RAIRO-Theor. Inf. Appl. 44 (2010) 293-311 Available online at:
DOI: 10.1051/ita/2010016 www.rairo-ita.org

PARALLEL ALGORITHMS FOR MAXIMAL CLIQUES
IN CIRCLE GRAPHS AND UNRESTRICTED DEPTH
SEARCH*

E.N. CAcCeRES!, S.W. SoNG? AND J.L. SZWARCFITER?

Abstract. We present parallel algorithms on the BSP/CGM model,
with p processors, to count and generate all the maximal cliques of a
circle graph with n vertices and m edges. To count the number of all
the maximal cliques, without actually generating them, our algorithm
requires O(log p) communication rounds with O(nm/p) local computa-
tion time. We also present an algorithm to generate the first maximal
clique in O(logp) communication rounds with O(nm/p) local compu-
tation, and to generate each one of the subsequent maximal cliques
this algorithm requires O(logp) communication rounds with O(m/p)
local computation. The maximal cliques generation algorithm is based
on generating all maximal paths in a directed acyclic graph, and we
present an algorithm for this problem that uses O(logp) communica-
tion rounds with O(m/p) local computation for each maximal path.
We also show that the presented algorithms can be extended to the
CREW PRAM model.

Mathematics Subject Classification. 68W10, 05C85, 05C69.

Keywords and phrases. BSP/CGM algorithm, PRAM algorithm, circle graph, maximal clique,
unrestricted depth search.

* Partially supported by CNPgq Proc. Nos. 55.0895/07-8, 30.5362/06-2, 30.1652/09-0,
62.0171/06-5, FUNDECT 41/100.115/2006 and FAPER.J.

1 Universidade Federal de Mato Grosso do Sul, Faculdade de Computacéo, 79070-900 Campo
Grande, MS, Brazil; edson@facom.ufms.br

2 Universidade de Sao Paulo, Instituto de Matemética e Estatistica, 05508-900 Sao Paulo,
SP, Brazil; visiting professor of Universidade Federal do ABC; song@ime.usp.br

3 Universidade Federal do Rio de Janeiro, Instituto de Matematica, Nicleo de Computacio
Eletronica and COPPE, 21.945-970 Rio de Janeiro, RJ, Brazil; jayme@nce.ufrj.br

Article published by EDP Sciences © EDP Sciences 2010

http://dx.doi.org/10.1051/ita/2010016
http://www.rairo-ita.org
http://www.edpsciences.org

294 E.N. CACERES ET AL.
1. INTRODUCTION

In this paper we consider the enumeration problem for maximal cliques in circle
graphs. By an enumeration problem, we mean counting and/or generating the set
of all solutions to a given problem. While counting the number of solutions gives
only one answer, namely an integer count, the generation of all solutions actually
involves the listing of all the solutions. In this paper we deal with both problems,
that is, we count the number of maximal cliques in a circle graph, and also generate
all the maximal cliques. We present parallel algorithms for these problems under
the BSP/CGM and CREW PRAM models. In our approach, we first present
parallel algorithms, again under both the BSP/CGM and CREW PRAM models,
to perform an unrestricted depth search in a directed acyclic graph D, to generate
all maximal paths in D. In summary, in this paper we deal with three problems:
counting the number maximal cliques in a given circle graph, generating all the
maximal cliques in the circle graph, and generating all the maximal paths in a
directed acyclic graph. In our work we deal only with simple paths.

We summarize the main results as follows'.

e To count the number of maximal cliques in a circle graph of n nodes and m
edges, we present a BSP/CGM parallel algorithm that requires O(nm/p)
local computation time and O(log p) communication rounds, where p is the
number of processors. We also present an O(log2 n) time CREW PRAM
algorithm with nM (n) processors, where M (n) is the number of processors
to compute matrix product on a CREW PRAM.

e To generate all the maximal cliques of a circle graph, the proposed BSP/
CGM algorithm requires O(logp) communication rounds and O(nm/p)
local computation to generate the first maximal clique and O(log p) com-
munication rounds and O(m/p) local computation to generate each of the
subsequent o — 1 maximal cliques, where « is the number of maximal
cliques. The time complexity of the proposed CREW PRAM algorithm is
O(log® n) time with n® processors for the first maximal clique and O(logn)
time with m/p processors for the subsequent maximal cliques.

e To generate all the maximal paths of the problem of unrestricted depth
search in a directed acyclic graph, the proposed BSP/CGM algorithm
requires O(logp) communication rounds with O(m/p) local computation
for each one of the 8 maximal paths. The CREW PRAM algorithm uses
O(logn) time with m processors for each one of the maximal paths.

Observe that the number of maximal cliques o can be large compared to n. In
fact, Moon and Moser [23] described the family of graphs having the maximum
(exponential) number of maximal cliques, among all graphs. It happens that all
these graphs are circle graphs. Therefore in some cases, it can be very inefficient
to compute a by generating all maximal cliques and counting them. This is a
motivation for describing an efficient parallel algorithm for computing such num-
ber. To our knowledge the algorithms proposed in this paper are the first known

1 The summary also appear in Table 5 in the conclusion section.

MAXIMAL CLIQUES IN CIRCLE GRAPHS 295

parallel algorithms under the BSP/CGM and PRAM computing models for the
counting and generation of all the maximal cliques in a circle graph. Part of the
presented results appeared in conference extended abstracts [4,5]. This paper is an
extended version with complete proofs, and contains new results for the CREW
PRAM model.

This paper is organized as follows. In Section 2 we describe previous works
and give motivation. In Section 3 we present the computation model and some
definitions and terminology. In Section 4 we describe sequential and BSP/CGM
algorithms for the unrestricted depth search of a connected digraph. In Section 5
we present the BSP/CGM algorithm to generate all maximal cliques of a circle
graph. In Section 6 we extend the results to the CREW PRAM model. We
conclude in Section 7.

2. MOTIVATION AND PREVIOUS WORKS

Circle graphs are a special kind of intersection graphs, to be shown shortly
in the next section. Recognition of circle graphs has been an open problem for
many years until the mid-eighties when several researchers discovered sequential
polynomial time algorithms [3,13,15,24,27]. A number of NP-complete problems
for general graphs, including the maximum weighted independent set problem and
the maximum weighted clique problem, can be solved in polynomial time for circle
graphs [16,27].

The generation of all the maximal cliques of a graph is a core problem in
gene expression networks analysis, cis regulatory motif finding, and the study
of quantitative trait loci for high-throughput molecular phenotypes [34]. There
are many previous sequential and parallel solutions to generate all the maximal
cliques of a graph. Sequential algorithms for generating all maximal cliques are
presented by Makino and Uno [22] and by Tsukiyama et al. [30], the latter algo-
rithm uses O(nma) time. Chiba and Nishizeki [8] present results for this problem
for graphs of bounded arboricity. Dahlhaus and Karpinski [9] present a PRAM
algorithm for computing all maximal cliques in a general graph. Their algorithm
takes O(log®(na)) parallel time and uses a®n? processors. Wang and Chang [32]
present a PRAM algorithm for finding all the maximal cliques of an interval graph.
Klein [21], Naor et al. [25], Ho and Lee [18] present parallel algorithms for this prob-
lem for Chordal Graphs. Distributed algorithms for this problem are presented
by Jennings and Motyckova [19] for network graphs and by Protti et al. [26] for
general graphs. An approximation algorithm is presented by Gupta et al. [17] for
unit disk graphs. To count and generate all the maximal cliques of a circle graph,
Szwarcfiter and Barroso [28] present sequential algorithms that takes O(nm) to
count the maximal cliques and O(n(m + «)) to generate all the maximal cliques.
Our PRAM results for circle graphs have better bounds compared with the result
for general graphs [9]. The BSP/CGM algorithms proposed in this paper require
a number of communication rounds that are independent of the input size.

296 E.N. CACERES ET AL.

The proposed parallel algorithms to generate all the maximal cliques of a circle
graph are based on an algorithm to perform an unrestricted depth search in a
directed acyclic graph D. The unrestricted search in a graph generates all the
maximal paths starting from a given vertex r called the root of the search. Given
a graph D = (V, A) and a vertex r € V, the problem of generating a maximal path
consists of finding a simple path P starting at r such that P cannot be extended
without finding a vertex that already belongs to P. It has been shown that the
algorithm for computing a maximal path with a greedy strategy does not have an
efficient PRAM parallelization [2].

Unrestricted depth search has been shown to be an important technique for
the design of algorithms. It has been used to generate all the maximal cliques
in a circle graph [28]. The sequential algorithm for unrestricted depth search has
O(m + On) time complexity, where (3 is the number of maximal paths.

On the other hand, the problem of parallel restricted depth search does not
appear to have a simple solution as in the sequential case. At the moment the only
known solutions in NC' (PRAM Model) are for particular kinds of graphs [14,33].
In general, it is known that lexicographic depth search is P-complete [20].

Notice the difference between previous works and the results presented in this
paper. Previous works either present sequential algorithms for the enumeration
problem of maximal cliques of circle graphs, or parallel PRAM algorithms for
this same problem but for general graphs. Thus this paper presents for the first
time parallel BSP/CGM and PRAM algorithms for the enumeration problem of
maximal cliques in circle graphs. Our approach is based on the parallelization of
the unrestricted depth search in a directed acyclic graph.

3. COMPUTATIONAL MODEL, NOTATION AND TERMINOLOGY

We consider a version of the Bulk Synchronous Parallel (BSP) model [31]
referred to as the Coarse-Grained Multicomputer (BSP/CGM) model [10]. A
BSP/CGM consists of a set of p processors Py, ..., P, with O(N/p) local memory
per processor and each processor is connected by a router that can send messages
in a point-to-point fashion (or shared memory). A BSP/CGM algorithm consists
of alternating local computation and global communication rounds separated by a
barrier synchronization. The BSP/CGM model uses only two parameters: the in-
put size N and the number of processors p. In a computing round, each processor
runs a sequential algorithm to process its data locally. A communication round
consists of sending and receiving messages, in such a way that each processor sends
at most O(N/p) data and receives at most O(N/p) data. We require that all in-
formation sent from a given processor to another processor in one communication
round be packed into one long message, thereby minimizing the message overhead.

In the BSP/CGM model, the communication cost is modeled by the number
of communication rounds which we wish to minimize. In a good BSP/CGM al-
gorithm the number of communication rounds does not depend on the input size

MAXIMAL CLIQUES IN CIRCLE GRAPHS 297

N. The ideal algorithm requires a constant number of communication rounds.
If this is not possible, we attempt to get an algorithm for which this number is
independent on N but depends on p. This is the case of the present paper.

The BSP/CGM model has the advantage of producing results that are close to
the actual performance of commercially available parallel machines. Some algo-
rithms for computational geometry and graph problems require a constant num-
ber or O(log p) communication rounds [11]. The BSP/CGM model is particularly
suitable for current parallel machines in which the global computation speed is
considerably greater than the global communication speed.

We also designed our algorithms for the standard CREW PRAM model [20].

This paper deals with an enumeration problem, in our case, all maximal cliques
of a circle graph. In a general graph the number of maximal cliques could be
exponential and computing such number is a #P-complete problem. As for circle
graphs, the number of maximal cliques might still be exponential. However, as
mentioned in the paper, there is a polynomial time sequential algorithm to compute
this number [28].

Since we deal with an enumeration problem, let us state two premises, employed
by many enumeration algorithms, and adopted in this paper.

(1) The time performance of the algorithm is measured by its delay complexity,
that is, the worst case time between the enumeration of any two consecu-
tive maximal cliques, also considering the time needed for the enumeration
of the first and the last maximal cliques of the collection.

(2) By enumerating a maximal clique C', we mean finding the set of vertices
which forms C', and making it available in a memory space. The time
needed for explicitly listing C, for instance, is not taken into account.
This is the way in which most algorithms for enumeration problems are
usually handled.

The following definition and notation will be used in this paper.

Consider a digraph (directed graph) D = (V, A). For each vertex v € V we
define the successor of v, denoted suc[v], as a fixed element of the adjacency list of
v. Let e = (u,v) € A, we define the successor of e as the edge (v, sucl[v]). A walk
in D is a sequence of disjoint edges (vi,v2), (v2,v3), ..., (Vg—1,vq). A kl-walk is a
walk P in D, with initial edge (k,{) and such that every edge of P, except (k,1),
is the successor of another edge of P.

For an undirected graph G = (V, E), we consider each edge (u, v) as two distinct
directed edges (u,v) and (v,u).

Since the successor of each vertex is fixed, all the edges on a kl-walk entering a
vertex v have the same successor (v, suc[v]). We will prove that a kl-walk can be a
simple path, a cycle or a path together with a cycle. In the case where D = (V, A)
is an acyclic digraph, the kl-walks are formed by simple paths.

Let .Z be a family of nonempty sets, the intersection graph of .% is obtained
by representing each set in .# by a vertex and connecting two vertices by an edge
if and only if their corresponding sets intersect [16]. Circle graphs are intersection
graphs where .% is a a family of chords of a circle. In other words, consider a

298 E.N. CACERES ET AL.

FIGURE 1. (a) Family of chords and (b) the corresponding circle
graph G = (V, E).

FIGURE 2. (a) A digraph G and (b) the transitive reduction Gg.

family of n chords on a circle C, numbered as 1 — 1/,2 — 2/, ..., n —n’. Assume
that any two chords do not share a same endpoint. In the corresponding circle
graph, each chord corresponds to a vertex and there is an edge (u,v) if chord u
intersects chord v. See Figure 1.

A circular sequence S of G is the sequence of the 2n distinct endpoints of the
chords on circle C, by traversing C' in a chosen direction, starting at a given point
in C. Denote by Si(v) and Sa(v), respectively, the first and second instances
or occurrences of the chord corresponding to v € V in the sequence S. Denote
by Si(v) < Sj(w) (for i,j = 1,2) when S;(v) precedes S;(w) in S. We have
51(1]) < Sg(’U).

Let G = (V, E) be a circle graph. A circular sequence S of G induces an orienta-
tion on the edges of G, so that G can be transformed into an acyclic digraph (V, A),
called an Si-orientation G of G. Observe that G is an orientation in which any
directed edge (v,w) € A satisfies S1(v) < Si(w). Figure 2a shows the acyclic
digraph G = (V, A).

Let G denote an acyclic orientation of G, N (G) and N, (G) are the subsets
of vertices that leave and enter v, respectively. For v,w € V', v is an ancestor of w
in G if the directed graph contains a path v —w. In this case, w is a descendant of
v. Denote by N7 (G) the set of descendants of v. If w € N*(G) and v # w, then v
is a proper ancestor of w and w a proper descendant of v. When (v, w), (w, z) € A
implies (v,2) € A, G is denominated a transitive digraph with respect to edges.

MAXIMAL CLIQUES IN CIRCLE GRAPHS 299

FIGURE 3. A locally transitive digraph D = (V, A).

The transitive reduction Gp is the subgraph of G formed by the edges that are
not implied by transitivity (see Fig. 2b).

Let G = (V, E) be an undirected graph, |V| > 1 and G an acyclic orientation
of G. Let v,w € V, we denote by Z(v,w) C V the subset of vertices that are
simultaneously descendants of v and ancestors of w in G. An edge (v,w) € A
induces local transitivity when G(Z (v, w)) is a transitive digraph. Since G(Z (v, w))
is a transitive digraph the vertices of any path from v to w induce a clique in G.
Furthermore, (v, w) induces maximal local transitivity when there does not exist
(v/,w') € A different from (v, w) such that v’ is simultaneously an ancestor of v
and v’ a descendant of w in G. In this case (v, w) is called a mazimal edge. The
orientation G is locally transitive when each of its edges induces local transitivity.
Figure 3 shows an example of a locally transitive orientation.

Based on the following theorem, one can use locally transitive orientations to
find maximal cliques.

Theorem 3.1. Let G = (V, E) be a graph, Ga locally transitive orientation of G
and Gr the transitive reduction of G. Then there exists a one-to-one correspon-
dence between the mazimal cliques of G and paths v — w in éR, for all mazimal
edges (v, w) € A.

The proof can be found in [28].

4. UNRESTRICTED SEARCH

Depth search and breadth search in a graph G = (V| E) starting from a given
vertex v € V' determines a tree that corresponds to the execution of the respective
search method. In these search methods, each edge e € FE is traversed a constant
number of times. We use the term restricted to identify a search method with
such a characteristic. On the other hand, we define unrestricted search in a graph
G = (V, E) from a given vertex as a systematic process of traversing G in such a
way that each edge is visited a finite number of times. The action taken in each
visit depends on the particular application. The only restriction is that the process
must terminate.

300 E.N. CACERES ET AL.

The (classical) sequential unrestricted depth search algorithm of a connected
graph G = (V, E) is a variation of the (restricted) depth search algorithm [29]. It
is given in Algorithm 1. The algorithm starts with a given vertex v chosen as root
and uses a stack Q.

Algorithm 1 Unrestricted Search(wv)

Input: A connected graph G = (V, E) and v € V, the root of the search.
Output: All maximal paths of G starting at v.

1: Mark v
2: Push v onto stack @)
3: for each vertex w adjacent to v do
4: if w is not in @@ then
5: visit edge (v, w)
6
7
8
9

Unrestricted Search(w)
end if
: end for
: Pop v from @
10: Unmark v

To design a parallel algorithm for unrestricted search, we must avoid the prob-
lems that occur when the path reaches a cycle in the graph. Furthermore, we
need to know in which parts of the graph the path is located at each step of the
algorithm. For this purpose, we use a decomposition of the graph called kl-walk,
to be seen later.

Unrestricted search applies to both undirected and directed graphs. In this
paper we use unrestricted search in an acyclic orientation of GG, which is an acyclic
digraph. Thus in the following we will describe the parallel algorithms for unre-
stricted search for acyclic digraphs.

We now describe Algorithm 2, the parallel BSP/CGM unrestricted search algo-
rithm. We initially decompose the digraph D = (V, A) into a set of kl-walks, using
the definition of the successors of vertices and edges of D. The parallel algorithm
initializes the successor of each vertex v € V as the first element of its adjacency
list. Then it explores the edges of the kl-walk such that & = r, where r is the root of
the search and | = suc[r]. Let {(vo, v1), (v1,v2),..., (vi—1,v1)} (r =vp and | = v1)
be the visited edges of the kl-walk. If v; is different from all v;, 0 <i <t —1 (v,
is a sink), then P = {k,l,va,...,v;—1,v:} is a maximal path. If vy € the kl-path,
but it is the last element in the v;—; adjacency list, then P = {k,l,va,...,v¢_1}
is a maximal path. Otherwise, P = {k,l,va,...,v;_1} is a simple path and let
adj[vi—1] = {uo,u1,...,up} be the adjacency list of v;_1, where 7 is the index of
the successor of v;—; in its adjacency list (u; = v;). Now we try to extend the
simple path P. First we change the successor of v;_1 to suc[vi_1] = u;y1. Every
time we change the successors of any vertex, we have a new decomposition of the
digraph into a set of kl-walks. Then we do the previous analysis to P U W, where
W is the set of vertices of the kl-walk such that & = v;—; and [= suc[v;—1] until
we find a maximal path starting at 7.

MAXIMAL CLIQUES IN CIRCLE GRAPHS 301

Once we have found a maximal simple path P = {vg,--- ,vp} for r = vy on
the kl-walk, it means that either v, is a sink or suc[vy] € P and it is the last
element in the v, adjacency list. We can obtain a new maximal simple path,
if it exists, as follows. Determine the last vertex v; € P, 7 < p that has some
vertex in its adjacency list that has not been visited yet. The successor of each
vertex v; & {vo,---,v;} is modified to be the first element of the adjacency list
of v;j, and the successor of v; is altered to be the element of the adjacency list
of v; immediately following suc[v;]. The successors of the vertices {vg, -+ ,v;—1}
remain unaltered. Using the previous analysis, we try to find a maximal path in
PUW, where P = {wg,---,v;} and W are the vertices of the kl-walk in the new
decomposition, with & = v; and | = suc[v;]. The remaining maximal simple paths,
if they exist, are computed analogously.

The vertices w; that are not reachable from the root vertex r are not included
in the search.

Lemma 4.1. Let D = (V, A) be a digraph. Then a kl-walk is:
(1) a simple path;
(2) a cycle; or
(3) a path followed by a cycle.

Proof. Let P = {vp,...,v;} be a simple path on the kl-walk, k = vy and | = v;.
Try to extend the path P. If v; is a sink then it has no successors and P is a
simple path. Otherwise, let w = suc[v;]. If w € P, we obtain a cycle and since
the successors are fixed, suc[w] € P. If w # vg, then the kil-walk is a simple path
followed by a cycle. If w ¢ P, extend P by adding w to it and repeat the same
reasoning. O

Corollary 4.2. Let D = (V, A) be an acyclic digraph. Then a kl-walk is a simple
path.

Lemma 4.3. Consider the input of Algorithm 2, a weakly connected digraph D =
(V,A). Let v € V be a vertex included i times in the array M P. Denote by M P;
the configuration of M P that precedes M P[j| = v, after the inclusion of v in M P
for the ith time. Then we have necessarily:

(1) The configuration of M P, when v is excluded for the ith time from MP,
is also equal to M P;, and
(2) i#j= MP; # MP;.

Proof. The array M P simulates a stack in Algorithm 2. A vertex v is only included
in M P if it is unmarked. Therefore the configuration of M P when v is excluded
for the ith time is equal to M P;. A vertex v will only be re-explored, in case there
exists a path from a vertex u that precedes v in M P, and the vertices of the path
do not belong to M P. Therefore if ¢ # j then M P; # M P;. |

The above lemma ensures the termination of the algorithm, because if a vertex
v is inserted in M P more than once, then necessarily the configuration in M P,
below v, is different in each case. Since there exists a finite number of ways
to arrange these configurations, the algorithm necessarily reaches the end. This

302 E.N. CACERES ET AL.

Algorithm 2 Parallel Unrestricted Search(r)

Input: (1) A digraph D = (V, A) given by its adjacency lists; (2) r € V, the root
of the search.
Output: All maximal paths of D starting at 7.

1. MP «— (Z)

2: Set all the vertices v € V' as unmarked

3: Decompose the digraph D into a set of kl-walks

4: k—r

5. repeat

6: Determine a simple path P = {vg,v1,...,v,} on the kl-walk
7. Mark all the vertices € P

88 MP«+— MPUP

9: if adj[v,] = 0 OR suc|v,] is the last element in adj[v,] then
10: M P is maximal

11: end if

12: Verify the existence of a vertex v; € M P such that v; is the most distant

vertex from r that has in its adjacency list a vertex not visited yet
13: if there exists such a vertex v; then

14: MPH{’U(),"' ,’l)i,l}

15: suc[v;] < next element in its adjacency list

16: Unmark v ¢ M P

17: Alter the successors of the vertices v; € MP to the first one in each
adjacency list

18: k—wv;

19: end if

20: until there is no such vertex v; € M P

property is based strongly on the fact that a marked vertex cannot be re-explored.
The re-exploration of a marked vertex can cause the appearance of cycles.

Theorem 4.4. Let D = (V, A) be a weakly connected digraph. Any path M P
computed by Algorithm 2 starting from the root vertex r in a kl-walk with k = r
is mazximal.

Proof. The exploration of a kl-walk ends when a sink or a cycle is detected. If
the last vertex in the kl-walk is a sink, then M P cannot be extended and it is a
maximal path. When a cycle is detected, we remove the last vertex of the kl-path
and store all the remaining vertices in a simple path P. Then we add P to M P. If
the successor of the last vertex in M P is the last vertex in its adjacency list, then
M P is maximal. Otherwise we change the successor of the last vertex in M P to
the next element on its adjacency list and repeat the above procedure until M P
is maximal.

Once a maximal path is found, Step 12 of Algorithm 2 computes the most
distant vertex v; from r in M P that possesses an unmarked element in its adjacency
list. If such a vertex exists, we remove from M P all vertices starting at v; and

MAXIMAL CLIQUES IN CIRCLE GRAPHS 303

Step 15 alters the successors of all vertices that do not belong to M P to the first
element in each adjacency list.

Since the successors changed, we have a new decomposition of D into a different
set of kl-walks. We repeat Steps 5 to 11 of Algorithm 2 to the new decomposition
fo D. This is repeated while there is a vertex v; that satisfies Step 12. O

Theorem 4.5. Let D = (V, A) be a weakly connected digraph. All mazimal paths
of D starting at the root vertex r will be found by Algorithm 2 at least once.

Proof. Once a maximal path M P starting at r is found, Step 4 of Algorithm 2
determines the vertex v; in P that is most distant from r. Since M P is a maximal
path, v; is not the last vertex in M P. All the vertices after v; in M P are removed
from MP. Also all the adjacencies of the vertices that do not belong to M P
point to the first element in their respective adjacency lists. Finally the current
successor of v; points to the next element in the adjacency list (with respect the
previous M P). After this, the graph is decomposed into a new set of kl-walks,
with k =r.

The path M P obtained in the new kl-walk is different from the previous one,
because the vertex to be included in M P after v; is different from the previous
vertex in M P.

Since we explore all the possible adjacencies of each path M P, all the simple
maximal paths are computed. O

Theorem 4.6. Let D = (V, A) be a weakly connected digraph. No mazimal path
of D starting at the root vertex r will be found by Algorithm 2 more than once.

Proof. By Lemma 4.3, if a vertex v is included in a path more than once, then
the configuration in M P of the vertices that precede v is different, each time v
is included in a path. Therefore the algorithm does not compute the same path
more than once. O

Theorem 4.7. Algorithm 2 obtains an unrestricted search of the digraph D =
(V, A) with n vertices and m edges using O(Bvlogp) communication rounds with
O(m/p) local computation, where 3 is the number of mazimal paths, v the number
of cycles found in D and p is the number of processors.

Proof. First we rank the adjacency lists of all v € V' and define the successor of v
to be the first element of the adjacency list of v.

We start with the root r and the defined successors. If a cycle is found in
the kl-walk, we have to detect the cycle and remove all duplicate vertices. Using
list ranking, this can be done in O(log p) rounds [11]. After this, we check if the
kl-walk is maximal. If the last vertex of the ki-walk has any unmarked adjacent
vertex, we change the successor of v; to the next unmarked vertex in its adjacency
list and add this new path to the kl-walk. If we find any cycle in this path, we
proceed as above. At the end, after ~; cycles (v; can be zero), we have a maximal
path of D.

After this, we mark the last vertex of the path and change the successor (if there
is one) of the tail of this path and compute another maximal path. Otherwise, we

304 E.N. CACERES ET AL.

can backtrack on this path and visit a vertex that has not been visited before and
apply the same procedure.
With v = max{v1,...,73}, the number of communication rounds will be O(

vlogp). O

Corollary 4.8. The unrestricted search in an acyclic digraph D = (V, A) with n
vertices and m edges can be done in O(flogp) communication rounds with O(m/p)
local computation, where (3 is the number of maximal paths found in D.

Using Algorithm 2 for directed acyclic graphs we will generate in parallel all
the maximal cliques of a given circle graph. We will show that we can also effi-
ciently count the number of maximal cliques of the circle graph, without actually
generating them.

5. GENERATING ALL MAXIMAL CLIQUES

In this section we present Algorithm 3 to generate all the maximal cliques of a
given circle graph G. An Sj-orientation G of G can be easily obtained through its
circular sequence. We thus assume that an Si-orientation is given as input.

Algorithm 3 A11 Maximal Cliques(G)

Input: An S;-orientation Gofa given circle graph G.
Output: All maximal cliques of G.
1: Construct the transitive reduction G R
2: Find all maximal edges of G
3: For each maximal edge (v,w) € A, find all paths v — w in Gr (each path
defines a maximal clique)

We now describe Algorithm 3, the BSP/CGM all the maximal cliques generation
algorithm.

Line 1 computes the transitive reduction Gpg of G. This is done by using the
transitive closure algorithm [1,6] with p processors using O(logp) communication
rounds with O(nm/p) local computation time.

Line 2 determines all the maximal edges of G. Based on [28], observe that if
G is locally transitive, then (v,w) € A is a maximal edge if and only if Nj(é) N
N (G) = Ny (G)n Ny (G) = 0. The adjacency lists N (G) for all the vertices of
G can be easily computed with a constant number of communication rounds with
O(m/p) local computation, by using a sort algorithm [7,12], and partitioning the
edge lists into sublists.

In line 3 we first compute for each v € V' the subsets W (v) formed by vertices w
such that (v,w) is a maximal edge. This can be done using a constant number of
communication rounds with O(m/p) local computation time. We then construct
the subgraph H of G induced by the vertices that are simultaneously descendants
of v and ancestors of any w € W(v) (Fig. 4). This can be done by computing

MAXIMAL CLIQUES IN CIRCLE GRAPHS 305

(a) (b1) (b2) (b3)

FIGURE 4. (a) A digraph G and (b) the digraphs H.

the transitive closure [1,6] of Gk and through the intersection of the vertices
that leave v with those that enter each of w € W (v). The subgraph H can be
computed using O(log p) communication rounds with O(nm/p) local computation
time. The paths v — w in G_'R taken from a certain vertex v are exactly the
source-sink paths in H. Observe that digraph H is acyclic. Using Algorithm 2
we determine each one of the maximal paths of H using O(log p) communication
rounds with O(m/p) local computation time. The source-sink paths of H so
obtained form the maximal cliques of G. The first maximal clique is obtained in
O(log p) communication rounds and O(nm/p) local computation, and each of the
remaining o — 1 maximal cliques is obtained in O(logp) communication rounds
and O(m/p) local computation.

Theorem 5.1. Algorithm 3 generates all the mazimal cliques of a circle graph cor-
rectly, on a BSP/CGM with p processors, using O(logp) communication rounds
and O(nm/p) local computation to generate the first mazimal clique and O(logp)
communication rounds and O(m/p) local computation to generate each of the sub-
sequent o — 1 maximal cliques, where « is the number of mazximal cliques.

5.1. COMPUTING THE NUMBER OF MAXIMAL CLIQUES

The sequential algorithm for computing the number of maximal cliques in a
circle graph presented in [28] first labels all the sink vertices of H with 1. When
all the adjacent vertices of a vertex v; have a label, v; is labeled with the sum of the
labels of all its adjacent vertices. This procedure is repeated until all the source
vertices have been labeled. This approach is inherently sequential and would give
rise to an inefficient parallel solution with O(n) communication rounds in the worst
case.

Algorithm 4 computes the number of maximal cliques using p processors. We
use the transitive closure algorithm of [1,6], adapted to compute the lengths of the
longest paths between vertices: instead of testing if there is a path (i, k), (k,7),
for each k, we compute the longest path connecting vertices ¢ and j.

306 E.N. CACERES ET AL.

Algorithm 4 Number of Cliques(G)

Input: An S;-orientation Gofa given circle graph G.

Output: The number of maximal cliques of G.

. Construct the transitive reduction G R

: Find all maximal edges of G

: for each maximal edge (v, w) € A do

Find all paths v — w in éR;

Construct the graph H

Using the transitive closure algorithm [1,6] we compute the matrix My =
{di;} of the longest paths in H: dij — max{d;;, dir, + di; }

7: end for

Theorem 5.2. Algorithm 4 correctly computes the total number of maximal cliques
in a circle graph in O(logp) communication rounds with O(nm/p) local computa-
tion.

Proof. Applying Algorithm 4 on graph H , each d;; € Mg, where v; is a source
vertex and v; is a sink vertex in H represents the existence of a maximal clique
of size d;; + 1. These numbers are added together to get the number of maximal
cliques of the circle graph G. g

6. PRAM ALGORITHMS

We now show how the previous algorithms can be implemented on a CREW
PRAM.

The implementation of the Parallel Unrestricted Search Algorithm (Algorithm 2)
uses basic CREW PRAM techniques, as sum, list ranking, pointer jumping and
list (edges and vertices) manipulation. Each path can be computed in O(logn)
parallel time using m/logn processors. Therefore, the complexity of Algorithm 2
is O(Blogn) parallel time with m/logn processors, where 3 is the number of max-
imal paths starting at root r and ending at a sink vertex of an acyclic digraph.

Now we describe how to implement the main steps of the All Maximal Cliques
Algorithm (Algorithm 3) on a CREW PRAM. Line 1 (the transitive reduction G
of (_f) can be implemented as follows: we start by computing the adjacency lists
N, (é) for all the vertices of G. This can be done by partitioning the edge lists into
sublists, one for each vertex v. This partition can be obtained in O(logn) parallel
time with M (n) processors on a CREW PRAM, where M (n) is the number of
processors needed to multiply two n x n matrices. We use the array of lists ADJ
to store the adjacency lists. Each ADJ[v;] contains the list of vertices v; that
arrive in v;. Using pointer jumping or recursive doubling, we remove from each
adjacency list ADJ[v;] all the vertices that are in adjacency lists ADJ[v;], for all
vj € ADJ[v;]. This can be done as in Algorithm 5. The adjacency lists N, (GRr)

MAXIMAL CLIQUES IN CIRCLE GRAPHS 307

are given by ADJ[v;]. Each one contains at most n vertices. In each step we
compress each adjacency list in order to remove repeated vertices.

Algorithm 5 Transitive Reduction(G)

Input: An Si-orientation Gofa given circle graph G.
Output: The transitive reduction Gr.
1: for all v; € V in parallel do
2. ADJ[v;] «— N, (G)
3 BADJ["UA — U'L}jeADJ['ui]ADJ[Uj]
4. end for
5: for j =1 to [logn] do
6 for all v; € V in parallel do
7 BADJ[UZ] — BADJ[UZ] @] {UvjeBADJ[yi]BADJ[Uj] }
8: end for
9: end for
10: for all v; € V in parallel do
11: ADJ[’UZ] — ADJ[’U,L] — BADJ[’UIL]
12: end for

Lemma 6.1. Graph Gr obtained by Algorithm 5 is the transitive reduction of G.

Proof. At each iteration we compute for each vertex v the set BADJ[v] formed by
the union of the adjacency lists of the vertices that arrive at v. The set BADJ[v]
contains the vertices for which there exists at least one path of length > 2% to
v. At each iteration i, for each vertex v, we remove those vertices that belong to
BADJ[v] from the adjacency lists of the vertices that arrive at v. After [logn]
iterations, all the vertices that are ancestors of v belong to BADJ[v]. Thus the
adjacency lists will not contain vertices that generate transitive edges. O

Lines 6 to 8 of Algorithm 5 are repeated logn times. Thus line 1 of Algorithm 3
uses O(log2 n) parallel time with n3 processors on a CREW PRAM.

In line 2 of Algorithm 3 we determine all the maximal edges of G. We observe
that if G is locally transitive, then (v,w) € A is a maximal edge if and only if
NHG)NNF(G) = Ny (G)N N, (G) = 0. We can cither assume the adjacency
lists as part of the input or easily compute them.

Line 2 of Algorithm 3 can be computed in O(logn) parallel time with m pro-
cessors on a CREW PRAM.

Now we describe how line 3 of Algorithm 3 is implemented. First compute for
each v € V the subsets W (v) formed by vertices w such that (v, w) is a maximal
edge. We construct now the subgraph H of G induced by the vertices that are
simultaneously descendants of v and ancestors of any w € W (wv). This can be done
by determining the transitive closure [20] Gr and through the intersection of the
vertices that leave v with those that enter each of w € W(v). The paths v — w in
Gr taken from a certain vertex v are exactly the source-sink paths in H. These
paths can be obtained through the parallel unrestricted depth search algorithm

308 E.N. CACERES ET AL.

of Section 4. Graph H can be constructed in O(log?n) parallel time with M (n)
processors on a CREW PRAM, where M(n) is the number of processors needed
to multiply two n x n matrices. Then we do an unrestricted search on H. Observe
that digraph H is acyclic. Using Algorithm 2 we determine the maximal paths
of H. Line 3 of Algorithm 3 can be implemented in O(log®n) parallel time with
M (n) processors on a CREW PRAM.

The source-sink paths of H obtained in line 3 of Algorithm 3 form the maximal
cliques of G. Then Algorithm 3 generates the first maximal clique using O(log2 n)
parallel time with n? processors, and each of the remaining o— 1 maximal cliques is
obtained in O(logn) parallel time with m/logn processors, where « is the number
of maximal cliques.

Now we describe the PRAM algorithm (see Algorithm 6) for computing the
number of maximal cliques in a circle graph.

Algorithm 6 Number of Maximal Cliques(G)

Input: An S;-orientation Gofa given circle graph G.
Output: The number of maximal cliques of G.

1: Apply Lines 1 to 3 of Algorithm 3

2: Construct the subgraphs H

3: Compute A*, where A is the adjacency matrix for each H

First we compute the number «j of maximal cliques of size k£ and the total
number of maximal cliques . This algorithm uses O(«a log® n) parallel time, with
n® and nM (n) processors on a CREW PRAM, where M(n) is the number of
processors needed to multiply two n x n matrices on a CREW PRAM. To compute
the number of maximal cliques on a CREW PRAM we use a different approach,
since the sequential solution [28] uses a labeling strategy that seems inherently
sequential and difficult to parallelize, as we already mentioned. On the BSP/CGM
model we have solved the problem by adapting the transitive closure algorithm.
Here we use a similar idea, by using matrix multiplications that can be done
efficiently on the PRAM. The matrix A* gives the number of maximal cliques of
size k+1. The computation of each matrix A* can be done in O(log n) parallel time
with M (n) processors on a CREW PRAM [20]. To compute the total number of
maximal cliques, we have to compute in parallel each one of the A* matrices. This
can be done in O(log® n) parallel time with n.M (n) processors on a CREW PRAM
[20]. By using the algorithms in [20], we can compute the number of maximal
cliques of size k£ and the total number of maximal cliques of a circle graph in
O(log? n) parallel time with n® and nM (n) processors, respectively, on a CREW
PRAM.

With the above observations, we can state the following results.

Theorem 6.2. Algorithm 6 correctly computes the number of mazximal cliques
of size k and the total number of mazimal cliques in a circle graph in O(log2 n)
parallel time with n® and nM (n) processors, respectively, on a CREW PRAM.

MAXIMAL CLIQUES IN CIRCLE GRAPHS 309

7. CONCLUSION

We have presented parallel algorithms, on the BSP/CGM and PRAM models,
for generating all the maximal cliques in circle graphs. The proposed BSP/CGM
algorithm requires O(logp) communication rounds and O(nm/p) local computa-
tion to generate the first maximal clique and O(log p) communication rounds and
O(m/p) local computation to generate each of the subsequent o — 1 maximal

cliques, where « is the number of maximal cliques.

a®n? proc. [9]

Generating Counting the Unrestricted
Algorithm all the number of depth

max. cliques max. cliques search
Sequential™® O(nma) [30] # P-complete O(m + Bn)
Sequential® O(n(m + «)) [28] | O(nm) [28]
CREW-PRAM®Y | O(log®(na)) with O(Bvlogn)

with m/logn
proc. (Sect. 6)

CREW-PRAM®

O(log? n) with
n® proc. 1st
max. clique.
O(log n) with
m/log m proc.
each next max.
clique. (Sect. 6)

O(log? n) with
nM (n) proc.
(Thm. 6.2)

Rounds with
O(nm/p) local
comp. lst max.
clique.

O(log p) Comm.
Rounds with
O(m/p) local
comp. each next
max. clique.

(Thm. 5.1)

Rounds with
O(nm/p) local
comp.

(Thm. 5.2)

BSP/CGM™ O(B~log p) Comm.
Rounds with
O(m/p) local
comp. (Thm. 4.7)
BSP/CGM® O(logp) Comm. | O(logp) Comm.

FIGURE 5. Main results for (1) general graphs and for (2) circle
graphs, where n is the number of vertices, m the number of edges,
« the number of maximal cliques, 8 the number of maximal paths,
~ the number of cycles of the graph and M (n) the number of
processors to compute matrix product on a CREW PRAM.

310 E.N. CACERES ET AL.

To solve the above problem, we have described a BSP/CGM parallel unre-
stricted depth search as a technique for computing all maximal paths in an acyclic
digraph. This technique requires O(logp) communication rounds and O(m/p)
local computation, where (3 is the number of maximal paths. We show that both al-
gorithms can also be implemented efficiently on a CREW PRAM using O(« log? n)
parallel time with n® processors (mazimal cliques) and O(8logn) parallel time
with m processors (unrestricted depth search).

Furthermore, we have also presented efficient parallel algorithms for counting
the total number of maximal cliques a of a circle graph, without actually gener-
ating them.

Table in Figure 5 summarizes the main results.

To our knowledge the algorithms proposed in this paper are the first known
parallel algorithm in the literature under the BSP/CGM and PRAM computing
model for the counting and generation of all the maximal cliques in a circle graph.

REFERENCES

[1] C.E.R. Alves, E.N. Céceres, A.A. Castro Jr, SSW. Song and J.L. Szwarcfiter, Efficient Par-
allel Implementation of Transitive Closure of Digraphs, in 10th European PVM/MPI Users’
Group Conference. Edited by J. Dongarra, D. Laforenza and S. Orlando, Springer Verlag,
Berlin (2003) 126-133.

[2] R. Anderson and E. Mayr, Parallelism and Greedy Algorithms. Technical Report STAN-
(CS-84-1003, Computer Science Department, Stanford University Bonn (1984).

[3] A. Bouchet, Reducing Prime Graphs and Recognizing Circle Graphs. Combinatorica 7
(1987) 243-254.

[4] E.N. Céceres, S.W. Song and J.L. Szwarcfiter, A Coarse-Grained Parallel Algorithm for
Maximal Cliques in Circle Graphs, in Proc. The 2001 International Conference on Compu-
tational Science. Springer Verlag, Berlin (2001) 638—647.

[5] E.N. Céceres, S.W. Song and J.L. Szwarcfiter, A Parallel Unrestricted Depth Search Al-
gorithm, in Proc. 2001 International Conference on Parallel and Distributed Processing
Techniques and Applications (2001) 521-526.

[6] E.N. Céaceres, S.W. Song and J.L. Szwarcfiter, A Parallel Algorithm for Transitive Closure,
in Proc. 14th IASTED International Conference on Parallel and Distributed Computing
and Systems. IASTED, Zurich (2002) 116-118.

[7] A. Chan and F. Dehne, A Note on Coarse Grained Parallel Integer Sorting. Parallel Process.
Lett. 9 (1999) 533-538.

[8] N. Chiba and T. Nishizeki, Arboricity and subgraphs listing algorithms. STAM J. Comput.
14 (1985) 210-223.

[9] E. Dahlhaus and M. Karpinski, A Fast Parallel Algorithm for Computing all Maximal
Cliques in a Graph and the Related Problems, in Proc. Scandinavian Workshop on Algo-
rithm Theory — SWAT (1988) 139-144.

[10] F. Dehne (Ed.), Coarse grained parallel algorithms. Algorithmica 24 (1999) 173-426.

[11] F. Dehne, A. Ferreira, E. Caceres, S.W. Song and A. Roncato, Efficient Parallel Graph
Algorithms For Coarse Grained Multicomputers and BSP. Algorithmica 33 (2002) 183-200.

[12] A. Ferreira and N. Schabanel, A randomized BSP/CGM algorithm for the maximal inde-
pendent set. Parallel Process. Lett. 9 (2000) 411-422.

[13] C.P. Gabor, W.L. Hsu and K.J. Supowit, Recognizing Circle Graphs in Polynomial Time.
J. Assoc. Comput. Mach. 36 (1989) 435-474.

[14] R.K. Ghosh and G.P. Bhattacharjee, A Parallel Search Algorithm for Directed Acyclic
Graphs. BIT 24 (1984) 134-150.

[15]

[29]
[30]
31]
32]
[33]

[34]

MAXIMAL CLIQUES IN CIRCLE GRAPHS 311

E. Gioan, C. Paul, M. Tedder and D. Corneil, Quasi-linear circle graph recognition. Technical
Report, University of Toronto (2009).

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press (1980).
R. Gupta, J. Walrand and O. Goldschmidt, Maximal Cliques in Unit Disk Graphs: Poly-
nomial Approximation, in Proc. International Network Optimization Conference (INOC),
Lisbon (2005).

C.W. Ho and R.C.T. Lee, Efficient Parallel Algorithms for Finding Maximal Cliques, Clique
Trees, and Minimum Coloring on Chordal Graphs. Inf. Process. Lett. 28 (1988) 301-309.
E. Jennings and L. Motyckova, A Distributed Algorithm for finding All Maximal Cliques in a
Network Graph, in Proc. of the 1st Latin American Symposium on Theoretical Informatics
(LATIN’92) (1992) 281-293.

R.M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines. Edited
by J. van Leeuwen Handbook of Theoretical Computer Science. MIT Press/Elsevier (1990)
869-941.

P.N. Klein, Efficient Parallel Algorithms for Chordal Graphs. SIAM J. Comput. 25 (1996)
797-827.

K. Makino and T. Uno, New Algorithms for Enumerating All Maximal Cliques, in Proc.
Scandinavian Workshop on Algorithm Theory — SWAT (2004) 260-272.

J.W. Moon and L. Moser, On cliques in graphs. Israel J. Math 3 (1965) 23-28.

W. Naji, Graphes des Cordes, Caractérisation et Reconnaissance. Disc. Math. 54 (1985)
329-337.

J. Naor, M. Naor and A.A. Schéffer, Fast Parallel Algorithms for Chordal Graphs. SIAM J.
Comput. 18 (1989) 327-349.

F. Protti, F.M.G. Franca and J.L. Szwarcfiter, On Computing All Maximal Cliques Dis-
tributedly, in Proc. Workshop on Parallel Algorithms for Irregularly Structured Problems
(IRREGULAR) (1997) 37-48.

J.P. Spinrad, Recognition of Circle Graphs. J. Algor. 16 (1994) 264-282.

J.L. Szwarcfiter and M. Barroso, Enumerating the Maximal Cliques of Circle Graph, Graph
Theory, Combinatorics, Algorithms and Applications. edited by F.R.K. Chung, R.L. Gra-
ham and D.F. Hsu, SIAM Publications (1991) 511-517.

R.E. Tarjan, Depth First Search and Linear Graph Algorithms. SIAM J. Comput. 1 (1972)
146-160.

S. Tsukiyama, M. Ide, H. Arujoshi and H. Ozaki, A New Algorithm for Generating the
Maximal Independent Sets. SIAM J. Comput. 6 (1997) 505-517.

L.G. Valiant, A Bridging Model for Parallel Computation. Communication of the ACM 33
(1990) 103-111.

C.S. Wang and R.S. Chang, A Parallel Maximal Cliques Algorithm for Interval Graphs with
Applications. J. Inf. Sci. Eng. 13 (1997) 649-663.

Y. Zhang, Parallel Algorithms for Problems Involving Directed Graphs. Ph.D. thesis, De-
partment of Computer Science, Drexel University (1990).

Y. Zhang, F.N. Abu-Khzam, N.E. Baldwin, E.J. Chesler, N.F. Samatova and M.A. Langston,
Genome-Scale Computational Approaches to Memory-Intensive Applications in Systems
Biology. Proceedings of SC, Seattle, Washington (2005).

Communicated by C. Choffrut.
Received March 30, 2009. Accepted June 2, 2010.

	Introduction
	Motivation and previous works
	Computational model, notation and terminology
	Unrestricted search
	Generating all maximal cliques
	Computing the number of maximal cliques

	PRAM algorithms
	Conclusion
	References

