¥ oull and (S(J)(B] < T, _,("(§)) or - h

SUIT) > B, _ ("))

leiay

Porumvace

o 1
.

then t(j) = 1
end
call EXTRACT2(S,t); call EXTRACT2(r,t)

procedure LOCATE3(G,P): ' l

g Mgt iomt s
S

/* locate the set of points P(0: M-1) in the planar subdivision
induced by G */

begin call CONSTRUCT_#2(E)

’ sort P by x coordinates

P foreach 0 < k < |E| do

- begin P' (k) = B(k)

- foreach |z| < k < 2|E|&" do P'(k) = null
. for 1 = 1l/a downto 0 do ;
- begin call SEARCH(Di,P',TEMPL) /* parallel searching in -
Section 2.2.3 */ .

call SEARCHL(D,,P',TEMPR) /* modified SEARCH */ i
i.

foreach k, 0 < k < 2|E[N do
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if P(k) # null then
begin if TEMPL(k) is right of L(k) then
L(k) = TEMPL(k)
if TEMPR(k) is right of R(k) then
R(k) = TEMPR(k)
if L(k) and R(k) bound the same region
then begin P'(k) is in the region
bounded by L(k)
and R(k)
P'(k) * null
end

end
for § - log 2|E| to log 2|E|¥*-1 do
L€ BIT,)k) =0 then begin Pr+2d) - P (o)
MGk +23) = WK
L(k+23) - L(k)

Rk+23) = R(K)
end

foreach k, 0 < k < 2|E|N" do
begin t(k) ~ O
_LNN(k) - WN(K) + Ue/2]E}) N
if P'(k) ¥ null and
31.-1(““(1‘)) < y~value of
P'(k) S T, ; (NN(K))
then t(k) = 1
end
call EXTRACT2(P',t); call EXTRACT2(NN,t)

end




180

function TANGENTS1(A,B)

/* returns the indices of the extremss of the left tangent and right
tangent of A,B where A and B are two non-intersecting coavex
polygons and y-coordinates of vertices in B > those in A */

begin

/* determine the ranges in which j* and i* lie */

i1f x-value of B(rB) < x-value of A(rA)
then begin a =~ Q0; b= ¢ -0; d~ rn; end;

A* €
else begin a =~ r,; b= 8,; ¢ = ry; d Y end;

A’ A’
/* determine j(i) at selected values of i */
foreach 1, 1 € {a+k,a+2k,...,a+ (k-1)k} do
1)
] MINV_BITONIC ({Yy (»¥y oypoceeo¥y, o]
/* i%* is in the range [L{ ~k+1,i+k-1], determine i* and j*
in this range */
- wvoana (13 < 3P, neask,a+2k,...,0+ (k-1)kD)
foreach i, 1 € {I-k+1,i-k+2,...,i+k-1} do
j(i) - MN..V_BITOMC ({Yi C’Yi C‘Pl’...’yi,d})
j*—mwmmu{i(")li-i k+1l,...,l+k-1D
foreach 1, 1 € (L -k+1,...,i+k=-1] doy)
gyi %=1 >y , j*+1 [* test j*x =i */
and ai -1 > Yy , % 2nd and «
then 1* -1

1,141 " Y, 4%

/* determine the ranges in which J* and i* lie */
if x-value of B(LB) < x-value of A(lA)
then begin a - 8,; b~ %A;
else begin a -~ LA; ben;c~4¢

c~s_;d~ la; end;

n’
ps ¢ T mi end;
/* determine j(i) at selected values of 1 */

- oot

foreach £, 1€ {a+k,a+2k,...,a+ (k-1)k} do
@) .
i MAX_A_BITONIC ([Yi,c’Yi,c+1"“'Y1,d})

< 1w /* property (2) */

P

B -aon g
H .
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function R..TANGENT_INDEX(A,B):

/* returns j* /
begin /* determine the appropriate range for j* */

4.
5.
6.

foreach 1, 1 € {{-k+1,...,i+k-1} do

/% {* is in the range [L-k+1,{+k-1], determine j* and i*
in this range */

- mamama({i]i®) 2 1®), 0 = st a02k, ..., a0 &-1DKD)

3(1) ~ MAX_A_BITONIC ({Yi,caYi’cq.]_”"’Yi,d})

je - mxnwm([{(“li k+1l,...,i4k-1})
foreach i, 1 €
if \ 4% lei j*>Yi j*+1 and o
oy ,1.1" Yy, Ju > 7 Ehen then i¥ - {
return (j*, i*, J*, ix)

1,041 < Yg e 22d

if x-value B(r ) < x-value of A(rA)

thenbegi.na" 0; b"rA; c~0;d~ Y end
else begin a - T, b~ 8,5 ¢ < Ty d - Sgs end
-a+l .

h = Jd-c+1

/* determine j = min{J(i), where Yiray ® min{yi,c-o-h’yi,cﬂh’“"
- *
Yy cth- l)h} for 1 = atk,a+2k,...,ar(k-1)k} */

duplicate {A(a+k),A(a+2k),...,A(a+(k-1)k)} into pattern P2(h-1)
let the resulting array be ¢(0: (h-1l)(k-1)-1);

duplicate {B(c+h),B(c+2h),...,B(c+(h-1)h)} into pattern P1l(k-1)
let the resulting array be D(0: (h-1)(k-1l)-1l);
foreach i, 0 s {1 < (h-1)(k-1) do GAMMA(L) = 6(C(1i),D(1))
foreach i, 0 S 1 < (h-1)(k-1) do
begin J(1) - =
case 1 mod (h-l) of
0: if GAM!‘IA(i) < GAMMA (1+1) then
Jy - c+((1 mod h-1)+1)h
h-2: L1£f GAMMA(1-1) > GAMMA(i) then
J(1) = C+((1 mod h-1)+1)h
else : if GAMMA(Li-1) > GAMMA(L) < GAMMA(i+l)
then J(1) = C+((i mod h-1)+l)h

end
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16.

17.
19.

20.
21.

22.

23.

24,
25.

26.

27.
28.
29.
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/* determine i € {a+k,a+2k,...,a+(k-1)k} such that YL, is the
]
smallast among v, , for 1 € {a+k,...,a+(k-1)k]} £ €

{2-h+l,2-h+2,...,4+h-1} and for some §J € {L-h+l,L-h+2,...,4+h-1} */ e

i = wdalJ(0: (h-1)(k-1)-1)}
duplicate {B(j-h+l,B(j-h+2),...,B(j)} into pattern Pl(k-1)
let the resulting array be D(0: (h-1)(k-1l)-1);
foreach 1, 0 < i < (h~l)(k-l) do GAMMA(1) ~ e(C(1),D(1))
foreach 1, 0 < 1 < (h~1)(k-1) do
begin J'(1) ~ =»
case i mod(h-1) of
0: if GAMMA(L) < GAMMA(i+1) then
J'A) - j-h+1l+ (L mod hel)
h=2: if GAMA(i-1) > GAMMA(i) then
J'AL) - j-h+1+ (i mod h-l)
else: if GAMMA(i-1) > GAMMA(L) < GAMMA(i+1)
then J'(1) = j-h+1+ ({ mod h-l)
end
§' - min {J'(0: (h-1)(k-1)-1)}
1' ~min {1]J') = 3'}

duplicate {B(j),B(j+1l),...,B(j+h-1)] Linto pattern P1l(k-1)
let the resulting array be D(0: (h-1)(k-1)-1)
foreach 1, 0 £ i < (h-1)(k-1) do GAMMA(L) ~ 8(C(1),D(1i))
foreach i, 0 s { < (h-1)(k-1) do
begin J'(L) ~ =

J'(1) « j+ (1 mod(h-1))
h-2: if GAMA(i-1) > GAMMA(L) then
J'() = J+ (1 mod(h-1))
else: Lf GAMA(i-1) > GAMMA(L) < GAMMA(i+l)
then J'(1) = j+ (i mod(h-1))
end
§" = oda{3' (0: (h-1)(k-1)-1)}
i" = min{i]|J' (1) = 3"}

1f 3'=3" then { = a+ (lmla(1',1")/h-1) + 1)k
else if §' < J" then i = a+ (|l1'/h-1) +1)k
else 1 a+ (Li"/h-1] + 1)k

/% g% e 40 for some 1 € (T-kel,I-ke2,...,0I¢k-1} #/

duplicate {A(f-k+1),A(1-k+2),...,A(I)} into pacttern P2(h-1)
let the resulting array be C(O: (h=1) (k-1)-1)

repeat steps 6-20

j* =~ min (§',3")

duplicate {A(1),A(I+1),...,a(I+k-1)} into pattern P2(h-1)
let the resulting array be C(0: (hel)(k-1)-1)

repeat steps 6-20

3* = min(j*,j',3")

raturn (j*)

.

——




procedure MULTI_MAX (D,w,FIRST,LAST)

/* D(0: n~1) is an array of numbers. m(i) is the index of the subarray
to which d(1) belongs, that is D(i) EDrr(i)' Partition D into sub-

sets such that elements in each subset have the same m=values; find
L€ [|Dj_1|,Dj_1| +|nj|1] and |D_,| =0, FIRST({) and LAST(i) are the

indices of the first and the last elements of the subset Dﬂ“) */
begin

/* logarithmically partition each subset: first determine the
first element of each partition */
foreach i, 0S{ < n do
if FIRST(i) = i then t(i) -~ 1
else begin L~ 0
R - n-1
td)~-0
while FIRST(i) > L or LAST(i) < R do
1f i = [(L+R)/2] +1
then begin t(i) = 1

L = FIRST(i)
R < LAST({)
end
. ' else if i < L(L+R)/2]

<
i then R = L(L+R)/2]
‘ else L~ L(L+R)/2]+1

; end

" /* classify each partition */
2. call RANK(D,t,CLASS)
3. foreach 1, 0 S 1{ < n do

if t(1) # 1 then CLASS(i) — CLASS(1)-1

/* determine the submaximum in each partition, i.e., maximum
of the elements in the same class */

it & ot ¢ G

4. foreach 1, 0 € i < n do begin SM(i) = D(L), 7'(i) = m(i) end
b~ : 5. for § - 0 to log n-l do

foreach 1, 0S i < n do 3
1f CLASS(i) =CLASS (1 + (1-23]:']."1 (1))29)

[ then SM(L) = max(SM(L),SM(L + (1-2BIT, (1))2%)) E

. | ) |
o /* concentrate the submaximums into consecutive processors */ ]

; 6. call CONCENTRATE (SM,CLASS,t)
i 7. call CONCENTRATE(m',CLASS,t)
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/%* determine sequentially the maximum of the (at most 2 logn-1l)
of the same subset */
for j = 1 to 2 logn-1 do
begin j =~ j+1
foreach i, 0 = i < n-l do
Lfn'(Q) =n'(1+1)
then SM(1) = max(SM(1),SM(1 + (1-2BIT(L))27))
end

/* concentrate the maximums into consecutive processors */
foreach i, 11 <n do
if n'(i-1) < n'(i) then t(i) =~ 1
else t(1) - O
t(0) - 1
call CONCENTRATE(SM,m',t)
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