
Parallel Algorithms for Image Enhancement andSegmentation by Region Growing with an ExperimentalStudyDavid A. Bader�dbader@eng.umd.eduDavid Harwoodyharwood@umiacs.umd.edu Joseph J�aJ�azjoseph@umiacs.umd.eduLarry S. Davisxlsd@umiacs.umd.eduInstitute for Advanced Computer StudiesUniversity of Maryland, College Park, MD 20742May 12, 1995AbstractThis paper presents e�cient and portable implementations of a useful image enhancement process,the Symmetric Neighborhood Filter (SNF), and an image segmentation technique which makes use ofthe SNF and a variant of the conventional connected components algorithm which we call �-ConnectedComponents. Our general framework is a single-address space, distributed memory programmingmodel. We use e�cient techniques for distributing and coalescing data as well as e�cient combinationsof task and data parallelism. The image segmentation algorithm makes use of an e�cient connectedcomponents algorithm which uses a novel approach for parallel merging. The algorithms have beencoded in Split-C and run on a variety of platforms, including the Thinking Machines CM-5, IBMSP-1 and SP-2, Cray Research T3D, Meiko Scienti�c CS-2, Intel Paragon, and workstation clusters.Our experimental results are consistent with the theoretical analysis (and provide the best knownexecution times for segmentation, even when compared with machine-speci�c implementations.) Ourtest data include di�cult images from the Landsat Thematic Mapper (TM) satellite data. Moree�cient implementations of Split-C will likely result in even faster execution times.Keywords: Parallel Algorithms, Image Processing, Region Growing, Image Enhancement, ImageSegmentation, Symmetric Neighborhood Filter, Connected Components, Parallel Performance.�Also a�liated with Department of Electrical Engineering. The support by NASA Graduate Student Researcher FellowshipNo. NGT-50951 is gratefully acknowledged.ySupported by NSF HPCC/GCAG grant No. BIR-9318183.zAlso a�liated with Department of Electrical Engineering. Supported in part by NSF grant No. CCR-9103135 and NSFHPCC/GCAG grant No. BIR-9318183.xAlso a�liated with the Department of Computer Science and the Center for Automation Research; supported by NSFHPCC/GCAG grant No. BIR-9318183. 1

1 Problem OverviewGiven an n�n image with k grey levels on a p processor machine (p � n2), we wish to develop e�cientand portable parallel algorithms to perform various useful image processing computations. E�ciencyis a performance measure used to evaluate parallel algorithms. This measure provides an indicationof the e�ective utilization of the p processors relative to the given parallel algorithm. For example, analgorithm with an e�ciency near one runs approximately p times faster on p processors than the samealgorithm on a single processor. Portability refers to code that is written independently of low-levelprimitives re
ecting machine architecture or size. Our goal is to develop portable algorithms thatare scalable in terms of both image size and number of processors, when run on distributed memorymultiprocessors.Image segmentation algorithms cluster pixels into homogeneous regions, which, for example, canbe classi�ed into categories with higher accuracy than could be obtained by classifying the individualpixels. Region growing is a class of techniques used in image segmentation algorithms in which,typically, regions are constructed by an agglomeration process that adds (merges) pixels to regionswhen those pixels are both adjacent to the regions and similar in property (most simply intensity) (e.g.[10], [13], [21], [41], [44]). Each pixel in the image receives a label from the region growing process;pixels will have the same label if and only if they belong to the same region. Our algorithm makesuse of an e�cient and fast parallel connected components algorithm which uses a novel approach formerging. For a detailed theoretical and experimental analysis of this algorithm, please refer to [4].In real images, natural regions have signi�cant variability in grey level. Noise, introduced fromthe scanning of the real scene into the digital domain, will cause single pixels outliers. Also, lightingchanges can cause a gradient of grey levels in pixels across the same region. Because of these andother similar e�ects, we preprocess the image with a stable �lter, the Symmetric Neighborhood Filter(SNF) [22], that smooths out the interior pixels of a region to a near-homogeneous level. Also, due torelative motion of the camera and the scene, as well as aperture e�ects, edges or regions are usuallyblurred so that the transition in grey levels between regions is not a perfect step over a single pixel, butramps from one region to the other over several pixels. Our �lter is, additionally, an edge-preserving�lter which can detect blurred transitions such as these and sharpens them while preserving the trueborder location as best as possible. Most preprocessing �lters will smooth the interior of regions at thecost of degrading the edges, or conversely, detect edges while introducing intrinsic error on previouslyhomogeneous regions. However, the SNF is an edge-preserving smoothing �lter which performs wellfor both edge-sharpening and region smoothing. It is an iterative �lter which also can be tuned toretain thin image structures corresponding, e.g., to rivers, roads, etc. A variety of SNF operatorshave been studied, and we chose a single parameter version which has been shown to perform well onremote sensing applications. 2

The majority of previous parallel implementations of the SNF �lter are architecture- or machine-speci�c and do not port well to other platforms (e.g. [19], [30], [31], [32], [37]). For example, [38]gives an implementation of a 15 � 15 SNF �lter on the CMU Warp, a 10-processor linear systolicarray, which takes 4.76 seconds on a 512 � 512 image. We present our SNF �lter execution timingsin Figure 10. In comparison, on a 32-processor TMC CM-5, we take less than 165 milliseconds periteration operating on an image of equivalent size.After the image is enhanced by the SNF, we use a variant of the connected components algorithmfor grey level images, called �-Connected Components, to combine similar pixels into homogeneouslylabeled regions producing the �nal image segmentation. As with the SNF implementations, mostprevious parallel algorithms for segmentation do not port well to other platforms (e.g. [17], [28], [29],[36], [41], [42]).Section 2 addresses the algorithmic model and various primitive operations we use to analyze thealgorithms. Section 3 discusses the test images, as well as the data layout on the parallel machines.Our segmentation process overview which includes discussion of SNF and 1-Nearest Neighbor �lters,and the �-Connected Components algorithm, is given in Section 4. Finally, Sections 5 and 6 de-scribe the parallel implementations of the Symmetric Neighborhood Filter algorithm and �-ConnectedComponents, respectively, and present algorithmic analyses and empirical results.The experimental data obtained re
ect the execution times from implementations on the TMCCM-5, IBM SP-1 and SP-2, Meiko CS-2, Cray Research T3D, and the Intel Paragon, with the number ofparallel processing nodes ranging from 16 to 128 for each machine when possible. The shared memorymodel algorithms are written in Split-C [14], a shared memory programming model language whichfollows the SPMD (single program multiple data) model on these parallel machines, and the sourcecode is available for distribution to interested parties.2 Block Distributed Memory ModelWe use the Block Distributed Memory (BDM)Model ([25], [26]) as a computation model for developingand analyzing our parallel algorithms on distributed memory machines. This model allows the designof algorithms using a single address space and does not assume any particular interconnection topology.The model captures performance by incorporating a cost measure for interprocessor communicationinduced by remote memory accesses. The cost measure includes parameters re
ecting memory latency,communication bandwidth, and spatial locality. This model allows the initial placement of data andprefetching.The complexity of parallel algorithms will be evaluated in terms of two measures: the computa-tion time Tcomp(n; p), and the communication time Tcomm(n; p). The measure Tcomp(n; p) refers to themaximum of the local computations performed on any processor as measured on the standard sequen-3

tial model. The communication time Tcomm(n; p) refers to the total amount of communications timespent by the overall algorithm in accessing remote data. Using the BDM model, an access operationto a remote location takes � + 1 time, and l prefetch read operations can be executed in � + l time,where � is the normalized maximum latency of any message sent in the communications network. Noprocessor can send or receive more than one word at a time.Two useful data movement patterns, matrix transposition and broadcasting, are discussed next.2.1 Matrix TranspositionGiven a q � p matrix on a p processor machine, where p divides q, the matrix transposition consistsof rearranging the data such that the �rst qp rows of elements are moved to the �rst processor, thesecond qp rows to the second processor, and so on, with the last qp rows of the matrix moved to thelast processor. An e�cient matrix transposition algorithm consists of p iterations such that, duringiteration i, (1 � i � p � 1), each processor Pt prefetches the appropriate block of qp elements fromprocessor P(t+i)modp. The BDM algorithm and analysis for the matrix transpose data movement isgiven in [4] and is similar to that of the LogP model [16]. This matrix transpose algorithm has thefollowing complexity: (Tcomm(n; p) = � + �q � qp� ;Tcomp(n; p) = O(q): (1)2.2 BroadcastingAnother useful data movement primitive is broadcasting. An e�cient BDM algorithm is given [4],[25] which takes q elements on a single processor and broadcasts them to the other p � 1 processorsusing just two matrix transpositions.An e�cient algorithm to broadcast q elements from a single processor to p processors is based onmatrix transposition, where q is assumed to be larger than p. Processor 0 holds the q elements to bebroadcast in the �rst column of matrix A. We compute the matrix transpose of A, thus, giving everyprocessor qp elements. Each processor then locally rearranges the data so that an additional matrixtranspose will result in each processor holding a copy of all the q elements in its column of A [25].The analysis of this broadcasting algorithm is simple. Since this algorithm just performs twomatrix transpositions, the complexities of the broadcasting algorithm are(Tcomm(n; p) = 2 �� + �q � qp�� ;Tcomp(n; p) = O(q): (2)Performance analysis given in [4] re
ects the execution times from implementations on the CM-5,SP-2, and CS-2, each with p = 32 parallel processing nodes. The algorithms are written in Split-C,a parallel extension of the C programming language, primarily intended for distributed memory mul-tiprocessors. Split-C can express the capabilities of the BMD model and provides a shared global4

address space, constructs to express data layout, and split-phase assignments. The split-phaseassignment operator, :=, prefetches data from the speci�ed remote location into local memory. Com-putation can be overlapped with the remote request, and the sync() function allows each processor tostall until all data prefetching is complete. The Split-C language also supplies a barrier() functionfor the global synchronization of the processors.3 Image (Data) Layout and Test ImagesA straightforward data layout is used in these algorithms for all platforms. The input image is ann � n matrix of integers. We assign tiles of the image as equally as possible among the processors.If p is an even power of two, i.e. p = 2d, for even d, the processors will be arranged in a pp � pplogical grid. For future reference, we will denote the number of rows in this logical grid as v and thenumber of columns as w. For odd d, we assign the number of rows of the logical processor grid tobe v = 2b d2 c, and the number of columns to be w = 2d d2 e. Each processor initially owns a tile of sizenv � nw . For future reference, we assign q = nv and r = nw . We assume that the p processors are labeledconsecutively from 0 to p � 1 and are assigned in row-major order to the logical processor grid justdescribed.Our test images shown in Appendix A are divided into two categories, arti�cial and real. Thearti�cial images, given in Figures 6 and 7, range in size from 128� 128 to 512� 512 pixels. We useLandsat satellite data to represent real images; Figure 8 is from band 5 of a South American scene,and Figure 9 is band 4 taken from a view of New Orleans. Both of these images are 256 grey level,512� 512 pixel arrays from single bands of the Landsat Thematic Mapper (TM) satellite data.4 Image Segmentation - OverviewImages are segmented by running several phases of the SNF enhancement algorithm, followed byseveral iterations of the 1-Nearest Neighbor �lter, and �nally, �-Connected Components. See Figure 1for a data
ow diagram of the complete segmentation process.4.1 Symmetric Neighborhood FilterDue to noise and blur, regions in real images are seldom homogeneous in grey level and sharp alongtheir borders. Preprocessing the image with an enhancement �lter that reduces these e�ects will yieldbetter segmentation results.The SNF �lter compares each pixel to its 8-connected neighbors. (Note that the 1-pixel imageboundary is ignored in our implementation.) The neighbors are inspected in symmetric pairs aroundthe center, i.e. N � S, W � E, NW � SE, and NE � SW; see Figure 2 for diagram of a 3 � 35

Calculate σ

- CCδ

Segmented Image

Segmentation

εSNF 100% , =

ε

SNF 100% , = 0ε

1-NN

Deblur

Flatten Interiors

Sharpen Edges

Remove singularities

κσ

Crop Border Pixels

 SNF n = 4 , = 0

Raw Image

Figure 1: Segmentation ProcessFigure 2: Symmetric Pairs of Pixelsneighborhood centered around a pixel, with the symmetric pairs colored the same. Essentially, theone pixel in each pair closest to the center in grey level is selected, but only if its intensity is within �of the center pixel, otherwise, the center pixel's value is used. If the center pixel is equidistant fromthe pair, or is a local minima or maxima, its value is selected instead. The collection of four selectedpixels are averaged together, and �nally, the center pixel is replaced by the mean of this average andthe center pixel's current grey level. This latter average is similar to that of a damped gradient descentwhich yields a faster convergence.The �rst phase of segmentation is a combination of three iterative SNF �lters. The �rst step runsfor a small number of iterations (e.g. four) with � = 0 and is used to preserve edges. We de�ne � tobe the median of the standard deviations of all 3� 3 neighborhoods centered around each non-borderpixel in the image. See [5] for a parallel median algorithm. To
atten the interior of regions, SNFis iterated with � = ��, where � is typically set to 2:0 for this application. The stopping criteria for6

this iterative �lter occurs when the percentage of \�xed" pixels reaches 100.0 %, this percentage hasnot changed for three iterations, or when we reach 200 iterations, whichever comes �rst. Finally, wesharpen the borders of regions with SNF using � = 0, again stopping the iterative process when thepixels have �xed, as de�ned above. The resulting image has near-homogeneous regions with sharptransitions between bordering regions.4.2 1-Nearest Neighbor FilterSingle pixel regions rarely can be classi�ed, even under the best circumstances. Therefore, we preferto �lter these out as our last enhancement stage. The 1-Nearest Neighbor �lter removes single pixeloutliers by replacing each pixel in the image with the mean of its value and the grey level valueof an adjacent pixel which is closest to its current value. Note that one application of the 1-NearestNeighbor �lter may cause small neighborhoods of pixels to oscillate. Therefore, we apply the 1-NearestNeighbor as an iterative �lter, stopping when the input and output images are identical. For fasterconvergence, we use a damped approach which assigns an output pixel to the mean of its original andnearest neighbor values. Typically, we converge in roughly six to eight iterations.Since no image enhancement occurs along the pixels of image borders, we crop the border so thatadditional segmentation techniques will not use this raw data to merge dissimilar regions via pathsthrough the noisy, uncorrected pixels. For this application, we crop the border by a width of threepixels.4.3 �-Connected ComponentsThe image processing problem of determining the connected components of images is a fundamentaltask of imaging systems (e.g. [1], [12], [13], [18], [20], [23], [24]). The task of connected componentlabeling is cited as a fundamental computer vision problem in the DARPA Image Understandingbenchmarks ([33], [39]), and also can be applied to several computational physics problems such aspercolation ([8], [35]) and various cluster Monte Carlo algorithms for computing the spin models ofmagnets such as the two-dimensional Ising spin model ([3], [6], [34]). All pixels with grey level (or`color') 0 are assumed to be background, while pixels with color > 0 are foreground objects. Aconnected component in the image is a maximal collection of uniformly colored pixels such that apath exists between any pair of pixels in the component. Note that we are using the notion of 8-connectivity, meaning that two pixels are adjacent if and only if one pixel lies in any of the eightpositions surrounding the other pixel. Each pixel in the image will receive a label; pixels will have thesame label if and only if they belong to the same connected component. Also, all background pixelswill receive a label of 0.It is interesting to note that, in the previous paragraph, we de�ned connected components as7

a maximal collection of uniform color pixels such that a path existed between any pair of pixels.The conventional algorithm assumes that there is a connection between two adjacent pixels if andonly if their grey level values are identical. We now relax this connectivity rule and present it as amore general algorithm called �-Connected Components. In this approach, we assume that twoadjacent pixels with values x and y are connected if their absolute di�erence jx� yj is no greater thanthe threshold �. Note that setting the parameter � to 0 reduces the algorithm to the classic connectedcomponents approach. This algorithm is identical in analysis and complexity to the conventionalconnected components algorithm, as we are merely changing the criterion for checking the equivalenceof two pixels.For the �nal phase in the segmentation process, �-Connected Components is applied to the en-hanced image, using � = ��, where the values of � and � are the same as those input to the en-hancement �lters. The analysis for the �-Connected Components algorithm is given in Section 6,equation (7). Thus, we have an e�cient algorithm for image segmentation on parallel computers.4.4 Test ImagesWe use the Landsat Thematic Mapper (TM) raw satellite data for our test images. Each test image isa 512�512 pixel subimage from a single TM band. Figure 8 shows a subimage from band 5, an imagefrom South America, and Figure 9 is taken from band 4 of New Orleans data. These images have 256grey levels and also have post-processing enhancement of the brightness for visualization purposes inthis paper. We have applied SNF enhancement to these images, and the results appear below theoriginal images. For the band 5 data, Figure 8 shows the results of the enhancement, with both thefull image, and an enlargement of a structure in the river of this image. A further segmentation with� = �� using the �-Connected Components algorithm is given at the bottom of Figures 8 and 9.5 Symmetric Neighborhood Filter - Parallel Implemen-tationMost common enhancement �lters will smooth the interior of regions at the cost of the edges, or �ndedges while introducing intrinsic error on previously homogeneous regions. However, the SymmetricNeighborhood Filter (SNF) is an edge-preserving smoothing �lter, meaning that it performs well forboth edge sharpening and region
attening. The SNF is a convergent �lter which can be run for apredetermined number of iterations, or until a percentage of the image pixels are �xed in grey level. Avariety of SNF operators have been studied, and we chose a single parameter version which has beenshown to perform well. Previous parallel implementations of the SNF have been based around specialpurpose image processing platforms, including data parallel SIMD machines such as the TMC CM-2and the MasPar MP-1 ([30] and [31]), video-rate VLSI implementations ([32]), pipelined computers8

([19]), and systolic linear arrays such as the Warp ([2], [37], and [38]).A useful data movement needed for this 3� 3 local SNF �lter is the fetching of tile-based ghostcells ([15], [43]) which contain shadow copies of neighboring tiles' pixel borders. These ghost cellsare used in the selection process when recalculating our tile's border. Suppose each tile of the imageallocated to a processor is q � r pixels. We have four ghost cell arrays, ghostN and ghostS whichhold r pixels each, and ghostW and ghostE which hold q pixels each. In addition, four single pixelghost cells for diagonal neighboring pixels are ghostNW, ghostNE, ghostSE, and ghostSW. Anexample of these ghost cells is pictured in Figure 3.
ghostN

ghostS

ghostEghostW

ghostNE

ghostSEghostSW

r

P i-1, j-1 P i-1, j P i-1, j+1

P i, j+1P i, j-1

P i+1, j-1 P i+1, j P i+1, j+1

ghostNW

P i, j

 q

Figure 3: An example of Ghost CellsThe analysis for the prefetching of ghost cells is simple. We can divide the prefetching into eightseparate data movements, one for each direction. Since each movement is a permutation, i.e. it has aunique source and destination, it can be routed with little or no contention. The prefetching of thenorth and south ghost cell arrays each take Tcomm(n; p) � � + r, the east and west ghost cell arrayseach take Tcomm(n; p) � � +q, and the diagonal four ghost cells each take Tcomm(n; p) � � +1. Thus,the entire ghost cell prefetching takes8<: Tcomm(n; p) � 8� + 4 npp + 4;Tcomp(n; p) = O� npp�: (3)A second data movement needed for SNF is the reduction operation. Each processor i has a datavalue, Zi, and we need the value of Z0�Z1� : : :�Zp�1, where � is any associative operator. Parallel9

computers can handle this e�ciently [7], and Split-C implements this as a primitive library function.A simple algorithm consists of p � 1 rounds that can be pipelined [25]. Each processor Pi initializesa local sum to Zi. During round r, each processors then reads Z(i+r)modp, for 1 � r � p � 1, andadds this value to the local sum. Since these rounds can be realized with p� 1 pipelined prefetch readoperations, the resulting complexity is(Tcomm(n; p) � � + p� 1;Tcomp(n; p) = O(p): (4)An SPMD algorithm for an iteration of SNF on Processor i:Algorithm 1 Symmetric Neighborhood FilterBlock Distributed Memory Model Algorithm.Input:f i g is my processor number;f p g is the total number of processors, labeled from 0 to p� 1;f A g is the n� n input image.f � g is input parameter.begin0. Processor i gets an npp � npp tile of image A, denoted Ai.1. Prefetch Ghost Cells.2. For each local pixel Ai;<x;y> that has not �xed yet, using �, compute Bi;<x;y>, the updatedpixel value. Decide if local pixel position < x; y > is now �xed.3. Set fi equal to the number of local pixels that have remained �xed.4. Reduce f =Pp�1i=0 fi.5. Output fn2 � 100%.endFor each iteration of the SNF operator on a p-processor machine, the theoretical analysis is asfollows. The complexities for Step 1 and Step 4 are shown in (3) and (4), respectively. Steps 2 and 3are completely local and take O�n2p �. Thus, for p � n, the SNF complexities are8>><>>: Tcomm(n; p) � 9� + 4 npp + 3 + p;Tcomp(n; p) = O� npp + p�+ O�n2p �= O�n2p �: (5)Figure 10 in Appendix B shows the convergence of the SNF enhancement during the second phaseof the smoothing �lter. As can be seen, there is a fast convergence of the pixels asymptotically closeto 100% �xed. Because �xed pixels are not recalculated, the time per iteration quickly ramps downfrom approximately 165 ms/iteration to 26 ms/iteration on a 512� 512 TM image.10

The complexity of an iteration of the 1-Nearest Neighbor �lter is simple, namely, a fetch of ghostcells and one pass through the image tile on each processor. The ghost cell analysis is given in (3),and the update of pixels takes O�n2p �. Therefore, the 1-Nearest Neighbor algorithm has complexities8<: Tcomm(n; p) � 8� + 4 npp + 4;Tcomp(n; p) = O�n2p �: (6)6 �-Connected Components of Greyscale ImagesThe high-level strategy of our connected components algorithm uses the well-known divide and conquertechnique. Divide and conquer algorithms typically use a recursive strategy to split problems intosmaller subproblems and, given the solutions to these subproblems, merge the results into the �nalsolution. It is common to have either an easy splitting algorithm and a more complicated merging,or vice versa, a hard splitting, following by easy merging. In our parallel connected componentsalgorithm, the splitting phase is trivial and implicit, while the merging process requires more work.Each processor holds a unique tile of the image, and hence can �nd the initial connected componentsof its tile by using a standard sequential algorithm based upon breadth-�rst search. Next, the algorithmiterates log p times1, alternating between combining the tiles in horizontal merges of vertical bordersand vertical merges of horizontal borders. Our algorithm uses novel techniques to perform themerges and to update the labels. We will attempt to give an overview of this algorithm; for acomplete description, see [4].We merge the p subimages into larger and larger image sections with consistent labelings. Therewill be log p iterations since we cut the number of uncombined subimages in half during each iteration.Unlike previous connected components algorithms, we use a technique which identi�es processors asgroup managers or clients during each phase. The group managers have the task of organizingthe retrieval of boundary data, performing the merge, and creating the list of label changes. Oncethe group managers broadcast these changes to their respective clients, all processors must use theinformation to update their tile hooks, data structures which point to connected components on localtile borders. See Figure 4 for an illustration of the tile hook data structure in which three tile hookscontain the information needed to update the border pixels. The clients assist the group managersby participating in the coalescing of data during each merge phase. Finally, the complete relabelingis performed at the very end using information from the tile hooks.Without loss of generality, we �rst perform a horizontal merge along every other vertical border,then a vertical merge along every other horizontal border, alternating orientation until we have mergedall the tiles into one consistent labeling. We merge vertical borders exactly logw times, where w is1Note that throughout this paper \logx" will always be the logarithm of x to the base b = 2, i.e. log2 x.11

the number of columns in the logical processor grid. Similarly, we merge horizontal borders exactlylog v times, where v is the number of rows in the logical processor grid.During each merge, a subset of the processors will act as group managers. These designatedprocessors will prefetch the necessary border information along the column (or row) that they arelocated upon in the logical processor grid, setting up an equivalent graph problem, running a sequentialconnected components algorithm on the graph, noting any changes in the labels, and storing thesechanges ((�i; �i) pairs) in a shared structure. The clients decide who their current group manager isand wait until the list of label changes is ready. They retrieve the list, and all processors make thenecessary updates to a proper subset of their labels.The merging problem is converted into �nding the connected components of a graph representedby the border pixels. We use an adjacency list representation for the graph, and add vertices to thegraph representing colored pixels. Two types of edges are added to the graph. First, pixels are scanneddown the left (or upper) border, and edges are strung linearly down the list between pixels containingthe same connected component label. The same is done for pixels on the right (or lower) border. Thesecond step adds edges between pixels of the left (upper) and right (lower) border which are adjacentto each other and di�er by no greater than � in grey level. We scan down the left column (upperrow) elements, and if we are at a colored pixel, we check the pixels in the right column (lower row)adjacent to it. In order to add the �rst type of edges, the pixels are sorted according to their labelfor both the left (upper) and right (lower) border by using radix sort2. A secondary processor is usedto prefetch and sort the border elements on the opposite side of the border from the group manager,and the results are then sent to the group manager.
Border Pixels on a Tile

Hook #3

Hook #2Hook #1

2

8

8

5

55

5

2

5

Figure 4: An example of Tile HooksAt the conclusion of each of the log p merging steps, only the labels of pixels on the border of eachtile are updated. There is no need to relabel interior pixels since they are not used in the merging2Note that whenever radix sort is mentioned in this paper, the actual coding uses the standard UNIX quicker-sortfunction for smaller sorts, and radix sort for larger sorts, using whichever sorting method is fastest for the given input size.12

stage. Only boundary pixels need their labels updated. Taking advantage of this, we do not need topropagate boundary labels inward to recolor a tile's interior pixels after each iteration of the merge.This is one of the attractive highlights of our newly proposed algorithm; namely, the drastically limitedupdates needed during the merging phase.At the end of the last merging step, each processor must update its interior pixel labels. Each hookdescribed above is compared to the current label at the hook's o�set position index. If the hook's labellabel[i] is di�erent from the current label at position i, the processor will run a breadth-�rst searchrelabeling technique beginning at pixel i, relabeling all the connected pixels' labels to the new label.6.1 Parallel Complexity for �-Connected ComponentsThus, for p � n, the total complexities for the parallel �-Connected Components algorithm are [4]8<: Tcomm(n; p) � (4 log p)� + (24n+ 2p) = (4 log p)� + O�n2p �;Tcomp(n; p) = O�n2p �: (7)Clearly, the computational complexity is the best possible asymptotically. As for the communi-cation complexity, intuitively a latency factor � has to be incurred during each merge operation, andhence the factor (log p)� .The majority of previous connected components parallel algorithms are architecture- or machine-speci�c, and do not port easily to other platforms. Table I shows some previous running times forparallel implementations of connected components on the \DARPA II Image" given in Figure 6. Thesecond to last column corresponds to a normalized measure of the amount of work per pixel, wherethe total work is de�ned to be the product of the execution time and the number of processors. Inorder to normalize the results between �ne- and coarse-grained machines, we divide the number ofprocessors in the �ne-grained machines by 32 to compute the work per pixel site.Our implementation also performs better compared with other recent parallel region growing codes([13]). Note that this implementation uses data parallel Fortran on the TMC CM-2 and CM-5 ma-chines, and lower-level implementations on the CM-5 using Fortran with several message passingschemes. For example, Figure 7 shows two of the more di�cult images from [13] which are segmentedby region growing. Image 3 is a 256-grey level 128� 128 image, containing seven homogeneous circles.Image 6 is a binary 256 � 256 image of a tool. Tables II and III show the comparison of executiontimes for Images 3 and 6, respectively. Because these images are noise-free, our algorithm skips theimage enhancement task.Execution timings for segmentation of the 512 � 512 Landsat TM band 5 subimage, shown inFigure 8, are given in Table IV. Corresponding results are given in Table V for a larger 1024� 1024subimage of the same view. Note that the SNF and 1-Nearest Neighbor �lters are iterative and datadependent, with timings that ramp down after the initial iteration; thus, only the slowest timing for13

Year Researcher(s) Machine PE's Time work/pix Notes1989 Kanade and Webb [27] Warp 10 4.34 s 166 �s shrink/expand1989 Weems, Riseman, Hanson, Alliant FX-80 8 7.225 s 220 �sand Rosenfeld [40] Sequent Symmetry 81 8 15.12 s 461 �sWarp 10 3.98 s 152 �sTMC CM-2 32768 140 ms 547 �s1992 Choudhary and Thakur [11] Intel iPSC/2 32 1.914 s 234 �s multi-dim. divide & conquer(partitioned input)1.649 s 201 �s multi-dim. divide & conquer(complete im./PE)2.290 s 280 �s multi-dim. divide & conquer(cmplt. + collect. comm.)Intel iPSC/860 32 1.351 s 165 �s multi-dim. divide & conquer(partitioned input)1.031 s 126 �s multi-dim. divide & conquer(complete im./PE)947 ms 116 �s multi-dim. divide & conquer(cmplt. + collect. comm.)Encore Multimax 16 521 ms 31.8 �s multi-dim. divide & conquer(partitioned input)1994 Choudhary and Thakur [12] TMC CM-5 32 456 ms 55.7 �s multi-dim. divide & conquer(partitioned input)398 ms 48.6 �s multi-dim. divide & conquer(complete im./PE)452 ms 55.2 �s multi-dim. divide & conquer(cmplt. + collect. comm.)1994 Bader and J�aJ�a [4] TMC CM-5 32 368 ms 44.9 �sIBM SP-1 4 370 ms 5.65 �sIBM SP-2-WD 4 243 ms 3.71 �sMeiko CS-2 2 809 ms 6.17 �s32 301 ms 36.7 �s1995 Bader et al. IBM SP-2-TH 4 260 ms 3.97 �s(this paper) 8 257 ms 7.84 �s16 285 ms 17.4 �sIBM SP-2-WD 4 245 ms 3.74 �s8 238 ms 7.26 �s16 262 ms 16.0 �sTMC CM-5 16 474 ms 28.9 �sMeiko CS-2 4 627 ms 9.57 �s8 393 ms 12.0 �s16 351 ms 21.4 �s32 317 ms 38.7 �sCray T3D 2 472 ms 3.60 �s4 470 ms 7.17 �s8 479 ms 14.6 �sTable I: Implementation Results of Parallel Connected Components of DARPA II Image (512 � 512)a single iteration is reported. Figure 5 shows scalability of the segmentation algorithm running onthe 1024� 1024 subimage, with various machine con�gurations of the CM-5, SP-2, and T3D. For thisimage, the �rst, second, and third phases of SNF iterate 4, 56, and 47 times, respectively. Also, the1-Nearest Neighbor task contains 11 iterations. Table VI compares the best-known sequential code forSNF to that of the parallel implementation. Again, this test uses the 1024� 1024 image, and iterateswith the counts speci�ed above. The sequential tests are performed on fast workstations dedicatedto a single user and re
ect only the time spent doing the �lter calculations. These empirical resultsshow our segmentation algorithm scaling with machine and problem size, and exhibiting superiorperformance on several parallel machines when compared with state-of-the-art sequential platforms.7 Implementation NotesNote that the performance results for the CM-5 are for Split-C (version 1.2) programs linked withthe CM-5 CMMDMessage Passing Libraries (version 3.2), and IBM SP-2 results use MPL for messagepassing. The Meiko CS-2 port of Split-C uses the Elan communications libraries. For the Cray T3D,Split-C is built on top of AC (version 2.6) [9] and shmem from Cray Research.14

Year Researcher(s) Machine PE's Time work/pix Notes1994 Copty et al. [13] TMC CM-2 8192 13.911 s 217 ms data parallel16384 9.650 s 302 ms data parallelTMC CM-5 32 42.931 s 83.9 ms data parallel9.567 s 18.5 ms message passing, comm15.537 s 10.8 ms message passing, comm21995 Bader et al. TMC CM-5 16 81.6 ms 79.7 �s(this paper) 32 72.0 ms 141 �sIBM SP-2-WD 4 62.9 ms 15.4 �s8 76.0 ms 37.1 �sMeiko CS-2 4 99.6 ms 24.3 �s8 90.9 ms 44.4 �s16 88.8 ms 86.7 �sTable II: Implementation Results of Segmentation Algorithm on Image 3 from [13], seven grey circles(128 � 128)The source code for the parallel algorithms presented in this paper is available for distribution tointerested parties.8 AcknowledgementsWe would like to thank the UMIACS parallel systems sta� for their help and machine maintenancewhile developing this research on the 16-node IBM SP-2 and 32-processor UMIACS CM-5, and theCASTLE group at UC Berkeley, especially the help and encouragement from Arvind Krishnamurthy,Lok Tin Liu, David Culler, Steve Luna, and Rich Martin. Computational support on UC Berkeley's64-processor TMC CM-5 and 8-processor Intel Paragon was provided by NSF Infrastructure Grantnumber CDA-8722788. We also thank Toby Harness and the Numerical Aerodynamic SimulationSystems Division of NASA's Ames Research Center for use of their 128-processor CM-5 and 128-node(all wide) IBM SP-2.We recognize Charles Weems at the University of Massachusetts for providing the DARPA testimage suite, and Nawal Copty at Syracuse University for providing additional test images.Additional thanks goes to Argonne National Labs for allowing use of their 128-node IBM SP-1,and to the Maui High Performance Computing Center for use of their 400-node IBM SP-2 machine.William Gropp, from the Mathematics and Computer Science Division of Argonne National Labs,provided signi�cant help with the IBM SP-1 message passing interface. Also, Klaus Schauser, OscarIbarra, and David Probert of University of California, Santa Barbara, provided access to the 64-node UCSB Meiko CS-2. The Meiko CS-2 Computing Facility was acquired through NSF CISEInfrastructure Grant number CDA-9218202, with support from the College of Engineering and theUCSB O�ce of Research, for research in parallel computing.15

Year Researcher(s) Machine PE's Time work/pix Notes1994 Copty et al. [13] TMC CM-2 8192 20.538 s 80.2 ms data parallel16384 13.955 s 109 ms data parallelTMC CM-5 32 77.648 s 37.9 ms data parallel12.290 s 6.00 ms message passing, comm17.334 s 3.58 ms message passing, comm21995 Bader et al. TMC CM-5 16 223 ms 54.4 �s(this paper) 32 175 ms 85.5 �sIBM SP-2-TH 4 202 ms 12.3 �s8 187 ms 22.8 �s16 177 ms 43.2 �sIBM SP-2-WD 4 194 ms 11.8 �s8 176 ms 21.5 �s16 164 ms 40.0 �sMeiko CS-2 4 414 ms 25.3 �s8 274 ms 33.5 �s16 204 ms 49.8 �s32 193 ms 94.2 �sCray T3D 4 396 ms 24.2 �s8 443 ms 54.1 �sTable III: Implementation Results of SegmentationAlgorithm on Image 6 from [13], a binary tool (256�256)Arvind Krishnamurthy provided additional help with his port of Split-C to the Cray Research T3D.The Jet Propulsion Lab/Caltech Cray T3D Supercomputer used in this investigation was providedby funding from the NASA O�ces of Mission to Planet Earth, Aeronautics, and Space Science. Wealso acknowledge William Carlson and Jesse Draper from the Supercomputing Research Center forwriting the parallel compiler AC on which the T3D port of Split-C has been based.Please see http://www.umiacs.umd.edu/~dbader for additional performance information.
16

Machine PE's Decide Noisy Calc. � Max. SNF iter. Max. 1-NN iter. Crop �-CCTMC CM-5 16 145 605 318 317 30.3 91132 74.0 307 162 161 15.3 575IBM SP-2-TH 4 253 496 303 339 17.0 5378 170 347 194 215 9.13 40116 88.9 266 101 118 5.24 351IBM SP-2-WD 4 251 466 301 339 16.5 5158 165 322 190 205 8.66 38216 87.8 255 96.7 108 4.88 33332 59.7 348 66.5 72.2 3.16 322Meiko CS-2 4 294 1335 681 615 71.7 18008 169 772 361 323 36.2 105716 86.1 488 186 167 17.8 64032 52.7 376 177 111 9.05 488Cray T3D 4 161 1012 296 235 12.3 9328 81.1 697 147 118 6.16 75716 40.6 496 73.6 59.4 3.10 70632 20.6 353 36.9 29.5 1.59 734Table IV: Segmentation Execution Time (in ms) for 512 � 512 band 5 imageMachine PE's Decide Noisy Calc. � Max. SNF iter. Max. 1-NN iter. Crop �-CCTMC CM-5 16 576 2347 1300 1275 124 321832 292 1232 657 641 62.4 1963IBM SP-2-TH 4 963 1875 1185 1288 66.8 18288 563 1142 679 72.9 34.0 132016 287 675 349 377 17.7 885IBM SP-2-WD 4 958 1795 1130 1272 64.3 17348 554 1063 645 713 32.8 111316 283 628 339 365 17.0 83932 169 596 202 212 9.71 721Cray T3D 4 918 3880 1460 1209 48.9 30838 324 1021 586 472 24.5 178816 162 1075 298 236 12.4 128732 81.3 712 147 118 6.19 108364 40.6 506 73.7 59.4 3.10 1019Table V: Segmentation Execution Time (in ms) for 1024 � 1024 band 5 image17

Figure 5: Scalability of the Segmentation AlgorithmMachine PE's Time (sec.) for 107 iter.Sun Sparc 10 - Model 40 1 104Sun Sparc 20 - Model 50 1 83.6IBM SP-2-TH 1 78.2DEC AlphaServer 2100 4/275 1 48.1TMC CM-5 16 35.232 18.5IBM SP-2-TH 4 30.98 24.416 12.5Cray T3D 4 45.38 20.916 10.632 5.35Table VI: Total SNF Execution Time (in seconds) for 1024 � 1024 band 5 image18

A Test ImagesA.1 Arti�cial Scenes
Figure 6: DARPA II Image Understanding Benchmark Test Image (512 � 512)

Image 3 (128� 128) Image 6 (256� 256)Figure 7: Test Images from [13]A.2 Real Scenes 19

512� 512 Image 64� 64 Subimage
Original Image (South America)

After Image Enhancement
2071 regions Final SegmentationFigure 8: Landsat TM Band 5 Images20

512� 512 Image 128� 128 Subimage
Original Image (New Orleans)
After Image Enhancement

2638 regions Final SegmentationFigure 9: Landsat TM Band 4 Images21

B Convergence and Execution Time for Band 5 Image

Figure 10: SNF Statistics for a 512 � 512 Image on a 32-processor CM-5References[1] H. Alnuweiri and V. Prasanna. Parallel Architectures and Algorithms for Image ComponentLabeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:1014{1034, 1992.[2] M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, O. Menzilcioglu, and J.A. Webb.The Warp Computer: Architecture, Implementation, and Performance. IEEE Transactions onComputers, C-36:1523{1538, 1987.[3] J. Apostolakis, P. Coddington, and E. Marinari. New SIMD Algorithms for Cluster Labeling onParallel Computers. Int. J. Mod. Phys. C, 4:749, 1993.[4] D. A. Bader and J. J�aJ�a. Parallel Algorithms for Image Histogramming and Connected Com-ponents with an Experimental Study. Technical Report CS-TR-3384 and UMIACS-TR-94-133,UMIACS and Electrical Engineering, University of Maryland, College Park, MD, December 1994.To be presented at the Fifth ACM SIGPLAN Symposium of Principles and Practice of ParallelProgramming, Santa Barbara, CA, July 1995.[5] D. A. Bader and J. J�aJ�a. A Practical Parallel Algorithm for Median Finding, Selection, and LoadBalancing. In preparation., 1995.[6] C.F. Baillie and P.D. Coddington. Cluster Identi�cation Algorithms for Spin Models - Sequentialand Parallel. Concurrency: Practice and Experience, 3(2):129{144, 1991.22

[7] G.E. Blelloch. Pre�x sums and their applications. Technical Report CMU-CS-90-190, School ofComputer Science, Carnegie Mellon University, November 1990.[8] R.C. Brower, P. Tamayo, and B. York. A Parallel Multigrid Algorithm for Percolation Clusters.Journal of Statistical Physics, 63:73, 1991.[9] W.W. Carlson and J.M. Draper. AC for the T3D. Technical Report SRC-TR-95-141, Supercom-puting Research Center, Bowie, MD, February 1995.[10] Y.-L. Chang and X. Li. Adaptive Image Region-Growing. IEEE Transactions on Image Process-ing, 3(6):868{872, 1994.[11] A. Choudhary and R. Thakur. Evaluation of Connected Component Labeling Algorithms onShared and Distributed Memory Multiprocessors. In Proceedings of the 6th International ParallelProcessing Symposium, pages 362{365, March 1992.[12] A. Choudhary and R. Thakur. Connected Component Labeling on Coarse Grain Parallel Com-puters: An Experimental Study. Journal of Parallel and Distributed Computing, 20(1):78{83,January 1994.[13] N. Copty, S. Ranka, G. Fox, and R.V. Shankar. A Data Parallel Algorithm for Solving the RegionGrowing Problem on the Connection Machine. Journal of Parallel and Distributed Computing,21(1):160{168, April 1994.[14] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken,and K. Yelick. Introduction to Split-C. Computer Science Division - EECS, University of Cali-fornia, Berkeley, version 1.0 edition, March 6, 1994.[15] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken,and K. Yelick. Programming in Split-C. In Proceedings of Supercomputing '93, pages 262{273,Portland, OR, November 1993.[16] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.[17] H. Derin and C.-S. Won. A Parallel Image Segmentation Algorithm Using Relaxation withVarying Neighborhoods and Its Mapping to Array Processors. Computer Vision, Graphics, andImage Processing, 40:54{78, 1987.[18] M.B. Dillencourt, H. Samet, and M. Tamminen. Connected Component Labeling of BinaryImages. Technical Report CS-TR-2303, Computer Science Department, University of Maryland,August 1989.[19] R. Goldenberg, W.C. Lau, A. She, and A.M. Waxman. Progress on the Prototype PIPE. InProceedings of the 1987 Workshop on Computer Architecture for Pattern Analysis and MachineIntelligence, pages 67{74, Seattle, WA, October 1987.[20] Y. Han and R.A. Wagner. An E�cient and Fast Parallel-Connected Component Algorithm.JACM, 37(3):626{642, 1990.[21] R.M. Haralick and L.G. Shapiro. Image Processing Techniques. Computer Vision, Graphics, andImage Processing, 29:100{132, 1985.[22] D. Harwood, M. Subbarao, H. Hakalahti, and L.S. Davis. A New Class of Edge-PreservingSmoothing Filters. Pattern Recognition Letters, 6:155{162, 1987.23

[23] D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate. Computing Connected Components on Par-allel Computers. Communications of the ACM, 22(8):461{464, 1979.[24] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, NewYork, 1992.[25] J. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model. Technical Report CS-TR-3207,Computer Science Department, University of Maryland, College Park, January 1994.[26] J.F. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model for Shared Memory Multipro-cessors. In Proceedings of the 8th International Parallel Processing Symposium, pages 752{756,Canc�un, Mexico, April 1994. (Extended Abstract).[27] T. Kanade and J.A. Webb. Parallel Vision Algorithm Design and Implementation 1988 Endof Year Report. Technical Report CMU-RI-TR-89-23, The Robotics Institute, Carnegie MellonUniversity, August 1989.[28] J.J. Kistler and J.A. Webb. Connected Components With Split and Merge. In Proceedings of the5th International Parallel Processing Symposium, pages 194{201, Anaheim, CA, April 1991.[29] H.T. Kung and J.A. Webb. Mapping Image Processing Operations Onto a Linear Systolic Ma-chine. Distributed Computing, 1:246{257, 1986.[30] P.J. Narayanan. E�ective Use of SIMD Machines for Image Analysis. PhD thesis, Departmentof Computer Science, University of Maryland, College Park, MD, 1992.[31] P.J. Narayanan and L.S. Davis. Replicated Data Algorithms in Image Processing. TechnicalReport CAR-TR-536/CS-TR-2614, Center for Automation Research, University of Maryland,College Park, MD, February 1991.[32] M. Pietik�ainen, T. Sepp�anen, and P. Alapuranen. A Hybrid Computer Architecture for MachineVision. In Proceedings of the 10th International Conference on Pattern Recognition, Volume 2,pages 426{431, Atlantic City, NJ, June 1990.[33] A. Rosenfeld. A Report on the DARPA Image Understanding Architectures Workshop. InProceedings of the 1987 Image Understanding Workshop, pages 298{302, 1987.[34] A.D. Sokal. New Numerical Algorithms for Critical Phenomena (Multi-grid Methods and AllThat). In Proceedings of the International Conference on Lattice Field Theory, Tallahassee, Fl,October 1990. (Nucl. Phys. B (Proc. Suppl.) 20:55, 1991.).[35] D. Stau�er. Introduction to Percolation Theory. Taylor and Francis, Philadelphia, PA, 1985.[36] J.C. Tilton and S.C. Cox. Segmentation of Remotely Sensed Data Using Parallel Region Growing.In Ninth International Symposium on Machine Processing of Remotely Sensed Data, pages 130{137, West Lafayette, IN, June 1983.[37] R.S. Wallace, J.A. Webb, and I-C. Wu. Machine-Independent Image Processing: Performance ofApply on Diverse Architectures. Computer Vision, Graphics, and Image Processing, 48:265{276,1989.[38] J.A. Webb. Architecture-Independent Global Image Processing. In Proceedings of the 10th Inter-national Conference on Pattern Recognition, Volume 2, pages 623{628, Atlantic City, NJ, June1990.[39] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. An Integrated Image UnderstandingBenchmark: Recognition of a 212 D \Mobile". In Image Understanding Workshop, pages 111{126, Cambridge, MA, April 1988. 24

[40] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. A Report on the Results of the DARPAIntegrated Image Understanding Benchmark Exercise. In Image Understanding Workshop, pages165{192, May 1989.[41] T. Westman, D. Harwood, T. Laitinen, and M. Pietik�ainen. Color Segmentation By HierarchicalConnected Components Analysis with Image Enhancement by Symmetric Neighborhood Filters.In Proceedings of the 10th International Conference on Pattern Recognition, pages 796{802, At-lantic City, NJ, June 1990.[42] M. Willebeek-LeMair and A.P. Reeves. Region Growing on a Highly Parallel Mesh-ConnectedSIMD Computer. In The 2nd Symposium on the Frontiers of Massively Parallel Computations,pages 93{100, Fairfax, VA, October 1988.[43] R. Williams. Parallel Load Balancing for Parallel Applications. Technical Report CCSF-50,Concurrent Supercomputing Facilities, California Institute of Technology, November 1994.[44] S.W. Zucker. Region Growing: Childhood and Adolescence. Computer Graphics and ImageProcessing, 5:382{399, 1976.

25

