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ABSTRACT

We present new parallel algorithms for solving the problem of many body interactions
in molecular dynamics (MD). Such algorithms are essential in the simulation of irradia-
tion effects in crystals, where the high energy of the impinging particles dictates comput-
ing with large numbers of atoms and for many time cycles. We realized the algorithms
using two parallelization methods and compared their performance. Experimental
results obtained on a Meiko machine demonstrate that the new algorithms exploit

parallelism effectively and can be used to simulate large crystals.

Sons, Inc.

1 INTRODUCTION

Molecular dynamics (MD) computer simulation
has been used extensively as a tool to study irradi-
ation damage. In recent vears there has been a
growing interest in slmuldlm" high-energy irradia-
tion (ldmwre using molec uldl d\lldllll( (dl( -ulation
(2. 4].

The energetic processes (100 eV up o 30 KeV')
may produce collision sequence and shock waves
greater than the speed of sound. Also the initial
energy. Ej,;, . can raise the temperature of the crys-
tal to several hundred kelvin. i.e.. T = E,,,/3\Nkg
vuhere N is the number of atoms and kg is Boliz-
mdnn 's constant. Therefore, large computational
crystals have to be used with 10 -~ 10" atoms
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[14]. This results in a huge consumption of com-
puting power, prohibiting, on occasion, the com-
pletion of the simulation to its physically interest-
ing extent. To overcome this inherent difficulty, it
is important to investigate new ways for reducing
the computation time and for employing parallel
computers.

MD methods integrate numerically the Newton
equations of motion with forces derived from the
potential. Computing the forces of each atom (and
its state) is computationally expensive particularly
when the computational crystal contains a large
number of atoms. In fact. most of the computation
time is spent on the calculation of the forces at
every time step. A standard way to reduce the
computation time is the neighbor list method. In
this method. one compiles for each atom the list of
neighbors which are contributing to the force act-
ing on it. This neighbor list has to be updated
periodically after a constant time interval A¢ which
depends on the physical problem.

In this article we introduce new parallel algo-
rithms for calculating and managing the neighbor
list; in addition. we provide a new algorithm for
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computing the forces and the coordinates of an
atom in a distributed manner. The first improve-
ment is based on the fact that not all atoms have
to be considered when building the neighbor list of
an atom. The second improvement relies on the
fact that no updates for the neighbor lists are
needed at all in areas with low energy atoms.

We describe the programming techniques and
present numerical results for two parallelization
methods. In the first one the main data structures
are partitioned berween the processors and the
“heavy” procedures of the sequential algorithms
are parallelized whenever possible. In such an ap-
proach every processor computes only part of the
values but has all the information at each time
step. In this scheme every two processors ex-
change information. In the second scheme, the
physical domain is statically divided among the
processors and the algorithm is changed accord-
ingly. In this scheme every processor communi-
cates only with some neighboring processors to re-
ceive the required information.

In previous work, Liet al. [10] used a Transpu-
ter-based Meiko machine (no i860 processors) in
a ring configuration in order to computé the forces
with a parallelized version of the standard N-body
algorithm.

In Section 2 we describe the application prob-
lem and the physical model used. The new algo-
rithms are presented in Section 3. In Section 4 we
discuss the parallel algorithms and the program-
ming technique. We provide simulation and per-
formance results of runs in Section 5 and finally.
we draw our conclusions in Section 6.

2 OVERVIEW OF APPLICATION AND
PHYSICAL MODEL

The MD calculation used in this work is derived
from the cascade calculations in copper [12], and
was adapted for treatment on nuclear-stimulated
desorption in palladium [7]. The calculations are
carried out on a cubic microcrystal, with a vari-
able number of atoms. The atoms are arranged at
f.c.c. lattice, and the interaction was chosen (o be
a manyv-body potential as used in earlier studies
[6. 7].
Trajectories of the atoms are determined by the
-numerical solution of the Newtonian equations of
motion. The integration scheme uses the central
difference method for computing the positions
and velocities of the atoms that are calculated for
successive time-steps (this is known as Verlet

method [13}*). Let N be the number of atoms in
the microcrystallite and At is a given time-step.
The values of the positions r; and velocities v; of

atomsi= 1. . ...Vattme { are found by follow-

1ng:
ri{t + At) = 2r,(t) — ri{t — At)
+ (Fi/mjA® + O(Ar?).
i=1.....N (1)
vi(t) = [ri{e + At) — r;(t — AL)]/2At
+ O{AL?)
(=1 N (2)

where F; is the force exerted on atom ¢ of mass m,.
derived from the relations:

Fi= = 2V Eo: 3)
NEall
Eep = 2 (£} + EN) 14)
with
e 172

E}=— <2 <§2 exp(—2q (—"‘ - 1))) : (5)

J# ro
EfF=3>4 exp (—p (f-'z— 1)) ()

JEP "o

In (3) Vr; is the gradiant operator with respect 10
coordinate ;. In (3) and (6) r; is the distance be-
tween atoms [ and /. and ry is the nearest neighbor
distance: the parameters . p. ¢. and ¢ have been
determined by experiment.

In the present method the particle potential is
computed under the assumption that the atom in-
teracts only with its neighboring atoms. The
neighbors of an atom are those particles which are
located within a sphere of a prescribed cutoff ra-
dius R. around i1t. The cutoff R, was chosen be-
tween the third and fourth order neighbors so as o
avoid problems arising from finite temperature
simulation in conjunction with short range inter-
actions [11].

Starting from a given equilibrium configura-
tion, one specific atom in a predetermined site is
given an additional kinetic energy. The resultant
cascade is then followed in phase space for 1.000
time-steps. Each run was characterized by the
size of the crystal. the position of the primary en-

* There are several reasons for using this method: for more

details see [17.



ergetic atom. its initial energy £, = 100 eV. The
time-step A¢ was taken as 1107 seconds. The
total energy. the kinetic energy. and the number of
displaced atoms were monitored throughout the
calculation [6].

3 ALGORITHMS

The basic MD algorithm comprises three main
steps: (i) computing the forces between the parti-
cles: (ii} computing the new positions of the parti-
cles: (iii) computing the global physical character-
istics. Calculating the forces in step (i) consumes
most of the compuation time and involves the
forces of neighboring atoms.

Due to the high energy processes in the irradia-
tion damage problem. the number of particles in
the computational crvstal is of the order of 10°. In
this type of application the distribution of energies
across the computational crystal is not homoge-
neous. This suggests the use of a neighbor list
method (for computing the forces) which is less
global in nature compared to other methods.

3.1 Existing Neighbor List Methods

The idea of the neighbor list method can be sum-
marized as follows [13]: the neighbor list of every
particle includes all the atoms thart are inside the
potential radius R,

In the Verlet method the distance to all the
other atoms is calculated for each atom. Those
atomns within the sphere of the radius R, are in-
cluded in the appropriate neighbor list. In this
method the time for computing the neighbor list.
Tiss - 1s of the order of V2. The computation of the
neighbor list is done periodically in predetermined
time intervals.

In the link cell method {9
into a number of cells {sub-cells). whose size is
determined by the potenual cutoff (R.). In this
method, checking for neighbors of a given atom is
limited to atoms within the same cell or in adja-
cent cells. Computing the list in this case is faster
than in the ““Verlet-list”” method and is given by:

" the erystal is divided

7‘11'.\'1 -~ (v n

where Cis the number of neighbor cells multiplied
by n-the number of atoms per sub-cell.

In the next section we describe two modifica-
tions of the sequental MD algorithm.
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3.2 The Relational Algorithm

The relational method that we propose can be
used to improve both the Verlet and the link cell
methods. It is based on a recursive algorithm that
uses the neighbor list at time ¢t — At to create the
neighbor list at time ¢. The idea is to reduce the
number of atoms considered during the creation
of the neighbor lists. For every atom we check the
neighbors in a sphere given b\ the potential cutoff
R. and the neighbors of these atoms. This method
is based on the physical assumption that new
neighbors cannot enter into the potential radius of
the checked atom during a constant time-step
without first becoming neighbors of some of that
atom'’s existing neighbors. For the initial time-step
we use the Verlet method to calculate the primary
neighbor list. The computation time of the neigh-
bor list is given by:

Tlts! -~ <\fn + \m)

where N, . NV, are the numbers of first and second
order neighbors. respectively. For an f.c.c lattice.
with the commonly used interaction cutoff radius,
one has N, = 50 and N, = 27 - Nj;,. One advan-
tage of the new scheme for calculating the neigh-
bor list is its potential suitability for paralleliza-
tion.

3.3 The Refreshment Algorithm

The inhomogeneous distribution of atom energies
is normally such that the atoms with high energy
are maml\ concentrated in small regions of the
crystal. On the other hand the areas of low energy
atoms are not changing dramatically. Thus. there
is no need to update the neighbor lists for atoms
with low energy in the same frequency as for the
neighbor lists of high energy atoms. In the stan-
dard methods the upddle ()f the neighbor lists is
done after a constant number of time-steps. This
is a compromise between the need to calculate the
neighbor lists every time-step and the computa-
tion cost. Our conclusion is that we need a partial
update of the neighbor lists. The criterion for up-
dating the neighbor list of an atom may vary from
one problem to the other.

For the high energy damage calculation we find
that several criteria can be used. We differentiate
between two approaches.

In the first approach one checks the high energy
atoms of the crystal. In this case we only update
the neighbor list every time-step for atoms with
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energy higher than a given energy E.;;. E..; de-
pends on the time-step size (which is a constant of
the problem) and the maximum kinetic energy at
the crystal. In order to take into account low en-
ergy atoms, and the overall thermal motion in the
system, the full neighbor list has to be updated
periodically after an appropriate number of time-
steps. The second approach is based on the dis-
placement of the atom since the most recent up-
dating of its list of neighbors: if the atom moves
more than AX in that period, its neighbor list is
updated. AX is a constant distance. which is de-
termined as a function of the time-step size and
the maximum kinetic energy of the atoms in a sim-
ilar way as for the first approach.

The time needed for updating the neighbor list
essentially depends only on the number of high
energy atoms and the number of their ll(:‘lghb()lb.
The partial updating of the neighbor list calcula-
tion should reduce enormously the CPU time. es-
pecially when simulating large systems [6].

4 PARALLELIZING THE ALGORITHMS

The following parallelizations of the algorithms
assume many interacting processors. Each pro-
cessor is an independent computational unit sim-
ulating part of the crystal. This corresponds to the
MIMD model with shared or distributed memory.

To generate the parallel algorithms it is neces-
sary to overcome three problems The first in-
volves the distribution of the partcles among the
different processors in a way that minimizes the
cost of data transfer (or the sharing of data) during
the computation. The second problem is the mod-
ification of the algorithm for the parallel machine.
Finally, there is a need to preserve the load bal-
ance between the computing processors. For our
specific problem, wherever an equal number of
atoms is assigned to different processors the com-
putation loads are the same. Since during the sim-
ulation (move between processors) process only a
few atoms change their locations the computation
load is kept in balance in these cases.

4.1 Domain Decomposition

The domain decomposition includes both a sim-
ple ““particle parallelism™ [10] distribution and a
special “‘geometric parallelism™ [10] partitioning
for the algorithms presented above.

In the particle parallelism method atoms are
assigned to processors in an arbitrary way. For
this case we define the neighborhood of a comput-
ing processor to be those atoms within a distance
R. from its own atoms and which were assigned 10
other processors. We refer 10 those processors as
the neighboring processors.

In our geometric parallelism the crystalis parti-
tioned into computation cells. where each cell has
exactly two neighboring cells. Let V' be the volume
of the microcrvstal deﬁned by the intervals
Xo: Xy, (Fo: Y1) (Zy: Z1). We slice the volume
along (Xo: X7). into P equally sized subvolumes
Vo, . . .. Fpor. In our experiments we used P
processors numbered from 0 1o P — 1. The atoms
in subvolume };, 0 = /= P — 1 were assigned to
the computation cell of processor i.

We view the computation cells as arranged in a
torus (V; and F1 moap are neighbors). We define
the neighborhood of a computation cell 1o be the
atoms in its neighboring cells which are within dis-
tance R. from the common boundaries (see the
overlapping boundaries in Fig. 1). Note that the
number of cells needs to be small for small crys-
tals; this number depends on R,.. Thus. one can
employ only a small number of processors for sim-
ulating small crystals using this method.

4.2 Parallel Implementation of the
Algorithms

In this section we modify the two algorithms—re-
lational and refreshment—to run with the paricle
and geometric distribution methods. We use the
following notation:

1. SRMD is the sequential relational algo-

rithm.
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FIGURE 1 Necighboring cells with overlapping bound-
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SFMD is the sequential refreshment algo-

rithm. '

3. PRMD is the relational algorithm with parti-
cle distribution.

1. GRMD is the relational algorichm with geo-
metric distribution.

5. GFMD is the refreshment algorithm with ge-

ometric distribution.

The modifications of the algorithms involve the
interaction between the processors. We present
this interaction by a stage of messages” exchange.
In each of the algorithms. at the end of a time-
step. every processor sends all the data abour its
atoms which are in the neighborhoods of other
processors. When a processor receives the data
about all the awoms in its neighborhood a new
computation evele begins locally.

It all three parallel algorithms the correspond-
ing procedures were changed to compute sub-
crvstals independently. Thiz allows a concurrent
computation of the forces between atoms.

In PRMD ithe initial distribution of atoms to
processors {which is based on the idendification
numbers of the atoms: remains the same during
the entire simulation and each processor is com-
puting the simulation values only for its own at-
oms. To accomplish this task. each processor re-
ceives all the current informadon on the svstem.
During the communication stage every processor
is sending information about the same <ubset of
atoms and receives information [rom all the pro-
cessors. Note that algorithmically only informa-
tion about neighborhoods is needed.

In the geometric  parallelism method o the
GRMD and GEMD algorithms  the initial distribu-
tion of the particles i= hased on their relatve loca-
tions. Since atoms may change their relative posi-
tions during each time-step. an atom can leave its
processor’s space and enter the space of a neigh-
bor processor. Thus. the distibution of atoms 0
processors must be corrected at each time-step.
According to our partitioning the atoms can move
only between neighboring cells in a single compu-
tation cycle and only informaton from neighbor-
ing cells is relevant. Thus. the local memory
néeded is smaller in comparison o the particle
parallelism method but this requires a special
modification to the sequential program.

In the particle distribution method. each pro-
cessor computes locally the global physical char-
acteristics (similar to the sequential algorithm .
Unlike this method. in the geometric paralleliza-
tion we use the ““processor farm™ approach [3]
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where a distinct processor collects the local infor-
mation (from all the processors). computes the
global characteristics. and then sends the infor-
mation to all the other processors. In our parallel
program this job is done by the control program
(“"master’” processor).

5 EXPERIMENTAL RESULTS ON THE
MEIKO PARALLEL COMPUTER

In this section we report tming resulis of a few
experiments with our algorithms running on a
Meiko machine.

Our Meiko machine emplovs 28 i860 proces-
sors with 8 MB or 16 MB of local memory per
processor. The communication between the pro-
cessors is carried out by Transputer {1800 chips
{no shared memory;. The host computer is a Sun
SparcStation which is used for managing the com-
pwations on the different processors. The host
computer has 28 MB local memory available for
computations. The operating svstem is SunQOS8
+4.1.1 with €CSTools 1.19 on top. We use the Port-
land Group Fortran 77 compiler.

Every value in each experiment is the average
of a few trials. The time values are measured in
ticks where a tick is counted every 64 microsec-
onds fon the Meiko machine). The logical topology
of a system ‘e.g.. a ring topology of computation
cells} can be embedded in many physical parts of
the Meiko system. Since the physical connections
are not known on the Meiko machine. the quality
of the communication may depend on the proces-
sors selected for the task. Thus. for each topology
that was tested a few selections of physical proces-
sors were tried out and the best communication
method was chosen by experiment.

5.1 Experimental Results for PRMD

The first experiment simulates cryvstals with 384.
1152, and 5600 atoms for cases with 1. 2. 4. 8.
and 16 processors. The temporal performance.
Ry(N: P;. which is defined as the inverse of the
total execurtion time [6 . is shown in Figure 2. In
this formulation \V is the size of the ervstal (num-
ber of atoms) and P is the number of processors.

In Figure 3 we compare the communication
performance in each ol the above cases. We use
Reom(N: Pjto denote the inverse of the wtal com-
munication time.

From the experiments we learn that when the
number ol processors is 8. the temporal perfor-
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FIGURE 2 Temporal performance. Ry iN: P for
three crystals.

mance is maximized. This can be explained by
the communication times as seen in Figure 3.
When there are more than 8 processors the total
execution time grows in spite of the fact that each
processor has a smaller crystal.

Following [3] the relation between the com-
munication and the calculation times is character-
ized by the performance overhead:

f;(P> = T('l)III(P)/Y—z«,,[(P’)

where T,.. T, are the total calculation time and
communication time. respectively. spent by the
slowest processor.

The performance overhead is compared in Fig-
ure 4 for configurations of 2. 4. 8. and 16 proces-
SorSs.

In addition. we conducted several experiments
with more than 5.600 atoms {up to 22.400) and
four processors. This was the largest crystal that
can be computed due 10 the lack of memory on
our units.
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0.07 F crystal with 384 particles ©— _|
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FIGURE 3 Temporal performance of communication
time, R, (V. P), for three crystals.
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FIGURE 4 The performance overhead £ P; for three

crystals.

5.2 Experimental Results for GRMD and
GFMD

To implement this algorithm a master process col-
lects the local information from all the processors
and compuies the global values /e g.. 10tal energy.
etc.). Due 10 the shortage in memory space on the
Sparc-

local processors we use the host compurer {
Station) to run the master process. Communica-
tion with the host is carried out with the XDR
package in order 10 resolve the incompatibility of
the numeric representation on the SparcStation
and the i860 processors.

We compared the GRMD and GFMD algo-
rithms in Figures 5 and 6 for three crystals.

We can see that the woal time gained in GFMD
decreases when the number of atoms increases
but GFMD is always faster than GRMD. This
result is explained by the fact that for more atoms
there is a need for more communication. Faster
communication channels can improve this phe-
nomenon. Clearly, the geometric parallelization
approach is better for large crystals.

0.04 T T T T

total execution GRMD ©—

0.035 - total execution GFMD +—

0.03 +
0.025
Rr

0.015 -

0.01 -

0.005 L = 4 L
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A size of problem

FIGURE 5 Temporal performance of the GRMD and

GFMD algorithms for three crystals.
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FIGURE 6 Temporal communication performance of
the GRMD and GFMD algorithms for three ervstals.

5.3 Comparing the Algorithms

Inn the following experiinents we compare the re-
freshment and the relational algorithms. The five
algorithms. each wsing [our processors. simulate
1.152 and 5.600 atoms. The timing results of the
most time-consuming procedures are presented in
Tables 1T and 2. The resulis are measured in sec-
onds per time-step.

The particle parallelization method improves
on the sequential algorithm by a factor of two.
This was achieved in spite of the slow communi-
cation channels that consume about 35% to 40%
of the total execution time. The geometric paral-
lelization method was supposed to reduce the
communication load. This did not happen due to
the use of the host computer to run the master
process. Nevertheless. this parallelizaton method
improves on the particle parallelization by a factor
of two.
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The refreshment algorithm improves on the re-
lational in both the parallel and the sequential
cases. The refreshment algorithm removes the
need to compute the neighbor list in every few
time-steps. In the parallel case this improvement
almost eliminates the overhead generated by the
neighbor list procedure.

6 DISCUSSION AND CONCLUSIONS

We developed new algorithms for simulating high
energy irradiation damage using MD calculations.
The algorithms were parallelized for a message
passing-based architecture and were tested on the
Meiko machine. From our experiments we con-
clude that in every case the parallelization de-
creases the execution time in spite of the slow
communication channels.

The modifications of the molecular dynamic al-
gorithm focused on the computation of the neigh-
bor list. Since this component has a major role in
the computation process the improvements were
significant.

The success of the geometric parallelization
method compared to the particle method can be
explained by the reduction in the size of the local
suberystal and that of the eommunication time.

For future work we plan to graft the principles
and ideas applied in the refreshment algorithms
into the parallel computation of the interacting
forces.

Table 1. Simulation Performance of Five Algorithms on 1.152 Atoms Measured in Seconds Per

Time-Step

Algorithm SRMD PRMD GRMD SFMD GFMD
Neighbor list procedure 0.325 0.173 0.045> 0.095 0.06
Forces procedure +.68 1.197 (.583 1.233 0.3
Communication —_ 0.935 0.435 — 0.32
Total simulation 5.53 2.337 1.08 1.44 0.69
Table 2. Simulation Performance of Five Algorithms on 5,600 Atoms Measured in Seconds Per
Time-Step

Algorithm SRMD PRMD GRMD SFMD GFMD
Neighbor list procedure 1.075 0.595 0.255 0.223 0.325
Forces procedure 7.81 2.215 1.907 2.01 1.2
Communication — 1.638 1.07 — 0.65
Total simulation 9.703 +4.502 3.285 2.335 2.208
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