
Page iii

Parallel Algorithms for Regular Architectures: Meshes and Pyramids

Russ Miller

Quentin F. Stout

The MIT Press

Cambridge, Massachusetts

London, England

Page iv

 1996 by The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical

means (including photocopying, recording, or information storage and retrieval) without permission in

writing from the publisher.

Library of Congress Cataloging-in-Publication Data

Miller, Russ.

Parallel algorithms for regular architectures: meshes and pyramids.

Bibliography: p.

1. Parallel programming (Computer science) 2. Algorithms.

3. Computer architecture. I. Stout, Quentin F. II. Title. III. Series

QA76.6.M5226 1996 005.1 87-35360

ISBN 0-262-13233-8

Page vii

Contents

List of Figures ix

Preface xiii

1 Overview 1

1.1 Introduction 1

1.2 Models of Computation 3

1.3 Forms of Input 14

1.4 Problems 16

1.5 Data Movement Operations 22

1.6 Sample Algorithms 29

1.7 Further Remarks 44

2 Fundamental Mesh Algorithms 45

2.1 Introduction 45

2.2 Definitions 45

2.3 Lower Bounds 46

2.4 Primitive Mesh Algorithms 48

2.5 Matrix Algorithms 50

2.6 Algorithms Involving Ordered Data 68

2.7 Further Remarks 87

3 Mesh Algorithms for Images and Graphs 89

3.1 Introduction 89

3.2 Fundamental Graph Algorithms 90

3.3 Connected Components 103

3.4 Internal Distances 111

3.5 Convexity 121

3.6 External Distances 131

3.7 Further Remarks 141

4 Mesh Algorithms for Computational Geometry 147

4.1 Introduction 147

4.2 Preliminaries 149

4.3 The Convex Hull 154

4.4 Smallest Enclosing Figures 162

Page viii

4.5 Nearest Point Problems 166

4.6 Line Segments and Simple Polygons 175

4.7 Intersection of Convex Sets 184

4.8 Diameter 187

4.9 Iso-oriented Rectangles and Polygons 188

4.10 Voronoi Diagram 194

4.11 Further Remarks 209

5 Tree-like Pyramid Algorithms 213

5.1 Introduction 213

5.2 Definitions 214

5.3 Lower Bounds 214

5.4 Fundamental Algorithms 216

5.5 Image Algorithms 222

5.6 Further Remarks 239

6 Hybrid Pyramid Algorithms 241

6.1 Introduction 241

6.2 Graphs as Unordered Edges 243

6.3 Graphs as Adjacency Matrices 250

6.4 Digitized Pictures 253

6.5 Convexity 261

6.6 Data Movement Operations 267

6.7 Optimality 276

6.8 Further Remarks 280

A Order Notation 285

B Recurrence Equations 287

Bibliography 289

Page ix

List of Figures

1.1 A mesh computer of size n. 7

1.2 Indexing schemes for the processors of a mesh. 8

1.3 A pyramid computer of size 16. 10

1.4 A mesh-of-trees of base size n = 16. 12

1.5 A hypercube of size n = 16. 13

1.6 Convex hull of S. 19

1.7 Angles of incidence and angles of support. 20

1.8 Searching to find interval for points. 28

1.9 A picture containing 'blob-like' figures. 31

1.10 Pictures consisting of non-'blob-like' figures. 32

1.11 Sample labeling after recursively labeling each quadrant. 33

1.12 Upper and lower tangent lines. 37

1.13 Using pl and pr to determine extreme points. 43

2.1 A mesh computer of size n2. 46

2.2 Indexing schemes for the processors of a mesh. 47

2.3 Computing the parallel prefix on a mesh. 51

2.4 Multiplying matrices on a mesh of size 4n2. 53

2.5 Warshall's algorithm for computing the transitive closure. 54

2.6 Data movement of the transitive closure algorithm. 57

2.7 Using Gaussian elimination, followed by back-substitution, to determine the

inverse of an n × n matrix A = {ai, j}.

60

2.8 Transform A to an upper-triangular matrix. 60

2.9 Transform upper-triangular matrix to identity matrix. 61

2.10 Sample of Gaussian elimination followed by back-substitution to determine

the inverse of matrix A3×3
.

63

2.11 Straightforward mesh implementation of a Gaussian elimination algorithm for

finding the inverse of a matrix.

65

2.12 An optimal mesh algorithm for using Gaussian elimination followed by back-

substitution to find the inverse of an n × n matrix A = {ai, j}

66

2.13 A linear array of size n with input from the left and output to the right. 69

2.14 Sorting data on a linear array of size 5. 72

2.15 Sorting data on a 1-dimensional mesh of size 5. 75

Page x

2.16 Merging the concatenation of u and v into x on a 1-dimensional mesh by odd-

even merge.

78

2.17 Merging 4 arrays with odd-even merge on a mesh. 80

3.1 z is a special vertex, while s is not. 96

3.2 Gt-1 is stored in the m × m region, where 102

3.3 Assume that is the top right pixel of a 2 × 2 window. Then there are exactly

three situations in which will be black.

105

3.4 Sample labeling after recursively labeling each quadrant. 108

3.5 Possible border elements of a submesh of size k2. 114

3.6 Rearranging distance matrices to form D. 116

3.7 Convex and nonconvex figures that yield the same convex set of lattice points. 122

3.8 A convex set of black lattice points which, in some digitization schemes, cannot

arise as the digitization of a convex black figure.

123

3.9 Enumerated extreme points of S. 124

3.10 A smallest rectangle. 131

3.11 A monotone metric d. 132

3.12 Internal and restricted centers. 138

3.13 Figures with nonunique planar centers. 140

3.14 A 5-ball about P, using the Euclidean metric. 141

4.1. Convex hull of S. 155

4.2 Mapping points into the proper quadrants. 156

4.3 Stitching convex hulls together. 158

4.4 Computing the area of a convex hull. 162

4.5 Determining a smallest enclosing box. 164

4.6 Creating the slope and interval records. 165

4.7 Nearest neighbor in a corner. 167

4.8 Partitioning L into maximal intervals. 171

4.9 Solution to the all-nearest neighbor problem for point sets. 174

4.10 Spanning line segments, leaders, regions, and major regions. 178

4.11 Line L separates p and q. 185

4.12 'Cutting out' the spanning rectangles from a slab. 191

4.13 Decomposing an orthogonal polygon into iso-oriented rectangles. 193

4.14 A set S of planar points. 195

4.15 The Voronoi polygon of a selected point in S. 195

4.16 The Voronoi diagram of S, denoted V(S). 196

Page xi

4.17 Subsets L and R of S are linearly separable. 197

4.18 The Voronoi diagram of L, denoted V(L). 197

4.19 The Voronoi diagram of R, denoted V(R). 198

4.20 The Voronoi diagram of L, the Voronoi diagram of R, and the dividing chain C. 198

4.21 The Voronoi diagram of S with the points labeled. 199

4.22 Ordering ei and ej with respect to the traversal of C. 204

5.1 A pyramid computer of size 16. 215

5.2 Initializing the identity registers. 218

5.3 Enumerated extreme points of S. 224

5.4 The 8 perimeter points. 226

5.5 Detecting P as an extreme point. 234

5.6 Discovering 2 new extreme points in an interval. 236

5.7 Grid-intersection scheme of digitization. 238

6.1 An example of the component labeling algorithm. 246

6.2 Component labeling algorithm. 247

6.3 A single processor's view of a funnel read. 256

6.4 Not all extreme points of a quadrant are extreme points of the figure. 264

6.5 Reduction of a function. 275

6.6 Extended reduction of a function. 277

6.7 Another view of the pyramid computer. 278

6.8 An image requiring extensive data movement. 280

Page xiii

Preface

This book is designed for a variety of purposes. As a research monograph, it should be of interest to

researchers and practitioners working in the field of parallel computing. It may be used as a text in a

graduate course on Parallel Algorithms, as a supplementary text in an undergraduate course on Parallel

Algorithms, or as a supplementary text in a course on Analysis of Algorithms, Parallel Computing,

Parallel Architectures, Computer Architectures, or VLSI arrays. It is also appropriate to use this book as

a supplementary text in an advanced graduate course on Vision, Image Analysis, or Computational

Geometry. Excerpts from preliminary versions of this book have been used successfully in senior

undergraduate and first year graduate courses on Analysis of Algorithms, advanced graduate courses on

Parallel Algorithms, graduate level seminars on Computational Geometry and Parallel Computing, and a

first year graduate course on Computer Architecture.

The focus of this book is on developing optimal algorithms to solve problems on sets of processors

configured as a mesh or pyramid. Basic algorithms, such as sorting, matrix multiplication, and parallel

prefix, are developed, as are algorithms to solve fundamental problems in image processing,

computational geometry, and graph theory. The book integrates and synthesizes material from the

literature with new concepts, algorithms, and paradigms. The reader has the opportunity to gain insight

into developing efficient parallel algorithms by following the design process presented by the authors,

who originally developed the vast majority of the algorithms that are presented.

This book uses a consistent approach to derive efficient parallel solutions to problems based on

1. algorithmic techniques, showing how to apply paradigms such as divide-and-conquer, and

2. the development and application of fundamental data movement operations.

Such data movement operations play a role that is analogous to data structures in the sequential setting,

in that they provide a framework for describing higher level operations in terms of lower level ones. The

basic structure of the higher level algorithms is often unchanged, even though efficient implementations

of these data movement operations will

Page xiv

vary among architectures, as will the times they require. The presentation of the material in this book is

such that a reader should be able to adapt a given algorithm to a variety of machine models beyond those

discussed here. In fact, many of the algorithms presented in this book have already been adapted in a

straightforward fashion to related architectures, including the hypercube and a variety of bus-based mesh

architectures.

In addition to researchers working in the area of parallel algorithms, this book can aid practitioners who

need to implement efficient parallel programs. The fundamental algorithms and operations developed in

this text can be incorporated into a wide range of applications, and the design and analysis techniques

utilized can be exploited in an even greater range. The algorithms and paradigms that are presented can

be adapted to multiprocessor machines with varying degrees of granularity and possessing a variety of

processor configurations. For example, they can be utilized inside a single VLSI chip, on special-purpose

parallel machines, on large parallel computers, or on intermediate systems.

Overview of Chapters

Chapter 1 is an introductory chapter that defines the computer models, problems to be solved, forms of

input, and notation that will be used throughout the book. It also serves to introduce the concept of

designing machine independent parallel algorithms in terms of abstract data movement operations. This

concept can be viewed as the parallel analogue of designing sequential algorithms in terms of abstract

data types, without regard to detailed implementation issues. Many of these data movement operations

are defined in Chapter 1, while others are introduced in later chapters as they are needed.

Chapters 2, 3, and 4 focus on the mesh computer, presenting data movement operations, algorithms,

lower bounds, and paradigms. Chapter 2 gives optimal algorithms for fundamental problems such as

matrix multiplication, transitive closure, sorting, computing semigroup properties, and fundamental data

movement operations. These results serve as the foundation for mesh algorithms presented in subsequent

chapters. Chapter 3 gives optimal algorithms to solve graph and image processing problems. These

algorithms solve problems such as labeling connected components, determining bridge edges, finding

nearest neighbors in an image, and deciding whether or not figures are convex. Chapter 4 gives optimal

algorithms to solve a variety of geometric problems. These algorithms solve problems such as locating

nearest neighbors, determining

Page xv

intersections among objects, and finding the area covered by a set of overlapping rectangles.

Chapters 5 and 6 focus on the pyramid computer, presenting data movement operations, algorithms,

lower bounds, and paradigms. Chapter 5 introduces asymptotically optimal algorithms that exploit the

(quad) tree connections that exist between layers of the pyramid. This chapter also presents optimal

solutions to problems such as computing commutative semigroup operations, answering point queries,

determining convexity properties of single figures, and deciding whether or not a given figure could have

arisen as the digitization of a straight line segment. In Chapter 6, efficient algorithms are given that show

that the pyramid is useful for more than simple tree-like operations. Fundamental data movement

operations are derived for a variety of input formats and situations. Algorithms are given in terms of

these operations to solve complex problems for graphs and images, problems such as determining

connected components, determining the nearest neighbor of each figure, and determining convexity of

every figure. These algorithms are significantly faster than those possible for the mesh.

Throughout the book, image data is assumed to be given in the form of a black/white digitized picture;

graph data is given either as matrix input (an adjacency or weight matrix, as appropriate) or as unordered

lists of edges; and geometric data is given as unordered sets of points, line segments, rectangles, circles,

etc. For some geometric problems, and for many of the data movement operations, the data has a label

attached to each item and the problem being solved involves both the label and the associated data. For

example, one might want to determine, for each label, the smallest value associated with the label.

Recommended Use

In an algorithms-based course, it is recommended that the presentation of the material commence with an

introduction to some basic parallel models of computation, including the mesh, pyramid, mesh-of-trees,

hypercube, and PRAM. At the discretion of the instructor, the tree and x-tree machine models might also

be mentioned for the purpose of motivating the design of the pyramid in terms of its mix of mesh and

tree interconnections. As each model is introduced, the communication diameter of the model should be

discussed, since this serves as a lower bound on the running time for many fundamental problems. In

addition, a 'wire-counting' (bisection width) argument is useful in terms of

Page xvi

discussing lower bounds on running times for more complex problems, such as sorting, that require

extensive data movement. Finally, for each model, an algorithm to efficiently compute a semigroup

operation (i.e., an associative binary operation, such as minimum, summation, or parity) can be described

as a means of introducing some basic algorithmic techniques for the model. After introducing the

models, either of the following approaches are recommended.

1. In an architecture-oriented approach, one would discuss a variety of problems and solutions for each

model in sequence. First, one would look at a set of problems for the mesh, then a set of problems for the

pyramid, and so forth.

2. In a problem-oriented approach, one would discuss algorithms and techniques to solve problem P1 on

a variety of architectures, then discuss algorithms and techniques to solve problem P2 on a variety of

architectures, and so forth. This would allow one to directly compare algorithms, paradigms, lower

bounds, and running times within the same framework of problem and input definition. For this

approach, one may want to first develop several data movement operations on all of the architectures,

before discussing more advanced problems.

The first approach allows for a systematic traversal of the book, chapter by chapter. The second approach

requires a comparison of related sections from different chapters.

Correspondence

We are interested in receiving any constructive criticism or suggestions that you might have. Please send

all correspondence concerning this book to

Parallel Algorithms for Regular Architectures
Department of Computer Science

State University of New York

Buffalo, NY 14260 USA

para-comments@cs.buffalo.edu

The MIT Press maintains a home page on the World Wide Web at the following location:

http://www-mitpress.mit.edu/

Page xvii

This web site contains information about their books and journals, including a home page for Parallel
Algorithms for Regular Architectures: Meshes and Pyramids. For those who wish to access the web site

for this book directly, it can be found at the following location:

http://www-mitpress.mit.edu/mitp/recent-books/comp/mileh.html

The home page for this book contains up-to-date information about this project, including corrections,

suggestions, and hot links to interesting parallel computing web sites.

Acknowledgments

The authors would like to express their appreciation to Peggy Newport, Susan Miller, and Leo Thenor

for drawing many of the figures. In particular, special thanks to Peggy and Mike Newport for recently

updating most of the figures. In addition to the students in a variety of graduate level parallel algorithms

classes at the State University of New York at Buffalo and the University of Michigan, the authors would

like to thank Mike Atallah, Gregory Bachelis, Johnnie Baker, Larry Boxer, Ed Cohen, Richard Fenrich,

Susanne Hambrusch, Renaud Laurette, Dar-Shyang Lee, Marilynn Livingston, Susan Miller, Franco

Preparata, Andrew Rau-Chaplin, Todd Sabin, Leonard Uhr, and Bette Warren, for reading early drafts of

the book and making useful suggestions. Special thanks go out to Andrew Rau-Chaplin for his assistance

in evaluating the final version of this manuscript. The authors would also like to thank Devon Bowen,

Tony Brancato, Amy Hendrickson, Ken Smith, Davin Milun, and the DCO staff of EECS at the

University of Michigan, for supporting a variety of hardware and software systems that were used in the

preparation of this manuscript. The authors would like to extend a very special thanks to our original

editor, Terry Ehling, for her extreme patience and support. Thanks also go out to our editor, Bob Prior,

and The MIT Press for showing confidence in this project. Finally, the encouragement of Janis Hardwick

during the completion of this book is greatly appreciated.

RUSS MILLER & QUENTIN F. STOUT, 1996

Page 1

1 Overview

1.1

Introduction

Advances in VLSI technology have provided a cost-effective means of obtaining increased

computational power by way of multiprocessor machines that consist of anywhere from a few processors

to many thousands and potentially millions of processors. These processors cooperate in various ways to

solve computationally intensive problems. While multiprocessor machines are targeted at increased

performance, such architectures are vastly different from the single processor computing machines that

are so prevalent. It is not surprising, therefore, to find that designing algorithms to exploit the (massive)

parallelism available from these multiprocessor machines is a subject of intense research, since designing

efficient algorithms for parallel machines is vastly different from designing efficient algorithms for

single processor machines.

From a programmer's point of view, it would be ideal to develop parallel algorithms for a parallel
random access machine (PRAM). A PRAM is a machine consisting of numerous identical processors and

a global memory, where all processors have the ability to access any memory location in the same fixed

unit of time, regardless of how large the memory is or how many processors are available. Unfortunately,

due to current technological limitations, PRAMs cannot be built without significant delays in the access

time, unless very few processors are used and the memory is limited. Some bus-based machines with a

small number of processors are conceptually similar in design to a PRAM. However, with current

technology, such machines cannot scale to thousands of processors while retaining the same time unit of

access to global memory.

Machines that consist of numerous processors typically take the approach of having local memory

attached to every processor, and using some interconnection network to relay messages and data between

processors. Examples of such machines include the Massively Parallel Processor (MPP) with 16,384

processors interconnected as a square grid [Batc81, Pott85]; the Thinking Machines Corporation's CM1

and CM2, with 65,536 processors interconnected as a square grid and as a hypercube [Hill85]; the

Thinking Machines Corporation's CM5, with thousands of processors interconnected as a fat-tree; the

Intel iPSC

Page 2

and NCube hypercubes with hundreds of processors [Inte86, HMSC86]; the Intel Paragon with hundreds

of processors interconnected as a two-dimensional torus; and the Cray T3D with hundreds of processors

interconnected as a three-dimensional torus.

Unfortunately, the interconnection networks usually have the property that not all pairs of processors can

communicate with the same delay, and so performance concerns dictate that programs should minimize

communication between processors that have large delays between them. To obtain highly efficient

programs, this apparently requires writing different programs for each different interconnection network.

However, this book attempts to show that the situation is not as bad as it seems, in that often the same

algorithmic approach can be used on a wide range of networks and still yield efficient implementations.

To help achieve machine independence, many of the algorithms are expressed in terms of fundamental

data movement operations. That is, for a set of parallel models that exhibit certain common underlying

traits, such as the mesh, pyramid, mesh-of-trees, and hypercube, parallel algorithms for certain classes of

problems can be written in terms of fundamental data movement operations. These data movement

operations can be viewed as taking the place of abstract data types that are used for designing machine

and language independent serial algorithms. It is important to realize that an efficient implementation of

a data movement operation is typically strongly dependent upon the interconnection network. However,

such an effort allows for higher level algorithms to be written with a great deal of network independence.

The algorithmic problems considered in this book are chosen predominantly from the fields of image

processing, graph theory, and computational geometry. Many of the algorithms rely on efficient sorting

and matrix algorithms, which are also presented. The paradigms exhibited by these algorithms should

give the reader a good grasp on techniques for designing parallel algorithms.

Each chapter is reasonably self-contained, so the book need not be read in a linear fashion. However,

later chapters in the book do assume a knowledge of the material that is presented in the remainder of

this introductory chapter.

Section 1.2 discusses notation and parallel models of computation. Section 1.3 describes a variety of

input formats for the problems considered throughout the book, while Section 1.4 focuses on defining the

specific problems. Generic descriptions of fundamental data movement operations are given in Section

1.5. Finally, Section 1.6 serves to synthesize the material presented in these earlier sections and introduce

Page 3

fundamental paradigms for designing efficient parallel algorithms. This is accomplished by giving

generic parallel algorithms in terms of abstract data movement operations to solve two fundamental

problems with various input formats.

1.2 Models of Computation

In this section, notation and general parallel models of computation are discussed. In addition, specific

models are defined for which algorithms will be presented in later chapters (or the next volume) of the

book.

1.2.1 Preliminaries

Throughout the book, Θ, Ο, Ω, o, and ω notation are used, where Θ means 'order exactly', Ο means

'order at most', Ω means 'order at least', o means 'order less than', and ω means 'order greater than'. For

formal definitions and some examples of this notation, the reader is referred to Appendix A.

Many of the algorithms developed in the book are recursive, often involving parallel divide-and-conquer

solution strategies. As a result, the running times for these algorithms are often expressed in terms of

recurrence equations. General solutions to most of the recurrences that are used throughout the book are

given in Appendix B.

1.2.2 Classification Schemes

In a distributed memory, or local memory, machine, each memory cell is attached to a specific processor,

and a processor can directly access only the memory attached to it. For processor 1 to access the contents

of a memory cell attached to processor 2, a message containing a copy of the memory cell in processor 2

must be sent to processor 1. Distributed memory systems are also known as message-passing systems. A

distributed memory system is often interpreted as not having a global addressing scheme for memory,

just local addressing within each processor, though logically the (processor ID, local address) pair forms

a global address. All of the machine models considered in later chapters have distributed memory.

In a shared memory machine, memory is equally accessible to all processors, using a global addressing

mechanism. Typically, in a shared memory machine processors do not directly communicate with

Page 4

each other, but rather through the shared memory. Originally, shared memory was interpreted as meaning

all access took the same time, but this is hard to achieve in practice. For this reason, the nonuniform
memory access (NUMA) model is more realistic. For example, machines from Kendall Square Research

and Silicon Graphics Incorporated implement the shared memory model while maintaining physically

distributed memory over the processors. While each processor can access all memory, accesses to local

memory is typically an order of magnitude faster than accesses to memory in other processors.

A single instruction multiple data (SIMD) machine typically consists of n processors, a control unit, and

an interconnection network or interconnection function. The control unit stores the program and

broadcasts the instructions to all processors simultaneously. Active processors execute the instruction on

the contents of their own local memory. Through the use of a mask, processors may be in either an active

or inactive state at any time during the execution of the program. Each processor is connected via a unit-

time bidirectional communication link to each of its neighbors. A unit of time is generally defined to be

the time necessary for each processor to execute some fixed number of arithmetic and Boolean

operations on the contents of its local memory, as well as to send and receive a piece of data from each

of its neighbors.

A multiple instruction multiple data (MIMD) machine typically consists of n processors, n memory

modules, and an interconnection network. In contrast to the single instruction stream model, the multiple

instruction stream model allows each of the n processors to store and execute its own program.

Processors are coupled with memory modules, and are connected to each other through a fixed

interconnection scheme by bidirectional unit-time communication links.

Variants to the SIMD and MIMD descriptions just given are possible. For instance, one popular variant

is to uncouple memory from the processors, and to allow the interconnection network to link processors

to each other and to the memory modules.

For distributed memory parallel computers, such as those discussed in this book, information is

exchanged as messages between processors, and hence the distance information travels becomes a

dominant consideration. While the logical arrangement of information in data structures plays a major

role in serial algorithms, the physical arrangement of information plays a major role in algorithms for

these distributed memory parallel computers. One uses data movement operations in parallel computers

to perform the physical movement needed, much as one uses operations on data structures in serial

computers.

Page 5

To determine the communication time required to solve a problem on a given parallel machine, two

methods often aid in determining simple lower bounds. The distance between two processors in a

network is defined to be the minimum number of communication links information needs to traverse to

get from one to the other. The communication diameter of a network is defined to be the maximum

distance between any two processors in the network. Therefore, the communication diameter of a

machine gives a lower bound on the running time for problems where data needs to be exchanged

between processors at maximum distance. As will be shown later in the book, the communication

diameter is sometimes an overly optimistic lower bound for certain problems and machine models.

Another method of determining lower bounds for problems that require extensive data movements is by a

wire-counting (wire-cutting, cut-set, bandwidth, bisection width) argument. For instance, suppose one is

concerned with the minimum time necessary to sort or route data on a particular machine, and it can be

shown that in the worst-case, all of the data from one 'half' of the machine must be exchanged with all of

the data from the other 'half' of the machine. If there are w wires that connect the two halves of the

machine, then in 1 unit of time only 2w elements can cross these w bidirectional communication wires.

Therefore, if each half of the machine has n/2 pieces of data, then n/2w time is required simply to move

data between the two halves of the machine.

The term granularity is often used to refer to the number and complexity of processors in a parallel

system. A fine-grained system has large numbers of relatively simple computational units, each having

relatively little memory. Since the individual processors cannot hold much data, they must communicate

frequently in order to do anything productive. For example, the neurons in the brain are a fine-grained

system. In a course-grained system there are few, powerful processors, each with a large amount of

memory. This enables each processor to do a significant amount of calculation using only the data in its

own memory. For example, a network of workstations is a coarse-grained system. Since the

communication to calculation ratio is relatively high in fine-grained systems, they tend to be

implemented so that the time of communication is close to that of the time of a calculation, while in

some (but not all) coarse-grained systems, the time for communication is very high compared to the time

for calculation. With current technology, fine-grained parallel computers have on the order of 10,000

simple processors, while coarse-grained parallel computers have on the order of 10 powerful processors.

A particularly interesting area of research is designing

Page 6

algorithms to exploit medium-grained machines, which consist of, say, 100s of microprocessors

processors that are a compromise in performance and size between processors of fine-grained and coarse-

grained machines. The majority of general-purpose parallel supercomputers today can be classified as

medium-grained machines.

In general, SIMD machines are thought of (and constructed) as fine-grained machines, where all

processors operate in lockstep fashion on the contents of their own small local memory. MIMD machines

are more often thought of as coarse-grained machines that either share a global memory or have the

memory distributed among the processors.

Many of the algorithms presented in this book for a given machine will require that a region of the

machine simulate a larger region of the same type. For instance, if the region consists of n processors, the

algorithm might require that the region simulate a cn processor region, for some constant c. This can

usually be accomplished in a straightforward manner by having each processor of the region simulate c

processors. Notice that this will adversely affect the running time of an algorithm by a multiplicative

constant.

In all of the models described, it is assumed that every processor has a fixed number of registers (words),

each of size Ω(log n), and can perform standard arithmetic and Boolean operations on the contents of

these registers in unit time. Each processor can also send or receive a word of data from each of its

neighbors in unit time. Each processor will contain a unique identification register, which provides an

ordering to the processors (though occasionally different orderings may also be used). The contents of

this register will be specified for each model.

1.2.3 Mesh Computer

The mesh computer (mesh) of size n is a machine with n simple processors arranged in a square lattice.

To simplify exposition, it is assumed that n = 4c, for some integer c. For all i, j ∈[0, . . . , n1/2 - 1],

processor Pi, j
, representing the processor in row i and column j, is connected via bidirectional unit-time

communication links to its four neighbors, processors Pi±1, j
 and Pi, j±1, assuming they exist. (See Figure

1.1.)

Each processor contains its row and column indices, and the identification register is initialized to the

processor's row-major index, shuffled row-major index, snake-like index, or proximity order index, as

shown in Figure 1.2, depending on the application. (If necessary, these values can be generated in Θ(n1/2)

time.)

The communication diameter of a mesh of size n is Θ(n1/2), as can be

Page 7

Figure 1.1:

A mesh computer of size n.

seen by examining the distance between processors in opposite corners of the mesh. This means that if a

processor in one corner of the mesh needs data from a processor in another corner of the mesh sometime

during an algorithm, then a lower bound on the running time of the algorithm is Θ(n1/2).

There are some variations of the mesh that deserve mention. Moore's pattern of connecting each

processor to its 8 nearest neighbors [Moor62] has been implemented in the MasPar MP1 and MP2, and

Golay's use of a hexagonal decomposition of 2-dimensional space where each processor communicates

with its 6 nearest neighbors [Gola69] has been implemented in the HARTS machine [CSK90]. Other

interesting variations are derived from connecting the boundaries of the mesh to form a cylinder (north-

south or east-west), torus (doughnut), spiral, and so on. In fact, the mesh topology of the Loral's

Massively Parallel Processor (MPP) is software configurable to select the interconnection of the border

elements [Pott85], and the Intel Paragon machine uses a 2-dimensional torus pattern. While toroidal

connections reduce the communication diameter by a factor of 2, as do the 8-nearest neighbor

connections, in an Ο-notational sense such differences are masked. Therefore, only the simple mesh of

Figure 1.1 will be considered.

A more significant change is to require that the word size be Θ(1) instead of Θ(log n). This model is

known as a cellular automata, iterative array, parallel processing array, or mesh automata. It is

equivalent to requiring that all processors be copies of some fixed finite state automaton. Cellular

automata are quite popular for modeling physical and biological

Page 8

Figure 1.2:

Indexing schemes for the processors of a mesh.

Page 9

phenomena such as crystal growth, phase transitions, and plant growth. However, as a computational

model, for any fixed automaton, once n is sufficiently large, a processor does not have enough memory

to store its ID or coordinates, which seriously complicates matters. While cellular automata were widely

studied as a computational model (e.g., [Beye69, Gola69, Gray71, Levi72, Moor62, Stou82b, Stou83a,

Unge59, Unge62, VanS80]), the more powerful mesh model is used for general purpose computing. To

the best of the authors' knowledge, all real mesh computers have processors capable of storing their

coordinates. There are also more powerful variations, such as the mesh computer augmented with

broadcasting [Stou86a], but their study is outside the bounds of this book.

1.2.4 Pyramid Computer

A pyramid computer (pyramid) of size n is a machine that can be viewed as a full, rooted, 4-ary tree of

height log4 n, with additional horizontal links so that each horizontal level is a mesh. It is often

convenient to view the pyramid as a tapering array of meshes. A pyramid of size n has at its base a mesh

of size n, and a total of 4/3n - 1/3 processors. The levels are numbered so that the base is level 0 and the

apex is level log4 n. A processor at level i is connected via bidirectional unit-time communication links to

its 9 neighbors (assuming they exist): 4 siblings at level i, 4 children at level i - 1, and a parent at level i +

1. (A sample pyramid is given in Figure 1.3.) Each processor contains registers with its level, row, and

column coordinates, the concatenation of which are in the processor identification register. These

registers can be initialized in Θ(log n) time if necessary.

One advantage of the pyramid over the mesh is that the communication diameter of a pyramid computer

of size n is only Θ(log n). This is true since any two processors in the pyramid can exchange information

through the apex. In Chapter 5, algorithms with a running time of Θ(log n) are presented to solve a

variety of problems on a pyramid of size n. Of course, if too much data is trying to be passed through the

apex, then the apex becomes a bottleneck. In Chapter 6, it is shown that for a variety of problems on a

pyramid computer of size n, the Ω(log n) lower bound is overly optimistic and must be replaced by a

bound closer to Ω(n1/4). Even to attain this larger bound, algorithms must avoid operations that require

extensive data movement, since a simple wire-counting argument shows that Ω(n1/2) time is required for

communication-intensive problems such as sorting or routing all of the

Page 10

Figure 1.3:

A pyramid computer of size 16.

Page 11

data in the base. To see this, consider the number of wires crossing the middle of the pyramid versus the

number of items that potentially must move from one half to the other. In the base of the pyramid there

are n1/2 wires crossing the middle of the pyramid, in the next level there are such wires, and so on,

giving the total number of wires that crosses the middle of a pyramid of size n to be

which is 2n1/2 - 2. Since all n pieces of data that initially reside in the base of the pyramid may need to

cross from one side of the base mesh to the other, then time units, or Ω(n1/2) time is required

just to get data across the middle of the pyramid.

The reader is referred to [Buva87, CFLS85, ClMe87, FKLV83, Scha85, SHBV87, Tani82a, Uhr84] for a

description of constructed and proposed pyramid computers.

1.2.5 Mesh-of-Trees Architecture

A mesh-of-trees of base size n, where n is an integral power of 4, has a total of 3n - 2n1/2 processors. n of

these are base processors arranged as a mesh of size n. Above each row and above each column of the

mesh is a perfect binary tree of processors. Each row (column) tree has as its leaves an entire row

(column) of base processors. All row trees are disjoint, as are all column trees. Every row tree has

exactly one leaf processor in common with every column tree. Figure 1.4 shows a sample mesh-of-trees.

Each base processor is connected to 6 neighbors (assuming they exist): 4 in the base mesh, a parent in its

row tree, and a parent in its column tree. Each processor in a row or column tree that is neither a leaf nor

a root is connected to exactly 3 neighbors in its tree: a parent and 2 children. Each root in a row or

column tree has its 2 children as neighbors. Each processor contains identity registers with its level, row,

and column coordinates (the base being level 0), the concatenation of which are the contents of the

processor identification register.

Like the pyramid, the mesh-of-trees also has a communication diameter proportional to the logarithm of

the number of base processors. Also, like the pyramid, a simple wire-counting argument shows that for

operations that require extensive data movement, such as sorting or routing, Ω(n1/2) time is required since

only 2n1/2 wires cross the middle of the mesh-of-trees. However, the mesh-of-trees can sort a restricted

amount of data given in certain configurations in Θ(log n) time.

While no significant mesh-of-trees has been built, it is a very useful

Page 12

Figure 1.4:

A mesh-of-trees of base size n = 16.

Note: The mesh connections have been omitted for clarity.

architecture in VLSI because it embeds nicely into the plane [Ullm84]. Usually the mesh-of-trees does

not include the connections between the base processors, but these connections seem particularly natural

when one is processing images in which some of the lowest level operations involve comparing adjacent

pixels. It is easy to show that these additional connections do not change the planar embedding properties

of the mesh-of-trees.

1.2.6 Hypercube

A hypercube of size n, where n is an integral power of 2, has n processors indexed by the integers {0, . . .,

n - 1}. Viewing each integer in the index range as a log2 n-bit string, two processors are connected via a

bidirectional communication link if and only if their indices differ by exactly one bit. A hypercube of

size n is created recursively from two hypercubes of size n/2 by labeling each hypercube of size n/2

identically and independently with the indices {0, . . . , n/2 - 1}, and then appending a 1 in front of the bit-

strings of one of the cubes and a 0 in front of the other, which 'creates' a new link from each processor in

one cube to the corresponding processor in the other cube. See Figure 1.5. The contents of the processor

identification register corresponds to this label.

It is easy to see that like the mesh-of-trees and pyramid, the communication diameter of a hypercube of

size n is Θ(log n). However, unlike the mesh-of-trees or pyramid, a wire-counting argument only shows

that

Page 13

Figure 1.5:

A hypercube of size n = 16 with the nodes labeled using a binary representation.

Ω(1) time is required for operations that require extensive data movement, since there are n/2 wires that

connect two hypercubes of size n/2 in a hypercube of size n. This allows for many problems to be solved

more efficiently on the hypercube than on the mesh, pyramid, or mesh-of-trees.

A variety of hypercubes have been marketed commercially, including fine-grained machines such as the

Connection Machine [Hill85], and medium-grained machines by companies such as Intel [Inte86],

Ncube [HMSC86], FPS [GHS86], and Ametek [Amet86]. Some machines, such as the MasPar MP1 and

MP2 and the Thinking Machines Corporation CM5, have communication properties that make them very

similar to a hypercube for most purposes.

1.2.7 Pram

A parallel random access machine (PRAM) is an idealized parallel model of computation, with a unit-

time communication diameter. A PRAM is often described as a machine that consists of a set of identical

processors and a global memory, where all processors have unit-time access to any memory location.

Alternately, a PRAM can be described as a machine consisting of a set of fully connected processors,

where memory is distributed among the processors so that each processor maintains some

Page 14

(fixed) number of memory locations.

A PRAM is not a regular architecture, and the unit-time memory access requirement is not scalable, so

they are not the focus of this book. However, in describing algorithms for regular architectures, it is often

useful to describe a PRAM algorithm and then either perform a stepwise simulation of the PRAM

operation on the target machine, or perform a higher-level transformation by using data movement

operations. This is particularly true for algorithms involving the mesh-of-trees and hypercube. For this

purpose, the alternate description of the PRAM will be used, which is now stated more formally.

A PRAM of size n consists of n processors connected as a complete graph. The processor identification

register is set to a number from 0 to n - 1, so that no two processors have the same number. A concurrent
read, exclusive write (CREW) PRAM permits multiple processors to read data from the same memory

location simultaneously, but permits only one processor at a time to attempt to write to a given memory

location. A concurrent read, concurrent write (CRCW) PRAM permits concurrent reads as above, but

allows several processors to attempt writing to the same memory location simultaneously, with some tie-

breaking scheme used so that only one of the competing processors succeeds in the write. An exclusive
read, exclusive write (EREW) PRAM is the most restrictive version of a PRAM in that only one

processor can read and write from a given memory location at a given time. An exclusive read,
concurrent write (ERCW) PRAM is a machine that only allows one processor to read from a given

memory location at a time, while allowing multiple processors to write to any given memory location at

the same time, with some tie-breaking scheme used so that only one of the competing processors

succeeds in the write.

The reader interested in pursuing algorithms for the PRAM may wish to refer to [KaRa90, JaJa92,

Reif93].

1.3 Forms of Input

In this book, efficient algorithms are presented to solve problems on a variety of regular parallel

architectures, defined in the previous section. The majority of the problems will be chosen from fields

such as image processing, graph theory, and computational geometry. In this section, input formats for

the problems considered in this book are given. For the mesh and hypercube, the input data is assumed to

be distributed throughout all processors of the machine, while for the pyramid and

Page 15

mesh-of-trees, the input data is assumed to be distributed among the base processors.

1. Unordered Edge Input. The edges of a graph are initially distributed in a random fashion throughout

the processors of the machine. It is assumed that each edge of the graph is represented by a pair of

vertices, that edges may be represented more than once, and that no processor contains more than some

fixed number of edges.

2. Matrix Input. The processors of the machine are labeled in a systematic and consistent fashion so that

processor Pi, j
 initially contains the (i, j) entry of the adjacency or weight matrix that represents a graph.

3. Digitized Picture Input. A digitized black/white picture is initially stored one pixel (picture element)
per processor in a systematic and consistent fashion so that neighboring pixels in the picture are mapped

onto neighboring processors in the machine. It is assumed that the interpretation is a black picture on a

white background.

4. Geometric Data Input. The geometric problems considered in this book are all planar. That is, they

occur in standard Euclidean 2-space. Geometric objects, and collections of such objects, are represented

in a number of ways. For problems involving points or sets of points, it is assumed that the input is

planar points represented as Cartesian coordinates, stored no more than some fixed number per

processor. If the input is sets of points, then each point will also have an attached label indicating the set

it belongs to. Circles are represented by their radius and the Cartesian coordinates of their center, and are

stored no more than some fixed number per processor. Simple polygons (i.e., polygons that do not

intersect themselves) are given as labeled line segments represented by the Cartesian coordinates of their

endpoints, stored no more than some fixed number of line segments per processor.

For problems involving geometric objects, it is assumed that no two distinct points have the same x-

coordinate or y-coordinate. It is also assumed that no two endpoints from line segments have the same x-

coordinate or y-coordinate, unless the line segments share a common endpoint. These are common

assumptions in computational geometry as they simplify exposition by eliminating special

Page 16

cases. Further, by rotating the points slightly these assumptions can always be met.

1.4 Problems

This section highlights some specific problems for which efficient solutions are presented throughout the

book. For convenience, these problems have been divided into two, not necessarily disjoint, broad areas:

(a) graph and image problems, and (b) problems from computational geometry. Many of the algorithms

to solve problems in graph theory, image processing, and computational geometry will rely on efficient

sorting and matrix algorithms. Therefore, the reader should note that while sorting and matrix algorithms

are not explicitly mentioned in the remainder of this section, such algorithms will be presented in later

chapters of the book.

1.4.1 Graph and Image Problems

In this section, several graph and image problems are defined for which solutions are presented

throughout the book for a variety of machine models and input formats.

1. Component Labeling. The input to the problem is an undirected graph G = (V, E), given as an

adjacency matrix, a set of unordered edges, or as a digitized picture. It is assumed that the elements of V

have a linear order. The component labeling problem is to assign a component label to each vertex, such

that two vertices receive the same component label if and only if there is a connected path between them.

The component label will be chosen to be the minimum label of any vertex in the component. For

digitized picture input, considered as black objects on a white background, components are created by

considering black pixels to be vertices and pairs of neighboring black pixels to be undirected edges. For

digitized picture input, the term figure will be used to refer to a (black) maximally connected component.

2. Minimal Spanning Forest. Given a weighted undirected graph, mark the edges of a minimal-weight

spanning tree for each component of the graph. For a connected graph G = (V, E), and a weight function

w that assigns a weight w(e) to every edge e ∈ E, a minimal-weight spanning tree T = (V, E') of G, E' ⊆

E, is

Page 17

a connected graph with - 1 edges having the property that is a minimum. The input can be

given as an adjacency matrix, a set of unordered edges, or a digitized picture.

3. Nearest/Farthest Neighboring Component. Given a digitized picture with its figures already labeled,

determine for each figure the label of the nearest (farthest) figure to it and its corresponding distance.

The lp metrics will be used to measure distance, where for 1 ≤ p < ∞, the lp distance from (a, b) to (c, d) is

, and the l∞ distance from (a, b) to (c, d) is max .

The reader might note that the connection scheme of the mesh is based on the l1 (''taxi-cab" or "city

block") metric. This means that efficient solutions to image problems for mesh-based models are often

easiest when expressed in terms of the l1 metric. Further, simple techniques can also be applied to solve

problems in terms of the l∞ metric for mesh-based models. However, for other metrics, such as the

important l2 ("Euclidean") metric, more sophisticated solution strategies will be needed for mesh-based

machines. For nonmesh-based machines, sophisticated solution strategies will be developed to solve

distance problems for all lp metrics.

4. Transitive Closure. Compute the transitive closure, denoted A*, of a symmetric Boolean matrix, A. If
A is interpreted as the adjacency matrix representing an undirected graph (i.e, A(i, j) = A(j, i) = 1 means

there is an undirected edge between vertices i and j, while A(i, j) = A(j, i) = 0 means no such edge exists),

then A*(i, j) = 1 if and only if vertices i and j are in the same connected component, and 0 otherwise.

5. Bipartite Graphs. Given an undirected graph G = (V, E), decide if G is bipartite. That is, decide

whether or not V can be partitioned into sets V1
and V2 so that each edge of G joins a member of V1 to a

member of V2.

6. Cyclic Index. Compute the cyclic index of an undirected graph G = (V, E), where the cyclic index of G

is the largest number s so that V can be partitioned into sets V0, . . . ,Vs-1, such that for any edge (x, y), if x

∈ Vi then y ∈ V(i±1)mods.

7. Bridge Edges. Given an undirected graph, decide which edges are bridge edges, where an edge is

called a bridge edge if its removal increases the number of components.

Page 18

8. Articulation Points. Given an undirected graph, decide which vertices are articulation points, where a

vertex is called an articulation point if its removal (along with the edges incident on it) increases the

number of components.

9. Biconnectivity. Given an undirected graph, decide for each component whether or not it is

biconnected, where a component is said to be biconnected if for any two points in the component there

are two disjoint paths between them.

10. Internal Distance. Given a digitized picture, determine for each black pixel the distance of a minimal

internal path (traversing only black pixels) to a marked pixel. Notice that the distance to a marked pixel

is ∞ for all pixels not in the same figure as a marked pixel, and is otherwise defined to be the minimum

number of pixels in an internal path to a marked pixel.

11. Minimal Paths. Given two sets of pixels, A and B, mark and count the minimal distance internal paths

from A to B.

1.4.2 Computational Geometry Problems

In this section, several problems from computational geometry are defined for which solutions are

presented throughout the book. Many algorithms from computational geometry are based on the ability

to efficiently determine the convex hull of an object. The convex hull is a geometric structure of primary

importance that has been well studied for the serial model of computation [PrSh85, Sham78, Tous80,

Avis79, Yao81]. It has applications to normalizing patterns in image processing, obtaining triangulations

of sets of points, topological feature extraction, shape decomposition in pattern recognition, and testing

for linear separability, to name a few.

The convex hull of a set of points S, denoted hull(S) or CH(S), is the smallest convex polygon P for

which each point of S is in the interior or on the boundary of P, as shown in Figure 1.6. A point p ∈ S is

defined to be an extreme point of S if and only if p ∉ hull(S - {p}). That is, p is an extreme point of hull

(S) if and only if p is on the boundary of hull(S) at a point where a trace of the boundary results in a

change of slope (i.e., p is situated at a corner of the boundary). The edges between adjacent extreme

points, with respect to a trace of the boundary of this polygon, will be referred to as the edges of the hull
(S). Note that a convex polygon is completely determined by its extreme points.

Page 19

Figure 1.6:

Convex hull of S.

For algorithms involving the convex hull, it is often useful to be able to represent the orientation of an

extreme point of S, or an edge of the convex hull of S, with respect to S. The orientation typically used

makes use of the definition of the angle of a half-plane, which is in the range [0, 2π). To define the angle

of a half-plane H, translate the origin so that it lies on the edge of H. The angle of H is the angle α such

that H contains all rays from the origin at angles α + β for β in (0, π). For example, when considering a

half-plane determined by the x-axis, the angle of the upper half-plane is 0, while the angle for the lower

half-plane is π.

For an extreme point p of a set S, the angles of support of p are represented by an interval corresponding

to the angles of half-planes with edges through p which contain S. For example, if hull(S) is an iso-

oriented rectangle, then the angles of support of the northwest extreme point are [π, 3π/2], the angles of

support of the southwest extreme point are [3π/2, 2π] ∪ 0, the angles of support of the southeast extreme

point are [0, π/2], and the angles of support of the northeast extreme point are [π/2, π]. For an edge e of

the hull of a set S, the angle of incidence

Page 20

Figure 1.7:

The angle of incidence of hull edge is 0, of edge is π/4,of edge is π/2,

and so forth. The angles of support of extreme point a are [0, π/4], of point b

are [π/4,π/2], of point c are [π/2,3π/4], and so forth.

of e is the angle of the half-plane containing S with edge containing e. See Figure 1.7.

For problems involving a digitized picture D = {di, j
} as input, the pixels are mapped in a natural fashion

to the processors so that processor Pi, j
 assumes responsibility for pixel di, j

. For convexity and proximity

problems, it often makes sense to identify processor Pi, j
 with the integer lattice point (i, j). In this setting,

a set of processors (possibly corresponding to a set of pixels from a given digitized picture) is said to be

convex if and only if the corresponding set of integer lattice points is convex, i.e., the smallest convex

polygon containing them contains no other integer lattice points. This is the proper notion of convexity

for integer lattice points, but it does have the annoying property that some disconnected sets of points,

such as {(1,1), (3,4)}, are convex.

For several of the algorithms presented, it will be useful to impose an ordering on the extreme points of

S. The ordering will be in a coun-

Page 21

terclockwise fashion, starting with the easternmost point. Notice that for a given machine, the size of the

data is finite. Therefore, in the case of picture data, if there are multiple easternmost points, then the

southernmost one of these is chosen as the starting point in the counterclockwise ordering. For point data

input, as discussed in Section 1.3, it is assumed that no two points have the same x-coordinate. Therefore,

for point data input there exists a unique easternmost point.

For many of the convexity problems presented in the book, it is said that the extreme points of S have
been identified, and hence hull(S) has been identified, if for each processor Q containing a point of S,

1. Q has a Boolean variable 'extreme', and 'extreme' is true if and only if the point contained in Q is an

extreme point of S, and

2. for every processor Q containing an extreme point of S
(a) Q contains the position of its point in the counterclockwise ordering,

(b) Q contains the total number of extreme points, and

(c) Q contains the positions of its adjacent extreme points in the counterclockwise ordering.

Several problems from the field of computational geometry are now defined. Solutions to these and

related problems are presented throughout the book for a variety of machine models and input formats.

1. Convex Hull Problems. This book considers a variety of problems involving convex hulls. One of the

fundamental convex hull problems for a labeled digitized picture, or for sets of planar points, is to

identify the extreme points of the convex hull for each (labeled) set of points. Given digitized picture

input, another common query is to determine whether or not each figure is convex. A solution to the

convex hull identification problem will often be used as a first step to solving many of the problems

described below.

2. Linear Separability. Given a digitized picture or planar point data, determine if two sets of points, say

A and B, are linearly separable. That is, determine whether or not there exists a straight line in the plane

such that all of A lies to one side of the line and all of B lies to the other side.

3. Smallest Enclosing Figures. Given a digitized picture or planar point data, determine for each set of

points a smallest enclosing box, the smallest enclosing circle, and a smallest enclosing triangle.

Page 22

4. External Diameter. Given a metric d and either a digitized picture or planar point data, determine the

external diameter for each set of points, where the external diameter of a set S is

5. Nearest Problems. Given geometric data as input, find for each point, set of points, line segment,

rectangle, or simple polygon, the nearest point, set of points, line segment, rectangle, or simple polygon,

respectively.

6. Minimal Distance Spanning Tree. Given a set of planar points, determine a minimal distance spanning

tree, where the distances are measured using the Euclidean metric.

7. Intersection Problems. For each line segment, set of line segments, rectangle, convex bull, half-plane,

circle, or simple polygon determine intersection information with other line segments, sets of line

segments, rectangles, half-planes, circles, or simple polygons, respectively.

8. Area Problems. Given a set of rectangles or, more generally, simple polygons, determine the total area

covered.

1.5 Data Movement Operations

In designing serial algorithms, a major concern is the proper choice and implementation of data

structures and their associated algorithms. In designing algorithms for parallel machines with regular

interconnection topologies, the data structure is typically determined by the machine model. That is, the

physical interconnection topology of the processors will determine the data structure. Therefore, in order

to design efficient parallel algorithms for regular architectures, efficient operations are required to

manipulate the data by exploiting the interconnection network.

Recently, there has been a trend towards developing cost-effective serial systems in terms of abstract
data types (ADTs), where an ADT consists of an abstract data structure (e.g, list, tree, stack) together

with a set of basic operations to be performed on the data in the structure (e.g, find, insert, push). The

advantage of designing systems in terms of ADTs is that it allows the system to be designed with the

essential properties of the data type in mind, but without worrying about implementation

Page 23

constraints and details of the specific machine. In this book, abstract data movement operations are

viewed as the parallel analogue of ADTs. That is, parallel algorithms can be expressed in terms of

fundamental data movement operations without worrying about their implementation or the specific

interconnection of the processors.

Most of the algorithms given in this book are expressed in terms of fundamental data movement

operations, such as those defined in this section. Sorting is a central data movement operation, since

several other operations assume that the data is already in sorted order. In addition, sorting is often used

for the purpose of routing data. This will be discussed in some detail during the presentation of the

concurrent read and concurrent write operations (pages 24-26). Several of the data movement operations

that are presented in this section are performed in parallel on disjoint consecutive sequences of items in

the sorted order. These sequences will be referred to as (ordered) intervals.

1. Sorting: Suppose there is a linear ordering of a collection of processors P, and there is data D chosen

from a linearly ordered set, with D distributed one item per processor in arbitrary order. Then a sort

operation will move the elements of D so that they are stored in order with respect to P, one element per

processor. Since general-purpose sorting algorithms are of interest, only comparison-based algorithms

will be considered in this book.

2. Merging: Suppose there is a linear ordering of a set of processors P, and that a set of data D is chosen

from a linearly ordered set. Suppose D is partitioned into subsets D1
and D2, and D1

is stored in order, one

item per processor, in one subset P1 of the processors, and D2 is stored in order, one item per processor,

in P - P1 . Then a merge operation will combine D1
and D2

to store D in sorted order in P, one item per

processor.

Merging can be used not only to develop efficient sorting algorithms, but to develop efficient algorithms

that avoid sorting in favor of merging data that is given as ordered subsets. Since merging can be

performed at least as fast as sorting, it is desirable to design algorithms that favor merging over sorting

when the situation allows. This scenario will arise in intermediate stages of many of the algorithms given

in later chapters of the book.

3. Semigroup Computation: Suppose each processor has a record with data and a label, and that these

records are in sorted order by their

Page 24

label. Determine the result of applying a unit-time associative binary operation to all data items with the

same label, with each processor receiving the answer for its data label. Such an operation is often

referred to as a semigroup operation. Examples of semigroup operations include minimum, maximum,

summation, logical-OR, logical-AND, and parity, to name a few.

4. Broadcast/Report: Broadcasting and reporting are often viewed and implemented as inverse

operations. Both operations involve moving data within disjoint ordered intervals. They also both require

a distinct processor, called the leader, of each interval. In broadcasting, the leader of each ordered

interval has a data item which is to be delivered to all other processors in its interval. In reporting, within

each interval all processors have data. A semigroup operation (i.e., an associative binary operation such

as minimum, summation, or parity) is to be applied to the data, with the result being sent to the leader of

the interval. For example, suppose each processor contains a labeled record and that processors with the

same label form an ordered interval. Then broadcast and report may be used to inform all processors of

the result of applying some semigroup operation over its ordered interval as follows. For ease of

explanation, let the semigroup operation be minimum. First, the minimum data value of each interval is

reported to the leader of the interval, and then the leader of each interval broadcasts this minimum value

to all processors in its interval.

5. Scatter/Gather: These operations are closely related to the broadcast and report operations. Suppose

each processor has a record containing data, a label, and a Boolean flag called 'marked'. Further, assume

that all processors containing records with the same label form an ordered interval. A gather operation

has all records within each interval with marked=true sent to the leader of its interval. The scatter
operation is a natural complement to the gather operation, where the leader of each interval sends a

(potentially different) piece of data to some set of processors in its interval.

6. Concurrent Read/Write: A concurrent read may be used in a situation where a set of processors

wishes to obtain data associated with a set of keys, but where there is no a priori knowledge as to which

processor maintains the data associate with any particular key. For example, processor Pi might need to

know the data asso-

Page 25

ciated with the key 'blue,' but might not know which processor in the system is responsible for

maintaining the information associated with the key 'blue.' In fact, all processors in the system might be

requesting one or more pieces of data associated with, not necessarily distinct, keys. Similarly, a

concurrent write may be used in a situation where a set of processors wishes to update the data

associated with a set of keys, but again do not necessarily know for any key, which processor is

responsible for maintaining the data associated with that key. These concurrent read/write operations

generalize the read/write operations of a PRAM by making them associative, i.e., locating data by key

rather than by address.

In order to maintain consistency during concurrent read and concurrent write operations, it will be

assumed that there is at most one master record, stored in some processor, associated with each unique

key. In a concurrent read, every processor generates one request record corresponding to each key that it

wishes to receive information about (a bounded number). A concurrent read allows multiple processors

to request information about the same key. A processor requesting information about a nonexistent key

will receive a null message at the end of the operation.

One implementation of a concurrent read on a parallel machine with n processors, based on previously

defined data movement operations, follows.

(a) Every processor creates C1
master records of the form (Key, Return Address, data, 'MASTER'),

where C1
is the maximum number of keyed master records maintained by any processor, and Return

Address is the index of the processor that is creating the record. (Processors maintaining less than C1

master records will create dummy records so that all processors create the same number of master

records.)

(b) Every processor creates C2
request records of the form (Key, Return Address, data, 'REQUEST'),

where C2 is the maximum number of request records generated by any processor, and Return

Address is the index of the processor that is creating the record. (Processors requesting information

associated with less than C2
master records will create dummy records so that all processors create

the same number of request records.) Notice that the data fields of the request records are presently

undefined.

Page 26

(c) Sort all (C1+ C2)n records together by the Key field. In case of ties, place records with the flag

'MASTER' before records with the flag 'REQUEST.'

(d) Use a broadcast within ordered intervals to propagate the data associated with each master record

to the request records with the same Key field. This allows all request records to find and store their

required data.

(e) Return all records to their original processors by sorting all records on the Return Address field.

Therefore, the time to perform a concurrent read, as described, is bounded by the time to perform a fixed

number of sort and interval operations.

As with the concurrent read, in the concurrent write it will be assumed that there is at most one master
record, stored in some processor, associated with each unique key. In a concurrent write, processors

generate update records which specify the key and piece of information about that key that they wish to

update. If two or more update records contain the same key, then a master record will be updated with

the minimum data value of these records. (In other circumstances, one could replace minimum with any

other commutative, associative, binary operation.) The concurrent write may be accomplished by a

method similar to that of the concurrent read, in which case the time to complete the operation is

bounded by the time required for a fixed number of sort and interval operations.

7. Compression: It is often desirable to compress data into a region of the machine where optimal

interprocessor communication is possible. The operation that places the data in such a region is called

compression.

8. Searching and Grouping: Suppose every processor Pi contains a searching item si ∈ S and a target

item ti ∈ T, 1 ≤ i ≤ n, where there is an ordering on the elements of T. Further, suppose there exists a

Boolean relation R(s, t),s ∈ S, t ∈ T. A solution to the searching problem requires each processor Pi to

find the largest j such that R(si, tj) is true. For example, consider a collection of boxes of different shapes,

where the jth box costs less than the j - 1st, and a collection of objects to put into the boxes. Viewing the

boxes as targets, the objects as searching elements, and the

Page 27

relation fits inside as R, then the searching problem finds, for each object, the cheapest box that it fits

inside of. Depending on what is known about S, T, and R, different algorithms may be the most efficient.

Cases of interest include the following.

(a) Suppose there are decreasing (increasing) functions f and g mapping s ∈ S and t ∈ T into the

same linearly ordered set, and a relation U such that U(f(s), g(t)) = R(s, t). Further, suppose that U(x,
y) = true implies U(x', y) = true whenever x' > x (x' < x) and U(x, y') = true whenever y' < y (y' > y).
Then the searching problem can be solved by a grouping technique requiring only one pass, as

follows. Mapping s's and t's via f and g, respectively, sort all elements of S together with all elements

of T into linear order and then perform a broadcast operation within every interval delimited by

members of T so as to inform members of S as to their interval, which gives the required answer. A

final sort based on the index of the searching and target items is used to return the items to their

original processors.

As a simple example, the reader may construct the appropriate functions f and g, the binary relation

R, and the relation U to solve the interval location problem for a set of n numbers. That is, assume

every processor has an element of a set S of real numbers, and an element of set T = {t1, t2, . . . , tn},

where -∞ = t0 < t1 < . . . < tn < tn+1 = + ∞, and for each s ∈ S it is required that the interval ti < s≤ ti+1
be determined.

(b) Suppose functions f and g that map elements in S and T into the same linearly ordered set cannot

be found. However, suppose that the elements of S and T have an ordering such that R(si,tj) = true

implies R(si+1,tj) = true and R(si, tj-1) = true. In this situation, multiple parallel binary searches can be

used to solve the search problem.

(c) Finally, suppose functions f and g can be found, but the Boolean relation R only has the property

that R(si, tj) = true implies R(si, tj-1) = true. For example, this would occur if the boxes mentioned

above had the property that the jth box fits inside the j - 1st box. Another example follows.

Suppose that S is a set of n planar points represented by

Page 28

their Cartesian coordinates (x, y), such that l ≤ x ≤ r. Suppose T is a set of n line segments, where

each line segment is represented by the Cartesian coordinates of its two endpoints, as [(x1, y1), (x2,
y2)]. Further, assume that all line segments have x1 = l and x2 = r. That is, the left endpoint of every

line segment is l and the right endpoint of every line segment is r. Finally, assume that no pair of line

segments intersect, so that the line segments can be ordered by saying that segment s1 is less than

segment s2 if s1 lies below s1. Note that the segments partition the vertical column l ≤ x ≤ r into

regions bounded above and below by consecutive line segments. Then the search problem in

question is that of determining, for each point in S, the region that it belongs to. See Figure 1.8.

Figure 1.8:

Searching to find interval for points.

A solution to this search problem using a two-pass grouping technique follows. First, sort the line

segments by y-coordinate with respect to the left endpoint l. Let this oper-

Page 29

ation result in the ordered set t1, t2, . . . , tn, where t1
< t2

< . . . < tn. Next, all processors view tk,

t2k
, . . . tk[n/k], for some machine dependent constant k. While viewing these values, every processor

decides which of the [n/k] major intervals its search point is in. Finally, S and T are sorted so that all

points of S are grouped together (forming ordered intervals) with all line segments in their major

interval. Next, all line segments in each major interval are circulated within that interval so that each

point can detect which interval it is in. A final sort returns the points to their original processors. The

reader should note that if the line segments of T are restricted to being horizontal line segments, then

the problem is equivalent to, and can be solved, using the method presented in (a).

9. Parallel Prefix: Given values a1, a2, . . . , an, and a binary associative operator ⊗, the product

computation problem is to compute the product a1 ⊗ a2
⊗ . . . ⊗ an. The initial prefix problem is to

compute all n initial prefixes a1, al⊗a2, . . . , a1⊗a2⊗ . . . ⊗an. The initial prefix problem when solved on

a parallel model of computation is known as parallel prefix. This operation is quite powerful. For

example, it can be used to sum elements, find the minimum or maximum of a set of elements, broadcast

values, compress data items, and so forth.

10. Reducing a Function: Given sets Q, R, and S, let g be a function mapping Q × R into S, and let * be a

commutative, associative, binary operation over S. Define a map f from Q into S by f(q) = * {g(q, r)

 r ∈

R}, where f is said to be the reduction of g. For example, if Q and R are sets of points in some metric

space, if S is the real numbers, if g(q, r) is the distance from q to r, and if * is the minimum, then f(q) is

the distance from q to the nearest point in R.

1.6 Sample Algorithms

In this section, generic solutions are presented to two fundamental problems that are considered in later

chapters of the book. This section serves the purpose of familiarizing the reader with

• the component labeling problem,

Page 30

• the convex hull problem,

• problems involving image data,

• problems involving geometric data,

• designing generic, machine independent, parallel algorithms in terms of fundamental abstract data

movement operations, as presented in Section 1.5, and

• general techniques, such as divide-and-conquer, data reduction, and generating cross-products
that are frequently used to design efficient parallel algorithms for regular architectures.

1.6.1 Component Labeling for Digitized Picture Input

The component labeling problem was defined in Section 1.4.1. For the algorithms presented in this

section, it is assumed that an n × n digitized picture A = {ai, j
}is stored one pixel per processor on a

machine with n2 processors. The pixels are assumed to be in one of two states: black or white. The

interpretation is that of a black picture on a white background. The picture is stored in a natural fashion,
meaning that pixels that are adjacent in the picture are mapped to processors that are directly connected

in the machine. For simplicity, a 4-connected definition of connectedness for the figures (i.e., connected

black components) is assumed. That is, a black pixel ai, j
is a neighbor of black pixels ai+1,j

, ai-1,j
, ai, j+1,

and ai, j-1
. (Notice that black pixels ai, j

 and ai+1,j+1, for example, are not neighbors, though they may still

be in the same figure if there is a 4-connected path of black pixels between them.)

Each processor that contains a black pixel uses its unique index as the label of the pixel that it contains.

When a labeling algorithm terminates, every processor that contains a black pixel will store the label of

its pixel and the label of the smallest labeled pixel that its pixel is connected to. That is, each such

processor will know the label of the figure that its pixel is a member of.

A simple parallel propagation algorithm can be used to label the figures, as follows. Every black

processor (i.e., a processor containing a black pixel) initially assumes that the label of its pixel is the

component label of the figure that its pixel is a member of. During each iteration of the algorithm, every

black processor sends its current component label to its (at most) four black neighbors. Every black

processor then compares

Page 31

Figure 1.9:

A picture containing 'blob-like' figures.

its current label with the (at most) four labels just received, and keeps as its new label the minimum of

these labels. It is easy to see that for each figure, the minimum label L is propagated from processor PL (i.
e., the processor with index L) to each black processor Pi in its figure in the minimum number of steps

required to pass a message from PL to Pi, under the restriction that data is only passed between

neighboring black processors. Therefore, this labeling algorithm terminates in Θ(D) time, where D is the

maximum number of communication links any label must traverse. So, given 'blob-like' figures, as in

Figure 1.9, all processors can know the label of their figure in Ο(n) time. However, it is easy to construct

non-'blob-like' figures, such as spirals or snakes, as shown in Figure 1.10, for which this propagation

algorithm will require Θ(n2) time.

In contrast to the Ο(n2) parallel propagation algorithm, two algorithms are given in this section that will

label all figures regardless of the number, shape, or size of the figures, much more efficiently, in the

worst case, when implemented on the machines considered in this book. Both algorithms follow a

recursive divide-and-conquer solution strategy, which will be used throughout the book to produce

efficient parallel so-

Page 32

(a) A spiral is not a 'blob-like' figure.

(b) A snake is not a 'blob-like' figure.

Figure 1.10:

Pictures consisting of non-'blob-like' figures.

Page 33

Figure 1.11:

Sample labeling after recursively labeling each quadrant.

lutions to a variety of problems. Both algorithms also serve as good examples of data reduction
algorithms.

The first step of these algorithms is to recursively label the four quadrants of the picture independently,

treating each quadrant as a complete picture. After this step, the only figures that could have pixels with

differing labels are those figures that span a border between the quadrants. For instance, assuming Figure

1.11 represents the labels of figures after the independent and parallel recursive labeling of the quadrants,

then figures A and H are labeled correctly, while the other figures contain pixels with an incorrect final

label. Two methods for resolving the labeling conflicts to obtain correct global labels from the local

(quadrant) labels are given. Both algorithms exploit the fact that the pertinent data has been reduced from

an amount proportional to the area of the image to an amount proportional to the perimeter of the image.

Page 34

Compression

Algorithm

This method of resolving label conflicts introduces the concept of compressing data to a region of the

machine where interprocessor communication is minimized. Specifically, the Ο(n) pertinent pieces of

data remaining in the machine after the recursive labeling is complete, will be moved to a region of the

machine where subsequent computations can be performed efficiently.

1. Each black processor on the border of a quadrant, creates an edge record corresponding to an edge

between its black pixel and any of the (at most) 4 neighboring black pixels.

2. Compress these Ο(n) edge records to a subset of Ο(n) processors of the machine that will allow for

efficient interprocessor communication.

3. In this set of processors, the problem has now changed from a problem involving a digitized picture to

that of solving the component labeling problem for unordered edge input. Using an unordered edge input

algorithm over the data stored in this subset of processors, resolve the labels.

4. Use a concurrent read so that all processors in the machine obtain their (possibly new) labels from this

final set of labels just computed.

Therefore, the running time for the entire component labeling algorithm is given by the recurrence

T(n2) = T(n2/4) + Comp(n, n2) + Edge(n) + CR(n2),

where T(n2/4) is the time to perform the recursive labeling on the input n × n image, Comp(n) is the time

to compress Ο(n) items on a machine of size n2, Edge(n) is the time to perform the unordered edge

labeling algorithm for the Ο(n) edges contained in the compressed subset of Ο(n) processors, and CR(n2)
is the time to perform a concurrent read on a machine of size n2.

Once the compression operation has been performed, interprocessor communication is reduced so that

the intermediate processing can be performed in an efficient manner. Further, reducing the

communication diameter of the remaining information typically means that many processors remain idle

during the intermediate processing. For instance, in

Page 35

the compression version of the component labeling algorithm just given on a mesh of size n2, Ο(n2)
processors will remain idle during the unordered edge algorithm of Step 3 that resolves the border labels.

A number of efficient algorithms will be given in later chapters of the book that exploit data reduction

techniques. Some of these algorithms will exploit an iterative data reduction technique where at various

stages of the algorithm, the remaining pertinent data is reduced, as are the number of active processors.

Cross-Product

Algorithm

The method used in the Compression Algorithm for resolving labels relies on compressing Ο(n) items on

a machine of size n2 to a place where interprocessor communication is minimized. Therefore, during the

core of the algorithm, it is possible for Ο(n2) processors to remain idle. In contrast to the technique used

in the Compression Algorithm, this method makes use of the available processors by creating an

adjacency matrix to represent the cross-product of the Ο(n) items, thereby utilizing the full complement

of the Ο(n2) available processors.

1. Each black processor on the border of a quadrant, creates an edge record corresponding to an edge

between its black pixel and any of the (at most) 4 neighboring black pixels.

2. Initialize all entries, except those along the diagonal, of the adjacency matrix to 0. The diagonal entries

are initialized to 1. This corresponds to initially assuming that there are no edges in the graph, although it

is assumed that a vertex is in the same figure as itself.

3. Using a mapping by border indices to rows and columns of an adjacency matrix, use a concurrent

write for each border processor to place a 1 into an entry of the matrix corresponding to each of its edge

records.

4. The problem has now been reduced to that of solving an adjacency matrix version of the component

labeling algorithm. Using an adjacency matrix component labeling algorithm, resolve the labels.

5. Use a concurrent read so that all black processors obtain their (possibly new) label, where the diagonal

elements of the matrix store the final label of the entry for its row and column.

Page 36

The running time of the entire component labeling algorithm is given by

T(n2) = T(n2/4) + Create(n2) + Adj(n2) + CR(n2),

where T(n2/4) is the time to perform the recursive labeling, Create(n2) is the time to create the adjacency

matrix, including initialization and the concurrent write, Adj(n2) is the time to perform the adjacency

matrix component labeling algorithm on the machine of size n2, and CR(n2) is the time to perform a

concurrent read on a machine of size n2.

A number of efficient algorithms will be given in later chapters of the book that exploit the concept of

creating cross-products. As a simple example, consider the problem of sorting n distinct items on a

machine of size n2. A counting sort may be used, where a cross-product is first created in which the n2

ordered pairs of items are stored one per processor. Each item ai need only count (sum) the number of

pairs (i, j) in which aj < ai to determine its rank (i.e., final position of item ai in the sorted list). The items

are then routed to their final destinations.

1.6.2 Convex Hull for Planar Point Data Input

In Section 1.4.2, the problem of identifying the extreme points representing the convex hull of a set of

planar points was discussed. In this section, generic machine independent parallel solutions to the convex

hull problem are given. These algorithms reinforce advantages of paradigms such as divide-and-conquer

and data reduction, and introduce new paradigms. They are also given in terms of fundamental data

movement operations, some of which were not used in the component labeling algorithms of the

previous section.

In this section, two distinct strategies are given for marking the extreme points representing the convex

hull of a set S of n planar points distributed arbitrarily one point per processor on a machine with n
processors. Both algorithms follow a general divide-and-conquer solution strategy. The first algorithm

divides the points into a fixed number of subsets, while the second algorithm divides the points into

multiple subsets.

Fixed Subset Division Algorithm

1. Preprocessing: Sort the n planar points so as to order them by x-coordinate. That is, after sorting the

points, they will be ordered

Page 37

Figure 1.12:

Upper and lower tangent lines between linearly separable sets S1 and S2.

so that the x-coordinate of the point in processor Pi is less than the x-coordinate of the point in processor

Pj, for i < j.

2. If n ≤ 2, then all points are extreme points. Otherwise, let S1 denote the points in processors P1, P2, . . . ,

Pn/2, and S2 denote the points in processors Pn/2+1, Pn/2+2, . . . , Pn . Notice that S = S1 ∪ S2, that S1 and S2

each contain n/2 points, and that the points in S1 have x-coordinates less than those in S2. (Dividing S into

2 subsets makes the presentation of this sample algorithm easier. The particular constant number of

subsets can be appropriately modified for implementation on a given machine. For example, on mesh-

based machines, S would typically be divided into 4 subsets, one corresponding to each quadrant of the

(base) mesh.)

3. Recursively identify the extreme points of S . . . 1 and the extreme points of S2. (Note: this is a

recursive call to Step 2, not Step 1.)

4. Identify the upper and lower common tangent lines between hull(S1) and hull(S2) by performing a

grouping operation. See Figure 1.12. Two different grouping operations may be used to determine these

tangent lines.

(a) The first grouping operation is based on the fact that an extreme point pk of S1, with pk-1 and pk+1 as

its preceding and

Page 38

succeeding extreme points, respectively, with respect to the counterclockwise ordering of the extreme

points of S1, is the left endpoint of the upper common tangent line between S1 and S2 if and only if no

points of S2 lie above the line , while at least one point of S2 lies above the line . (Recall

that the extreme points are labeled in counterclockwise fashion.) Similar remarks can be made about

the other three endpoints.

Searching for an endpoint is accomplished by a grouping operation that uses multiple binary searches.

For instance, the extreme point that corresponds to the left endpoint of the upper tangent line between

S1 and S2 may be determined as follows. (The other endpoints are determined similarly.)

i. Suppose there are n1 extreme points of S1 which are labeled 1, 2, . . . , n1. Let l = 1 and r = n1.

ii. Let k = Broadcast extreme points pk, pk+1, and pk-1 of S1 to the processors that are maintaining

extreme points for S2.

iii. Using a concurrent write, all processors maintaining extreme points of S2 that are above the line

, send a message to the processor maintaining pk of S1, which in turn broadcasts the response

to all processors of S1.

iv. If there is at least one such point of S2 that is above , then the binary search continues on

the points labeled k + 1, k + 2, . . . , r (i.e., set l = k + 1 and return to Step 4(a)ii).

v. If there are no points of S2 above , then the processor of S1 that maintains pk broadcasts this

fact to the processors of S2. This is followed by performing a concurrent write, where all processors

maintaining extreme points of S2 above the line , send a message to the processor

maintaining pk, which in turn broadcasts the response to all processors of S1.

A. If there are no points of S2 above , then the binary search continues on the set of points

labeled 1, 2, . . . , k - 1 (i.e., set r = k - 1 and return to Step 4(a)ii).

B. If there is at least one point of S2 above , then pk is the left endpoint of the upper tangent

line between S1 and S2. Notice that pk has the property

Page 39

that all points of S2 lie below the line , while at least some points of S2 lie above the line

After no more than [log2 n1] iterations, an extreme point of S1 will be found that is the left endpoint

of the upper tangent line between S1 and S2. For some of the machines considered in this book, it will

be advantageous to interleave steps of the binary search to find the left common tangent point with

steps of the binary search to find the right common tangent point, compressing all of the remaining

candidates from S1 and S2 jointly after each pair of searches.

(b) A different grouping operation may be used in order to determine the endpoints of the upper and

lower common tangent lines. This operation is a one pass operation based on the angles of incidence
(AOI), as defined on page 20, of the hull edges. Specifically, suppose , pi ∈ S1, qj ∈ S2, is the upper

tangent line between convex sets S1 and S2, as in Figure 1.12. Then it can be shown [PrHo77] that

Therefore, each extreme point Pi simply needs to locate the edges of the other set with angles of

incidence just above and just below the angles of incidence of and . This is accomplished

by sorting records representing both endpoints of the angles of support of every extreme point of S1

(S2) together with records representing the angles of incidence of the hull edges of S2 (S1) and then

performing broadcasts within the intervals delimited by the hull edges.

5. Eliminate all extreme points between the common tangent lines (i.e., all extreme points of S1 and S2

that are inside the quadrilateral formed by the four endpoints representing the common tangent lines) and

renumber the remaining extreme points. This is accomplished by broadcasting the information pertaining

to the four endpoints to all processors maintaining a point of S, and then having each processor make a

constant time decision as to whether or not it remains an extreme point, and if so, what its new number is.

The running time of the algorithm is given by

T(n) = T'(n) + Sort(n),

Page 40

where Sort(n) is the time to sort n items distributed one per processor on a machine of size n, and T'(n) is

the time to perform all but the first (preprocessing) step. T'(n) satisfies the recurrence

T'(n) = T'(n/2) + Group(n) + Broad(n) + Elim(1),

where T'(n/2) is the time for the recursive call, Group(n) is the time to perform an appropriate grouping

operation to determine the upper and lower common tangent lines, Broad(n) is the time to perform a

broadcast operation on a machine of size n, and Elim(1) is the time required for each processor to make

the final extreme point decision.

Multiple Subset Division Algorithm

1. Preprocessing: Using sorting, partition the n planar points of S into n1/k subsets, where k is a machine

dependent constant that minimizes the running time of the algorithm. The partitioning is done so as to

produce the following.

(a) , where each of the n1/k sets S1, S2,. . ., , is of size n(k-1)/k

(b) The x-coordinates of all points in Si are less than the x-coordinates of all points in Sj, for i < j.

(c) Define region Ri to be a subset of processors of the machine responsible for set Si. It is assumed that

the set Si is stored in the ith subset of processors of size n(k-1)/k and that this ordering holds recursively

within each such region of size n(k-1)/k

2. If n ≤ 2, then all points are extreme points. Otherwise, for each region Ri,1 ≤ i ≤ n/k, recursively

identify the extreme points of Si. (Note: this is a recursive call to Step 2, not Step 1.)

3. Using a two pass grouping operation, each region Ri determines the endpoints of the upper and lower

tangent lines between Si and every other set of points Sj, for i ≠ j, as follows.

(a) Each region Ri,1 ≤ i ≤ n1/k, sends n1/k query points to every other region Rj, i ≠ j. The query points

are equally spaced with respect to the counterclockwise numbering of the extreme points of Si. Further,

each query point is represented by two records, one corresponding to each endpoint of the range of its

angles of support.

Page 41

(b) Each region Ri,1 ≤ i ≤ n1/k, receives n1/k query points from every other region Rj, i ≠ j. These records

are merged so that they are received completely ordered with respect to the key field (an angle).

(c) Each region Ri,1≤ i ≤ n1/k, merges the Ο(n2/k) ordered query point records it just received with its Ο(n
(k-1)/k) ordered angle of incidence records that correspond to its hull edges.

(d) Within each region Ri,1 ≤ i ≤ n1/k, perform a broadcast within ordered intervals, as determined by

consecutive pairs of angle of incidence records. Each set of ordered query points that arrived from

region Rj, i ≠ j, now contains information that can be used to decide which consecutive pair of its query

points represents the interval of Rj's extreme points that needs to be further explored in search of the

endpoints of the tangent lines between Rj and Ri. (Properties of angles of incidence, as introduced on

page 39 in Step 4b of the Fixed Subset Division Algorithm, are used.)

(e) The query points are returned to their original regions ordered by angles of support, consecutive

items are compared to determine the appropriate interval, and the second pass of the grouping

operation is performed much as the first, but with the n1/k query points sent to each region determined

by the appropriate consecutive pair of points determined at the end of the first pass.

4. Within each region Ri,1 ≤ i ≤ n1/k, determine the minimum slope of a tangent line between Ri and Rj,
for j < i (i.e., those regions to the left of Ri). Let pi be the extreme point of Ri that is an endpoint of the

common tangent line. Determine the maximum slope of a tangent line between Ri and Rj, for j > i (i.e.,

those regions to the right of Ri). Let pr be the extreme point of Ri that is an endpoint of the common

tangent line. If pr is to the left of pi, or pr = pi and the angle open to the top, formed by these two line

segments, is less than 180°, then no points of Ri are extreme points of S. Otherwise, those extreme points

of Ri between pi and pr are extreme points of S. See Figure 1.13.

The running time of the algorithm is given by

T(n) = T'(n) + Sort(n),

Page 42

(a) pl is to the left of Pr and the angle open to the top is > 180°. Those extreme points of Ri that are

between pl and Pr are extreme points of S.

(b) pl is equal to pr and the angle open to the top is > 180°. pl (= Pr) is an extreme point of S.

Page 43

(c) pl is equal to Pr and the angle open to the top is ≤ 180°. No extreme points of Ri are extreme points

of S.

(d) pr is to the left of pl. No extreme points of Ri are extreme points of S.

Figure 1.13:

Using pl and pr to determine extreme points.

Page 44

where Sort(n) is the time to sort n items distributed one per processor on a machine of size n in the

partition step, and T'(n) is the time to perform all but this first step. T'(n) satisfies the recurrence

T'(n) = T'(n1/k) + Group(n) + Semi(n) + Broad(n) + Elim(1),

where T(n1/k) is the time for the recursive call, Group(n) is the time to perform an appropriate grouping

operation to determine the endpoints of the upper and lower common tangent lines, Semi(n(k-1)/k) is the

time to perform a semigroup (associative binary) operation to determine minimum and maximum slopes

in a region of size n(k-1)/k, Broad(n(k-1)/k) is the time to perform a broadcast operation within each such

region, and Elim(1) is the time required for each processor to make the final extreme point decision.

1.7 Further Remarks

In this chapter, a variety of models of computation have been defined. The problems that will be solved

in the later chapters of the book have also been introduced, along with the types of inputs that the

problems may have. The concept of describing machine independent parallel algorithms for regular

architectures in terms of abstract data movement operations was introduced, and a variety of these

fundamental data movement operations were discussed. Finally, sample parallel algorithms were given in

terms of abstract data movement operations that also introduced fundamental paradigms for solving

problems on regular architectures. The reader may now proceed comfortably to Chapter 2 or Chapter 5.

Page 45

2

Fundamental Mesh Algorithms

2.1 Introduction

In this chapter, standard data movement operations and fundamental algorithms are presented for the

mesh computer. All of these algorithms have optimal Θ(n) worst-case running times on a mesh of size n2.
In Section 2.2, basic mesh definitions are reviewed. Section 2.3 concentrates on showing that for

problems requiring global communication, a mesh of size n2 must take Ω(n) time to solve the problem.

Fundamental mesh algorithms, such as passing information in rows or columns, computing a semigroup

(i.e., associative binary) operation, and determining a parallel prefix, are given in Section 2.4. Section 2.5

presents optimal mesh algorithms to solve problems involving matrices. These problems include

transposition, multiplication, transitive closure, and inverse. Algorithms involving ordered data are

presented in Section 2.6, including algorithms for sorting, performing basic operations within (ordered)

intervals, concurrent reads and writes, and compressing data.

2.2 Definitions

The mesh computer (mesh) of size n2 is a machine with n2 simple processors arranged in a square lattice.

To simplify exposition, it is assumed that n =2c, for some integer c. For all i, j ∈[0,. . .,n - 1], processor Pi,

j
, representing the processor in row i and column j, is connected via bidirectional unit-time

communication links to its four neighbors, processors Pi±1, j
 and Pi, j±i, assuming they exist. (See Figure

2.1.) Each processor has a fixed number of registers (words), each of size Ω(log n), and can perform

standard arithmetic and Boolean operations on the contents of these registers in unit time. Each processor

can also send or receive a word of data from each of its neighbors in unit time. Each processor contains

its row and column indices, as well as a unique identification register, the contents of which is initialized

to the processor's row-major index, shuffled row-major index, snake-like index, or proximity order

index, as shown in Figure 2.2. (If necessary, these values can be generated in Θ(n1/2) time.)

For some of the problems in this and subsequent mesh chapters, it

Page 46

Figure 2.1:

A mesh computer of size n2.

will be convenient to conceptually partition the mesh into submeshes or squares of size S. What is meant

by this is that the mesh will be completely partitioned into disjoint submeshes (or squares) of size S,
where S is a power of 4. Using this partitioning, the concept of the square of size S containing processor
P is well-defined.

2.3 Lower Bounds

The communication diameter of a mesh of size n2 is Θ(n) since any arbitrary pair of processors can

communicate in Ο(n) time, and some processors require Ω(n) time. For instance, information starting at

diagonally opposed corners of the mesh cannot meet in less than n - 1 steps, data from one of these

diagonally opposed processors cannot reach the other processor in less than 2n - 2 steps, information

starting in processors at opposite edges of the mesh cannot meet in less than n/2 steps, and data from a

processor on one edge of the mesh cannot reach a processor on the opposite edge of the mesh in less than

n - 1 steps. A problem is said to require global communication if at least one processor must receive

information that might originate in any processor. A lower bound on the worst-case running time of an

algorithm to solve a problem that requires global communication is Ω(n). In fact, for many problems that

involve global communication of data, it is easy to devise inputs for which any algorithm to solve the

problem on a mesh of size n2 must take Ω(n) time. Similarly, a lower bound on the running time of

Page 47

0 1 2 3

0 1 4 5

4 5 6 7

2 3 6 7

8 9 10 11

8 9 12 13

12 13 14 15

10 11 14 15

(a) Row-major

(b)Shuffled row-major

0 1 2 3

0 1 14 15

7 6 5 4

3 2 13 12

8 9 10 11

4 7 8 11

15 14 13 12

5 6 9 10

(c) Snake-like

(d) Proximity

Figure 2.2:

Indexing schemes for the processors of a mesh.

Page 48

an algorithm in which 'distant' processors (i.e., processors that require Ω(n) steps to communicate with

each other) must exchange or combine information is Ω(n).

The wire-counting (bisection width) approach can also be used to show that many problems require Ω(n)
time on a mesh of size n2. For example, sorting or merging require Ω (n) time since it is possible that all

of the data initially residing in processors in columns 0 . . . n/2 - 1 must be moved to processors in

columns n/2 . . . n - 1, and vice versa. Since there are n wires connecting these two sets of processors, then

in order to move n2 data items between these two sets requires Ω (n) time. Similar arguments apply to

operations such as matrix transposition and component labeling of graphs.

2.4 Primitive Mesh

Algorithms

Fundamental mesh algorithms, such as those presented in this section, will form the foundation of

advanced mesh algorithms that appear later in this chapter and throughout the book.

2.4.1 Row and Column Rotations

A frequent situation is that every processor needs to transmit a fixed amount of data to be viewed by all

other processors in the same row (column). On a mesh of size n2 this can be done in n - 1 steps,

simultaneously for all processors, as follows. Initially, all processors in a row (column) send copies of

their data in both directions. As a processor receives data from neighboring processors, it views the data

and then (in the next step) continues to send it in the direction that it was traveling. Data that reaches

edge processors are viewed and then discarded.

Occasionally, more control is needed over the timing in terms of coordinating when each processor

receives such information. This occurs when row information is being passed around that must be

combined with column information that is also being passed around, and matching pairs of data must

arrive at the appropriate processor at the same time. (Recall that each processor only has a bounded

amount of memory, and hence cannot store all data that passes through it.) One useful variant, called row
(column) rotation, is as follows. Copies of the data from each processor move towards the easternmost

(northernmost) processor of their row (column) in lock-step fashion. Once the data reaches the extreme

processor, the copies of information reverse themselves until they

Page 49

reach the westernmost (southernmost) processor of their row (column) where they reverse themselves

again. Notice that at any step, a processor has copies of (and views) at most two sets of data. The

algorithm terminates the step before processors would simultaneously receive copies of their original

data from their western (southern) neighbor. This rotation takes exactly 2n - 3 steps.

2.4.2 Passing a Row (Column) Through the Mesh

Suppose that every processor of a mesh of size n2 needs to view a fixed amount of data from every

processor of a given row (column). This can be done in Θ(n) time as follows. Rotate all columns (rows)

simultaneously so that a copy of (the required data from) the given row (column) exists in every row

(column) of the mesh. Now, simply rotate all rows (columns) of the mesh simultaneously.

2.4.3 Semigroup Operations, Reporting, and Broadcasting

Suppose that every processor of a mesh of size n2 needs to know the result of applying some semigroup

operation (i.e., an associative binary operation such as minimum, summation, or parity) to n2 pieces of

data distributed one item per processor. The result of applying the function to the data can be computed

and distributed to all processors in Θ(n) time by reporting the result to processor P0,0 and then

broadcasting this value to all processors. To report this value to processor P0,0, first perform a row

rotation for all rows simultaneously, so that in Θ(n) time every processor in the first column knows the

result of applying the semigroup operation over all values in its row. Using a column rotation in the first

column of the mesh, processor P0,0 can know the result of applying the semigroup operation over the n
row results, which gives processor P0,0 the result of applying the semigroup operation over all n2 pieces

of data. To broadcast this value to all processors, simply reverse the process.

Alternately, the result of a semigroup operation could be known to all processors in Θ(n) time without

performing a report and broadcast. Simply perform a row rotation simultaneously in all rows so that

every processor knows the result of applying the semigroup operation over the values stored in its row.

Then perform a column rotation simultaneously for all columns so that every processor knows the result

of applying the semigroup operation over the previously computed row values, which is

Page 50

the result of applying the semigroup operation over all n2 values. Notice that asymptotically, both

methods finish in optimal Θ(n) time.

2.4.4 Parallel Prefix

Using the row-major indexing scheme of a mesh of size n2, suppose processor Pi, 0 ≤ i ≤ n2 - 1, initially

contains ai, and that every processor Pi is to determine the ith initial prefix a0 ⊗ al ⊗ · · · ⊗ ai, where ⊗ is

an associative binary operator. Notice that according to the row-major indexing scheme, processor Pi ,
0 ≤

i ≤ n2 - 1, resides in row j = [i/
n
]. The solution to this problem can be obtained in Θ(n) time by a series of

row and column rotations, as follows. (See Figure 2.3 for an example.)

1. Perform a row rotation so that every processor Pi in row j knows aj*n ⊗ aj*n+1 ⊗ ⋅ ⋅ ⋅ ai.

2. Perform a row rotation so that processor Pj *n,0 ≤ j ≤ n - 1, knows the value stored in processor P[(j+1)*n]-

1, namely, aj*n ⊗ aj*n+ 1 ⊗ · · · a[(j+1)*n]-1.

3. Perform a column rotation in column 0 so that processor Pj *n,1 ≤ j ≤ n - 1, knows Vj = a0 ⊗ al ⊗ ⋅ ⋅ ⋅ ⊗

aj*n-1.

4. Perform a row rotation in every row j, 0 ≤ j ≤ n - 1, to broadcast Vj to all processors in row j so they

may update their value to obtain a0 ⊗ a1 ⊗ · · · ⊗ ai, for every processor Pi, 0 ≤ i ≤ n2 - 1.

It should be noted that if the data is originally ordered according to some indexing scheme other than

row-major, then Section 2.6.1 will show how to use sorting to put the data into row-major order, so that

parallel prefix can be computed as described, and then how to use sorting to return the values to the

required processors, all without affecting the asymptotic running time of the algorithm.

2.5 Matrix Algorithms

In this section, algorithms are presented that involve n × n matrices mapped onto meshes of size Θ(n2).

2.5.1 Matrix Transposition

In this section, an optimal Θ(n) time algorithm is presented to compute the transpose of an n × n matrix A
= {Ai, j

}, initially stored in a mesh

Page 51

Figure 2.3:

An example of computing the parallel prefix on a mesh of size n2.
The operation ⊗ is taken to be addition (+) in this example.

Page 52

of size n2 so that processor Pi, ,j
 contains element Ai, j

. The transpose of a matrix A is given by .

The algorithm consists of two complimentary phases that are each completed in Θ(n) time, as follows.

Denote diagonal processors Pi, i
,1 ≤ i ≤ n, as routers. For all above-diagonal processors Pi, j

, i < j, send the

value of Ai, j
 down to diagonal processor Pj,j

 in lock-step fashion. Each value Ai, j
, i < j, reaches diagonal

processor Pj,j
 in k = j - i steps. As each router Pj,j

 receives an Ai, j
, it sends the data to the left where it will

move for k = j - i steps, until it reaches below-diagonal processor Pj, i. Next, in a similar fashion all

below-diagonal processors Pi, j
, i > j, send their data to the right, where diagonal processor Pi, i routes the

data upwards. Therefore, in Θ(n) time every processor Pi, j
 contains Aj, i.

Theorem 2.1 Given an n × n matrix A stored in a natural fashion on a mesh of size n2, the transpose of A
can be computed in Θ(n) time.

2.5.2 Matrix Multiplication

Given two n × n matrices, A and B, the matrix product C = AB is given by . The

first algorithm of this section shows how to compute C = AB in Θ(n) time on a mesh of size 4n2. This

algorithm is then modified to compute C = AB in Θ(n) time on a mesh of size n2.

Assume that matrix A is stored in the lower-left quadrant, matrix B is stored in the upper-right quadrant,

and that the resultant matrix C is to be constructed in the lower-right quadrant of a mesh of size 4n2, as

shown in Figure 2.4. At time 1, in lock-step fashion all processors containing an element of the first row

of A send their values to the right and all processors containing an element of the first column of B send

their values down. The processor responsible for C1,1 can now begin to compute its running sum. At time

2, row 1 of A and column 1 of B continue to move in the same direction, and row 2 of A and column 2 of

B start to move right and down, respectively. In general, at time i, the ith row of A and the ith column of B
start to move right and down, respectively. Each processor that simultaneously receives a piece of data

from a processor to its left and from a processor above computes the product of these two values and

adds it to its running sum. At time i + 1, every processor sends the values received during time i to

neighboring processors in the direction that they were moving. So, at time k, rows 1 . . . k of A and

columns 1 . . . k of B move right and down, respectively, where this is the first such movement for row k
of A and column k of B. Therefore, row n of A and column n of B start moving

Page 53

Figure 2.4:

Multiplying matrices on a mesh of size 4n2.

at time n, Cn,n
 is the last value determined, and the running sum for Cn,n

 is completed at time 3n - 2.

Hence, the algorithm runs in Θ(n) time on a mesh of size 4n2.

The algorithm can be modified to run on a mesh of size n2 in Θ(n) time, as follows. Assume that

processor Pi, j
 initially contains Ai, ,j

 and Bi, ,j
, and that processor Pi, ,j must contain Ci, ,j

 at the conclusion of

the algorithm. For all columns, simultaneously perform a column rotation so that processor Pi, ,j contains

B(n-i+1)j
. For all rows, simultaneously perform a row rotation so that processor Pi, ,j contains Ai,(n-j+1). Now,

follow the previous algorithm (adjusting for the fact that the elements are initially situated so that C1,1
is

ready to begin computing its running sum) while substituting a single step of a row and column rotation

for each lock-step movement of a row or column. The elements of A are involved in the row rotation

(viewed as rotating to the left, though, as before, the values are used as they go to the right) and the

elements of B are involved in the column rotation (viewed as rotating up, though, as before, the elements

are used as they go down). Elements of A and B meet at the appropriate processors with the same timing

as in the previous algorithm. The initial row and column rotations take Θ(n) time,

Page 54

and the previous algorithm requires 3n - 2 steps, so the entire algorithm is complete in Θ(n) time. It

should be noted that a similar Θ(n) time mesh algorithm for matrix multiplication is possible that avoids

the preprocessing row and column rotations. Such an algorithm is left to the reader.

Theorem 2.2 Given two n × n matrices A and B stored in a mesh of size n2 so that processor Pi, ,j
 initially

contains Ai, j
 and Bi, j

, the product C = AB can be computed in Θ(n) time so that processor Pi, j
 stores Ci, j

.

2.5.3 Transitive Closure

Let G = (V, E) be a directed graph, where V = {1, . . . ,n} is the set of vertices and E is the set of edges.

Assume G is represented by its adjacency matrix A, where A(i, j) is 1 if there is an edge from vertex i to

vertex j, and is 0 otherwise. The transitive closure of A, denoted A*, is the n × n matrix such that A*(i, j) is

1 if there is a path in G from vertex i to vertex j, and is 0 otherwise. A* is sometimes called the

connectivity matrix of A. One can obtain A* by multiplying A by itself n times, which would lead to an

inefficient Θ(n2) algorithm, or by repeatedly squaring A a logarithmic number of times, which would lead

to a suboptimal Θ(nlog n) time algorithm. However, it is possible to compute A* in optimal Θ(n) time by

exploiting a modification of Warshall's algorithm. A serial version of Warshall's algorithm [RND77,

Wars62] to compute the transitive closure of A is given in Figure 2.5.

for k:= 1 to n do

 for i:=1 to n do

 for j:= 1 to n do

 Ak(i, j) := Ak-1(i, j) ∨ [Ak-1(i,k) ∧ Ak-1(k,j)]

Figure 2.5:

Warshall's algorithm for computing the transitive closure of matrix A.

In this algorithm, A0 = A and An = A*. The interpretation of Ak(i, j) is quite simple: Ak(i, j) is 1 if there is a

path from vertex i to

Page 55

vertex j using no intermediate vertex greater than k, and is 0 otherwise. Given this interpretation, the

assignment statement in Warshall's algorithm merely states that there is a path from vertex i to vertex j
using no intermediate vertex greater than k if and only if

1. there is a path from i to j using no intermediate vertex greater than k - 1, or

2. there is a path from i to k using no intermediate vertex greater than k - 1 and there is a path from k to j
using no intermediate vertex greater than k - 1.

In [VanS80], it was shown that if A(i, j) is initially stored in processor Pi, j
, then in Θ(n) time An can be

computed, where processor Pi, j
 contains An(i, j) when the algorithm terminates. Somewhat remarkably,

this algorithm was presented for the weak cellular automata model. What follows is essentially the

algorithm as presented in [VanS80], modified only slightly to avoid the extra complications introduced

by the cellular automata.

The movement of data in this algorithm is very interesting. For all k and i, the value Ak(i, k) moves away

from processor Pi, k
 horizontally in row i, while for all k and j, the value Ak(k, j) moves away from

processor Pk, j
 vertically in column j. This creates a pattern of data movement that looks like

nonoverlapping diamond-shaped waves. The algorithm proceeds so that Ak(i, j) is computed in processor

Pi, j
 at time . The movement of the data can be observed by assuming that the

computations have been performed correctly for k - 1 and all values of i and j, and then considering the

case for k and all values of i and j, a discussion of which follows.

To calculate Ak(*
, *), note that Ak-1(k, k) was ''computed" in processor Pk, k

 at time 3k - 3, and that Ak(k, k)

= Ak-1(k, k). Hence, Ak(k, k) is "computed" at time tk = 3k - 2. This value will be passed north, south, east,

and west at time tk + 1. (See Figure 2.6.) At time tk + 1, processors Pk -1, k
, Pk +1, k,

Pk, k+1,
and Pk, k-1

receive

Ak(k, k) and use it to compute Ak(k - 1,k), Ak(k + 1,k), Ak(k, k + 1), and Ak(k, k - 1), respectively. At time tk
+ 2, processors Pk -1, k

, Pk +1,k
, Pk, k+1, and Pk, k-1 continue to pass copies of Ak(k, k) to the north, south, east,

and west, respectively. In addition, at time tk + 2, processor Pk -1,k
 initiates Ak(k -1,k) on its journey

horizontally in row k - 1, processor Pk +1,k
 initiates Ak(k + 1, k) on its journey horizontally in row k + 1,

processor Pk, k+1 initiates Ak(k, k + 1) on its journey vertically in column k + 1, and processor Pk, k-1

initiates Ak(k, k - 1) on its journey

Page 56

vertically in column k - 1. Notice that at time tk + 2 = 3k, processors Pk±2, k
, Pk, k±2, and Pk±1, k±1, receive the

values necessary to compute their Ak values. Further, at time tk + d, d ≥ 2, all processors at internal

distance d from Pk, k
 receive the values required to compute their Ak values. (Some basic algebra can be

used to show that the processors had computed their own Ak-1 entries before time tk + d.) In general, at

time tk + d, d ≥ 2, processors continue to send data received during time tk + d - 1 in the same direction

they were going. In addition, during this time step, processors of the form Pk±d, k
 (Pk, k±d

) initiate the

journey of Ak(k±d, k) (Ak(k, k±d)) east and west (north and south). Thus, each entry of Ak is computed at

the time claimed.

In this algorithm, no processor ever needs to hold more than a fixed number of entries. Most of these

entries are values that are received by a processor, used to compute a new value, and then propagated

along the direction they were headed to a neighboring processor. Notice that when a processor Pi, j

computes a new value Ak(i, j), that Ak(i, j) will supersede Ak-1 (i, j), which may therefore be written over.

Theorem 2.3 Given an n × n matrix A stored in a mesh of size n2 so that processor Pi, j
 contains Ai, j

, the

transitive closure of A may be computed in Θ(n) time so that processor Pi, j
 knows .

It is easy to see that this pattern of data movement can be extended to show that any recurrence of the

form

 fk(i, j) = g(fk-1(i, j), fk-1(i, k), fk-1(k, j)) (2.1)

or

 fk(i, j) = g(fk-1(i, j), fk(i, k), fk(k, j)) (2.2)

can be solved for all fn(i, j) in Θ(n) time if the function g can be computed in Ο(1) time by a single

processor, and if f0(i, j) is initially stored in processor Pi, j
. Upon termination of the algorithm, fn(i, j) will

be stored in processor Pi, j
.

Finally, some natural uses of van Scoy's transitive closure algorithm should be mentioned. The algorithm

can be used to solve the component labeling problem. Suppose that the adjacency matrix A represents an

undirected graph G. Then the connected components of G can be determined in Θ(n) time on a mesh of

size n2 by computing A*, as just described, followed by a row rotation so that every processor Pi, j

determines the column index of the first non-zero entry in its row, which will be used as the component

label for vertex i.

Page 57

At time t = 3k - 2, Ak(k, k) is computed in processor Pk, k

At time t + 1, copies of Ak(k, k) begin traveling north, south, east, and west, as indicated.

Values computed at time t + 1 and directions of travel at time t + 2.

Figure 2.6:

Data movement of the transitive closure algorithm.

Page 58

Another application of the generalized transitive closure algorithm is to solve the all shortest path
problem. Suppose that a weight matrix W is initially stored one entry per processor on a mesh of size n2

such that processor Pi, j
 initially contains W(i, j) ≥ 0, which represents the weight of directed edge

(from vertex i to vertex j). Then, the all shortest path matrix W* = Wn can be computed in optimal Θ(n)

time on a mesh of size n2 by following van Scoy's transitive closure algorithm. This results in processor

Pi, j
 storing Wn(i, j), which represents the minimum weight of a directed path from vertex i to vertex j.

The reason that van Scoy's algorithm may be applied is that

 Wk(i, j) = min[Wk-1(i, j), Wk-1(i, k) + Wk - 1(k, j)], (2.3)

which follows the general recurrence given in Equation 2.1. However, notice that a slight modification to

the algorithm is required in order to allow processor Pi, j
 to store the label of the vertex incident on vertex

i that yields the first edge in a minimal weight path from vertex i to vertex j. Details of this modification

are left to the reader. In addition, the problem of modifying this algorithm to allow negative weights, in

which case it is possible for all vertices on a given cycle to have a minimum weight path of -∞ between

each other, is also left to the reader.

The optimal Θ(n) time transitive closure algorithm can also be used in a straightforward fashion to

decide whether or not a graph G, given as an adjacency matrix A, is a tree. A tree with n vertices may be

defined as an undirected connected graph with n - 1 edges. The algorithm follows.

1. Determine if G is undirected: In Θ(n) time it can be determined if the graph G is undirected by

deciding whether or not AT = A, as described in Section 2.5.1.

2. Count the number of edges in G: If the graph is undirected, then a semigroup operation (i.e., an

associative binary operation) can be used to count the number of undirected edges in G in Θ(n) time.

3. Decide whether or not G is connected: The transitive closure algorithm can be used to label the

vertices of G in Θ(n) time, as described on page 56. Once labeled, a semigroup operation can be used to

decide if all vertices received the same label (i.e., to decide whether or not G is connected).

Since each step of this algorithm takes Θ(n) time, the entire algorithm is complete in Θ(n) time.

Page 59

2.5.4 Matrix Inverse

The intent of this section is to continue with the presentation of mesh algorithms that demonstrate

interesting movements of data. In this section, algorithms are presented that overlap pipelined data

movements in order to determine the inverse of a matrix. The beginning of this section serves as a review

of some fundamental concepts in linear algebra that are used to determine the inverse of a matrix. The

reader who is unfamiliar with the linear algebra presented at the beginning of this section may wish to

skip this section or concentrate on the data movements that are presented.

An n × n matrix A is called nonsingular, or invertible, if and only if there exists an n × n matrix B such

that AB = BA = In, where In = {ei, j
} is the n × n identity matrix defined by ei, i

 = 1, for 1 ≤ i ≤ n, and ei, j
 =

0, for i ≠ j. The matrix B is called the inverse of A, it is unique, and it is typically denoted as A-1. If no

such inverse matrix exists, then A is called singular, or noninvertible.

Define an elementary row operation on a matrix A to be any one of the

following.

1. Interchange row i and row j of A.

2. Multiply row i of A by a constant c ≠ 0. That is, every element ai, j
is replaced by cai, j

,1 < j < n.

3. Add a constant c times row i of A to row j of A. That is, each element aj, k
 is replaced by aj, k

 + cai,k
,1 ≤

k ≤ n.

Gaussian elimination, followed by back-substitution, can often be used to determine the inverse of a

given n × n matrix A = {ai, j
}. This method, which requires Θ(n3) time on a serial machine, is described in

Figure 2.7. A sample of this algorithm is given in Figure 2.10. Notice that if ai, i
 = 0 at the beginning of

phase i in Step 2(a) of the algorithm presented in Figure 2.7, then the algorithm will terminate in order to

avoid division by zero. Unfortunately, this termination only means that the algorithm fails. It does not

necessarily mean that A-1 does not exist (i.e., that A is singular). Later in this section, modifications to the

algorithm of Figure 2.7 will be discussed that guarantee to find the inverse of a matrix, if one exists.

To implement the algorithm given in Figure 2.7 on a mesh of size n2, a decision needs to be made as to

how and where to store the n × 2n augmented matrix [An×n
In] which will, through the use of elementary

row operations, be transformed into . The input to the matrix

Page 60

1. Form the augmented matrix [An n In].

2. Perform elementary row operations to transform [An×n
In] → by

straightforward Gaussian elimination, as follows.

(a) At phase i,1 ≤ i ≤ n -1, do the following.

i. If ai, i
 = 0, then terminate the algorithm to avoid division by 0.

ii. Otherwise, all rows j, j > i, use row i to eliminate (i.e., set to zero) their

entry in column i. Specifically, for all j, i < j ≤ n, set aj, k
 ← aj, k

 -

(b) In every row i, set ai, j
 ← ai, j

/ar, for all j, i ≤ j ≤ n. This creates the

augmented matrix, as shown on the right side of the arrow in Figure 2.8.

(c) The final step of this algorithm continues to rely on elementary row

operations. Back-substitution uses elementary row operations to transform the

left half of the augmented matrix (which is currently in the form of an upper-

triangular matrix) into the identity matrix, as follows. (See Figure 2.9.) At phase

i, 2 ≤ i ≤ n, all rows j,1 ≤ j < i, use row i to eliminate their entry in column i.
Specifically, for all j, 1 ≤ j < i, set aj, k

 ← aj, k
 -

Figure 2.7:

Using Gaussian elimination, followed by back-substitution,

to determine the inverse of an n × n matrix A = {ai, j
}.

Figure 2.8:

Transform A to an upper-triangular matrix.

Page 61

Figure 2.9:

Transform upper-triangular matrix to identity matrix.

inverse problem on a mesh of size n2 is an n × n matrix A = {ai, j
}, stored so that processor Pi, j

contains ai, j
. The problem requires the resultant matrix , if it exists, be stored so that

processor Pi, j contains a-1. Let In = {ei, j
}. Two representations for embedding [An × n

In] in a mesh of

size n2 follow.

1. Let the n × n mesh simulate an n × 2n mesh, with each processor being responsible for two

consecutive column entries of the augmented matrix. That is, given Gn×2n
 = [An×n

 In] = {gi, j
}, let

processor Pi, j
 be responsible for gi, 2j-1

 and gi, 2j
. A disadvantage of this representation is that the original

matrix must be packed into the appropriate region, and the resultant inverse matrix must be unpacked.

Although packing and unpacking can be done so as not to affect the asymptotic running times of the

algorithms, these extra steps may be avoided by using the following representation.

2. Let processor Pi, j
 be responsible for ai, j

 and ei, j
. When the algorithm terminates, processor Pi, j

 will

contain . Notice that this representation initially superimposes matrix A with identity matrix I.

The second representation will be used in the mesh algorithms described in this section, as it avoids

packing and unpacking, and also allows for the algorithms to be presented in terms of elementary row

operations performed on A, with the understanding that the equivalent operations are performed on I.

Details of a straightforward implementation of the Gaussian elimination stage of the algorithm presented

in Figure 2.7 for a mesh of size n2 are given in Figure 2.11. The assumption is made in the algorithm

presented in Figure 2.11 that the elements of I are moved in lock-step with the elements of A, and

equivalent operations are performed on these entries. Further, the details of the back-substitution stage of

the

Page 62

A has been transformed to an upper-triangular matrix.

(The example is continued on the next page.)

Page 63

(continued from previous page)

Transform the upper-triangular matrix A to the identity matrix.

Figure 2.10:

Sample of Gaussian elimination followed by

back-substitution to determine the inverse of matrix A3×3
.

Page 64

algorithm have been omitted since they are similar to the Gaussian elimination stage. At the conclusion

of the entire algorithm, including the back-substitution, A will be reduced to the identity matrix and the

initial identity matrix will have been transformed to A-1. Notice that the mesh algorithm given in Figure

2.11 finishes in Θ(n3) time, which is the same as the time it takes to complete the algorithm of Figure 2.7

when implemented on a serial machine. Improvements to the mesh algorithm are now discussed.

By incorporating pipelining into the mesh algorithm of Figure 2.11, the running time can be reduced to Θ
(n2). This is done by noticing that there is no need to wait for the ith row to be completely processed in

order to initiate computations involving the (i + 1)st row. Pipelining may be used to move the rows of

matrix A through the mesh, while making sure that the values arrive in the required sequence.

Specifically, computations involving row i + 1 may begin as soon as row i + 2 has completed its

computations that involve row i.

In order to further reduce the running time of the mesh algorithm given in Figure 2.11, pipelining must

occur not only row-wise (vertically), as just described, but within each row (horizontally). Horizontal

pipelining will be used to avoid the delay previously incurred in waiting for a row to complete all of its

computations before sending data to the next row. This creates a wave-like movement of data, not unlike

the data movement associated with the transitive closure algorithm presented in Section 2.5.3. The

algorithm is presented in Figure 2.12. (Again, the algorithm is described with respect to the processors

operating on matrix A, where it is understood that the equivalent operations are performed by the

processors on matrix I.) These final modifications to the mesh algorithm of Figure 2.11 produce an

optimal Θ(n) time mesh implementation of the algorithm given in Figure 2.7. (It should be noted that this

algorithm is conceptually similar to the systolic array algorithms developed in [GeKu81] for

triangularizing a matrix.)

Theorem 2.4 Given an n × n matrix A = {ai, j
} stored on a mesh of size n2 so that processor Pi, j

 contains

ai, j
, the inverse of A can be determined by the method of Gaussian elimination, followed by back-

substitution, in Θ(n) time so that processor Pi, j
 stores , if the method produces the inverse.

Certain numerical stability issues have not been considered in this section. Throughout, it has been

assumed that either an exact inverse of A exists, or that the inverse of A does not exist. That is, the

elements

Page 65

{Perform Gaussian elimination to transform A into an upper-triangular matrix.}

for i:= 1 to n -1 do

{Initiate the elimination process based on row i.} processor Pi, i
 terminates the algorithm if ai,i

 =

0.

for j:=i + 1 to n do

{Use row i to perform elimination on row j. Note that a copy of row i currently exists in

row j - 1 of the mesh.}

In unit time, send a copy of the ith row of A from row j - 1 of the mesh to row j of the mesh.

processor Pj, i
 computes row j's multiplier, M = aj, i

/ai, i
.

for k:=i to n do

processor Pj, k
 sets aj, k

 ← aj, k
 - Mai, k.

Send M from processor Pj, k
 to processor Pj, k+1.

endfor

endfor

endfor

{Perform back-substitution to finish transformation of A → I.} forall i do

for j:= i to n do

processor Pi, j
 sends a copy of ai, i

 to processor Pi, j+1

processor Pi, j
 sets ai, j

 ← ai, j
/ai, i

end forall

Figure 2.11:

Straightforward mesh implementation of a Gaussian elimination algorithm for finding the inverse of a matrix.

Page 66

1. At time 3i - 2, processor Pi, i
 initiates computations involving element ai, i

.

(a) If ai, i
 = 0, then processor Pi, i

 broadcasts a 'halt' message to all processors, and the algorithm

terminates. Otherwise, the algorithm continues.

(b) Processor Pi, i
. sends a copy of ai, i

 to processors Pi +1, i
 and Pi, i+1.

(c) Processor Pi, i
 sets ai, i

 ← 1.

2. When any processor Pi, j
 receives a data value, call it W, from processor Pi, j - 1

, and does not

receive a data value from processor Pi - 1, j
, processor Pi, j

 performs the following.

(a) Update ai, j
 by setting ai, j

 ← ai, j
/W.

(b) Send an updated copy of ai, j
 to processor Pi +1,j

, and a copy of W to processor Pi, j+1.

3. When any processor Pi, j
 receives a data value, call it N, from processor Pi -1,j

, the following is

performed.

(a) If processor Pi, j
 simultaneously received a piece of data, call it W, from processor Pi, j-1

, then

processor Pi, j
 will perform the following.

i. Update ai, j
 by setting ai, j

 ← ai, j
 - NW.

ii. Send a copy of N to processor Pi +1,j
, and a copy of W to processor Pi, j+1.

(b) If processor Pi, j
 does not simultaneously receive a piece of data from processor Pi, j-1

, then

processor Pi, j
 will perform the following.

i. Determine M = ai, j
/N, the multiplicative constant to be used by row i in the Gaussian

elimination.

ii. Set ai, j
 ← 0.

iii. Send a copy of M to processor Pi, j+1, and a copy of N to processor Pi +1,j
.

4. At time 3n- 1, back-substitution begins. This is similar to the Gaussian elimination given in Steps

1-3.

Figure 2.12:

An optimal mesh algorithm for using Gaussian elimination followed

by backsubstitution to find the inverse of an n × n matrix A = {ai, j
}.

Page 67

of A have been assumed to be taken over a finite field. However, even with these restrictions, it is easy to

create matrices for which an inverse exists, and for which the method of finding the inverse that is given

in Figure 2.7 will fail.

To avoid a situation in which the inverse of a matrix A exists, and the method described in Figure 2.7

fails to find A-1, pivoting may be used to guarantee that for an invertible matrix over a finite field, the

inverse will always be determined. Quite simply, pivoting deals with the situation in which at the

beginning of a phase that will perform computations with row i, entry ai, i
 = 0. The algorithm can be

modified to incorporate pivoting as follows. If ai, i
 = 0 at the beginning of the phase concerned with row i,

then row j and row i are interchanged, where i < j ≤ n is chosen to be the smallest value such that aj, i
 ≠ 0.

If no such j exists, then the algorithm halts with the assurance that no inverse exists.

This modification can be incorporated into the mesh implementation given in Figure 2.12 and still finish

in optimal Θ(n) time. A sketch of this modification is now given, with the details left to the reader.

Suppose that at time 3i - 2, processor Pi, i
 detects that ai, i

 = 0. At this point, processor Pi, i
 initiates a

message that will be passed down column i to search for the first nonzero entry aj, i
. Notice that if such a j

is found, then all entries in column i between row i and row j are necessarily zero, while if such a j does

not exist, then processor Pn ,i may broadcast a message to all processors indicating that the original

matrix is singular. Assuming that such a j is found, row j is 'bubbled-up' to row i in a wave-like fashion

that incorporates vertical and horizontal pipelining (starting with row j - 1 and ending with row i, each

row k is moved to row k + 1 as they detect row j moving through them). While row j is being bubbled-up,

it also initiates the Gaussian elimination of the column entries under it, following the previous algorithm.

Finally, it should be noted that when processor Pi, i
 detects that ai, i

 = 0, it simply sends out a flag alerting

the other processors of the situation, instead of sending out data. Notice that this does not impede the

start of subsequent phases of the algorithm.

Corollary 2.5 Given an n × n matrix A = {ai, j
} stored on a mesh of size n2 so that processor Pi, j

 contains

ai, j
, the inverse of A can be determined by the method of Gaussian elimination with pivoting, followed by

back-substitution, in Θ(n) time so that processor Pi, j
 stores , if A exists. If A-1 does not exist, then all

processors will be so informed. ·

Page 68

2.6 Algorithms Involving Ordered

Data

Besides organizing data in rows or columns, it is often advantageous to have the data ordered with

respect to a linear ordering of the processors. (For sample orderings of the mesh processors, the reader is

referred to Figure 2.2.) The snake-like ordering has been popular for mesh algorithms since it has the

useful property that processors with consecutive numbers in the ordering are adjacent in the mesh. The

shuffled row-major ordering has also been popular for mesh algorithms since it has the property that the

first quarter of the processors form one quadrant, the next quarter form another quadrant, etc., with this

property holding recursively within each quadrant. This property of shuffled row-major ordering is quite

useful for implementing recursive divide-and-conquer algorithms on a mesh. Proximity ordering
combines the advantages of the snake-like and shuffled row-major orderings, and will be used in Chapter

4 in order to facilitate a more cohesive explanation of some sophisticated algorithms. Since the proximity

ordering requires additional overhead to compute the indices, it will not be used in the algorithms

presented in this chapter or in Chapter 3.

In Section 2.6.1, optimal mesh algorithms are given for sorting data into any predefined linear ordering

of the processors. Sorting is often used to place data into ordered intervals, i.e., disjoint consecutive

sequences of items in the sorted order. In Section 2.6.2, the notion of row and column rotations is

generalized to the notion of rotating data within ordered intervals. In Section 2.6.3, an optimal mesh

algorithm is given to perform an associative binary operation within every ordered interval. Section 2.6.4

presents mesh implementations of concurrent read and concurrent write. The implementations of these

operations are based on being able to efficiently sort data on the mesh. Section 2.6.5 also uses sorting as

a fundamental operation. This section presents an optimal algorithm to compress distinct elements into a

section of the mesh where optimal interprocessor communication will be possible. Finally, it should be

noted that many of the fundamental grouping operations, which will be introduced in Chapter 4, are

based on sorting data into ordered intervals.

2.6.1 Sorting

It is well known that comparison-based sorting of n2 elements on a serial machine requires Ω(n2log n)

time [CLR92]. Thompson and Kung [ThKu77] have shown that n2 elements, distributed one element per

Page 69

Figure 2.13:

A linear array of size n with input from the left and output to the right.

processor on a mesh of size n2, can be sorted in Θ(n) time by using a recursive merging procedure that

adapts the odd-even transposition sort. They also noted that any algorithm that sorts n2 elements in Θ(n)

time on a mesh of size n, for some processor ordering R, can be used to sort n2 elements in Θ(n) time for

any other processor ordering R', given the following constraints. Every processor i ∈ R (i.e., every

processor at position i with respect to processor ordering R) must be able to determine, in Θ(n) time, the

processor index π(i) ∈ R, where processor π(i) ∈ R corresponds to processor i ∈ R'. For example,

referring back to Figure 2.2, if R is row-major ordering and R' is shuffled row-major ordering, then

processor i must determine π(i) as follows.

Sorting with respect to R' may be accomplished as follows. First, sort the data with respect to R. Next,

determine for each processor i ∈ R, the aforementioned index π(i) ∈ R. Finally, re-sort the data with

respect to R, using the π(i) values as keys. Notice that the reordering can be accomplished in Θ(n) time if

each processor can determine its position in each ordering in Θ(n) time (details left to the reader). In

practice, this reordering can usually be carried out by simpler operations such as row and column

rotations.

Nassimi and Sahni [NaSa79] showed that bitonic sort [Batc68] can be implemented to sort n2 elements in

Θ(n) time on a mesh. Much work has been done to reduce the high order coefficients of mesh sorting

algorithms, including [KuHi83, MSS86, ScSe89, SSM89, ScSh86b], to name a few. In fact, an algorithm

is presented in [ScSh86b] that is optimal including the high order coefficient.

Consider a linear array of n processors, in which data items d1, d2, . . . , dn are input from the left and

results are output to the right, as shown in Figure 2.13. The input data may be efficiently sorted, such that

the ith processor contains the ith smallest value, by allowing the

Page 70

processors to i) view the data as it passes from left to right and ii) retain the minimum data item

encountered. The data can then be output in nonincreasing order by performing a series of n lockstep

shifts to the right. Each processor initializes both its min-reg and transfer-reg registers to +∞. During

time step t, 1 ≤ t ≤ 2n- 1, the following operations are performed. (Refer to Figure 2.14.)

1. Processor P0 receives input data item dt, 1 ≤ t ≤ n.

2. Processor Pi -1 sends a copy of its transfer-reg register to processor

3. Every processor , compares the data item just received to the

minimum value of the data it has seen thusfar, which is stored in its min-reg register, and places the

minimum of these two values in min-reg and the maximum of these two values in transfer-reg.

Notice that at time n, the final piece of input data is input to and viewed by processor P0 . Processor P0
sends its final message to processor P1 at time n + 1. In general, a final message is sent from processor Pi -

1 to processor Pi at time n + i, 1 ≤ i ≤ n - 1. Therefore, after step 2n - 1 is complete, the array contains the

sorted set of data with respect to the indexing of the processors, as shown in Figure 2.14(j), which may

now be output (in nonincreasing order) by a series of n lockstep right shifts of this final ordered set of

data.

Consider the problem of sorting n data items, arbitrarily distributed one per processor on a 1-dimensional

mesh of size n. Upon termination of the algorithm, assume that the data is to be distributed one per

processor such that the item contained in processor Pi -1
is less than or equal to the item contained in

processor Pi, 1 ≤ i ≤ n- 1. That is, the data is to be sorted into nondecreasing order with respect to the

indexing of the processors. Notice that a simulation of the first 2n - 1 steps of the linear array algorithm,

as just described, will suffice. This simulation is straightforward. In addition to the min-reg and transfer-
reg registers, each processor also maintains an input-reg register, which is used to track the movement of

the input data items as discussed in the linear array algorithm. Initially, input data item di resides in the

input-reg register of processor Pi -1, 1 ≤ i ≤ n. The algorithm is identical to the linear array algorithm,

with the exception that processor P0 gets the input data item from its input-reg register instead of from

the external environment, and that at the end of every step, every processor Pi sends

Page 71

(a) Initial configuration.

(b) Configuration at the completion of time t = 1.

(c) Configuration at the completion of time t = 2.

(d) Configuration at the completion of time t = 3.

(e) Configuration at the completion of time t = 4.

(f) Configuration at the completion of time t = 5.

Page 72

(g) Configuration at the completion of time t = 6.

(h) Configuration at the completion of time t = 7.

(i) Configuration at the completion of time t = 8.

(j) Configuration at the completion of time t = 9.

Figure 2.14:

Sorting data on a linear array of size 5 with input from the left.

Page 73

a copy of it input-reg register to processor Pi -1, 1 ≤ i ≤ n - 1, which sets its input-reg register to this new

value. See Figure 2.15. That is, at the end of every step, the remaining, unprocessed, input data items, are

shifted to the left in lockstep fashion so as to simulate the linear array input to processor P0 from the

external environment. Therefore, the running time is again Θ(n), which is optimal in the worst case.

Notice that this rotation-based sorting algorithm is the parallel analogue of selection sort. That is,

processor P0 considers all n pieces of data and retains the minimum. Processor P1 considers the

remaining n - 1 pieces of data and retains the minimum of these. In general, processor Pi considers the n -
i largest elements and retains the minimum.

Lemma 2.6 Given n pieces of data arbitrarily distributed one per processor on a 1-dimensional mesh of
size n, in optimal Θ(n) time the data can be sorted by a rotation-based algorithm.

An alternative method, known as odd-even transposition sort, can also be used to give a worst-case

asymptotically optimal algorithm to sort data on a 1-dimensional mesh. This algorithm is, in fact, the

parallel analogue of bubblesort, and is used as the base case in 2-dimensional mesh sorting algorithms

presented later in this section. Given n pieces of data stored one piece per processor on a 1-dimensional

mesh of size n, in odd-even transposition sort, every odd numbered processor P2i-1
, 1 ≤ i ≤ n/2, alternately

compares its data with the data in processor P2i-2
, 1 ≤ i ≤ n/2 and data in processor P2i, 1 ≤ i ≤ n/2 1. In the

first step, every odd numbered processor P2i-1
 receives the data element stored in processor P2i-2

. It

compares the keys of the data elements, keeping the larger and returning the smaller. In the second step,

every odd numbered processor P2i-1
 receives the data element stored in processor P2i

, compares the keys

of the two data elements, keeps the smaller and returns the larger. This alternates for a total of n
iterations.

The correctness of the algorithm [Habe72] is based on the fact that after i pairs of comparisons no

element is more than n - 2i positions from its final destination. Therefore, n/2 pairs of comparisons are

sufficient to sort the n data elements.

Lemma 2.7 Given n pieces of data arbitrarily distributed one per processor on a 1-dimensional mesh of
size n, in Θ(n) time the data can be sorted by odd-even transposition sort.

Page 74

(a) Initial configuration.

(b) Configuration at the completion of time t = 1.

(c) Configuration at the completion of time t = 2.

(d) Configuration at the completion of time t = 3.

(e) Configuration at the completion of time t = 4.

(f) Configuration at the completion of time t = 5.

Page 75

(g) Configuration at the completion of time t = 6.

(h) Configuration at the completion of time t = 7.

(i) Configuration at the completion of time t = 8.

(j) Configuration at the completion of time t = 9.

Figure 2.15:

Sorting data on a 1-dimensional mesh of size 5.

Page 76

Notice that by using the snake-like ordering of processors, a 2 dimensional mesh of size n2 can be viewed

as a 1-dimensional mesh of size n2. Therefore, given 1 piece of data per processor on a 2-dimensional

mesh of size n2, the odd-even transposition sort can be used to sort these n2 items in Θ(n2) time. Although

this is an improvement over the Ω(n2log n) serial comparison-based sorting bound, it is quite far from the

Ω(n) lower bound discussed in Section 2.4 for a 2-dimensional mesh of size n2.

Thompson and Kung [ThKu77] present an algorithm to sort n2 elements, distributed one per processor on

a 2-dimensional mesh of size n2, in asymptotically optimal Θ(n) time. This algorithm, given in Theorem

2.9, is essentially a mergesort algorithm that exploits Batcher's odd-even merge technique. Lemma 2.8

shows how Batcher's odd-even merge algorithm can be used to merge the concatenation of two ordered

sequences, distributed in a natural linear fashion one element per processor on a 1-dimensional mesh of

size n, in asymptotically optimal Θ(n) time. The techniques and results of Lemma 2.7 and Lemma 2.8

will be used in the asymptotically optimal 2-dimensional mesh sorting algorithm that is presented in

Theorem 2.9.

Lemma 2.8 Given the concatenation of two ordered sequences, distributed in a natural linear fashion
one element per processor on a 1-dimensional mesh of size n, the elements may be merged by Batcher's
odd-even merge algorithm in Θ(n) time.

Proof. Given the concatenation of two sorted sequences, say {ui} and {vi}, each of length j = 2k-1,

distributed one element per processor on a 1-dimensional mesh of size n = 2k so that processor Pi

contains ui and processor Pi +n/2
contains vi, 1 ≤ i ≤ n/2, the data may be merged into sorted order by

Batcher's odd-even merge, as follows.

(1) Unshuffle the even and odd terms to form

(a) odd sequences {u1, u3,. . . , uj-1} and {v1, v3,. . . , vj-1}, concatenated and stored one element per

processor in the first n/2 processors, and

(b) even sequences {u2, u4,. . . , uj} and {v2, v4,. . ., vj}, concatenated and stored one element per

processor in the last n/2 processors.

(2) Recursively merge the odd and even sequences in parallel, to yield {oi} and {ei}, respectively, the

concatenation of which is stored one element per processor.

Page 77

(3) Shuffle the odd and even sequences back together, so that the sequence {fi} = {ol, e1, o2, e2,. . . ,oj, ej }

is stored in a linear fashion, one element per processor.

(4) Perform a comparison-interchange between fi and fi+1, i = 2, 4,. . . , 2j - 2, so that if fi ≤ fi+1, the

elements remain in their current position, while if fi > fi+1, the elements are swapped.

Figure 2.16 shows an example of odd-even merge for a 1-dimensional mesh. The proof of correctness of

the algorithm can be found in the appendix of [Batc81] and relies on a straightforward counting

argument. Of primary importance, is showing that after Step (3) of the algorithm, no element is more

than one position from its final destination, and that Step (4) will properly correct any such problems.

Step (1) of the algorithm can be complete in Θ(n) time since elements just march towards their

destinations. No processor is ever required to store more than a small fixed number of additional records

(one passing through from left to right and one from right to left). Step (3) is just the inverse of Step (1)

and is also complete in Θ(n) time. Step (4) requires Θ(1) time, since all comparison-interchange

operations are disjoint and can be done in parallel. Therefore, the running time of the algorithm obeys the

recurrence T(n) = T(n/2) + Θ(n), which is Θ(n).

An asymptotically optimal Θ(n) time algorithm from [ThKu77] is now presented that will sort n2

elements on a (2-dimensional) mesh of size n2. The algorithm is based on the techniques and results

presented in the previous two lemmas.

Theorem 2.9 Given n2 pieces of data distributed one piece per processor on a mesh of size n2, in Θ(n)
time the data can be sorted.

Proof. The algorithm follows a standard bottom-up recursive mergesort strategy. Therefore, as with any

mergesort, the crucial step to describe is the merge step. The mergesort itself simply consists of merging

runs of length 1 to create ordered runs of length 2, then merging ordered runs of length 2 to create

ordered runs of length 4, and so on until two ordered runs, each containing half of the elements, are

merged to form the sorted list.

Given two sorted lists, the major steps of the merge operation are similar to the steps given in the 1-

dimensional odd-even merge algorithm of Lemma 2.8, and are as follows.

1. Unshuffle

Page 78

Figure 2.16:

Merging the concatenation of u and v into x on a 1-dimensional mesh by odd-even merge.

Page 79

2. Recursively merge

3. Shuffle

4. Comparison-Interchange

Define M(j, k, s) to be the algorithm for merging 2s disjoint arrays, each of size j/s × k/2, in a j × k
submesh, where j, k, and s are all powers of 2, and the elements of the arrays are ordered by the snake-

like indexing scheme. Notice that M(j,2, s) can be performed by using a 1-dimensional sorting algorithm

with respect to the snake-like indexing of the 2j elements in the j × 2 array. The general algorithm for M
(j, k, s) can be expressed as follows (see Figure 2.17).

1. Unshuffle the arrays:

(a) Perform a single interchange on even rows if j > s, so that the columns contain either all even or

all odd indexed elements. If j = s, then do nothing since the columns are already segregated as such.

(b) Unshuffle all rows, as described in Lemma 2.8, so that each column has either all even or all odd

indexed terms from the original arrays.

2. Recursively merge by calling M(j, k/2, s) on each j × k/2 half of the mesh.

3. Shuffle the arrays by performing the inverse operations of Step 1 in reverse order:

(a) Shuffle all rows.

(b) Perform a single interchange on even rows if j > s.

4. Viewing the j × k mesh as a 1-dimensional mesh of size jk, defined by the snake-like indexing scheme,

perform the first 2s - 1 parallel comparison-interchange steps of the odd-even transposition sort, as

described in Lemma 2.7.

The proof of correctness is demonstrated by use of the 0-1 principle [Knut73], which states that if a

network sorts all sequences of 0's and 1's, then it will sort any arbitrary sequence of elements chosen

from a linearly ordered set. Therefore, assume that all inputs to the merge algorithm are 0's and 1's. After

unshuffling, there may be as many as 2s more 0's on the left half as on the right half of the j × k mesh.

After

Page 80

Figure 2.17:

Merging 4 arrays with odd-even merge on a mesh of size 16.

Page 81

recursively merging each half of the mesh and shuffling the data back together, no element is more than

2s - 1 positions (in snake-like order) from its destination. Further, the first 2s - 1 steps of an odd-even

transposition sort (in snake-like order) will suffice to order these misplaced elements in the resulting

array.

Let T(j, k, s) be the time required by the algorithm M(j, k, s). The base case of the recursion is the column-

based (i.e., 1-dimensional) sorting routine M(j, 2, s), which has running time T(j, 2, s) = Ο(j). For k > 2, T
(j, k, s) = Ο(k + s) + T(j, k/2,), where Ο(k + s) is the time required for the shuffle, unshuffle, and

comparison-interchange steps, and T(j, k/2,) is the time required for the recursive call. Therefore, T(j, k,
s) = Ο(j + k + slog k + s).

To use the merge algorithm to sort, let s = 2 and define the time to sort a mesh of size n to be S(n, n) = S
(n/2, n/2) + T(n, n, 2), which is Ο(n). Since data may be initially distributed so that the Ω(n) lower bound

of Section 2.4 holds, the Θ(n) time algorithm just presented to sort n2 items, distributed one item per

processor on a mesh of size n, is optimal. ·

Corollary 2.10 Given n2 pieces of data, distributed one piece per processor on a mesh of size n2, and
some Ο(n) time computable index function g that assigns to each processor a unique index, where g is
known to all processors, the data can be sorted according to this index function in Θ(n) time.

Proof. Sort the data into snake-like order by the algorithm of Theorem 2.9, so that each processor Pi

contains the ith element of the data set in a variable called y. Each processor Pi computes in Ο(n) time the

value x = g(i), and creates a record (x, y). Now, sort these records with x as the key by the algorithm of

Theorem 2.9. ·

2.6.2 Rotating Data within Intervals

Suppose each processor on a mesh of size n2 contains a record consisting of a key and data, and suppose

that all processors with the same key reside in a contiguous sequence of processors (i.e., form an ordered
interval) with respect to the snake-like ordering. If it is known that there are no more than D processors

in any one interval, then in Θ(D) time all processors can view a piece of data from all other processors in

its interval. The data is rotated within each interval as follows. First, using snake-like indexing, each

processor Pi checks the keys of its neighbors

Page 82

Pi -1
and Pi +1, assuming they exist, to determine if it is the first or last processor in its interval. Then the

data is rotated similar to a row rotation, with each processor passing data to adjacent processors, where

the first processor with a given key acts just as the westernmost processor of a row, and the last processor

with a given key acts just as the easternmost processor of a row. Notice that the data may traverse more

than a single row. This operation is most useful in situations where it is known a priori that D = Ο(n). For

situations where D is large and the data rotation is used to compute an associative binary operation

within intervals, it will be more efficient to use one of the algorithms defined later in this section.

2.6.3 Semigroup Computation within Intervals

Suppose each processor on a mesh of size n2 contains a record consisting of a key and data, and suppose

that all processors with the same key form an ordered interval in the snake-like ordering. Furthermore,

suppose that every processor needs to know the result of applying a semigroup operation (i.e., an

associative binary operation such as minimum, summation, or parity) over the pieces of data in its

ordered interval. If data is rotated in snake-like order within each interval, as described in the previous

section, the algorithm has a worst-case running time of Θ(n2). In order to compute a semigroup operation

within ordered intervals in Θ(n) time, the following algorithm can be performed (snake-like indexing of

the processors is assumed).

1. For every processor Pi, examine the key field of the data stored in processors Pi -1
and Pi +1. If

processor Pi is a westernmost or easternmost processor in its row, and processor Pi -1
stores the same key,

then processor Pi is marked as a pre-connecting processor. If processor Pi is a westernmost or

easternmost processor in its row, and processor Pi +1 stores the same key, then processor Pi is marked as

a post-connecting processor.

2. Perform a row rotation so that every processor knows whether or not

(a) its ordered interval is completely contained in its row,

(b) its ordered interval continues onto the next row (i.e., there is a post-connecting processor in its

row with the same label), or

Page 83

(c) its ordered interval was continued from the previous row (i.e., there is a pre-connecting processor

in its row with the same label).

3. Perform a row rotation so that every processor knows the result of computing the semigroup operation

over all data with the same key in its row (i.e., in its row restricted ordered interval).

4. Every pre-connecting processor (post-connecting processor) Pi sends its restricted row result to

processor Pi -1 (Pi +1) if processor Pi is in a row for which there is not a post-connecting processor (pre-

connecting processor) with its key.

5. Perform a row rotation so that the values just transmitted are absorbed into the semigroup computation

of every processor in the row-restricted ordered interval of the processor(s) receiving data.

6. Perform a column rotation, where every processor in a row with both pre- and post-connecting

processors for its key, obtains and absorbs the running values from processors of a similar nature with its

key. (This step serves to combine results among neighboring complete rows storing the same key.)

7. Every pre-connecting processor (post-connecting processor) Pi, sends the final result for its key to

processor Pi -1
(Pi +1) if processor Pi -1

(Pi +1) is in a row for which there are not both pre- and post-

connecting processors for its key.

8. Perform a final row rotation to distribute the result in row restricted ordered intervals for which either

a pre- or post-connecting processor exists, but not both.

Since the semigroup computation within intervals is completed after a fixed number of row and column

rotations, the time of the algorithm is Θ(n), which is optimal. It should be noted that several of the row

operations could be combined, but this would only affect the running time by a multiplicative constant.

2.6.4 Concurrent Read and Concurrent Write

Two other common data movement operations for the mesh are concurrent read and concurrent write,
also known as random access read and random access write, respectively. These operations were

described in Section 1.5 on page 22.

Page 84

Concurrent read and concurrent write are used to allow the mesh to simulate the concurrent read and

concurrent write capabilities of a Concurrent Read, Concurrent Write Parallel Random Access Machine
(CRCW PRAM), where multiple processors are permitted to simultaneously read a value associated with

a given key (concurrent read), and multiple processors are permitted to simultaneously attempt to update

the value associated with a given key (concurrent write). In the case of multiple writes, only one

processor succeeds, according to some tie-breaking scheme such as minimum data value.

Algorithms for restricted versions of concurrent read and concurrent write were presented in [NaSa81].

In this section, significantly different algorithms are given for more general versions of these operations.

In order to maintain consistency during concurrent read and concurrent write operations, it is assumed

that there is at most one master record per key, where every processor maintains no more than some

fixed number of master records. In a concurrent read, every processor generates no more than some fixed

number of request records, where each request record specifies a key that is used to identify the master

record that the processor wishes to receive information about. In a concurrent write, every processor

generates no more than some fixed number of update records, where each update record includes the

key, field specification, and data corresponding to the master record it wishes to update. It should be

noted that for many applications, a processor will maintain master records and also generate request or

update records. A detailed description of a concurrent read is given for the mesh followed by a detained

mesh description of a concurrent write.

Concurrent Read

In a concurrent read, every processor creates no more than some fixed number of master records, where

each master record consists of a key, the data associated with the key, and some bookkeeping

information. In a concurrent read, the purpose of the master records is to make the data associated with

every unique key available to any processor that might want to read it. Every processor also creates no

more than some fixed number of request records, each of which specifies the key that is associated with

the data it wishes to receive. Unlike the master records, multiple request records can specify the same

key. If a processor generates a request record for which there is no master record, then at the end of the

operation it will receive a null message corresponding to that request. An implementation of a concurrent

read in terms of fundamental data movement operations on a mesh of size n2 follows.

Page 85

1. All processors create the same fixed number, call it M, of master records corresponding to those keys

for which the processor is responsible. Each record contains the key and associated data, as well as the

ID (i.e., snake-like index) of the processor creating the record. Some or all of the master records created

by a processor may be 'dummy' records, so as to balance the number of items per processor in subsequent

sort steps. Notice that since there is only one master record maintained for each key, a key value may be

represented by at most one master record somewhere in the mesh.

2. All processors create the same fixed number, call it R, of request records, which contain the desired

key, as well as the ID of the processor creating the record. Some or all request records created by each

processor may be 'dummy' records, so as to balance the number of items per processor in subsequent sort

steps.

3. Sort all (M + R) * n2 master and request records together into snake-like order by key, where ties are

broken in favor of master records, and ties between request records are broken arbitrarily.

4. By performing a broadcast operation within ordered intervals with respect to keys, every request

record will receive a copy of the data it desires.

5. Sort the (M + R) * n2 master and request records by the snake-like index of the processor that

originally created them (i.e., by the ID field) so that they are returned to the initiating processors. Notice

that the master records are not conceptually needed for the sort step, but are used so as to balance the

number of items in each processor during this step. The master records are discarded after the sort is

complete.

The concurrent read is accomplished through a fixed number of sort and interval operations, and for

fixed constants R and M is completed in Θ(n) time on a mesh of size n2. (Notice that throughout most of

the algorithm, the mesh of size n2 simulates a desired mesh of size (M + R) * n2.)

Concurrent Write

In a concurrent write, every processor creates no more than some fixed number of master records,

consisting of a key and some bookkeeping information, for each of the master entries that it maintains

and is willing

Page 86

to receive an updated value for. At the end of the concurrent write, a processor will receive a record

corresponding to each of the master records it created, indicating the new value of a data item(s) to be

associated with that key. Each processor creates no more than some fixed number of update records, each

consisting of a key, a data value, and some bookkeeping information. If two or more update records

contain the same key, then the master record associated with that key, if one exists, will receive the

minimum such update data value. (In other circumstances, one could replace minimum with some other

tie-breaking mechanism, as discussed below.) An implementation of a concurrent write in terms of

fundamental data movement operations on a mesh of size n2 follows.

1. All processors create the same fixed number, call it M, of master records, corresponding to those

master entries for which the processor is willing to receive data. Each master record contains a key and

data, as well as the ID (i.e., snake-like index) of the processor creating the record. Some or all of the

master records created by a processor may be 'dummy' records, so as to balance the number of items per

processor in subsequent sort steps.

2. All processors create the same fixed number, call it U, of update records, which contain a key, field

specifier, and data, as well as the ID of the processor creating the record. Some or all update records

created by a processor may be 'dummy' records, so as to balance the number of items per processor in

subsequent sort steps.

3. Sort all U *

n2 update records by key into snake-like order, breaking ties of the same key arbitrarily.

4. Apply the concurrent write tie-breaking mechanism within the ordered intervals. This should be a

mechanism computable in Ο(n) time, such as one that can be computed by performing a semigroup

operation within ordered intervals. While the tie-breaker most often needed in this book is the minimum,

other possibilities are average, product, median, mode, or choosing any value. In each ordered interval,

replace the first data item with this new value. This becomes the representative for the key, and the

record maintaining this information will be called the representative update record.

5. Sort all (M + U) * n2 master and update records together by key, where ties are broken in favor of

master records, and ties between

Page 87

update records are broken in favor of the representative update record.

6. All master records obtain their updated value from their representative update record, which is stored,

if it exists, in the succeeding processor (in snake-like order).

7. Sort all (M + U) * n2 records by the snake-like index of the processor that originally created them (i.e.,

by the ID field) so that they are returned to the initiating processors. Notice that the update records are

not conceptually needed for the sort step, but are used so as to balance the number of items in each

processor during this step. The update records are discarded after the sort is complete.

Like the concurrent read, the concurrent write is accomplished through a fixed number of sort and

interval operations, and is completed in Θ(n) time on a mesh of size n2.

2.6.5 Compression

The worst-case communication time for k elements distributed arbitrarily over a mesh of size n2 is Θ(n).

However, if these k elements can be placed in a submesh (square) of size , then this bound can be

reduced to Θ(k1/2). This can be accomplished as follows. Sort the k data elements into snake-like order,

where processors that do not contain one of these elements create data with a key of ∞. After performing

a sort, report, and broadcast, each processor that contains one of the k pieces of data knows its position in

the order (i.e., its rank). Further, every processor knows the total number k and the value . Using a

concurrent write based on the snake-like index of the processor, each processor now determines which

processor in the submesh to send its data to, and all processors in the submesh indicate their willingness

to receive. Therefore, the time required to place k pieces of data arbitrarily distributed over a mesh of

size n2 into a submesh where their worst-case communication will be minimized is Θ(n).

2.7 Further Remarks

In this chapter, several fundamental mesh algorithms have been presented. These algorithms include

fundamental data movement operations, such as row and column rotations, sorting, concurrent read,

concurrent write, and data compression. Algorithms were also presented for

Page 88

solving fundamental problems such as computing semigroup (i.e., associative binary) operations, matrix

transposition, matrix multiplication, and computing the transitive closure of a matrix. All of the

algorithms run in optimal Θ(n) time on a mesh of size n2. It should be noted that if an input of size m2 is

initially stored in a submesh of size m2 on a mesh of size n2, m ≤ n, then the algorithms can be modified

to run in Θ(m) time. Finally, it should be noted that a mesh automaton of size n2 can also perform some

of these algorithms, such as transitive closure, matrix transpose, and modular matrix multiplication, in Θ
(n) time.

Page 89

3

Mesh Algorithms for Images and Graphs

3.1

Introduction

The mesh computer is a natural architecture for solving problems that involve matrices and digitized

pictures. This is due to the fact that, in either case, adjacent input elements can be mapped in a natural

fashion to the same or neighboring processors of the mesh. Given an n × n adjacency or weight matrix

representing a graph G, with n vertices mapped in a natural fashion onto a mesh of size n2, Section 3.2

presents asymptotically optimal Θ(n) time mesh solutions to fundamental problems from graph theory.

These problems include marking a breadth-first spanning forest of G, determining whether or not G is

bipartite, marking the articulation points and bridge edges of G, and marking a minimum-weight

spanning forest of G. These algorithms are described predominantly in terms of fundamental mesh

algorithms and data movement operations, which were presented in Chapter 2. Several of these graph

theoretic results are used to solve image problems that are presented later in the chapter. However, since

the majority of the image algorithms presented in this chapter do not rely on graph algorithms, the reader

interested primarily in image algorithms may wish to move directly to Section 3.3, referring back to the

results of Section 3.2 when necessary.

Due to the natural mapping of images to the mesh, local operations on images, such as edge detection or

median filtering, can be performed by local operations on the mesh, enabling such algorithms to exploit

efficiently the massive parallelism available. Many discussions of actual image-processing meshes, such

as SOLOMON, ILLIAC III, CLIP4, or MPP, emphasize their speed on local operations [DaLe81,

HwFu82, Reev84, Rose83, Pott85], and most of the early papers on meshes, such as those of Unger

[Unge58, Unge59, Unge62] and Golay [Gola69], similarly emphasized local operations.

Starting with Section 3.3, the remainder of the chapter is devoted to higher level image processing and

pattern recognition tasks that require combining information globally, including geometric problems

involving connectivity, convexity, internal distance, and external distance. For

Page 90

some problems, such as computing the Euler number [Gray71, MiPa69], counting figures [Beye69,

Levi72], and skeletization [StRo71], it is possible to iterate local operations to achieve an optimal

solution to a global problem. In Section 3.3.1, the Beyer-Levialdi [Beye69, Levi72] ''shrinking"

approach, which is based solely on local operations, is used to give an asymptotically optimal algorithm

for counting the number of figures (i.e., connected black components) present in a digitized black/white

picture. This approach of using local operations to obtain efficient mesh solutions seems to work only for

isolated problems. Instead of local operations, most of the remaining image algorithms in this chapter

emphasize the use of data movement operations and graph-theoretic algorithms.

In Section 3.3.2, a worst-case optimal Θ(n) time component labeling algorithm is presented in terms of

fundamental data movement operations and graph-theoretic algorithms. Section 3.3.2 also shows that an

algorithm to solve the component labeling problem can be constructed by local operations, but requires Ο

(n2) time.

In Section 3.4, optimal Θ(n) time algorithms are given for computing internal distances, marking

minimal internal paths, and counting the number of these paths for every figure in the image. In Section

3.5, an optimal Θ(n) time algorithm is given for marking the extreme points of the convex hull for every

labeled set of processors. Optimal Θ(n) time algorithms are also given for deciding if the convex hull of

each figure contains pixels that are not members of the figure, for deciding if two sets of processors are

linearly separable, for solving the smallest box problem, and for deciding if each black figure is convex.

In Section 3.6, an optimal Θ(n) time algorithm is given to compute the distance between figures and the

external diameter of each figure, where the distance can be measured by almost any metric. Section 3.6

also contains optimal solutions to nearest neighbor, radius query, and farthest point problems.

3.2 Fundamental Graph Algorithms

In this section, optimal mesh algorithms from [AtKo84] are presented to solve some fundamental graph

theoretic problems. The reader is referred to [AtKo84] for proofs of correctness and any omitted details

of the algorithms. Given a graph G represented as an adjacency or weight matrix, algorithms are

presented to determine all bridge edges and articulation points of G, to determine whether or not G is

bipartite, and to find a minimum-weight spanning forest of G. Additional optimal

Page 91

algorithms, solving problems such as finding the length of a shortest cycle and determining the cyclic

index of a graph, appear in [AtKo84].

Some graph-theoretic definitions are necessary. For simplicity, a graph G = (V, E) consists of a finite

nonempty set of vertices V = , and a set of edges E ⊆ V × V. If the edges are ordered pairs (i,
j) of vertices, then the graph is said to be directed, while if the edges are unordered pairs {i, j} of distinct

vertices, then the graph is said to be undirected. The graph is said to be weighted if there is a realvalued

weight w(i, j) for each edge (i, j), where w(i, j) = ∞ if there is no edge from i to j. (If the graph is

unordered, then w(i, j) = w(j, i).) An i - j walk in G is a finite sequence of vertices i = v0v1 . . . v1 = j such

that (Vm,Vm+1) ∈ E for every m ∈ {0, 1, . . . , l - 1}. Vertices i and j are the endpoints (or end vertices) of

that walk, and the walk is said to be from i to j. The length of that walk is 1, and v1, v2, . . . , v1-1
 are its

intermediate vertices. If all intermediate vertices of a walk are distinct, then the walk is a path. A path of

positive length from a vertex to itself is called a cycle. A graph that contains no cycles is termed acyclic.
An i - j/k path (walk) is an i- j path (walk) in which all intermediate vertices belong to the set {1, 2, . . . ,

k}. An i - j/0 path is defined to be an i - j path with no intermediate vertices.

A spanning tree T of an undirected graph G is breadth first with respect to a vertex r if every r - j path in

T is also a shortest, or minimum distance, r - j path in G. Such a spanning tree can be assigned directions

away from the root to result in a directed tree T' rooted at r, where T' is referred to as a directed breadth-
first (spanning) tree of the undirected graph G.

G* is used to denote the transitive closure graph of a graph G, where an edge (i, j) is in G* if and only if

there is a (possibly degenerate) i - j path in G. (G* is often referred to as the reflexive transitive closure,
since it includes all edges of the form (i, i), whether or not such a nondegenerate path exists in G.) Given

a directed or undirected graph G, define RG(i), the vertices in G reachable from i, to be RG(i) = {j| there

is an i - j path in G}.

If (i, j) is an edge of G, then G - {(i, j)} denotes the graph obtained by removing edge (i, j) from G, and if

v is a vertex of G, then G - {v} denotes the graph obtained by removing vertex v and all edges incident

on it from G.

Many of the problems given in this section consider simple graphs. A simple graph is one in which there

are no self-loops (i.e., edges from a vertex to itself). Note that the definition of graph presented on page

91 precludes parallel edges (i.e., multiple edges between the same pair of

Page 92

vertices).

Given a graph G = (V, E), |V| = n, let Sk(i, j) denote the length of a shortest i- j/k path, for i, j ∈ {1, 2, . . . ,

n} and k e {0,1, . . . , n}. If there is no i - j/k path, then define Sk(i, j) to be ∞. The initial values of S are

given by

The first problem of this section is concerned with determining the length of a shortest path (i.e., the

minimum distance) between every pair of vertices. For the problems considered in this section, processor

Pi, j
 initially contains the (i, j) entry of the adjacency or weight matrix. That is, it is assumed that the

matrix is stored in a natural fashion. If the end result of a given problem is to determine a relationship

between vertices i and j, then when the algorithm terminates, processor Pi, j
, will know this relationship.

Theorem 3.1 Given the adjacency matrix of an undirected graph G mapped in a natural fashion onto a
mesh of size n2, in Θ(n) time the minimum distance between every pair of vertices can be determined.

Proof. It is easy to show that

Sk+1(i, j) = min{Sk(i, j),Sk(i, k + 1) + Sk(k + 1,j)},

which is the form required in order to apply the generalized transitive closure algorithm of Section 2.5.3.

Therefore, in Θ(n) time all Sn(i, j) can be computed on a mesh of size n2 so that processor Pi, j
 contains the

value Sn(i, j).

The minimum distance between all pairs of vertices of an undirected simple graph G can be used to mark

a breadth-first spanning forest (i.e., a breadth-first spanning tree within every connected component) of G
in Θ(n) time on a mesh of size n2. This can be done by arbitrarily choosing a root vertex in each

connected component and then using the generalized transitive closure algorithm to determine for every

vertex i) the minimum distance to its root and ii) its parent in the breadth-first spanning tree of its

component. The details, including how to create the adjacency matrix corresponding to the breadth-first

spanning forest, follow.

Page 93

Theorem 3.2 Given the adjacency matrix of an undirected simple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in Θ(n) time a directed breadth-first spanning forest T = (V, A) can be
created. As a byproduct, the undirected breadth-first spanning forest edge set EA can also be created,
where EA consists of the edges of A and the edges of A directed in the opposite direction.

Proof. Compute Sn(i, j), for all i, j ∈ V, by the algorithm of Theorem 3.1. Simultaneously in every row i,

perform a row rotation so that each processor in row i determines the index r(i) = j of the first non-∞

entry Sn(i, j). Vertex r(i) will be the root of the spanning tree containing vertex i. (Note that r(i) can also

be used as a unique component label for the connected component containing vertex i.) Since Sn(i, r(i)) is

the distance from vertex i to vertex r(i), and since vertex r(i) is the root of the spanning tree containing

vertex i, then Sn(i, r(i)) is the level of vertex i in the spanning tree rooted at vertex r(i). Let level(i) = Sn(i,
r(i)). Simultaneously in every row i, perform a row rotation to broadcast level(i). The result of this

rotation is that every processor in row i knows the level of vertex i in its spanning tree. Next, perform a

column rotation in every column j to broadcast level(j) from processor Pi, j
 to all processors in column j.

Now every processor Pi, j
 knows level(i) and level(j).

For every i ≠ r(i), let the parent of vertex i, denoted P(i), be defined as

P (i) = min{j (i, j) ∈ E and level(i) = level(j) + 1}.

The directed graph T = (V, A), where A consists of all directed edges (P (i), i), is a directed breadth-first

forest. This forest is formed as follows. Simultaneously for all rows i, perform a row rotation so that all

processors in row i know P (i), the parent of vertex i. (This is accomplished by a row rotation where

every processor Pi,k
 sends (k, level(k)) to be viewed by all other processors in row i.) Next,

simultaneously for all columns j, perform a column rotation to broadcast P (j), the parent of vertex j,
from processor Pj ,j to all processors in column j. Every processor Pi, j

 now knows the value of P (i) and

P (j). Finally, every processor P
P
 (

j
),j

 determines that (P (j),j)∈ A and that (P (j), j) ∈ EA, and every

processor Pi, P (i)
 determines that (i, P (i)) ∈ EA. (Recall that A is the set of edges in a directed breadth-first

spanning forest and EA is the set of edges in the corresponding undirected breadth-first spanning forest.)

The transitive closure and rotations used to determine the level information each take Θ(n) time. The

rotations used to determine parent

Page 94

information each take Θ(n) time. The final step in creating T requires Θ(1) time. Therefore, the running

time of the algorithm is as claimed.

It is now shown that a breadth-first spanning forest may be used to determine whether or not an

undirected simple graph is bipartite, where a bipartite graph G = (V, E) is one in which all vertices of V

can be partitioned into two disjoint sets of vertices, say V1 and V2, where V1 ∪ V2 = V, such that every

edge in E connects a vertex of V1 with a vertex of V2. The algorithm consists of creating a breadth-first

spanning forest T of G, and then using the property that G is bipartite if and only if for every vertex i in

G, the level of vertex i in spanning forest T differs by 1 from the level of vertex j in T, for every vertex j
such that (i, j) ∈ E. Notice that those vertices on odd levels of T can be defined as V1, while those

vertices on even levels of T can be defined as V2.

Corollary 3.3 Given the adjacency matrix of an undirected simple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in Ο(n) time it can be decided whether or not G is bipartite.

Proof. Using the algorithm associated with Theorem 3.2, mark a directed breadth-first spanning forest T
of G, and determine level(i) for every vertex i in G. Using the observation stated above, every processor

Pi, j
, where (i, j) ∈ E, sets its Boolean flag bipartite to true if level(i) differs by 1 from level(j), and to

false otherwise. Every processor Pi, j
, where (i, j) ∉ E, sets bipartite to true. A simple semigroup (i.e.,

associative binary) operation can be used to compute the logical AND of these values (bipartite) in order

to obtain the answer to the query. Since the algorithm from Theorem 3.2 and the semigroup operation

both require Θ(n) time, the running time of the algorithm is as claimed.

3.2.1 Bridge Edges

In this section, an optimal Θ(n) time mesh algorithm is presented to determine all bridge edges of an

undirected simple graph G = (V, E). A bridge edge is an edge e ∈ E whose removal will increase the

number of connected components in G.

The first step of the algorithm is to mark a directed spanning forest T = (V, A), by using the algorithm

associated with Theorem 3.2. Again, let EA consist of the edges of A and the edges of A directed in the

opposite direction. Notice that the edges in E - EA cannot be bridge edges since each such edge is not

needed for at least one spanning forest

Page 95

of G, namely T. Therefore, only the edges EA of T need to be tested. (The reader should notice that T

need not be a breadth-first spanning forest. Any spanning forest will suffice for this algorithm, including

the minimum spanning forest obtained in Section 3.2.3.)

A result from [AtKo84] will be used to detect the bridge edges. Recall that RG(i) denotes the vertices in

G reachable from i, where RG(i) = {j there is an i - j path in G}, and that P(i) denotes the parent of i in

the spanning forest, as defined in Theorem 3.2. The result states that if i = P(j), then (i, j) ∈ EA is a bridge

edge if and only if RT(j) = , where = (V, Ê) is the directed graph whose set of directed edges E is

the union of A and the set of directed edges obtained by replacing every edge of E - EA by its two
oppositely directed edges. (I.e., (i, j) is a bridge edge if and only if the set of vertices that may be reached

from j using the directed edges of the spanning forest is the same as the set of vertices that may be

reached from j using all edges of G with the exception of EA - A, the upward directed edges associated

with the spanning forest. So, (i, i) being a bridge edge means that the only way j may reach a vertex of G

that is not one of its descendants in T is by traversing the edge from j to i, its parent in the spanning tree.)

Notice that the adjacency matrix of is created by logically OR-ing the adjacency matrix of T with that

of G' = (V, E - EA), which can be done in 0(1) time. Also notice that the transitive closure of T and G can

be computed in Θ(n) time by the algorithm of Section 2.5.3, giving RT and , respectively.

In order to determine the bridge edges according to the reachability criteria, simultaneously for all i : r(i)
(i.e., for all vertices i that are not the root vertex of their spanning tree), test whether or not the ith row of

the adjacency matrix of RT is the same as the ith row of the adjacency matrix of . This can be

accomplished by performing a row rotation, simultaneously for all rows, so that every processor knows

the answer for its row. Finally, in Θ(n) time all diagonal processors Pi, i
 with the answer 'yes' for their

row inform processors P
P
 (i),i and Pi,

P
(i)

 that the edge (P(i), i) is a bridge edge of G and should be marked

as such. This can be accomplished by either performing a row rotation followed by a column rotation, or

by performing a concurrent write.

Therefore, the following is obtained.

Theorem 3.4 Given the adjacency matrix of an undirected simple graph G mapped in the natural fashion
onto a mesh of size n2, in Θ(n) time all bridge edges of G can be marked.

Page 96

3.2.2 Articulation Points

Given an undirected simple graph G = (V, E), the problem of detecting the articulation points of G is now

examined, where an articulation point is a vertex v ∈ V, whose removal, along with incident edges,

increases the number of connected components of G. The algorithm presented in this section will 'mark'

all processors Pi, r(i)
 for which vertex i is an articulation point, where vertex r(i) is the root of the spanning

tree containing vertex i. In addition to the previously defined graphs T and , the algorithm requires an

undirected graph H = (V, E'), which is defined as (i, j) ∈ E' if and only if P(i) = P(j) and there is an edge

of G between RT(i) and RT(j). Intuitively, the edges in H represent pairs of vertices of G that have the

same parent in T and have at least one pair of descendants in T that are connected by an edge of G.

The algorithm will be based on examining three sets of vertices of T, namely, the roots of trees in T, the

leaves of T, and the remaining interior vertices of T. It is easy to see that the removal of a root vertex r,

along with all incident edges, will not disconnect its component if and only if there is a path between

every pair of its children that does not include r. It is also easy to see that a leaf of T cannot be an

articulation point. A nonleaf vertex v ≠ r(v) of T is not an articulation point if and only if for each of its

children there is a path in G - {v} from that child to outside the subtree rooted at v. Given s a child of v in

T, such a path surely exists if there is an edge in E - EA between some vertex in RT(S) and a vertex not in

RT(V). Define a vertex w as special if there is an edge between a vertex in RT(W) and a vertex not in RT(P

(w)). For

Figure 3.1:

z is a special vertex, while s is not.

Page 97

example, in Figure 3.1 vertex z is special while vertex s is not.

Lemma 3.5 summarizes the three cases for deciding whether or not a given vertex is an articulation point

of G.

Lemma 3.5 Given a spanning forest T of an undirected simple graph G = (V, E), the following hold.

1. A root of a tree in T is not an articulation point of G if and only if for every pair of its children in T,

say i and j, there is an i - j path using edges of G with the exception of (i, P (i)) and (j, P(j)).

2. No leaf of T is an articulation point of G.

3. A nonleaf, nonroot, vertex v is not an articulation point if and only if for each of its children there is a

path in G - {v} from that child to a vertex outside the subtree rooted at v.

Recall that the edges in H represent pairs of vertices of G that have the same parent in T and have at least

one pair of descendants in T that are connected by an edge of G. Then it can be shown that an interior

vertex of T is not an articulation point if and only if for every one of its children there is a path in H from

that child to at least one special vertex. Lemmas 3.6 and 3.7 formally state these sufficient conditions for

deciding whether or not an interior vertex of T is an articulation point of G.

Lemma 3.6 Suppose s ∈ V, s ≠ r(s). Then there is a path in G - {P(s)} from s to outside the subtree of P
(s) if and only if there is a path in H from s to at least one special vertex (possibly s itself).

Lemma 3.7 A vertex v ≠ r(v) that is not a leaf is not an articulation point if and only if for every one of
its children there is a path in H from that child to at least one special vertex.

Therefore, following the previous discussion, efficient algorithms are needed to construct H and detect

special vertices. Fortunately, both of these can be determined in Θ(n) time on a mesh a size n2. The

algorithms for creating H and detecting special vertices rely on using the previously defined matrices T
and G, being able to efficiently compute the transitive closure of a matrix, being able to efficiently

multiply

Page 98

matrices, and being able to use several efficient fundamental data movement operations that have been

previously defined. The details of an optimal Θ(n) time algorithm for constructing H and marking special

vertices follow.

Lemma 3.8 In Θ(n) time, H = (V, E') can be created and all processors in row i and column i can know
whether or not vertex i is special.

Algorithm: In Θ(n) time create T, T*, and . The adjacency matrix for a new graph Z = (V, X), where (i,
j) ∈ X if and only if there is an i - k path in T and an edge (k, j) ∈ E - EA for some vertex k, can be created

in Θ(n) time as the logical multiplication of matrices T* and G' (V, E - EA).

Using a column rotation, every processor Px, y
 sends the values of T*(x, y) and P(x) to all of the processors

in column y. When the contents of Px, y
 reaches processor Pi, y

, processor Pi, y
 checks to see whether

1. P(i)= P(x),

2. (x, y) is a directed edge of T*, and

3. (i, y) is a directed edge of Z.

If all three conditions are satisfied, then i and x are siblings in T, y is a descendant of x in T (i.e., y ∈ RT

(X)), and (a, y) ∈ E - EA for some a ∈ RT(i). Hence, Pi, y
 can decide that H(i, x) = 1. It should be noted that

for a given Pi, y
, these three conditions are simultaneously satisfied at most once during the column

rotation, and that if H(i, x) = 1, then there must exist a y such that the three conditions hold

simultaneously. After the rotation is complete, a concurrent write or row rotation is used to create H.

In order to let every processor Pi, j
 know whether or not i and j are special, the above column rotation is

modified so that processor Pi, y
 checks to see if

1. x = P(i),

2. (x, y) is not a directed edge of T*, and

3. (i, y) is a directed edge of Z.

If these conditions are satisfied, then Pi, y
 notes that vertex i is special. A final row and column rotation

send the required information to all processors. Since the row and column rotations take Θ(n) time, as

does the optional concurrent write, the algorithm finishes in Θ(n) time.

Page 99

At this point, it is possible to describe a straightforward algorithm to determine all articulation points of

an undirected simple graph G in optimal time on a mesh. The algorithm follows the discussion in this

section of examining three general cases of vertices in G with respect to T, corresponding to the roots of

T, the leaves of T, and the interior vertices of T.

Theorem 3.9 Given the adjacency matrix of an undirected graph G mapped in the natural fashion onto a
mesh of size n2, in Θ(n) time all articulation points of G can be identified.

Algorithm: Create T, T*, H, and H*. As a byproduct of this, every processor in row i and column i will

know whether or not vertex i is special. Each of these processors will also know P(i), the parent of vertex

i in T, and r(i), the root vertex of the spanning tree in T containing vertex i. Every processor Pi, j
 can

check to see if it can decide that vertex r(i) is an articulation point by testing to see if P(i) = P(j) = r(i)
and H*(i, j) = 0. Either a concurrent write or a semigroup (i.e., associative binary) operation can be used

to inform processor Pr (i), r(i)
 as to whether or not vertex r(i) is an articulation point.

Next, using row rotations, every processor Pi, r(i)
 checks to see whether or not vertex i is a leaf in T. If the

answer is affirmative, then Pi, r(i)
 decides that vertex i is not an articulation point. Finally, using row

rotations, every processor Pi, r(i)
 for which P(i) ≠ r(i) checks to see whether or not there exists a vertex k

that is special, such that H*(i, k) = 1. If the answer is negative, then Pi, r(i)
 creates a message to inform

processor P
P
 (i), r(i)

 that vertex P(i) is an articulation point. These messages are routed using column

rotations.

Creating T, T*, H, and H* each take Θ(n) time, as described previously. The rotations each take Θ(n)

time. Therefore, the running time of the algorithm is as claimed. ·

3.2.3 Minimum Spanning Tree

Given a weighted undirected graph G = (V, E), with weight w(i, j) associated with edge (i, i) ∈ E, this

section considers the problem of determining a minimum-weight spanning forest T = (V, ET) of G. The

weight of a spanning forest is the sum of the weights of the edges in the forest, and a minimum-weight
spanning forest (minimum spanning forest) of G is a spanning forest of G with minimal weight. (While

the weight of a minimum-weight spanning forest is unique, a minimum spanning forest

Page 100

need not be unique.) It is well known for a variety of parallel models of computation that efficient

algorithms to determine minimum-weight spanning forests are similar to efficient component labeling

algorithms for the same parallel model and form of input [CLC82, HaSi81, SaJa81]. The minimum

spanning forest algorithm presented in this section follows the general component labeling approach

given in [HCW79].

T is constructed through a number of stages, where at each stage clubs that represent subtrees of T are

combined by adding minimum-weight edges between them. Each club has a label, which is the minimum

label of any vertex in the club. Initially, each vertex of G is its own club, and the set of edges of T,
denoted ET, is empty. During each stage of the algorithm, for each club of T, a minimum-weight edge of

G joining that club with a different club of T is chosen, with ties broken in favor of the club of smallest

label. The set of edges just chosen is added to ET, and clubs are combined that are connected by these

edges. The process is repeated until only one club remains for each connected component. It will be clear

that the terminal condition is reached because no club will have any edges to any other club.

At most stages are required to reduce the initial clubs, representing the n vertices, to the final

clubs, since the number of unfinished clubs is reduced by at least a factor of 2 during each stage of the

algorithm. After each stage of the algorithm, all edges of G consisting of endpoints that are in the same

club of T may be discarded. Further, if there is more than one edge between two clubs, all but one

minimum-weight edge between the clubs may be discarded. These observations form the heart of the

algorithm associated with the following theorem.

Theorem 3.10 Given the weight matrix of an undirected simple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in Θ(n) time a minimum-weight spanning forest T = (V, ET), can be
determined.

Algorithm: The algorithm is based on being able to efficiently collapse the vertices of G that belong to

the same club of T into a single vertex, remove all loops from the resulting graph, and keep only a

minimum-weight edge between any pair of new vertices. Let Gt denote the ''collapsed" version of G right

after the tth stage of the algorithm. Stage 0 of the algorithm is defined by setting G0 = G = (V, E) and T =

(V,). The tth stage of the algorithm is defined by the following steps.

1. For every vertex v of Gt-1, choose a minimum-weight edge (v, x), with ties broken in favor of the

smallest x. Let Ht be the set of chosen edges.

Page 101

2. Add to ET the edges of G that are represented by the edges in Ht.

3. Gt is obtained by "collapsing" the vertices of Gt-1 that are in the same club (i.e., connected component)

with respect to Ht. A club is represented as a vertex that inherits as its label the minimum label of any

vertex in the club. This "collapsed" version of Gt-1
might have loops and parallel edges. All loops are

discarded and only one minimum-weight edge between any pair of clubs (vertices) is kept, with ties

broken arbitrarily. Any club without edges to any other club is removed. The resulting graph is Gt.

Notice that just prior to the tth stage of the algorithm, Gt-1 has as many vertices as T has unfinished clubs.

Since the number of unfinished clubs is at least halved after each iteration of the algorithm, Gt-1 has no

more than vertices. Assume that the weight matrix of Gt-1 is compressed to the upper-left m × m

corner of the mesh, where m ≤ , and that the tth stage of the algorithm requires Θ(m) time. Then the

running time, T(n), of the entire algorithm can be expressed by the recurrence T(n) = Θ(n) + T(n/2),
which is Θ(n).

It only remains to show that the tth stage of the algorithm can be completed in Θ(m) = Θ() time. At

the beginning of stage t, the weight matrix of Gt-1 is stored in the upper-left m × m region of the mesh, as

shown in Figure 3.2. If Gt-1(i, j) = 1, then processor Pi, j
, where i, j ≤ m, contains the edge (i', j') ∈ E of G

that edge (i, j) of Gt-1
represents, as well as the weight w(i, j) = w(i', j') of the edge. Further, the edges of T

that were chosen before stage t are stored outside this region of the mesh as a collection of special edges
(x, y), with no more than one such edge per processor. When stage t terminates, the weight matrix of Gt

must be stored in the upper-left m' × m', m' ≤ m/2, region of the mesh, and the edges of T chosen during

stage t must be stored as special edges, no more than one per processor outside the upper-left m' × m'
region, but inside the upper-left m × m region.

In the following description of stage t, references to all processors and operations are with respect to the

m × m region. Stage t begins by performing a row rotation so that all processors in row x know the

minimum weight edge (x, y) in Gt-1
(with ties broken in favor of minimum y) and the edge (x', y') ∈ E that

(x, y) represents. Using a column rotation, these special edges are moved from diagonal processors Pi, i
 to

processors Pm ,i. Notice that these edges have been moved to processors outside the upper-left m/2 × m/2

region but inside the m × m region.

Further, no processor contains more than one special

edge.

Page 102

Figure 3.2:

Gt-1 is stored in the m × m region, where m ≤ 2t-

In order to create the adjacency matrix for Ht, every processor Px, y
 for which row x chose edge (x, y) as

the minimum weight edge, sets its entry of the adjacency matrix to 1. All other processors in row x set

their entry to 0. Finally, every processor Px, y
 for which row x chose edge (x, y) as the minimum weight

edge, creates a message to inform processor Py ,x that its entry in the adjacency matrix of Ht should be 1,

and a concurrent write is performed.

The last step of stage t is to create Gt in the m × m region, and then compress it to a mesh of size no more

than in the upper-left corner of the region. Gt is created in the m × m region as follows. Compute ,

the transitive closure of Ht, by the algorithm given in Section 2.5.3. Perform a row rotation so that every

diagonal processor Pi, i
 determines c(i), the minimum index of a vertex in the component of Ht that

contains vertex i. Using a column and row rotation, every processor Pi, j
 will know c(i) and c(j). Now,

every processor Pi, j
 for which Gt-1(i, j) = 1, c(i) ≠ c(j), and (i, j) represents (i', j') ∈ E creates a message to

inform processor Pc (i),c(j)
 that Gt(c(i), c(j)) = 1, that (c(i), c(j)) represents (i', j'), and that this edge has

weight w(i', j'). A concurrent write, with ties broken

Page 103

appropriately, will route the data properly.

Gt can be compressed as follows. Perform a row rotation so that every processor Pi, 1
 knows whether or

not there is a j such that Gt(i, j) = 1. Perform a column rotation in column 1 so that all processors Pi, 1

know the total number of vertices m' in Gt, and the rank of vertex i (i.e., the position in which vertex i
will appear, if at all) in Gt. Perform a row rotation, followed by a column rotation, so that all processors

Pi, j
 for which Gt(i, j) = 1 know rank(i) and rank(j). Every processor Pi, j

, where i, j ≤ m', sets its entry for

the adjacency matrix of Gt to 0. Every processor Pi, j
, for which Gt(i, j) = 1, creates a message that

contains the original edge (i',j') ∈ E, and its associated weight w(i', j'), for which the processor is

responsible. A concurrent write is used to route these messages to processors Prank(i),rank(j)
, which initialize

the (rank(i), rank(j)) entry of Gt to w(i', j'). Finally, all information regarding Gt-1 may be purged from the

processors in the upper-left m' × m' region, concluding stage t.

The tth stage of the algorithm consists of a fixed number of operations, all of which are restricted to the m
× m region. Therefore, the tth stage of the algorithm requires Θ(m) = Θ() time. Hence, the running

time of the entire algorithm is Θ(n).

3.3 Connected Components

For the algorithms presented in this section, it is assumed that an n × n digitized picture A = {ai, j
} is

stored in a mesh of size n2 so that processor Pi, j
 contains pixel ai, j

. The pixels are in one of two states:

black or white. It is useful to think of this digitization as being a black picture on a white background.

3.3.1 Counting Connected Components

This section considers the problem of counting the number of figures (i.e., connected black components)

in A by a method known as "shrinking". The general idea of shrinking a digitized picture is that during

every iteration of the algorithm each figure of the picture is trimmed until it becomes a single black pixel

and then vanishes, all the while preserving the connectedness properties of the figures. To count figures

by a shrinking algorithm, the processor responsible for a vanishing figure will add one to its local

running sum of figures. A final report and

Page 104

broadcast over the local sums will compute the global sum and inform all processors in the mesh as to

the total number of figures in A.

Some definitions of connectedness are in order. A set S of lattice points (e.g., a set of pixels or

processors) is called 8-connected if for all P, Q ∈ S there exists a finite sequence P = P0, P1, . . . , Pl = Q

of points of S such that Pi is a horizontal, vertical, or diagonal neighbor (i.e., an 8-neighbor) of Pi -1,

where 1 ≤ i ≤ l. If only horizontal and vertical neighbors are considered (i.e., 4-neighbors), then S is

called 4-connected. [RoKi82]

Beyer [Beye69] and Levialdi [Levi72] independently arrived at an interesting method of "shrinking" the

figures of a picture that guarantees that connected components (figures) always remains connected and

components that are not connected always remain disconnected. Both algorithms assume an 8-connected

definition of connectedness for the black pixels. As an aside, it should be noted that, in general, if an 8-

connected definition is used for the black pixels, then a 4-connected definition is needed for the white

pixels, and vice versa, in order to maintain the Jordan Curve Theorem (c.f., [Rose79]). The algorithm

that follows shrinks figures toward the top right of the mesh. The reader is referred to [Levi72, Beye69]

for details.

Assume that at the end of iteration k of the algorithm, the picture A has been transformed k times

according to the "shrinking" algorithm. Denote this picture as Ak = { }, where A0 = A is the original

picture. The transformation from Ak to Ak+1 is given by describing how processor Pi, j
 transforms to

. Consider to be the top right pixel of a 2 × 2 window. The transformation is given as follows.

1. If the configuration in the vicinity of white pixel matches either diagram presented in Figure 3.3

(a), then will become black.

2. If the configuration in the vicinity of black pixel matches the diagram presented in Figure 3.3(b),

then

will become white. (In this situation, if all of the 8-neighbors of are white, then processor

Pi, j
 also increments its component counter.)

3. If neither situation illustrated in Figure 3.3 applies to , then .

Using this shrinking scheme, it is shown in [Levi72] that during each iteration of the algorithm only

black pixels that do not disconnect a figure are erased, and that white pixels do not become black when

this implies the merging of two or more distinct figures. Further, it is shown

Page 105

(a) Two situations for which is white and becomes black.

(b) The sole situation for which is black and becomes white.

Figure 3.3:

Assume that , is the top right pixel of a 2 × 2 window.

Then there are exactly three situations in which will be black.

Page 106

in [Levi72] that each figure will shrink to a single black pixel, at which point it is counted, in time

proportional to the diameter of the minimum area iso-oriented rectangle that encloses the figure.

Therefore, the running time of the algorithm is determined by the time to perform the shrinking, which is

Ο(n), and the time to sum the counters. Since a global sum operation, as described in Section 2.4.3,

finishes in Θ(n) time, the running time for the entire algorithm is Θ(n). A statement of the result follows.

Theorem 3.11 Given an n × n digitized black/white image, distributed one pixel per processor on a mesh
of size n2, the number of figures (connected components) can be determined in Θ(n) time. ·

3.3.2 Labeling Connected Components

In this section, several algorithms are presented to label the figures (i.e., connected black components) of

a digitized black picture on a white background. The algorithms presented in this section are mesh

implementations of the generic component labeling algorithms given in Section 1.6.1.

As in Section 3.3.1, it is assumed that the n × n picture A = {ai, j
} is stored in a mesh of size n2 so that

processor Pi, j
 contains pixel ai, j

. However, in contrast to the assumptions of the previous section, this

section defines two black pixels to be neighbors if and only if they are mapped to neighboring

processors. That is, in this section a 4-connected definition of connectedness is assumed for the black

pixels. This assumption is only for convenience of presentation, as an 8-connected definition will only

change the running times of the algorithms by a constant factor.

Every processor that contains a black pixel uses its snake-like index as the label of the pixel that it

contains. When a labeling algorithm terminates, every processor that contains a black pixel will also

store the minimum label of any pixel that its pixel is connected to. Therefore, the label of a connected

component will be the minimum label of any pixel in the component, and at the termination of the

algorithm, every processor will know the label of the connected component that its pixel is a member of.

Following the order of presentation in Section 1.6.1, the first algorithm considered in this section can be

classified as a simple propagation algorithm. Initially, every black processor (i.e., a processor containing

a black pixel) defines its component label to be its snake-like index. During each iteration of the

algorithm, every black processor sends its current

Page 107

component label to its (at most) four black neighbors. Every black processor then compares its

component label with the (at most) four labels just received, and keeps as its new component label the

minimum of these labels. It is easy to see that for each figure, the minimum label L is propagated from PL
(using snake-like indexing of processors) to every processor Pi in its figure in the minimum number of

steps required to pass a message from PL to Pi, under the restriction that data is only passed between

neighboring black processors. Therefore, this labeling algorithm terminates in Θ(D) time, where D is the

maximum internal distance between any black pixel and the pixel of minimum label in its figure. (The

internal distance between two black pixels is defined to be the length of a shortest connected black path

between the pixels.) So, given 'blob-like' figures, all processors can know the label of their figure in Θ(n)
time. However, it is easy to construct non-'blob-like' figures, such as the spirals or snakes depicted in

Figure 1.10 of Section 1.6.1, for which this propagation algorithm would require Θ(n2) time.

As an alternative to the propagation algorithm, one might consider exploiting the generalized transitive

closure algorithm associated with Theorem 3.1 to solve the component labeling problem. Unfortunately,

this algorithm cannot be used directly since there may be Θ(n2) black pixels (vertices), which would

require a matrix containing Θ(n4) entries.

In contrast to the O(n2) propagation algorithm, the next two algorithms will label all figures in Θ(n) time,

regardless of the number, shape, or size of the figures. Both algorithms use an efficient mesh

implementation of a recursive divide-and-conquer solution strategy, following the generic divide-and-

conquer component labeling algorithms presented in Section 1.6.1. (Descriptions of such algorithms

begin on page 31.)

The first step of these algorithms is to recursively label the four quadrants of the mesh independently.

After this step, the only figures that could have an incorrect global label are those figures that have a

pixel on the border between the quadrants. See Figure 3.4. Each border processor P, (using snake-like

indexing of processors) that contains a black pixel examines its (at most 2) neighboring processors in

distinct quadrants. Border processor Px creates an unordered edge record (label1, label2, clabel1,
clabel2) for each such border processor Py that also contains a black pixel, where label1 represents the

label corresponding to the figure of Px after the recursive labeling, label2 represents the label

corresponding to the figure of Py after the recursive labeling, and clabel1 and clabel2 will be used to

determine the correct global labels of Px and Py and are initially defined to be label1 and label2,
respectively. There are at most 4n - 4 processors along the border, and they

Page 108

Figure 3.4:

Sample labeling after recursively labeling each quadrant.

generate at most 4n such records. (Referring to Figure 3.4, edge records would be generated for

component label pairs (1, 4), (18, 20), (18, 33), (20, 36), (4, 39), (36, 44), and (33, 39). Specifically,

using snake-like indexing, processor P3 would generate edge record (1, 4, 1, 4), processor P4 would

generate edge record (4, 1, 4, 1), processor P19 would generate edge record (18, 20, 18, 20), processor P20

would generate edge record (20, 18, 20, 18), processor P24 would generate edge record (4, 39, 4, 39), and

so forth.)

An important observation is that the amount of data that needs to be processed has been reduced from an

amount proportional to the area of the mesh (image) to an amount proportional to the perimeter of the

mesh (image). Also, the form of the data has changed from image data

Page 109

representing a picture A, to geometric data in the form of an undirected graph G = (V, E), where V is the

set of component (figure) labels for the border processors, and (i, j) ∈ E if and only if i, j ∈ V, and i ≠ j
are connected (neighbors). For instance, referring to Figure 3.4, the unordered edge set E is {(1, 4), (18,

20), (18, 33), (20, 36), (4, 39), (36, 44), (33, 39)}. With the exception of edge (20, 36), each of these

edges would be generated twice, and there would be a distinct edge record representing each instance.

Notice that the edge (20, 36) would be generated four times (creating four edge records, only two of

which are distinct), once each by processors with snake-like indices 26, 27, 36, and 37.

At this point, the two algorithms are distinguished. The first algorithm follows the compression

algorithm presented on page 34 of Section 1.6.1 to resolve the global labels. The first step is to compress

the Ο(n) edge records to a submesh of size 4n. The problem can now be viewed as solving the connected

component labeling problem for unordered edge input given Ο(n) edges on a mesh of size 4n, where the

vertices represent component labels and the edges represent adjacent components that need to be

combined. Sort the edge records on the first field, label1, and let the first processor of each ordered

interval create a label record (label1, newlabel), where newlabel is initialized to label1. These label

records will be used to keep track of the component label for each of the Ο(n) vertices. Notice that

initially each vertex corresponds to a unique component label.

For a logarithmic number of iterations, update the newlabel field associated with each vertex so that after

iteration i, newlabel represents the minimum label of vertices that are within a distance of 2i-1. This can

be done as follows. Every processor maintaining label record (label1, newlabel) creates pseudo master

record (newlabel, temp-newlabel), and every processor responsible for edge record (label1, label2,
clabel1, clabel2) creates update records (clabel1, clabel2) and (clabel2, clabel1). A modified concurrent

write that accommodates multiple pseudo master records with identical keys is used to update the

tempnewlabel field of a pseudo master record, but only if the minimum update value is less than

newlabel. The modified concurrent write sorts by key field, breaking ties in favor of pseudo master

records (arbitrarily), and breaking ties of update records in favor of minimum data field, before using an

interval operation to propagate the minimum update data value to all master records with that key. The

next step is to update the label records based on the new information in the pseudo master records. This

can be accomplished by performing a concurrent read based on the index of the processor with the label

record that created the pseudo

Page 110

master record. (I.e., this information could be stored in a field of these records.) The final step is to

update the current label (clabel) fields of the edge records. To do this, perform a concurrent read where

all label records (label, newlabel) act as master records, and each edge record (label1, label2, clabel1,
clabel2) creates request records (label1, clabel1) and (label2, clabel2) for the purpose of updating the

values of clabel1 and clabel2. This completes an iteration of the unordered edge component labeling

algorithm.

Since the concurrent reads and modified concurrent write each take Θ(n1/2) time on a mesh of size 4n,
this unordered edge component labeling algorithm finishes in Θ(n1/2log n) time. Finally, all processors in

the entire mesh of size n2 that contain a black pixel perform a concurrent read to obtain the (possibly)

updated label of their component from the label records that are stored in the submesh of size 4n.

Compression and the concurrent read each take Θ(n) time. Since the unordered edge component labeling

algorithm only takes Θ(n1/2log n) time (because the data was compressed to a submesh of size 4n), the

running time of the algorithm obeys the recurrence T(n2)=T(n2/4) + Θ(n), which is Θ(n). It should be

noted that the Θ(log n) time PRAM component labeling algorithm for unordered edge input from

[ShVi82] can be simulated in the compressed mesh by having each step of the PRAM algorithm

simulated with the aid of a mesh concurrent read and concurrent write that is restricted to the compressed

region. Therefore, the algorithm given in [ShVi82] would also finish in Θ(n1/2 log n) time when simulated

in the compressed mesh. Further, [ReSt] gives an unordered edge component labeling algorithm for the

mesh that runs in edgelength time (i.e., Θ(n1/2) time on a mesh of size n), thus eliminating the additional

logarithmic factor. However, even if the algorithm from [ReSt] is used in the compressed mesh, there

will be no affect on the asymptotic running time of the algorithm just described.

The second algorithm differs from the first in that compression is not used in order to resolve the global

labels corresponding to the (at most) 4n - 4 border pixels. Instead, following the cross-product algorithm

presented on page 35 of Section 1.6.1, a symmetric adjacency matrix M is created to assist in coalescing

adjacent border elements, where M represents the unordered edge records generated after the recursive

call, and is created as follows. (Creating M is similar to creating Gt as the last step of stage t in the

algorithm of Theorem 3.10.) Sort the edge records by the first field. The first record within each interval

is marked as the ''leader" of the interval. Resort the records with the major key being those records

marked as leaders and the minor key being the

Page 111

first label field of the record. This collects the leaders together and allows each leader to determine the

rank of its label with respect to the distinct labels generated at the end of the recursive labeling. All

border processors that contain a record (label1, label2, clabel1, clabel2) perform a concurrent read to

determine rank(label1) and rank(label2).

Notice that M can represent at most 2n labels (vertices). In order to maintain M, the mesh of size n2 will

simulate a mesh of size 4n2. This can be done by having each processor responsible for a 2 × 2 submatrix

of M. Specifically, entry M(i, j) will be stored in processor of the mesh of size n2. All

processors initialize their 4 entries of the adjacency matrix M to 0. Next, a concurrent write is performed

to finish the initialization of M, where every processor containing edge record (label1, label2, clabel1,

clabel2) creates a message to processor to inform that processor that the (rank

(label1), rank(label2)) entry of M should be 1.

Once the adjacency matrix M is generated, the transitive closure, M*, is computed by the algorithm of

Section 2.5.3, and a row rotation with respect to M is used to determine the label for each of the border

elements. A final concurrent read corrects any possibly incorrect labels that existed after the recursive

solution was known. The transitive closure algorithm and data movement operations each take Θ(n) time.

Therefore, the running time of the algorithm obeys the recurrence T(n2) = T(n2/4)+ Θ(n), which is Θ(n).

Theorem 3.12 Given an n × n digitized black/white image, distributed one pixel per processor on a mesh
of size n2, the figures (connected components) can be uniquely labeled in Θ(n) time. ·

Nassimi and Sahni [NaSa80] were the first to prove that the component labeling problem for digitized

pictures on a mesh of size n2 could be solved in Θ(n) time. It should be noted that the algorithm

presented in [NaSa80] is different from the algorithm given in this section, and is quite interesting in its

own right.

3.4 Internal Distances

In this section, solutions are presented to several problems involving distances within figures of digitized

pictures. The term black (white) processor is again used to refer to a processor that maintains a black

(white) pixel. For black processors A and B, an A-B path is a sequence

Page 112

of 4-connected black processors originating at A and terminating at B. A minimal A-B path is an A - B
path containing the minimum number of processors over all possible A - B paths. The internal distance
from A to B, denoted d(A, B), is defined to be one less than the number of processors in a minimal A - B
path. (Note: while a minimal A - B path may not be unique, the internal distance between A and B is.)

The problems in this section assume that an n × n digitized black/white picture A = {ai, j
}

is stored in a

mesh of size n2 so that processor Pi, j
 contains pixel ai, j

. Given a special marked black pixel X, the main

problem of this section is to determine d(S, X) for every pixel S in the same figure as X. This problem

will be referred to as the all-points minimum distance problem. This problem occurs in image processing

[HKW82], and from its solution one can find an internal spanning tree in Θ(1) additional time.

The all-points minimum distance problem can be solved by a simple propagation algorithm, similar to

the propagation algorithm for labeling figures presented in Section 3.3.2. Every black processor, except

X, initializes its minimum distance from X to ∞. The processor containing X initializes its distance to 0.

At each iteration of the algorithm, every black processor sends its current minimum distance to its (at

most) four neighboring black processors. Every processor then takes the minimum of a) its current

distance and b) one more than the minimum of the distances that it just received, and uses this value as

its new minimum distance. Again, for 'blob-like' figures, all processors will know their minimum

distance to X in Θ(n) time. However, it is again easy to construct figures, such as spirals and snakes, that

will require Θ(n2) time to propagate this information. It should be noted that the algorithm will work as

described even if one marked pixel per figure is allowed. In this case, all pixels will determine the

minimum distance to the marked pixel in its figure, if one exists.

In contrast to the Ο(n2) propagation algorithm, the next algorithm has a worst-case running time of Θ(n).

This algorithm is based on using the generalized transitive closure operation described in Section 2.5.3. It

will be assumed that the figures of the digitized picture have been labeled in Θ(n) time using the

algorithm from Section 3.3.2. It will also be assumed that all processors of the mesh have been informed

as to the label of X's figure in Θ(n) time. This may be accomplished by performing a row operation that

will inform all processors in X's row as to the label of X's figure, followed by a column operation, where

every processor in X's row informs all processors in their column as to X's label. (Alternately, a standard

report and broadcast may be used.)

Page 113

Given a directed graph G with n vertices, define Sk(i, j) to be the minimal length of a path from i to j
using no intermediate vertex greater than k, as in Section 3.2. Then Sk satisfies the recurrence

Sk+1(i, j) = min{Sk(i, j), Sk(i, k) + Sk(k, j)},

where

Notice that S . . . n(i, j) is d(i, j).

Unfortunately, the solution to the all-pairs minimum distance problem for matrix input, given in

Theorem 3.1, cannot be used directly since there may be Θ(n2) black pixels (vertices), which would

require a matrix with Θ(n4) entries. To reduce the matrix to Ο(n2) entries, the underlying geometry of the

digitized picture is used. An optimal Θ(n) time solution to the all-points minimum distance problem will

be described as a two-phase algorithm, with both phases being implemented via a recursive divide-and-

conquer strategy.

At a given stage i of a divide-and-conquer, let k = 2i. The outer border elements of a k × k square are

defined to be those processors in rows and/or columns 0 and k - 1, with respect to the k × k square, that

contain the same label as that of the marked processor. The inner border elements of a k × k square are

defined to be those processors in rows and/or columns and , with respect to the square, that

contain the same label as the marked processor. The term border elements is used to refer to the

collection of inner and outer border elements of a k × k square. (See Figure 3.5.) Notice that the k × k
squares are assumed to be aligned so that processors Pc *k-1, d*k-1

, 1 ≤ c, d ≤ [n/k], mark the southeast

processor of each k × k square.

The objective of the first phase of the algorithm is to obtain the distance to the marked processor for all

border elements of the n × n mesh. This phase is implemented using a bottom-up divide-and-conquer

solution strategy. The objective of the second phase of the algorithm is to obtain the distances to the

marked processor for the remaining processors that are in the same figure as the marked processor. The

second phase will be implemented via a top-down divide-and-conquer solution strategy, where each

iteration requires an application of phase 1. The details of the algorithm are given in the proof of the

following theorem.

Page 114

Figure 3.5:

Possible border elements of a submesh of size k2.

Theorem 3.13 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given a marked processor X, in Θ(n) time every processor can compute its (possibly infinite)
internal distance to X.

Proof. The algorithm consists of two phases, as previously mentioned, which are given below.

Phase 1: The first phase follows a bottom-up divide-and-conquer strategy. It is presented for an arbitrary

stage i, where k = 2i. Before performing computations at stage i on a k × k square A, the following must

hold for each of the four k/2 × k/2 subsquares of A at the completion of stage i - 1:

• A (4k - 15) × (4k - 15) matrix exists, with a row and column associated with each inner and outer

border element of the subsquare, and a row and column associated with the marked processor X. (By

convention, let the last row and column correspond to X.) The (i, j) entry of this matrix is the restricted

internal distance from the ith border element (or marked processor) to the jth border element (or marked

processor), where restricted internal distance

Page 115

refers to the minimum distance using only paths within the subsquare.

• Every entry in the matrix contains the unique IDs of the processors that the distance represents,

where the ID is the row-major index of the processor.

• Every border element has a register containing its restricted internal distance to X.

The algorithm for stage i follows. For all k × k squares A, the distance matrix D for the border elements

and marked processor must be set up. This matrix has a maximum size of (8k - 15) × (8k - 15). Notice

that each of the 4 subsquares contributes a maximum of 2k - 4 rows and columns (representing the outer

border elements of the subsquare) to D. For simplicity, an 8k × 8k simulated mesh is used to represent D.
(Each processor of the k × k mesh simulates a mesh of size 64.)

Within each of the four k/2 × k/2 subsquares, compress the (4k - 15) × (4k - 15) matrix from step i - 1 to the

northwest by logically deleting the rows and columns that are not needed for the computations in square

A at step i. That is, by deleting from the step i - 1 matrices, those rows and columns not associated with X

or the outer border elements of the subsquare. Once each of the matrices has been compressed in its

submesh, move the matrices to the regions as illustrated in Figure 3.6. This can be accomplished via a

concurrent write in Θ(k) time since the only information necessary is the size of each of the four

submatrices, which can be computed in Θ(k) time. Initialize the remaining entries of D to ∞.

Perform a row rotation and a column rotation to propagate the coordinates (IDs) of the processor

represented by each row and column of the matrix to the new entries (those just initialized to ∞) of D so

that they know which processors they represent. If an entry detects that it represents the distance between

two adjacent inner border elements that were in different squares at stage i - 1, then the ∞ is replaced

with a distance of 1.

Now, in Θ(k) time compute D* by using the generalized transitive closure operation of Section 2.5.3.

Notice that D* represents the minimal internal path lengths between border elements and the marked

processor, restricted to paths within the k × k region A. Next, pass the row representing X through the k ×

k subsquare so that every border element can obtain and record its (perhaps infinite) restricted distance to

X. This concludes stage i.

Page 116

Figure 3.6:

Rearranging distance matrices to form D.

After O(log n) iterations, phase 1 will be complete and each of the border elements of the n × n mesh will

have its correct internal distance to X.

Phase 2: To obtain the correct internal distances to X for all border elements of each n/2 × n/2 subsquare,

simply apply phase 1 to each of the n/2 × n/2 subsquares of the mesh. The only difference in the

reapplication of the algorithm to each of the subsquares is that the distances obtained from the outer

border elements of the n/2 × n/2 squares to X are correct and are used to obtain the correct internal distance

for the (possibly incorrect) inner border elements of the subsquares. To obtain the correct distance for

every processor in the same figure as the marked processor, simply continue this process recursively for

Θ(log n) iterations.

Analysis: The time to label the picture initially and pass the label of the marked processor to all

processors is Θ(n). The time to complete phase 1 is Θ(n) since the time to complete each stage i of the

divide-and-conquer is Θ(2i). The time to complete phase 2 obeys the recurrence T(n2) = T(n2/4) + Θ(n),
which is Θ(n), since the time to compute the distances for the border elements of a k × k square is the

time to complete phase 1 on that k × k square, which is Θ(k). Therefore, the running time of the

algorithm is Θ(n). ·

The algorithm given above can be extended with minor modifications to the situation where there is one

marked processor per connected component. At each stage of the recursion, the last row and column of

the

Page 117

border matrix will represent the set X of processors, rather than a single processor.

Corollary 3.14 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given a set of marked processors X, with at most one marked processor per figure (i.e.,
connected component), in Θ(n) time each processor can compute its (possibly infinite) internal distance
to X. ·

In addition to knowing the internal distance between processors, it is sometimes desirable to mark
minimal internal paths and to count the number of such paths. The all-points minimum distance

algorithm presented in Theorem 3.13 can be used to mark all minimal paths between a pair of marked

processors. This may be accomplished by applying the all-points minimum distance algorithm once with

respect to each marked processor, broadcasting the minimum distance between the pair of marked

processors to all processors, and then performing local computations within every processor based on the

broadcast value and both minimum distance values. Once all of the minimal paths have been marked

between the pair, every processor on multiple paths can locally eliminate all but one of the paths. This

has the effect of marking a single minimal path between the pair. Finally, after marking all minimal paths

between the pair, a modification of the all-points minimum distance algorithm may be used to determine

(count) the number of minimal paths between the pair of marked processors.

Theorem 3.15 Given an n × n black/white picture stored one pixel per processor in a mesh of size n2,
and given marked processors A and B, if the distance from A to B is finite, then in Θ(n) time

a) all minimal A - B paths can be marked,

b) a single minimal A - B path can be marked, and

c) the number of minimal A - B paths can be determined.

Proof. Algorithms for these related problems follow.

a) The all-points minimum distance algorithm from Theorem 3.13 is performed twice; first with A as the

marked processor, and then with B as the marked processor. Next, processor A broadcasts d(A, B) to all

processors. Now, every processor C such

Page 118

that d(A, C)+d(C, B)=d(A, B) determines that it is on some minimal A - B path. To mark all minimal A -
B paths, every such C "creates" an edge (C, D) to each neighbor D such that d(D, B)=d(C, B)- 1.

b) After marking all minimal A - B paths, every processor contains between zero and four edges. In order

to mark a single minimal path, each processor discards all but one of its edges. Now there exists exactly

one directed, minimal, A - B path. In order to mark this path, perform part a) again using only the

directed edges that were just created.

c) After marking all minimal A - B paths, the remainder of the algorithm to count the number of minimal

A - B paths is similar to phase 1 of Theorem 3.13, and is described for an arbitrary stage i of the bottom-

up divide-and-conquer strategy, where k = 2i. Assume that each k × k square contains a (4k - 2) × (4k - 2)

matrix M that represents the number of distinct minimal paths between A,B, and the outer border

elements of the k × k square, where only paths within the square are considered.

Merge four k × k squares to create a (16k - 14) × (16k - 14) matrix M. Place a 1 in M(i, j) if the (C, D)
edge exits, where i = rank(C) and j = rank(D), where rank is with respect to M, and where C and D are

neighbors from distinct k × k squares that are merged. Next, compute the number of minimal paths

between entries in M. The (i, j) entry of M will get the value fi(i, j), where I = 16k - 14, and f is defined as

This requires a slight modification of the transitive closure algorithm that was presented in Section 2.5.3.

When one processor passes an arbitrary fk-l(i, j) to another processor, it must also pass d(i, j), since this

information is necessary in order to insure the proper evaluation of the function.

Finally, compress the matrix by deleting the rows and columns that do not represent A,B, or outer border

elements of the 2k × 2k square. The result is a matrix of size (4(2k)-2) × (4(2k)-2). Continue this

merging, computing, and compressing process until the computations have been performed on the entire

n x n mesh.

Page 119

The entry M(a, b), where A is the ath row of the matrix and B is the bth column, contains the number of

minimal paths from A to B.

In the theorem just presented, it is not necessary to restrict A and B to single processors. With only minor

modifications to the previous algorithms, A and B can be arbitrary sets of processors. Given sets A and B
of processors, define the internal distance from A to B to be min{d(x, y) × ∈ A,y ∈ B}. (If A and B
overlap then define d(A,B) to be 0, and define marking minimal paths to mean indicating which

processors are in both sets.) With a minor modification to the matrix M, the following result is obtained.

Theorem 3.16 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given (not necessarily disjoint) sets A and B of marked processors, in Θ(n) time each
processor can compute its (perhaps infinite) distance to the set B, and the distance from A to B can be
determined. Further, if the distance from A to B is finite, then in Θ(n) time

a) all minimal A - B paths can be marked,

b) a single minimal A - B path can be marked, and

c) the number of minimal A - B paths can be determined.

One application of these internal distance algorithms is to the situation in which each figure has exactly

one marked pixel, for example, the pixel with ID identical to the component label of the figure. Then by

applying an algorithm closely related to those that have been presented, in Θ(n) time a breadth-first

spanning tree can be constructed within each figure, where the breadth-first spanning tree of a graph is a

spanning tree such that each vertex is at the minimal possible distance from the root.

It should be noted that the previous algorithms work equally well if the edges between pixels are directed

and have arbitrary positive weights. If negative edge weights are allowed, then if there is a cycle with a

negative total weight, the cycle can be repeated arbitrarily often to make distances as negative as desired.

Therefore, any path touching such a cycle with a negative total weight should be given a total distance of

-∞. With proper modifications, negative weights can be accommodated.

Page 120

Theorem 3.17 Given a mesh of size n2 such that each processor contains a directed weighted edge to
each of its neighbors, where the weights can be + ∞ or any real number, and given (not necessarily
disjoint) sets A and B of processors, in Θ(n) time each processor can compute its (perhaps infinite)
distance to B, d(A, B) can be determined, and it can be decided whether or not all cycles have a positive
total distance. Further, if all cycles have a positive total distance and d(A,B) is finite, then in Θ(n) time

a) all minimal A - B paths can be marked,

b) a single minimal A - B path can be marked, and

c) the number of minimal A - B paths can be determined.

Proof. If there is a cycle with negative total weight then the recurrence used to calculate internal

distances is no longer correct. To remedy this, when working in any square, first run the algorithm as

before, except that all diagonal entries are initialized to be +∞. The (i, i) entry of the resulting matrix is

negative if and only if vertex i is on a cycle of total negative distance. (The entry is 0 if and only if the

vertex is on a cycle of zero total distance, and is not on any negative cycles.) If the (i, i) entry is negative,

it is replaced with -∞, as is any entry other than +∞ in the ith row and ith column. (This is because any

path leading into or out of a negative cycle should have a path length of -∞.) Now the generalized

transitive closure algorithm is run again, where the definition (-∞) + (+∞) = +∞ is used. It can be shown

that the resulting matrix has the correct distances, and is therefore ready for the next stage. ·

The internal diameter of a set A of processors is defined to be max{d(x, y) x, y ∈ A). (External diameters

are discussed in Section 3.6.) Fischler [Fisc80] shows how the internal diameter can be used to classify

cracks in an industrial inspection application. For an arbitrary set A of processors, an efficient algorithm

for determining the internal diameter is an open problem. However, for an important case where A is a

connected component without holes, then its internal diameter can be determined efficiently. (This

includes the case of interest to Fischler.)

The outline of the solution is given, which is based on the algorithm associated with Theorem 3.13.

When working on finding distances in some square, for each black processor (vertex) Px on the border of

the square there is another black processor (vertex), denoted F(Px), that is one of the furthest processors

from Px in the square, subject to the condition that F(Px) is connected to Px in the square. (It may be

Page 121

that F(Px) is another border processor, in which case it was already a vertex, and it may be that F(Px) and

F(Py) are the same even though Px and Py are not. In these cases, the redundant vertices are eliminated.)

The important fact is that, in a figure with no holes, for each border processor Px, F(Px) can be selected

from among {F(Py) Py is a border element of a subsquare}. Further, it can be shown that the largest

finite internal distance ever calculated during any stage is the internal diameter. Incorporating these facts,

the following is obtained.

Theorem 3.18 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, then in Θ(n) time every processor in a figure without a hole can determine the internal diameter
of its figure. ·

It should be noted that using techniques from [Beye69, Levi72, MiPa69], in Θ(n) time each figure can

decide whether or not it has any holes.

3.5 Convexity

In this section, solutions are presented to several problems involving convexity. Central to this work is

the identification of the processor at position (i, j) with the integer lattice point (i, j). A set of processors

is defined to be convex if and only if the corresponding set of integer lattice points is convex, i.e., the

smallest convex polygon containing them contains no other integer lattice points. While this is the proper

notion of convexity for integer lattice points, it does have the annoying property that some disconnected

sets of points, such as {(0, 0), (2, 3)}, are convex.

The relationship between the convexity of processors and the convexity of the original figures is

complicated by the digitization process. If the integer lattice corresponding to the processors is placed

atop a black/white picture (not a digitized picture) and each lattice point is given the color of the point it

covers, then a convex black figure will yield a convex set of black lattice points. For each convex set of

black lattice points, there is a convex black figure whose digitization is the given set, but this figure is

never unique. Further, there are nonconvex black figures which also yield the given set. See Figure 3.7.

Some digitization schemes associate each lattice point with the center of a closed unit square (with

adjacent squares overlapping on their

Page 122

A convex set S of PEs.

A convex black figure

whose digitization is S.

 A nonconvex black figure

whose digitization is S.

Figure 3.7:

Convex and nonconvex figures that yield the same convex set of lattice points.

Page 123

Figure 3.8:

A convex set of black lattice points which, in some digitization

 schemes, cannot arise as the digitization of a convex black figure.

edges). If a lattice point is colored black when all of its square is black, then once again a convex black

figure will yield a convex set of black lattice points, and for any convex set of black lattice points there

are both convex and nonconvex black figures which yield the given set.

For some digitization schemes, however, the correspondence is not quite as nice. For example, suppose

each lattice point is again viewed as the center of a closed unit square, but now it is colored black if any

part of its square is black. Convex black figures will yield convex connected sets of black lattice points,

but not all convex connected sets of black lattice points can arise as the digitization of a black convex

figure, as shown in Figure 3.8. Readers interested in pursuing the relationship between convexity and

digitization are referred to [KiRo82b], and the references contained therein.

Given a set S of processors, the convex hull of S, denoted hull(S), is the smallest convex set of processors

that includes S. A processor P ∈ S is defined to be an extreme point of S if and only if P ∉ hull(S {P}).
That is, the extreme points of S are the corners of the smallest convex polygon containing S. It is said that

the extreme points of S have been identified if each processor in S has decided whether or not it is an

extreme point of S. It is said that the extreme points of S have been enumerated if for every processor Pi

containing a point p ∈ S, the following hold. (See Figure 3.9.)

1. Pi has a Boolean variable 'extreme', and extreme is true if and only if p is an extreme point of S.

Page 124

Figure 3.9:

Enumerated extreme points of S.

2. Pi stores the total number of extreme points of hull(S).

3. If p is an extreme point of S, then Pi stores the position of p in the counterclockwise ordering of

extreme points. (The rightmost extreme point is assigned the number 1. If there are two rightmost

extreme points, then the lower one is assigned the number 1.)

4. If p is an extreme point of S, then Pi stores the Cartesian coordinates of the extreme points that precede

and succeed p, as well as the ID of the processors that contain them.

Many queries concerning S can be reduced to questions concerning the extreme points of S. On an n × n
mesh, S may have Θ(n2) points, but since S has at most two extreme points in any row, it has O(n)
extreme points. In fact, by using a little number theory, it has been shown that S has only O(n2/3) extreme

points [VoK182]. Since it takes

Page 125

Ω(n) time to move data across an n × n mesh, the Ο(n2/3) bound on the number of extreme points does

not help in most algorithms, though it is crucial to the algorithm of Theorem 3.33. The reader interested

in serial algorithms and general descriptions of the convexity problems considered in this section are

referred to [Sham78, Tous80].

The first problem considered in this section is that of identifying the extreme points for every labeled set

of processors. Initially, every processor contains a label, and when the algorithm terminates each

processor must know whether or not it is an extreme point with respect to all processors containing its

label. These labels may arise as the labels of figures (i.e., connected components), but there is no

requirement that they do so. An algorithm to solve this problem first identifies the leftmost and rightmost

processors for each label present in every row. That is, every row uses a row rotation to solve its

restricted extreme point identification problem for all labels in its row. Sorting is then used to gather

these row-restricted extreme points together for every label, where it may be noted that no label will

contain more than 2n such points. Finally, all row-restricted extreme points are viewed by all other row-

restricted extreme points with the same label, during which it is possible for each such point to decide

whether or not it is an extreme point with respect to its label.

The algorithms presented in this section assume that there are constant time serial algorithms enabling a

processor to decide if one integer lattice point is on the line segment between two others, if one integer

lattice point is on the line determined by two others, if one integer lattice point is in the angle determined

by three others (one of which is designated as the vertex), and if one integer lattice point is in the closed

triangle determined by three others.

Theorem 3.19 In a mesh of size n2, simultaneously for all labels A, in Θ(n) time the extreme points of the
processors labeled A can be identified.

Proof. First, each processor determines whether or not it is either the leftmost or rightmost processor

containing its label in its row. This is done in Θ(n) time by rotating within every row the label and

position of all processors in the row. When finished, each processor that is either a leftmost or rightmost

processor for its label within its row places its label and position into its sort field, while all other

processors put ∞ and their position into their sort field. These values are sorted into snake-like order

using the label as the key.

For all finite labels, rotate in snake-like fashion, as described in Section 2.6.2, the position information in

the sort field among all processors

Page 126

with the same label in their sort field. Since for each finite label there are at most 2n such positions, this

can be done in Ο(n) time. As the information rotates, each processor determines whether or not the

position in its sort field is an extreme point with respect to the positions that the processor has viewed.

This is done as follows. Suppose X is the position in the sort field of a given processor. The positions of

at most two more processors with the same label will be stored. As each new position Y arrives, if no

other position has been stored then Y is copied. If only one other position U has been stored, then the

processor determines whether or not X is on the line segment between Y and U. If it is, then X is not an

extreme point; otherwise Y and U are stored, unless Y is on the line determined by X and U, in which case

only U is kept.

Finally, if two positions U and V are being stored when Y arrives, then the processor determines whether

or not X is in the (perhaps degenerate) closed triangle formed by Y, U, and V. If it is, then X is not an

extreme point. Otherwise the processor needs to determine which two of Y, U, and V are to be stored.

One of these must be in the angle formed by the other two with X at the vertex, and it is this one that is

eliminated. (If Y lies on the line determined by X and one of the others, then Y is eliminated.)

There is some constant C, such that after Cn time units the information is finished rotating. It is easy to

show that at any time in the computation, if a processor has not yet determined that the position in its sort

field is not an extreme point, then the position is an extreme point of the set of points that have passed

through the processor thusfar. Therefore, when the information is finished rotating, if a processor has not

yet determined that the position in its sort field is not an extreme point, then the position must be an

extreme point. (Notice that if a processor responsible for X determines that X is an extreme point, then

the hull edges incident on X are represented by and , where U and V are the two positions

stored in the processor responsible for X at the end of the rotation.) A final sort step based on the snake-

like index of the processor that originated the records, sends the information back so that each processor

knows whether or not it is an extreme point for its label. Sorting, rotating data within intervals of size at

most 2n, and a row rotation each take Θ(n) time. Therefore, the running time of the algorithm is as

claimed.

The problem of enumerating the extreme points for every labeled set of processors can also be solved in

mesh optimal Θ(n) time. Once

Page 127

the extreme points have been identified for every labeled set, sort the extreme points by label so that all

extreme points of each set are in a contiguous region of the mesh. Simultaneously within each such

ordered interval, perform a rotation so that all processors know the leftmost and rightmost extreme points

(breaking ties in favor of lower) of their label, perform a semigroup (i.e., associative binary) operation to

determine the number of extreme points representing the upper hull (i.e., the number of extreme points

on or above the line between the leftmost and rightmost extreme points), and finally perform a rotation

where each upper (lower) extreme point counts the number of upper (lower) extreme points in higher

(lower) numbered columns. With this information, every processor can determine in Θ(1) time the

number of the extreme point it contains with respect to the enumerated sequence of extreme points of its

label. Once the extreme points are numbered, an ordered interval rotation will allow every point to

determine the necessary information regarding its preceding and succeeding extreme points. A final sort

sends the points back to the original processors.

Given digitized picture input, a fundamental image operation is that of determining for each figure (i.e.,

connected component) whether or not it is convex. The algorithm that follows solves the problem by first

determining in each row whether or not the restriction of each figure to that row is convex. Sorting is

then used to group together the at most 2n row-restricted extreme points for each label. For each label

that is comprised solely of row-restricted convex segments, a rotation within ordered intervals of these

row-restricted extreme points is used to determine for each figure whether or not it is convex.

Corollary 3.20 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, in Θ(n) time every figure (i.e., connected black component) can decide whether or not it is convex.

Proof. A connected set S of processors is convex if and only if for each processor P, such that P ∉ S and

P is the right or left neighbor of a processor in S, P ∉ hull(S). For each such P, the algorithm will check

if P ∉ hull(S) by checking if P is an extreme point of S ∪ {P}.

First, use a Θ(n) time labeling algorithm from Section 3.3.2 to label the processors. Then, by rotating

information within rows, each figure determines if its restriction to every row is convex, e.g., an ''O"

shaped figure would find rows in which it is not convex, but a "Z" shaped one would not. By sorting with

respect to figure labels, performing a semigroup (i.e., associative binary) operation within sorted

intervals,

Page 128

and then resorting by the snake-like index of the processor creating the record, in Θ(n) time every

processor can know whether or not all rows of its figure are convex. The algorithm associated with

Theorem 3.19 is then used to identify the extreme points of each figure for which all rows are convex.

This is done for all figures simultaneously in Ο(n) time, since each figure has at most 2n points involved

in the algorithm. As the information is rotating and the processors are determining if the position in their

sort field is an extreme point, they also determine if the processor to the right of that position (if the

position is the rightmost processor with its label in its row), or to the left of that position (if the position

is the leftmost processor), is an extreme point. The coordinates of these extra processors are not rotated,

but the algorithm of Theorem 3.19 is performed for them. When done, if any one of these extra

processors is not an extreme point, then the figure is not convex, while otherwise it is. Finally, a Θ(n)

time concurrent read can be used to insure that each black processor knows whether or not its figure is

convex. ·

In the early 1960s, Unger [Unge62] gave a Θ(n) time algorithm for detecting horizontal and vertical

concavities, i.e., concavities detectable by traveling along a horizontal or vertical line, respectively. He

also noted that although any figure with such concavities is not convex, there are nonconvex figures,

such as the digitization of a pear or banana, without such concavities. So, while an algorithm to detect

features such as horizontal and vertical concavities is useful, it cannot be used to decide convexity. The

algorithm to detect such concavities is given below and is based on exploiting straightforward row and

column rotations.

Corollary 3.21 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, in Θ(n) time the number of vertical and horizontal concavities can be determined for every figure
(i.e., connected black component).

Proof. First, use a Θ(n) time component labeling algorithm from Section 3.3.2 to label the processors. An

algorithm to detect horizontal concavities for each figure is outlined (the vertical concavity detection

algorithm is similar). Simultaneously for all rows, perform a row rotation so that each processor

determines whether or not there are any black pixels in its figure to its left. Each black processor with a

white processor to its left now knows if it is the right end of a horizontal concavity within its row. A sort

step to bring together information from each figure label, semigroup (i.e., associative binary) operation

within intervals to determine for each figure the number of horizontal concavities, and final sort step to

redistribute the results, can be used to inform

Page 129

every processor as to the number of horizontal concavities in its figure. Therefore, the algorithm is

complete in Θ(n) time. ·

Solutions to two problems at the end of this section show applications of convexity that are not obvious.

First, a useful algorithm is given to decide for every figure whether or not its convex hull contains any

black pixels which are not in the figure. The algorithm follows from techniques used in the algorithms of

Theorem 3.19 and Corollary 3.20.

In Θ(n) time, label the processors via the component labeling algorithm presented in Section 3.3.2. Using

the Θ(n) time algorithm of Theorem 3.19, identify the extreme points of every figure. Next, use a row

rotation to mark the leftmost and rightmost point for every label in each row. Another row rotation

determines for each figure whether or not there is a point of a different label in the convex hull of the

restriction of the figure to the row. For those figures that have thusfar not found a point from another

figure in their hull, perform a row rotation so that in every row the nearest point of a different label to the

left of the leftmost point and to the right of the rightmost point is determined (if they exist). Now, with

minor modifications, the core of the algorithm from Theorem 3.19 can be used to determine for every

figure whether or not any of these additional points are in the convex hull of the figure.

Corollary 3.22 Given an n × n digitized black/white picture stored one pixel per processor in a mesh of
size n2, in Θ(n) time every figure (i.e., connected black component) can decide whether or not its convex
hull contains any black pixels not in the figure. Further, in Θ(n) time every figure can decide whether or
not any processors in it are in the convex hull of another figure.

The problem of determining whether or not two sets of processors are linearly separable [Tous80] is

related to determining convexity. Suppose A and B are, not necessarily disjoint, sets of processors, and

that each member of A contains the label A, and that each member of B contains the label B. Then the set

of processors labeled A is linearly separable from the set of processors labeled B if and only if there

exists a straight line in the plane such that all lattice points corresponding to processors labeled A lie on

one side of the line, and all lattice points corresponding to processors labeled B lie on the other side. An

observation that allows for the application of the algorithm associated with Corollary 3.22 to this

problem is that two sets are linearly separable if and only if their convex hulls are disjoint. Therefore, the

following is obtained.

Page 130

Corollary 3.23 In a mesh of size n2, in Θ(n) time it can be decided whether or not the processors labeled
A are linearly separable from the processors labeled B.

Given a set S of points in the plane, a smallest (enclosing) box of S [FrSh75, Tous80] is a rectangle of

smallest area containing S. Notice that a smallest enclosing box of S is not necessarily unique, but that

the area of a smallest enclosing box of S is unique. It can be shown that each of the sides of a smallest

enclosing box of S must contain an extreme point of S, and that at least one side of such a box must

contain two (consecutive) extreme points of S [FrSh75]. The following algorithm finds for every hull

edge (i.e, pair of consecutive extreme points) a smallest enclosing box of the figure that has one side

collinear with the edge, and then takes the minimum over all such boxes.

Corollary 3.24 In a mesh of size n2, in Θ(n) time every labeled processor can determine a smallest
enclosing box containing all processors with the same label.

Proof. First, perform the algorithm associated with Theorem 3.19, except that there is no need to perform

the final sort and send the extreme point information back to the originating processors. If a processor P
has position X in its sort field, and if X is an extreme point, then at the conclusion of the algorithm the

other two points being stored (call them U and V) are also extreme points. (If no other points are being

stored then only one processor has its label, while if only one other point is being stored, then the

processors with that label form a straight line segment.) By using the angle UXV, P can determine

whether traveling from X to U or from X to V will produce a counterclockwise traversal around the

convex hull. For convenience, assume that it is from X to U.

Processor P now tries to determine the corners of the rectangle, as illustrated in Figure 3.10. It does this

by finding R, S, and T, where R is a point furthest from the line XU, S is a point whose projection onto

the line XU is the most negative (where X is the origin and U is at a positive location), and T is a point

whose projection onto XU is the most positive. To enable each processor to find the coordinates of R, S,
and T, corresponding to the point X that it is storing, rotate the position information again. When

finished, each processor P having an extreme point X in its sort field will know the points R, S, and T,

that correspond to X, and hence can compute the corners and area

Page 131

Figure 3.10:

A smallest rectangle.

of its box. These boxes are rotated in snake-like fashion among the processors with the same label in

their sort field, which enables each processor to determine a smallest box for the label of the point in its

sort field. A concurrent read is used so that every labeled processor is notified regarding the identity of a

smallest enclosing box. ·

3.6 External

Distances

In this section, problems are considered that involve external distances between processors, where again

the processor at position (i, j) is identified with the integer lattice point (i, j). The most common distance

measures used are the lp metrics, where for 1 ≤ p < ∞, the lp distance from (a, b) to (c, d) is

 . (The l∞ distance from (a, b) to (c, d) is .) The

connection scheme of the mesh is based on the l1 ("taxi-cab" or "city block") metric, so problems are

usually easiest when expressed in terms of this metric (c.f., Theorem 3.25 and Theorem 3.28). Further,

simple techniques can also be applied to solve problems in terms of the l∞ metric. However, for

Page 132

Figure 3.11:

For a monotone metric d, d(P, Q) ≤ d(P, R1) and d(P,Q) ≤ d(P, R2).

other metrics, such as the important l2 (Euclidean) metric, slightly more sophisticated methods are

needed to solve external distance problems on the mesh.

In this section, it is assumed that there is a function d(x, y) which computes, in unit time, the distance

between points x and y. The function d cannot be completely arbitrary, for then there would be no

connection between the metric and the underlying geometry of the mesh. To avoid this, only monotone

metrics will be considered, where a metric d is said to be monotone if for all processors P, Q, and R, if Q

and R are neighbors and the l1 distance from P to R exceeds the l1 distance from P to Q, then d(P, R) ≥ d
(P, Q). (See Figure 3.11.) All lp metrics are monotone, and it seems that monotone metrics are the only

ones ever encountered in practice.

Let S be a set of processors. The external diameter of S is defined to be max{d(x, y) x, y ∈ S}. For the l1

and l∞ metric, Dyer and Rosenfeld [DyRo81] presented an algorithm to compute the external diameter of

a given set S of processors in Ο(n) time on a mesh of size n2. Given a mesh of size n2 with each processor

labeled black or white, Theorem 3.25 presents an algorithm to compute a nearest and farthest black

processor for each processor, as well as to compute the external diameter of a set of black processors, all

in optimal Θ(n) time for the l1 and l∞ metrics. The algorithm exploits the connection scheme of the mesh

to solve the problem by a straightforward combination of row and column rotations, during which each

processor retains the identity of a nearest or farthest neighboring black processor.

Page 133

Theorem 3.25 Given a set S of black processors on a mesh of size n2, in Θ(n) time every processor can
know a nearest and farthest black processor, and in Θ(n) time every processor can know the external
diameter of S. These computations are with respect to either the l1 or l∞ metric.

Proof. The following algorithm can be used with respect to either the l1 or l∞ metric to determine the

nearest black neighbor for every processor in the mesh. Simultaneously for all rows, perform a row

rotation so that every processor, including those that are not black, determines a nearest black processor

in its row (ties broken arbitrarily). Each processor now creates a neighbor record that contains its row

coordinate and the column coordinate of the nearest black processor in its row that was just determined.

Simultaneously for all columns, perform a column rotation, where every processor views the neighbor

records of all processors in its column and retains the data record corresponding to a nearest black

neighbor (ties broken arbitrarily), with respect to the appropriate metric.

To determine a farthest neighbor for every processor in the mesh, simply modify the algorithm so that

maximum distances instead of minimum distances are retained during the rotations. To determine the

external diameter of the set S of black processors, simply perform a semigroup operation taking the

maximum over all of the farthest neighbor distances, where only the distances contained in the black

processors are used. Each of the row and column rotations takes Θ(n) time, as does the semigroup (i.e.,

associative binary) operation. ·

Suppose that instead of one set of black processors, the input consists of multiple sets of labeled

processors. Further, suppose that it is necessary to compute the external diameter of each set with respect

to an arbitrary monotone metric, as is the case in some image algorithms that require the use of the l
2

(Euclidean) metric (c.f., [Fisc80]). In the following theorem, an optimal mesh algorithm is presented to

determine the external diameter for every labeled set of processors, with respect to an arbitrary monotone

metric. The algorithm exploits the fact that for arbitrary monotone metrics, the external diameter of a set

S of processors is max{d(x, y) x, y are the rightmost or leftmost elements of S in their rows}.

Theorem 3.26 In a mesh of size n2, for any monotone metric, in Θ(n) time every labeled processor can
determine the external diameter of the processors with its label.

Page 134

Proof. Let S denote a set of processors. If the metric were an lp metric, then the fact that the external

diameter of S is equal to max{d(x, y) x, y are extreme points of S} could be exploited. For arbitrary

monotone metrics this is no longer true, but it is true that the external diameter of S is equal to max{d(x,
y) x, y are the rightmost or leftmost elements of S in their rows}. As in Theorem 3.19, every processor

first determines if it is either a leftmost or rightmost processor with its label in its row. Each such

processor puts its label and coordinates into its sort field and all other processors put infinity and their

coordinates into their sort field. These elements are then sorted with the label as primary key. For each

finite label, the coordinates are now rotated (in snakelike fashion), and each processor keeps track of the

maximum distance from the coordinates in its sort field to any of the received coordinates. When the

coordinates are done rotating these maxima are rotated. The solution for each ordered interval (i.e., each

labeled set) is the largest of the maxima. A concurrent read then insures that each labeled processor

knows the external diameter for its label.

A closely related problem to that of the previous theorem is the all-points farthest point problem
[Sham78], in which for every labeled processor, the greatest distance to a processor with the same label

is to be determined. With a slight change to the preceding algorithm, the following is obtained.

Corollary 3.27 In a mesh of size n2, for any monotone metric, in Θ(n) time the all-points farthest point
problem can be solved.

Theorems 3.25 and 3.26 were concerned with finding distances among processors with the same label,

while the following theorems are concerned with finding distances between processors with different

labels. The first problem considered is that of determining for every processor the distance and label to a

nearest (farthest) distinctly labeled processor, with respect to the l1 and l∞ metrics. The algorithm

presented to solve the problem is similar to that of Theorem 3.25 in that it is based on a combination of

row and column rotations.

Theorem 3.28 In a mesh of size n2, for the l1 and l∞ metrics, in Θ(n) time every labeled processor can
determine the distance and label of a nearest and farthest processor with a different label, if such a
processor exists. Further, for every set of processors, a nearest distinctly labeled set of processors can be
determined in Θ(n) time.

Page 135

Proof. Simultaneously for all rows, perform a row rotation so that every processor finds a nearest

distinctly labeled processor in its row. Perform a second row rotation so that every processor finds a

nearest distinctly labeled processor that is of a different label than the one just found. Each processor

now creates a record that contains distance and label information of the (at most) two distinctly labeled

processors just determined. Simultaneously for all columns, perform a column rotation so that every

labeled processor can detect a nearest processor of a different label, if such a processor exists.

This information can now be used to determine a nearest set of processors for each labeled set of

processors as follows. For every labeled processor X containing the label and coordinates of a nearest

processor Y with a different label, create a sort record containing the label of X, the distance to Y, the

label of processor Y, and the snake-like index of X. For processors that are not labeled, create dummy

sort records. Sort these records by processor labels (the first field of each record), with ties broken

(arbitrarily) in favor of minimum distance to a distinctly labeled processor (the second field of each

record). The leader (processor containing the first record) of each sorted interval now contains the label

of a nearest distinctly labeled set of processors. Within each sorted region, broadcast to all other

processors the label contained in the leader. A final sort by the original snake-like index (fourth field of

each record) sends the label of a nearest distinctly labeled set of processors back to all labeled

processors. Since sorting, broadcasting and reporting within ordered intervals, and row rotations take Θ

(n) time, the running time is as claimed.

Notice that the algorithm can be modified so that in Θ(n) time each labeled processor finds a farthest

distinctly labeled processor. ·

The previous theorem was restricted to finding neighboring information between processors with

different labels with respect to the l1 and l∞ metrics. The following theorem shows that every processor

can find a nearest processor of a different label, if such a processor exists, with respect to an arbitrary

monotone metric. The algorithm is similar to the previous one in that it simply uses a combination of row

and column rotations.

Theorem 3.29 In a mesh of size n2, for any monotone metric, in Θ(n) time every labeled processor can
determine the distance and label of a nearest processor with a different label, if such a processor exists.

Proof. Let P be an arbitrary processor and let Q be a nearest labeled processor to P with a different label.

Let R be the processor

Page 136

in P's column and Q's row. Since d is monotone, it must be that R and all processors between R and Q are

either unlabeled or have the same label as P. This forms the basis of a simple algorithm that is similar to

the algorithm of Theorem 3.25. Rotate the labels in every row so that each processor determines the

closest (in the l1 sense) labeled processor to its right. (If the processor is itself labeled, then it is the

closest labeled processor.) Another rotation is used so that every processor finds the closest labeled

processor to its right with a label different from the first found one. This procedure is also performed for

the left side. When finished, every processor has determined at most 4 label/coordinate records, which

are now rotated within the columns. Each processor determines the minimal distance to a record with a

different label, completing the algorithm.

One application of this theorem is to the situation where a digitized black/white image is given in which

each white pixel is unlabeled and each black pixel is labeled by its coordinates. In this case, the result

gives a solution to the all-points closest point problem (all-points nearest neighbor problem) [Sham78,

Tous80]. Given a digitized picture in which the figures (i.e., connected black components) have been

labeled, an application of the previous theorem and a concurrent write can be used to determine the

distance between figures, where the distance between figures A and B is defined to be min{d(P, Q) P ∈

A, Q ∈ B}.

Corollary 3.30 In a mesh of size n2, for any monotone metric, in Θ(n) time every processor can
determine the minimum distance from its figure to a nearest figure.

Theorem 3.29 can also be applied to solve the largest empty circle problem [Sham78] for any monotone

metric, in which each processor is marked or unmarked and a processor P must be found which

maximizes min{d(P, Q) Q is marked}, subject to the additional constraint that P must lie in the convex

hull of the marked processors. The algorithm that follows introduces a paradigm that exploits the fact

that one of the two input sets of data can be drastically reduced. This allows multiple copies of the

reduced set to be made available to the other (nonreduced) set of data for processing. Specifically, once

the Ο(n) extreme points of the black processors are identified, n copies of these points can be placed in

distinct subsquares of the mesh so that every processor can view all Ο(n) such points in Ο(n) time.

(Alternately a copy of the Ο(n) extreme points could be place in every row (column) and a simple row

(column) rotation would allow every processor to view all Ο(n) extreme points.)

Page 137

Corollary 3.31 In a mesh of size n2, for any monotone metric, the largest empty circle problem can be
solved in Θ(n) time.

Proof. Identify the extreme points of the black processors by using the algorithm associated with

Theorem 3.19. Compress the coordinates of these points to the upper-left submesh of size n. Using a

concurrent read, make copies of this data in every disjoint submesh of size n. Within each disjoint

submesh of size n, rotate the extreme points in snake-like order so that all white processors know

whether or not they are in the convex hull of the black processors (following the method described in the

algorithm associated with Theorem 3.19). Now, use the algorithm of Theorem 3.29 so that each white

processor in the convex hull finds its nearest black pixel. Finally, to solve the largest empty circle

problem, perform a semigroup (i.e., associative binary) operation over the nearest neighbor information

in the white processors that are in the convex hull of the black processors.

Given a nonempty set S of processors, there are several natural definitions for the center of S. If S is

connected then an internal center of S is a processor P ∈ S which minimizes max{d(P, Q) Q ∈ S},
where d is the internal distance. For any metric d, a planar center of S is a point x in the real plane which

minimizes max{d(x, Q) Q ∈ S}, and a restricted planar center of S is a processor P ∈ S which minimizes

max{d(P, Q) Q ∈ S}. For each definition of center there is also a corresponding definition of radius. For

any lp metric (1 < p < ∞), the planar center is unique, but the restricted planar center may not be. For

example, the four indicated points in Figure 3.12 are restricted planar centers, and all of the points of the

figure are internal centers.

The proof of the following theorem is similar to that of Theorem 3.26 and will be omitted.

Theorem 3.32 In a mesh of size n2, for any monotone metric, in Θ(n) time every labeled processor can
determine whether or not it is a restricted planar center among the processors with its label. Further, in
Θ(n) time every processor can determine the restricted planar radius of the processors with its label.

The following theorem is concerned with determining the Euclidean planar center and radius for all

figures in Θ(n) time on a mesh of size n2. It should be noted that the algorithm that is presented uses facts

which are specific to the Euclidean metric.

Page 138

Figure 3.12:

All black (hashed) pixels are internal centers.

The four restricted centers, for any lp metric, are also marked.

Theorem 3.33 In a mesh of size n2, in Θ(n) time every labeled processor can determine the Euclidean
planar center and Euclidean planar radius of its figure.

Proof. For the Euclidean metric, this problem is known as the smallest enclosing circle problem
[Sham78]. The following facts and assumptions will be used.

1. If a set has only one or two points, then the smallest enclosing circle can be found in Θ(1) time if the

coordinates of the points are in a single processor.

2. For a set of 3 points, either all 3 points are on the boundary of the smallest enclosing circle, or else 2

of the points form a diameter of the circle. In either case, the center and radius of the circle can be found

in Θ(1) time if the coordinates of the points are in a single processor.

3. For a set S of 3 or more points, there is a 3-element subset T of S such that the smallest enclosing circle

of T is the smallest enclosing

Page 139

circle of S. The radius of the smallest enclosing circle of T is the maximum radius of any smallest

enclosing circle of a 3-element subset of S. Further, T can be taken to be a subset of the extreme

points of S, except when all of S lies on a straight line, in which case T contains the two endpoints and

any third point.

The algorithm is straightforward. In Θ(n) time, by using the algorithm associated with Theorem 3.19,

find the extreme points of every labeled set. Next, for every labeled set S, find the smallest enclosing

circle for each 3-element subset of the extreme points. Notice that if there are e extreme points of S, then

this will require calculations. However, as mentioned on page 124, on a mesh of size n2

the worst-case value of e is Θ(n2/3), which requires only Θ(n2) calculations. If these calculations must be

done in the e processors, they will require at least Ω(n4/3) time. This is prevented by using the processors

of S, and not just those that are extreme points of S, to perform the calculations. If a figure has p

processors, then e = Ο(min(r)2/3), so at most O(min(p, n)2) calculations are required. By suitably dividing

these calculations among the p processors, they can be completed in Ο(n) time.

Finding the l1 and l∞ planar radii and planar centers are particularly easy. For these two metrics, the

planar radius is half of the diameter, which can be computed in Θ(n) time by Theorem 3.28. The l1 (and l

∞) planar centers form a straight line segment (see Figure 3.13) which may degenerate to a single point.

The details of finding the endpoints of these segments is left to the reader.

The final (distance) problem considered in this section is the all-points radius query, also known as the

all-points fixed radius near neighbor problem [Bent80]. Given a radius r, determine for each pixel the

number of black pixels at distance r or less. The set of processors at distance r or less from a processor P
is called an r-ball centered at P.

To perform the all-points radius query efficiently, an additional restriction on the metric is imposed. A

metric is a vector metric if it is monotone and if d(P, Q) is dependent only on the vector from P's position

to Q's position. Vector metrics have the property that for any radius r and any processors P and Q, the r-

ball centered at P is just a rigid translation (with no rotation) of the r-ball centered at Q, i.e., the metric

looks the same everywhere. All lp metrics are vector metrics, and it seems that all metrics encountered in

practice are vector metrics.

Page 140

Figure 3.13:

Figures with nonunique planar centers.

Theorem 3.34 In a mesh of size n2, for any vector metric and for any radius, the all-points radius query
can be solved in Θ(n) time.

Proof. Suppose the radius r is sufficiently small so that the r-ball centered at processor Pn/2, n/2 lies

entirely within the n × n mesh. The monotonicity guarantees that to traverse the perimeter of the r-ball, at

most 4n processors will be visited. (Figure 3.14 shows a typical r-ball.) Suppose each processor has a

value, denoted B, which is the number of black pixels in its row to its left. Consider a traversal of the

perimeter of an r-ball during which a running total will be kept. Initially, the total is 0, and as the

traversal reaches a processor which is rightmost in its row (among those in the r-ball), the B value is

added, plus 1 if the pixel there is black. At each processor which is leftmost in its row (among those in

the r-ball), the B value is subtracted. The total at the end of the traversal is the number of black pixels in

the r-ball.

Using the above procedure is quite simple. To insure that the traversal does not try to move off of the n ×

n mesh, consider the n × n mesh as being in the center of a 3n × 3n mesh, where all the added pixels are

white and each real processor must simulate 9 processors. Further, redefine the r-ball centered at a

processor P to be {Q d(P, Q) ≤ r and the l∞ distance from P to Q is ≤ n}. Notice that the new r-ball

centered at a processor in the original mesh lies entirely in the 3n × 3n mesh and contains the same

processors of the original mesh as does the original r-ball. In particular, it contains exactly the same

number of black pixels.

To start, use a row rotation so that every processor determines its B value. Then, all processors in the

original mesh create a record which

Page 141

Figure 3.14:

A 5-ball about P, using the Euclidean metric.

acts as their representative in the traversal. Since the r-balls are identical, these representatives can be

passed along in a lockstep fashion as they perform the traversal and return to their originating processor.

No matter what the value of r, the modified r-ball has a perimeter of Ο(n), so the algorithm is finished in

Θ(n) time.

3.7 Further Remarks

In this chapter, optimal Θ(n) time algorithms have been presented to solve problems that involve

matrices and digitized pictures on a mesh of size n2. The algorithms are defined predominantly in terms

of fundamental mesh operations that were introduced in Chapter 2. Many of the problems considered in

this chapter involve combining information from processors far apart, in which case the use of sort-like

data movements was crucial to the development of efficient algorithms. The general techniques

demonstrated in this chapter, including divide-and-conquer, compression, expansion with cross-product,

and data reduction techniques that include changing the form of the input, can be applied

Page 142

to yield efficient solutions to a wide variety of problems on a mesh computer.

In fact, simple techniques, such as propagation, can be used to solve important problems. For example,

an optimal mesh solution to the parallel visibility problem can be obtained by propagation. The parallel
visibility problem can be defined as the problem of determining the portions of each figure that are

illuminated by a given light source emitting rays of light parallel to a specified direction r. A simple

propagation algorithm consists of partitioning the mesh into small strips parallel to r and propagating the

light source through each strip. Initially, the entire strip is considered visible. As each processor receives

its strip's current visibility interval, it modifies the interval, if necessary (i.e., if the processor contains a

black pixel that is still partially visible), and passes the interval on to the next processor in the strip.

Details of choosing the proper size of the strips, determining strip predecessor and successor information,

and general proofs of correctness are given in [DHSS87]. It should be noted that optimal mesh solutions

to visibility problems are possible for assumptions other than a distant light source emitting rays of

parallel light.

Dominance problems can also be solved using propagation techniques. Given a digitized picture A = {ai,

j
} stored one pixel per processor on a mesh of size n2 so that processor Pi, j

 contains ai, j
, pixel ai, j

 is said

to dominate pixel ai, j
, if and only if i > i' and j > j'. A pixel ai, j

 is called maximal if there are no other

pixels in A that dominate it. The set of all maximal pixels is called the 1st contour of A, and is denoted

MAX(A). The kth contour of A, denoted MAX(A, k), k an integer, is defined as

A straightforward propagation algorithm, where processors send information down and to the left, can be

designed to determine the kth contour of A in optimal time on a mesh, simultaneously for all possible

values of k. See [DHSS91] for details.

Since it takes Θ(n) time for data to travel across an n × n mesh, all of the algorithms presented in this

chapter have optimal worst-case running times. However, there may be situations where the answer can

be found faster. For example, suppose no figure (i.e., connected black component) of a digitized picture

has an l∞ external diameter greater than D. Then by partitioning the mesh into disjoint subsquares of size

Θ(D), and sharing data between adjacent squares, in Θ(D) time every

Page 143

figure can determine its extreme points. Given the appropriate situation, this technique can be used with

all of the image results, reducing them to Θ(D) time. One particularly interesting application of this

technique occurs when it is combined with the algorithms of Theorem 3.34, while using the l∞ metric and

a radius of D. In Θ(D) time, every processor will know the number of black pixels in a square centered at

the processor. If a processor then becomes black if and only if more than half of the processors in its

square were previously black, then the solution to the bilevel median filtering problem with a window of

edgelength 2D + 1 is known in Θ(D) time. It should be noted that median filtering with a window of

edgelength 2D+1 on an arbitrary greylevel picture can also be accomplished in Θ(D) time, but the

algorithm is far more complicated [Stou83c].

The results of this chapter suggest many additional questions, most of which are still open. For instance,

is there a Θ(n) time algorithm for locating all internal centers? For any p, are there Θ(n) time algorithms

for locating lp planar centers and computing lp planar radii?

In this chapter, the concentration has been on 2-dimensional meshes. A j-dimensional mesh of size nj, j ≥
2, has nj processors arranged in a j-dimensional cubic lattice. Processor and processor
are connected if and only if . In the O-notational analyses of algorithms for j-
dimensional meshes it makes sense to consider j as fixed. That is, there is no differentiation between a

step needing a constant amount of time and one needing 2j units. (A generic processor in a j-dimensional

mesh has 2j neighbors.) The reason for this is that a processor in a j-dimensional mesh is fundamentally

different from one in a k-dimensional mesh when j ≠ k.

When considering 3-dimensional (or higher) ''pictures," then almost all questions are open. That is,

suppose an n × n × n (3-dimensional) picture is stored one pixel per processor in an n × n × n (3-

dimensional) mesh, how fast can figures be labeled, extreme points located, internal distances

determined, diameters computed, and so forth? Notice that some methods, such as "shrinking," do not

extend to higher dimensions (consider a pair of distinct interlocked solid rings in 3-space). Further, many

of the convexity and external distance algorithms reduce the amount of data by one dimension, reducing

an n × n picture to Θ(n) points, giving Θ(n) time algorithms. On a j-dimensional mesh, this would give Θ
(nj-1) time algorithms, which is not necessarily optimal for j > 2.

Nassimi and Sahni [NaSa80] have extended their asymptotically optimal component labeling algorithm

to all dimensions, and it is not hard to

Page 144

design a Θ(n) time algorithm for finding the distance to the nearest processor with a different label, but

for most other j-dimensional problems, j > 2, Θ(n) time algorithms are not known. It should be noted that

while the first component labeling algorithm given in Section 3.3.2, as well as Nassimi and Sahni's

[NaSa80] algorithm, both extend to asymptotically optimal algorithms in higher dimensions, it is not

possible to extend the second algorithm given in Section 3.3.2 to higher dimensions. This is due to the

fact that the algorithm reduces the digitized picture component labeling problem to the transitive closure

problem, the solution of which requires n2(j-1) matrix entries for a picture with nj pixels. While the j-
dimensional mesh of size nj is large enough to hold the matrix for j = 2, this is not true for j > 2.

Similar space problems arise when attempting to extend the internal distance algorithms given in this

chapter to dimension greater than 2. The 2-dimensional algorithms considered k × k subsquares, ignoring

all of the square except for the Θ(k) border elements, and constructed a distance matrix with Θ(k2)
entries. This matrix was able to fit in the original square. In 3-dimensions, for example, k × k × k
subcubes have Θ(k2) border elements, which would require a distance matrix containing Θ(k4) entries.

This matrix will not fit in the original cube, so the method fails, as it would for any j-dimensional picture,

j > 2, with nj pixels stored in a natural fashion on a j-dimensional mesh of size nj. One could use a simple

propagation algorithm, where each marked processor informs its neighbors that they are at distance one,

each of which informs their neighbors they are at distance two, and so on, but this has a worst-case

running time of Θ(nj).

The graph algorithms given in Section 3.2 closely follow the solutions originally presented in [AtKo84].

Given an undirected graph G = (V, E) and a directed breadth-first spanning tree T = (V,A) of G, then if

each vertex v ∈ V has a data value v.d, define the generalized x function as a function that returns for

every v ∈ V, the value * {v'.d v'.d is an x of v in T}, where x can be ancestor, descendant, or sibling.
Given that G and T are represented as adjacency matrices, as in Section 3.2, simple algorithms may be

constructed to compute these functions for all v ∈ V in Θ(n) time on a mesh of size n2. Further, by

putting together the breadth-first spanning tree algorithm of Section 3.2 with these generalized x

functions, many graph algorithms, including some of the ones presented in Section 3.2, can be solved in

Θ(n) time.

The problems considered in Section 3.2 assume that the input is in matrix form. However, the most

general form of input for a graph G = (V, E), as defined in Section 1.3, is to allow the edges of G to

Page 145

be distributed in an arbitrary fashion no more than one per processor in a mesh of size . Matrix and

image input can be viewed as special cases of this unordered edge input. For unordered edge input,

[ReSt] shows how to mark a spanning forest in time, from which [Stou85a] shows how to

determine whether or not G is bipartite, mark the bridge edges and articulation points of G, determine

whether or not G is biconnected, and so on, in time. Given a tree (or forest) T = (V, E)
represented as unordered edges, time algorithms are presented in [AtHa85, Stou85a] to

determine properties of T, such as the height, number of descendants, and preorder number of every

node. Notice that if matrix input is given, as in Section 3.2, then time is required to solve any of

these problems.

Finally, connections to mesh automata should be mentioned. As was noted in Section 1.2.3, for any given

finite state automaton, once the mesh becomes large enough, the individual processors do not have

enough memory to store their coordinates, distances to other processors, and so forth. This means that

some of the problems solved in this chapter, such as determining the external diameter of each figure,

will not map in a straightforward fashion to mesh automata. For example, one may take a black/white

picture and want to compute the external diameter of the black pixels, where the answer is emitted by

processor P0, 0
 one bit at a time. Except for problems involving internal distances, the image problems

considered in this chapter, or an appropriately modified version, can be solved in Θ(n) time on a mesh

automaton by using clerks to simulate the solution given here. (Clerks appear in [Stou82b, Stou83a] and

can be viewed as a systematic use of counters.) The problems involving internal distances cause

difficulties because the solutions in this chapter create arrays having Θ(n2log n) bits of information,

which cannot be held in an n × n mesh automaton. Beyer [Beye69] considered the problem of having a

mesh automaton mark a minimal internal path between two given processors in the same figure, and it is

still an open question as to whether or not there is a Θ(n) time solution to this problem.

Page 147

4

Mesh Algorithms for Computational Geometry

4.1 Introduction

The growing field of computational geometry has provided elegant and efficient serial computer

solutions to a variety of problems. Particular attention has been paid to determining geometric properties

of planar figures, such as determining the convex hull, and to determining a variety of distance,

intersection, and area properties involving multiple figures. For a description of problems, efficient serial

solutions, and applications of properties in computational geometry, the reader is referred to [PrLe84,

PrSh85, Tous80].

Parallel algorithms were presented in Chapter 3 which computed geometric properties of digitized

pictures, but such problems are significantly different from the problems that arise when the figures are

represented as sets of points or line segments, as is the norm in most of computational geometry. Elegant

serial solutions to many problems in computational geometry are based on being able to efficiently

construct the planar Euclidean Voronoi diagram of a set of planar points, or use sophisticated data

structures specifically designed for geometric problems [Sham78]. Although an optimal mesh algorithm

is presented in this chapter for constructing the Voronoi diagram, the algorithms that are presented to

solve other geometric problems do not rely on constructing the Voronoi diagram or manipulating

sophisticated data structures. Instead, algorithms to solve problems in computational geometry are

presented that rely on fundamental data movement operations.

Section 4.2 discusses fundamental data movement operations that are used in this chapter. General

descriptions of these operations were given in Chapter 1, and detailed mesh algorithms were given in

Chapter 2. However, the algorithms given in Chapter 2 assumed the processors were indexed by a snake-

like ordering. In this chapter, many of the algorithms assume that the processors are indexed by a

proximity ordering. In some instances, new algorithms for these operations are given that are

significantly different from those presented in Chapter 2, in order to accommodate the proximity order

index of the processors. The advantages of proximity order indexing are also discussed in Section 4.2.

Page 148

For most of the problems considered in this chapter, the input is n or fewer planar points, or pairs of

points representing line segments or edges, arbitrarily distributed one per processor on a 2-dimensional

mesh computer with n processors. Convex figures are represented by the set of their vertices, and simple

polygons are represented by the set of their edges. For problems involving multiple figures, each point or

edge will have a label identifying its figure.

In Section 4.3, an algorithm is given for finding the convex hull of a set of planar points. In Section 4.4,

algorithms are presented for determining smallest enclosing rectangles of sets of points. In Section 4.5,

algorithms are presented to solve the all-nearest neighbor problem for a collection of points, to find the

minimum distance between two sets of points, and to solve the all-nearest neighbor problem for

collections of point sets. In Section 4.6, algorithms are given for finding nearest neighbors of line

segments and for deciding whether or not line segments intersect. These algorithms are used to solve

several problems involving simple polygons, including deciding whether or not simple polygons intersect

and solving the all-nearest neighbor problem for simple polygons if there are no intersections. The

algorithms in this section introduce an efficient mesh implementation of multidimensional divide-and-
conquer [Bent80].

In Section 4.7, algorithms are given for deciding whether or not convex hulls intersect and for finding

intersections of convex polygons and hyperplanes. In Section 4.8, the problem of computing the diameter

of a set of planar points is considered. In Section 4.9, algorithms are given for determining area and

intersection properties of iso-oriented rectangles, and the results are extended to circles and orthogonal

polygons.

In Section 4.10, an optimal mesh algorithm is presented to construct the Voronoi diagram of a set of

planar points. This construction allows for alternative solutions to many of the problems previously

considered in this chapter. Section 4.11 discusses extensions to mesh computers of higher dimensions

and to input data of higher dimensions.

It is important to note that in the preceding chapter, an optimal mesh algorithm finished in Θ(n) time,

which is linear in the edgelength of a mesh of size n2. An n × n mesh was used simply to remain

consistent with the literature that typically considers matrices or images to be n × n. In this chapter,

however, it is most natural to consider problems involving n objects, distributed one per processor on a

mesh with n processors. Therefore, optimal mesh algorithms in this chapter will finish in Θ(n1/2) time,

which is (again) linear in the edgelength of the mesh. Except for the extensions in Section 4.11, every

algorithm in this chapter finishes

Page 149

in Θ(n1/2) time. Section 4.11 points out that straightforward changes produce optimal algorithms for

meshes of higher dimensions and for some of the problems when the input is from a higher dimensional

space.

4.2 Preliminaries

For problems in this chapter that involve distances between figures, the term distance is used to mean

Euclidean distance. It should be noted that in most cases any reasonable metric will suffice. (Metrics

were discussed in more detail in Section 3.6.) Let d(x, y) denote the distance between points x and y, and

define the distance between two sets S and T to be min{d(s, t) s ∈ S, t ∈ T}.

4.2.1 Initial Conditions

For problems in this chapter, the data is initially distributed one piece per processor on a mesh of size n.
For data involving points, it is typically assumed that no two distinct points have the same x-coordinate

or y-coordinate. For data involving line segments, it is typically assumed that no two endpoints from

distinct line segments have the same x-coordinate or y-coordinate, unless they are from line segments

that intersect at an endpoint. These are common assumptions in computational geometry as it simplifies

exposition by eliminating special cases. Furthermore, in Θ(n1/2) time, arbitrary input can be rotated to

satisfy these assumptions by using sort steps to find the minimum difference in x-coordinates between

points with different x-coordinates, the minimum difference in y-coordinates between points with

different y-coordinates, the maximum difference in x-coordinates, and the maximum difference in y-

coordinates, and then determining a small angle such that rotating by that much will eliminate duplicate

coordinates and not introduce new ones.

4.2.2 Lower Bounds

For all problems considered in this chapter, it is easy to create specific arrangements of data so that the

solution cannot be obtained faster than the time it takes to combine information starting at opposite

corners of the mesh. In a 2-dimensional mesh of size n, information starting at opposite corners cannot

meet in any processor in less than n1/2 - 1 time steps. Therefore, all problems considered in this chapter

must take Ω(n1/2) time on a mesh of size n.

Page 150

4.2.3 Fundamental Operations on the Mesh

Several of the data movement operations used in this chapter exploit an indexing of the processors based

on a proximity ordering. The proximity ordering used in this book combines advantages of other

orderings, as shown in Figure 1.2 of Section 1.2.3 on page 8. Proximity order is based on the concept of

space-filling curves (c.f., Section 3.3 of [Wirt86]), in particular the Peano-Hilbert scan curve [KoVa79,

LeZi86]. Notice that snake-like ordering has the useful property that processors with consecutive

numbers in the ordering are adjacent in the mesh, while shuffled row-major ordering has the property

that the first quarter of the processors form one quadrant, the next quarter form another quadrant, and so

forth, with this property holding recursively within each quadrant. This property of shuffled row-major

ordering is useful in many applications of a divide-and-conquer solution strategy.

Proximity ordering combines the advantages of the snake-like and shuffled row-major orderings. Given

row and column coordinates of a processor P, in O(log n) time a single processor can compute the

proximity order of P by a binary search technique. Similarly, given a positive integer i, the row and

column coordinates of processor Pi, that is, the processor with i as its proximity order index, can be

determined in Ο(log n) time by a single processor. Given any positive integers i < j, the shuffled row-

major property of recursively dividing indices among quadrants gives the property that the distance from

processor Pi to processor Pj is Ο((j - i)1/2), and that a path of length Ο((j - i)1/2) can be achieved using only

processors numbered from i to j. Further, the processors numbered from i through j contain a subsquare

with more than (j - i)/8 processors.

The implementations for some of the data movement operations used in this chapter are altered in order

to accommodate the proximity ordering of the processors. These operations are described in detail, while

other necessary operations are briefly reviewed.

Many of these data movement operations will be performed in parallel on items stored in disjoint

consecutively numbered (with respect to proximity ordering) processors, which will be referred to as

(ordered) intervals. It should be noted that ordered intervals may be created by sorting data into

proximity order so that related items reside in disjoint consecutively indexed processors.

1. Sorting: In Section 2.6.1, it was shown that n elements, distributed one per processor on a mesh

computer of size n, can be sorted into any predefined linear order in Θ(n1/2) time. It should be noted

Page 151

that an algorithm that directly sorts into proximity order can be faster by a multiplicative factor. While

such an algorithm would be useful, this does not affect the analysis of algorithms presented in this

chapter.

2. Broadcasting and Rotating Data within Intervals: Suppose each processor contains a record with data,

a label, and a Boolean flag called 'marked'. Further, assume that all processors containing records with

the same value in the label field form an ordered interval with respect to the proximity ordering. Then

the data in all records with marked = true can be sent to all other processors holding records with the

same label in

Ο(max{m(r) + i(r)1/2 r a label})

time, where m(r) is the number of marked records with label r, and i(r) is the number of records with the

label r. This is accomplished by building a breadth-first spanning tree, level by level, within each ordered

interval, and then using this spanning tree to perform the desired data movement operation. It is first

shown how to construct the breadth-first spanning tree within every ordered interval and then how to use

the spanning tree to perform the desired data movement operations.

At time 0, the processor corresponding to the root of every tree is identified, with the root of a tree being

defined to be at level 0. This is accomplished in Θ(1) time by having every processor Pi examine the

label of processor Pi -1, where the indices are with respect to the proximity order of the processors, and

having processor Pi identify itself as the root of the tree for its ordered interval of labels if the label of

processor Pi -1 is different from the label of processor Pi . At time 1, the root of every tree sends a

message to all of its neighbors with the same label informing them that it is their parent. The root records

the identity of these processors as its children, and these neighbors record the identity of the root as their

parent, as well as the fact that they are at level 1 of the tree.

At time t, processors at level t - 1 send a message to all neighbors with the same label that have not yet

recorded a level. Each processor receiving one or more such messages at time t records the fact that it is

at level t in the breadth-first spanning tree of its label. Each processor receiving one or more such

messages also

Page 152

picks one of the senders as its parent, records the identity of this chosen parent processor, and sends a

message back to the chosen parent processor so that processors at level t - 1 in the breadth-first spanning

tree can record the identity of their children in this tree. Notice that the height of a breadth-first spanning

tree for processors with label r is Θ(i(r)1/2). Therefore, the breadth-first spanning tree for the processors

labeled r is constructed in Θ(i(r)1/2) time, since each step of the level by level construction takes Θ(1)

time.

Once the spanning tree is constructed, the marked data is passed up the tree until it reaches the root, at

which point it is passed down, with each parent passing the data item to all of its children. Using simple

pipelining, the first item reaches all processors in its interval in Θ(i(r)1/2) time, and each subsequent item

follows in Θ(1) time.

For the situation where one piece of data is circulated within each ordered interval, this operation is

referred to as broadcasting within (ordered) intervals. For the situation where multiple pieces of data are

circulated within ordered intervals, this operation is referred to as rotating data within (ordered) intervals.

3. Reporting and Semigroup Computation within Intervals: Suppose each processor has a record with

data and a label, and all records with the same label form an ordered interval. Further, suppose a unit-

time semigroup operation (i.e., an associative binary operation such as minimum, summation, or parity)

is to be applied to all data items with the same label, with all processors receiving the answer for its

label. Then this can be accomplished in Θ(max{i(r)1/2 r a label}) time, where i(r) is the number of

records with label r. This is performed by forming a breadth-first spanning tree within every ordered

interval, followed by having the leaves start passing their values up, where once a processor receives

values from all of its children, it applies the semigroup operation to these values and its own, and passes

the result up to its parent. Once the root processor of the spanning tree has computed the answer, the

spanning tree is used to broadcast it to all processors in the interval.

The first phase of the semigroup operation that combines data to the root of the spanning tree within each

interval is referred to as reporting within (ordered) intervals. Therefore, as discussed

Page 153

in previous chapters, a semigroup operation within intervals can be viewed as a report followed by a

broadcast within intervals.

4. Concurrent Read and Concurrent Write: The implementation of the concurrent read and concurrent

write operations remains as before (c.f., Section 2.6.4), except that the sorting is performed with respect

to the proximity order index. Assuming that each processor creates a fixed number of master records and

a fixed number of request or update records, depending on whether the operation is a concurrent read or

concurrent write, respectively, the concurrent read and concurrent write operations can be completed in Θ
(n1/2) time on a mesh of size n.

5. Compression: Suppose that on a mesh of size n, m pieces of data are randomly distributed one element

per processor. Further, suppose that it is desirable to minimize the interprocessor communication time

between the processors that contain these m pieces of data. Then in Θ(n1/2) time, this information can be

moved to a subsquare of size Θ(m), where the communication diameter is Θ(m1/2). The algorithm to

perform this operation is as described in Section 2.6.5, with the exception that the sorting is done with

respect to the proximity order index. Alternately, each processor containing one of the m pertinent pieces

of data may place the piece of data augmented with a key of 1 into its sort field, while all other

processors place a dummy data entry with a key of ∞ into their sort field. After the sort fields are filled,

the data is simply sorted into proximity order. This directly moves the m pieces of data into a subsquare

of size Θ(m) in Θ(n1/2) time.

6. Searching and Grouping: The searching problem is defined in Section 1.5, as are a variety of solutions

to the problem that involve the grouping operation. The grouping operation will be used extensively in

this chapter to solve a variety of search problems. Since the multiple parallel binary search, as well as

both the one- and two-pass grouping operations, are described in terms of sorting, concurrent reads,

concurrent writes, and operations within intervals, the searching problem can be solved in Θ(n1/2) time on

a mesh of size n. Notice that for the two-pass algorithm, the parameter k needs to be chosen

appropriately. In this chapter, k will typically be chosen to be Θ(n1/2).

Page 154

4.3 The Convex

Hull

The convex hull, a geometric structure of primary importance, has been well studied for the serial model

of computation [PrSh85, Sham78, Tous80, Avis79, Yao81]. It has applications to normalizing patterns in

image processing, obtaining triangulations of sets of points, topological feature extraction, shape

decomposition in pattern recognition, and testing for linear separability, to name a few.

In this section, an asymptotically optimal Θ(n1/2) time algorithm is presented for marking the extreme

points that represent the convex hull of a set of n or fewer planar points, initially distributed one point per

processor on a mesh of size n. The convex hull of a set S of points, denoted hull(S), is the smallest

convex polygon P for which each point of S is in the interior or on the boundary of P, as shown in Figure

4.1. A point p ∈ S is defined to be an extreme point of S if p ∉ hull(S - {p}). That is, p is an extreme

point of hull(S) if and only if p is on the boundary of hull(S) at a point where a trace of the boundary

results in a change of slope (i.e., p is situated at a corner of the boundary). So, if S is finite, then hull(S) is

a convex polygon, and the extreme points of S are the corners of this polygon.

For several of the algorithms presented in this chapter, it will be useful to impose an ordering on the

extreme points of S. The ordering will be in a counterclockwise fashion, starting with the easternmost

point. (Recall from Section 4.2.1, that since the number of points is finite and no two points have the

same x-coordinate, there must be a unique easternmost point.)

The edges of the convex hull of S will be referred to as the edges of the hull(S). In addition, it is said that

the extreme points of S have been identified, and hence hull(S) has been identified, if for every processor

Pi containing a point p ∈ S, the following hold.

1. Pi has a Boolean variable 'extreme', and extreme is true if and only if p is an extreme point of S.

2. Pi stores the total number of extreme points of hull(S).

3. If p is an extreme point of S, then Pi stores the position of p in the counterclockwise ordering of

extreme points.

4. If p is an extreme point of S, then Pi stores the Cartesian coordinates of the extreme points that precede

and succeed p, as well as the ID of the processors that contain them.

Page 155

Figure 4.1:

Convex hull of S.

The mesh algorithm presented in this section to solve the convex hull problem follows directly from the

generic Fixed Subset Division Algorithm of Section 1.6.2. The first (preprocessing) step of the algorithm

is to sort the planar point data into proximity order by x-coordinate. After this step, the x-coordinates of

all points in quadrant q are less than the x-coordinates of all points in quadrant q + 1, 1 ≤ q ≤ 3, with this

property holding recursively within each quadrant. Next, the convex hull is determined simultaneously

and recursively for each of these four sets of points. Finally, these linearly separable convex hulls are

combined to form the convex hull of the entire set by determining the upper and lower common tangent

lines between pairs of linearly separable convex hulls, and eliminating the points on the inside of the

quadrilateral formed by these two tangent lines.

Theorem 4.1 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, the extreme points of S can be identified in Θ(n1/2) time.

Proof. An algorithm to determine the extreme points of S follows.

Page 156

Figure 4.2:

Mapping points into the proper quadrants.

Initially, 'extreme' will be set to true for all points. As it is determined that a point is not an extreme

point, this flag will be set to false.

1. Preprocessing: Sort the points into proximity order using the x-coordinate as the major key and the y-

coordinate as the minor key.

2. If n, the number of points in the subsquare under consideration, is less than or equal to 2, then the

convex hull of the points is determined in constant time. Otherwise, recursively solve the convex hull

problem for the points in quadrants A1, A2, A3, and A4, of the subsquare under consideration. (See Figure

4.2.) Note that this is a recursive call to Step 2 and not Step 1.

3. From hull(A1) and hull(A2), identify hull(A1 ∪ A2). Denote the set of extreme points representing hull

(A1 ∪ A2) as B1.

4. From hull(A3) and hull(A4), identify hull(A3 ∪ A4). Denote the set of extreme points representing hull

(A3
∪ A4) as B2.

5. From hull(B1) and hull(B2), identify hull(B1
∪ B2).

Notice that in steps 3, 4, and 5, the convex hulls of two sets of points, say A and B, are used to identify

hull(A ∪ B). In each of these steps,

Page 157

A and B can be picked so that hull(A) lies to the left of hull(B), and hull(A) does not intersect hull(B).
This is due to the partitioning of points from step 1. An explanation of how to identify hull(A ∪ B) from

hull(A) and hull(B) follows. (Refer to Figures 4.2 and 4.3.)

Without loss of generality, assume that the points of A are in quadrant A1, the points of B are in quadrant

A2, and hull(A) lies to the left of hull(B). The most crucial phase of the algorithm is the identification of

points p, q ∈ hull(A) and p', q' ∈ hull(B), such that and represent the upper and lower common

tangent lines, respectively, between hull(A) and hull(B). (See Figure 4.3(a).) Let t, u ∈ hull(A) be the

westernmost and easternmost extreme points of hull(A), respectively. Then p must lie on or above the

line , otherwise would intersect hull(A). Let x, y ∈ hull(A) be the extreme points immediately

succeeding and preceding (in the counterclockwise ordering of extreme points) p, respectively. Referring

to Figure 4.3(b), all points in hull(B) must lie below and some points in hull(B) must lie above .
(Similar remarks can be made about the points p', q, and q'.) The details of identifying the extreme points

p and p' by a binary search technique, as described in step 4a of the Fixed Subset Division Algorithm on

page 37, are now given. (A similar technique is used to identify q and q'.)

In Θ(n1/2) time, every processor of A1 can know the Cartesian coordinates of t and u, as well as the

position of t and u in the counterclockwise ordering of the extreme points of A. Initially, every processor

in A1 containing an extreme point a ∈ hull(A) creates a record with the x-coordinate of a as key, and the

y-coordinate of a and counterclockwise order of a in hull(A) as data. Then, a pair of semigroup (i.e.,

associative binary) operations is performed over these records so that all processors of A1 know the

identity of the easternmost and westernmost points of A, as well as their counterclockwise order. Without

loss of generality, assume that point u is numbered n0, and point t is numbered n1, with respect to the

counterclockwise ordering of extreme points of A.

Next, every processor in A1 that contains an extreme point of hull(A) decides if its point is above the line

. Notice that all such points above the line are numbered in counterclockwise order n0 +1, n0 +

2, . . . , n1
- 2, n1 - 1. The processor in A1 containing the point above tu and half way between t and u (i.e.,

the point numbered), identifies this point as p. A Θ(n1/2) time semigroup operation is used to

broadcast p to all processors of A1. The processors containing the succeeding and preceding neighbors of

p (in the counterclockwise ordering) create the equations of lines and , respectively. Similar

computations in A2
identify p', , and for B.

Page 158

(a) Identifying the upper and lower common tangent lines between hull(A) and hull(B).

(b) All points in hull(B) must lie below . Some points in hull(B) must lie above .

Figure 4.3:

Stitching convex hulls together.

Page 159

The coordinates of and are broadcast from A1 to those processors in A2
that contain a point above

. This broadcast can be accomplished via a concurrent read. Next, every processor in A2
that just

received data decides whether or not its point is i) below and ii) above . By performing a

concurrent write, this information can be collated and routed to the processor in A1 that contains the point

p. This processor can now determine if is above all of the extreme points in B, and if is below

some of the extreme points of B. If both conditions are satisfied, then p, x, and y have been identified. If

these conditions are not satisfied, then if is not above all of the extreme points of B, then assign the

point x to u, recompute p as the point half way between t and the new u, compress the data, and iterate

the algorithm. If is above all of the extreme points of B, then assign the point y to t, recompute p,

compress the data, and iterate the algorithm. (The corresponding computations for p', q, and q' are

similar.)

After Ο(log n) iterations, p, p', q, and q' will be identified since each iteration of the binary search for p

and p' eliminates half the points in hull(A) and half the points in hull(B) from further inspection. At the

end of each iteration of the binary search, the remaining data from both hull(A) and hull(B) is

compressed into the smallest square set of processors that will hold this data. The ith iteration of the

algorithm operates on Ο(n/2i) pieces of data at communication diameter Θ((n/2i)1/2). Therefore, the ith
iteration of the algorithm finishes in Θ((n/2i)1/2) time. Notice that if the remaining data from hull(A) was

compressed to the smallest square set of processors in the upper-left corner of A1 and the remaining data

from hull(B) was compressed to the smallest square set of processors in the upper-left corner of A2, for

example, then the during the ith iteration of the algorithm the remaining Ο(n/2i) pieces of data would be at

communication diameter Θ(n1/2), and hence every iteration of the binary search would take Θ(n1/2) time.

With the joint compression of data after each iteration of the algorithm, the time for the binary search to

identify the desired points p, p', q, and q' is given by , which is Θ(n1/2). Also,

notice that the correctness of this binary search hinges on the fact that the points p and q, for example,

are never eliminated during the search and compression operation.

Finally, the positions of the extreme points of hull(A ∪ B) must be computed. First, a concurrent read is

performed so that all processors know the number of points in hull(A), the number of points in hull(B),
the position of p and q in hull(A), and the position of p' and q' in hull(B). Every processor can now

compute the correct position of its

Page 160

extreme point with respect to hull(A ∪ B), if indeed its point is an extreme point of hull(A ∪ B).
Concurrent reads can be used so that every processor knows the total number of extreme points, as well

as the extreme points that are adjacent to the extreme point that it contains. Therefore, the time to

identify hull(A ∪ B) on a mesh of size n from the extreme points of linearly separable sets A and B, is

dominated by the Θ(n1/2) time binary search procedure and the Θ(n1/2) time data movement operations

used to compute the final position information.

The preprocessing sort step (step 1 of the algorithm, as described at the beginning of the proof) takes Θ

(n1/2) time. Therefore, the running time of the algorithm is given by T(n) = Θ(n1/2)+ T'(n), where T'(n) is

the time required for the remaining steps of the algorithm. As described, steps 3, 4, and 5 each take Θ
(n1/2) time. (Notice that steps 3 and 4 can be performed simultaneously.) Since Step 2 is a recursive call,

steps 2 through 5 obey the recurrence T'(n) = T'(n/4) + Θ(n1/2), which is Θ(n1/2). Therefore, the running

time of the entire algorithm is Θ(n1/2).

As an alternative to the binary search, a one pass grouping operation, as described on page 39 in step 4b

of the Fixed Subset Division Algorithm, may be used to identify p, p', q, and q' in Θ(n1/2) time. Notice

that the angles of incidence (refer to the definition on page 20) of the hull edges are monotonic with

respect to both the upper envelope (i.e., the portion of the convex hull above the line determined by the

westernmost and easternmost extreme points) and the lower envelope (i.e., the portion of the convex hull

below the line determined by the westernmost and easternmost extreme points). Therefore, a fixed

number of sort-like operations to create ordered intervals (groups), followed by a pipelined broadcast

within intervals, followed by a sort-based operation to send the results back, will also solve the search

problem for the upper and lower common tangent lines in Θ(n1/2) time.

Suppose that instead of being given a single set S comprised of n or fewer points, the input to the convex

hull problem is n or fewer labeled points representing multiple sets. If there are only a fixed number of

labels, say L, then the previous algorithm could be performed L times, once for each labeled set, and still

enumerate the extreme points of every set in Θ(n1/2) time. If the relationship between L and n is not

known, then a minor modification can be made to the previous algorithm so that work is done

simultaneously on distinctly labeled sets of points. This modification consists of initially sorting data

with respect to the label of the points.

Page 161

Corollary 4.2 Given n or fewer labeled planar points, distributed one per processor on a mesh computer
of size n, in Θ(n1/2) time the extreme points of each labeled set can be identified.

Proof. The previous algorithm needs to be modified only slightly. Modify the first sentence of step 1 to

read, 'Sort the n points using the label as primary key, the x-coordinate as secondary key, and the y-

coordinate as tertiary key.' As was noted in Section 4.2.3, if a given label has m points, then those points

are now in an interval of processors which contains a square of size greater than m/8. The preceding

algorithm is then executed inside each such square, where the processors in such a square simulate 16

processors of the original algorithm. (This last point insures that each simulated processor has at most

one point.) ·

Once the extreme points of the convex hull have been identified, several properties of the convex hull

can be quickly determined. For example, the area of the convex hull may be determined by triangulating

the convex hull with respect the extreme points and a distinguished extreme point, as shown in Figure

4.4, computing the areas of the triangles, and finally summing over these areas. The centroid of the

convex hull can be computed by similar local operations over these triangles, and the perimeter of the

convex hull can be determined by simply summing the lengths of the hull edges.

Corollary 4.3 Given n or fewer labeled points, distributed one per processor on a mesh computer of size
n, in Θ(n1/2) time the area, perimeter, and centroid of the convex hull of each labeled set can be
determined.

Sketch of Proof. The area of the convex hull of every labeled set of points is computed as follows. Use

the algorithm associated with Corollary 4.2 to determine the extreme points of every labeled set of

points. Use sorting to gather all points with the same label together, where sorting is performed so that

within each labeled set, all extreme points will be stored in counterclockwise fashion before all points

interior to the convex hull. For each labeled set, A broadcast within ordered intervals can be used to send

the easternmost extreme point pe of a labeled set to all processors containing points of the set. Every

processor in the interval containing an extreme point pi , computes the area of the triangle pipepi+1, as

shown in Figure 4.4. A semigroup (i.e., associative binary) operation within ordered intervals allows

each processor to know the total area of the convex hull of the points with its label, and a concurrent

write sends all points back to the processors where they initially resided,

Page 162

Figure 4.4:

Computing the area of a convex hull.

along with the total area of the labeled set that the point is a member of.

The perimeter of the convex hull for every labeled set of points is computed simply by determining the

extreme points of each labeled set of points, gathering labeled sets of extreme points together, using a

semigroup operation within ordered intervals to sum the lengths of the line segments , for all

extreme points i in a labeled set, and then using a concurrent read to send the results back to the original

processors.

The x-coordinate of the centroid of a figure is the total x-moment divided by the area, and the y-

coordinate is the total y-moment divided by the area. To determine the centroid of each convex hull, form

the triangles as in Figure 4.4, determine their moments and areas, and then add them to determine the

moments and areas of the entire convex hull.

4.4 Smallest Enclosing Figures

Problems involving smallest enclosing figures have been studied extensively [Tous80, FrSh75, GVJK].

For certain packing and layout prob-

Page 163

lems, it is useful to find a minimum-area rectangle (smallest enclosing box) that encloses a set S of

planar points. (Notice that while the area of this rectangle is unique, the rectangle itself need not be.) The

algorithm presented in the proof of Theorem 4.4 exploits the facts that

1. any enclosing rectangle of S must enclose hull(S), and

2. a smallest enclosing box of S must have one side collinear with an edge of the convex hull of S, and

each of the other three sides must pass through an extreme point of hull(S) [FrSh75].

After enumerating the extreme points representing the convex hull of S, the algorithm relies on one pass

grouping operations so that for each hull edge e, a minimum enclosing box with one edge of the box

containing e is determined. The grouping operation follows the algorithm given in Section 1.5, operation

8a, on page 27. The final step of the algorithm uses a semigroup (i.e., associative binary) operation to

determine the minimum area over all such boxes.

Theorem 4.4 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time a smallest enclosing box of S can be identified.

Proof. An algorithm for finding a smallest enclosing box of S follows.

1. Identify hull(S). Let l represent the number of edges in hull(S).

2. For each edge ei ∈ hull(S), 1 ≤ i ≤ l, determine the minimum area enclosing box of S that has one side

collinear with ei. Denote this box as Bi.

3. A smallest enclosing box of S is Bk, where

area(Bk) = min area(Bi) | 1 ≤ i ≤ l}.

The extreme points of hull(S) can be identified in Θ(n1/2) time by using the algorithm associated with

Theorem 4.1. When the algorithm of Theorem 4.1 terminates, every processor containing an extreme

point x of S also contains the preceding extreme point w and the succeeding extreme point y, with respect

to the counterclockwise ordering of extreme points of S. Each such processor now creates the hull edge

 of hull(S). In order to determine the minimum-area rectangle associated with such an edge, every

processor containing an edge needs

Page 164

Figure 4.5:

Determining a smallest enclosing box.

to know three additional extreme points of the S. These points are N, the last extreme point of S

encountered as a line parallel to , starting collinear to , passes through the hull(S); W, the last

extreme point of S encountered as a line perpendicular to passes through all of the points of hull(S)
from right to left (viewing as the southernmost edge of hull(S)); and E, the last extreme point of S

encountered as a line perpendicular to passes through hull(S) from left to right. (See Figure 4.5.)

Each processor containing a hull edge can find the necessary points, N, W, and E simultaneously in Θ

(n1/2) time by participating in a one pass grouping operation based on angles of incidence (AOI), as

defined on page 20. The following is a description of how each such processor can determine its

associated point N (with the determination of W and E, respectively, being similar). Every processor Pi
that is responsible for a hull edge , creates a query record with the key defined as the angle AOI() +
π (AOI() + 3π/2 in the case of searching for W, and AOI() + π/2 in the case of searching for E) and

with the index i (i.e., the proximity order index of the processor) as data. Room

Page 165

Figure 4.6:

Creating the slope and interval records.

is left in this record for a description of the point N (W, E, respectively) that is to be determined. Every

processor Pj that is responsible for an extreme point p in hull(S), and contains the preceding extreme

point u and the succeeding extreme point v, with respect to the counterclockwise ordering of extreme

points of hull(S), creates a master record with the angle of incidence of as key, and p, u, v, and j as

data. (For technical reasons that will become apparent, the processor responsible for the extreme point

with angle 0 contained in its angles of support, creates two additional master records, one with a key of 0

and one with a key of 2π.) See Figure 4.6.

Sort the master and query records together by the key field, with ties broken in favor of master records.

After sorting, every processor Pi that contains a master record (AOI(), p, u, v, j) participates in a

concurrent read so as to obtain the proximity order index of the processor containing the next master

record. Notice that the key fields of every consecutive pair of master records correspond to the angles of

support of the common extreme point. Given two consecutive master records stored in processors Pi and

Pj , with i < j, the set of processors Pi . . . Pj-1
are referred to as a group, and Pi is considered to be the

leader of

Page 166

the group. Perform a group-restricted broadcast of the extreme point common to the pair of master

records for the purpose of notifying all request records as to their desired point N (W, E, respectively).

This broadcast operation is almost identical to broadcasting within proximity ordered intervals, except

that after the leader of a group initializes the creation of the breadth-first spanning tree within its group,

data is only passed to those processors that are in the group. This can be done since the leader knows the

index of the first processor (itself) of the group and the last processor of the group (found during the

concurrent read).

A concurrent read completes the operation so that every processor containing a hull edge knows the

coordinates of the appropriate N (W, E, respectively). In 0(1) time, every processor can compute the area

of the rectangle formed by its edge xy and the three corresponding points, N, W, and E. Once a minimum

area rectangle has been determined for every hull edge, a smallest enclosing box of S can be determined

by taking a minimum over the areas of these rectangles in Θ(n1/2) time. Therefore, the entire algorithm

requires Θ(n1/2) time. ·

Simple modifications to the algorithm associated with Theorem 4.4, as in Corollary 4.2, allow labeled

sets of points to be considered.

Corollary 4.5 Given n or fewer labeled planar points, distributed one per processor on a mesh computer
of size n, in Θ(n1/2) time a smallest enclosing box can be identified for each labeled set. ·

4.5 Nearest Point Problems

In this section, problems are considered that involve nearest neighbors of planar points. A variety of

nearest neighbor problems have been explored for the serial computer (c.f. [Sham78, Tous80, LiTa77,

BWY78]). One of these problems is the nearest neighbor query. The nearest neighbor query requires that

a nearest neighbor of a single query point be identified. Given n or fewer points, distributed one per

processor on a mesh computer of size n, the nearest neighbor query can be solved in Θ(n1/2) time by

broadcasting a copy of the query point to all processors, having each processor compute the distance

from its point to the query point, and then taking the minimum over these results.

A more interesting problem is the all-nearest neighbor problem for points. Given a set S of points, the

solution to the all-nearest neighbor problem for points consists of finding for every point p ∈ S, a point q

∈ S such that d(p, q) = minr∈S
d(p, r). Notice that a nearest neighbor is not

Page 167

Figure 4.7:

Nearest neighbor in a corner.

necessarily unique, but that the distance to a nearest neighbor is unique. In this section, an asymptotically

optimal algorithm is presented to solve the all-nearest neighbor problem for points. This solution easily

yields an optimal mesh solution to the closest-pair problem for points, which requires that a closest pair

of points from a given set be identified. This can be done on the mesh of size n in Θ(n1/2) time by simply

taking the minimum over the all-nearest neighbor distances.

Before considering the all-nearest neighbor problem for points, a useful lemma is presented. The nearest

neighbor algorithms described in this section work by finding nearest neighbors in vertical 'strips,' and

then in horizontal 'strips.' The lemma that follows shows that after these restricted solutions are

determined, for any rectangular region that is determined by the intersection of a vertical and horizontal

strip, there are only a few points in the region which have not yet found their global nearest neighbor.

The reader should refer to Figure 4.7 during the statement and proof of the following lemma.

Lemma 4.6 Given a set S of planar points, in two-dimensional space, and arbitrary real numbers x1
< x2

and y1 < y2, let R = {(x, y) x1
≤ x ≤ x2

and y1 ≤ y < y2}, let D(p) = min{d(p, q) q ≠ p, q ∈ S}, and

Page 168

let D'(p) = min{d(p, q) q ≠ p, x1≤ x-coordinate of q ≤ x2
or yi ≤ y-coordinate of q ≤ y2 q ∈ S}. Then the

following hold.

a) If p is any element of R ∩ S such that D(p) < D'(p), then there is a corner c of the rectangle R such
that d(p, c) < D'(p).

b) There are at most 8 points p ∈ R ∩ S such that there is a corner c where d(p, c) < D'(p).

Proof. To prove a), notice that if p ∈ R ∩ S is such that D(p) < D'(p), then there is a point (x, y) ∈ S such

that D(p) = d(p, (x, y)), x is not in the interval [x1, x2], and y is not in the interval [y1, y2]. Assume x > x2

and y > y2, with all other cases being identical. In this case, if c is the corner (x2, y2), then d(p, c) < d(p,
(x, y)) = D(p) < D'(p), as was to be shown.

To show b), let c be any corner, and suppose p, q ∈ R ∩ S are such that d(p, c) < D'(p) and d(q, c) <
D'(q). It must be that the angle from p to c to q is at least π/3 radians, for otherwise the further of p and q

would be closer to the other than to c. Therefore there are at most 2 points of R ∩ S which are closer to c

than to any other point in R's vertical or horizontal slab. Since there are only 4 corners, b) is proven.

The algorithm presented below to solve the all-nearest neighbor problem first uses sorting to partition the

planar points into disjoint (linearly separable) vertical slabs, and then solves the restricted all-nearest

neighbor problem so that all points know a nearest neighbor in their vertical slab. Next, the algorithm

uses sorting to partition the planar points into disjoint horizontal slabs, and then solves the restricted all-

nearest neighbor problem in each horizontal slab. At this point, it is known from the result of Lemma 4.6

that there are no more than 8 points in each rectangular region, as determined by the intersection of a

vertical and horizontal slab, that may not know their true (global) nearest neighbor. The final step of the

algorithm consists of passing these (fixed number of) points through the mesh so that each of these points

views all other points, after which all points will know their nearest neighbor.

Theorem 4.7 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the all-nearest neighbor problem for points can be solved in Θ(n1/2) time.

Proof. The algorithm is recursive in nature. Initially, every processor Pi containing a planar point pi
creates a record with the x-coordinate of

Page 169

pi as key. The data fields of this record include the y-coordinate of pi, as well as the distance and identity

to a nearest point found up to the current iteration of the algorithm. The distance field is initialized to ∞.

Sort the points into proximity order by their x-coordinate. (Recall from Section 4.2.1 that no two unique

points have the same x-coordinate.) After sorting, let x1, x2, x3, and x4 be the x-coordinates of the points in

processors Pn/5
, P2n/5

, P3n/5
, and P4n/5

 (in proximity ordering), respectively. These values divide the planar

points into 5 vertical slabs, namely,

1. (p the x-coordinate of p ≤ xl},

2. {p xl < x-coordinate of p ≤ x2},

3. {p x2 < x-coordinate of p ≤ x3},

4. {p x3 < x-coordinate of p ≤ x4}, and

5. {p x-coordinate of p > x4}.

Recursively solve the restricted all-nearest neighbor problems so that every point determines a nearest

neighbor (and the associated distance) in its slab. Now, repeat the process based on y-coordinates,

determining for every point, a nearest neighbor in its horizontal slab.

The planar points can now be thought of as being in at most 25 rectangular regions, determined by

x1, . . . , x4 and y1, . . . , y4. Sort the points by region to create ordered intervals of points corresponding to

regions. Within each ordered interval, perform a semigroup (i.e., associative binary) operation to

determine the, at most, 2 points (by Lemma 4.6) that are closer to each corner of the region than to their

nearest neighbor found so far. All 2 * 4 * 25 (or fewer) such points are circulated to all n processors by

performing a rotation within the mesh, as described in Section 4.2.3, after which each processor Pi knows

the identity and distance from its planar point pi to a nearest neighbor. (It should be noted that the

number of points that actually need to be circulated can be reduced to 128. Notice that the 9 interior

squares each have 4 corners, 9 of the exterior squares each have 2 corners of concern, and the 4 outer

squares each have 1 corner of concern. This is a total of 64 critical corners, each of which might have 2

points that need to be involved in the circulating step.) Sorting and semigroup operations within the

ordered intervals corresponding to regions requires Θ(n1/2) time, as does circulating (rotating) a fixed

number of points through

Page 170

the mesh. Therefore, the time of the algorithm obeys the recurrence T(n) = Θ(n1/2) + 2T(n/5), which is Θ
(n1/2). ·

As stated previously, an efficient algorithm to solve the closest pair problem for planar points follows

directly from the result just presented for the all-nearest neighbor problem. Simply apply the preceding Θ

(n1/2) time algorithm and then in Θ(n1/2) time compute the minimum over the all-nearest neighbor

distances, while keeping track of a pair that generates the minimal distance.

Corollary 4.8 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, in Θ(n1/2) time a closest pair of points can be identified. ·

The next problem considered is the all-nearest neighbor problem for point sets. That is, for each labeled

set of planar points, find the label and distance to a nearest distinctly labeled set of points. When the

algorithm terminates, each processor that is responsible for a labeled point will know the nearest

neighbor for the set that its point is a member of. It should be noted that a solution to the all-nearest

neighbor problem for point sets will not, in general, provide a solution to the problem of detecting for

each labeled point a nearest distinctly labeled point.

The solution to the all-nearest neighbor problem for point sets exploits an algorithm, given below in

Lemma 4.9, that will determine the distance between two linearly separable sets of points in Θ(n1/2). time

on a mesh of size n. The algorithm to determine the distance between two linearly separable sets works

by conceptually partitioning a dividing line between the two sets into maximal subintervals such that for

each subinterval there is a single point from each set closest to the interval. The minimum over the

distances between these pairs of points represents the minimum distance between the two sets of points.

Lemma 4.9 Given n or fewer planar points, each labeled either A or B, distributed one per processor on
a mesh computer of size n, and given the equation of a line L that separates A and B (i.e., all points
labeled A lies on one side of L and all points labeled B lie on the other side of L), in Θ(n1/2) time every
processor can determine the distance from A to B.

Proof. In Θ(n1/2) time, a semigroup (i.e., associative binary) operation will determine if either A or B is

empty, in which case the answer is infinity. Otherwise, the equation of L, along with a choice of

orientation

Page 171

Figure 4.8:

Partitioning L into maximal intervals. The labeled points correspond to the intervals.

and origin for L, is broadcast to all processors in Θ(n1/2) time. Suppose a ∈ A and b ∈ B are such that d(a,
b) equals the distance from A to B. Since A and B are separated by L, then the line L must intersect line

segment ab at some point p. Since d(a, b) is the minimum distance between points in A and points in B, it
must be that a is a closest point in A to p, and b is a closest point in B to p. This fact can be exploited, as

follows (see Figure 4.8).

1. Partition L into a set of maximal intervals such that for each interval there is a single element of A
which is a closest point of A to each point of the interval.

2. Partition L into a set of maximal intervals such that for each interval there is a single element of B
which is a closest point of B to each point of the interval.

3. Perform an intersection operation on these sets of intervals to determine a closest pair (ai,bi), ai ∈ A,bi

∈ B, for each interval Ii.

4. Determine min{d(ai, bi)l(ai, bi) is a closest pair of li}.

Details of the algorithm follow. First sort the points into sets A and B. The partitioning of L, as described

in steps 1 and 2, now proceeds independently and identically. The partitioning is explained for set A.
Every interval [pl,pr] of L will be represented by two interval records, one with pl as the key and the

other with pr as the key. The interval

Page 172

records take the form (p1, p2, data), where p1 is the key, and the data includes the Cartesian coordinates of

the point of A that determines the interval [p1, p2]. Notice that the intervals in the partition overlap only at

their endpoints. If A consists of a single point x, then there is only one interval, which is represented by

the creation of interval records (-∞, ∞, x) and (∞, -∞, x). If A has more than one point stored in

processors numbered 1 through k (in proximity order), then simultaneously and recursively, find the

intervals given by the set of points H1
in processors numbered 1 through , and those given by the set

of points H2
in processors numbered through k.

Notice that an interval from H1
or H2, can only shrink or disappear in the final set of intervals for A. Since

an interval from H1
(H2) may overlap many intervals from H2

(H1), the intervals from H2
(H1) will be used

to determine how much an interval from H1
(H2) shrinks. To shrink the intervals, shrink those that came

from H1
first, and then those that came from H2, as follows.

First, generate interval records that also include a 1 or a 2 in the data field to indicate for each record

whether it came from H1
or H2, respectively. Sort these representatives by their key (an endpoint). In case

of ties, a left endpoint of H1
precedes any endpoint of H2, and a right endpoint of H1

follows any endpoint

of H2. For each interval from H1, the processors between the representatives of its left and right endpoints

form an interval of processors that is called a group. Each processor holding an interval record of H2
can

determine which group the record is in, as follows. Every processor that contains a record representing

an interval of H1
keyed by its left endpoint is involved in a concurrent read to determine the proximity

order index of the processor that contains the interval record keyed to the right endpoint of its interval.

Viewing each group as an ordered interval, every processor containing a representative of the left

endpoint of an interval of H1
(the leader of each group) creates a spanning tree in its group, as described

in Section 4.2.3 and in the algorithm of Theorem 4.4. While the spanning tree is created within each

group, every processor representing an interval of H2
is informed as to the point that defines the H1

interval of the group that it is a member of. In a fixed amount of time, every processor containing an

interval of H2
determines which part of the intersection of its interval and the group's interval is closest to

its point. By finding a minimum and maximum within intervals of processors (by computing an

associative binary operation within intervals), each group can then determine the final interval (if any)

corresponding to the group's point. Finally, repeat the process, interchanging the roles of H1
and H2

to

Page 173

determine the final intervals.

Once the partitions corresponding to A and B have been determined, the process of finding a nearest pair

between them is similar. First, groups corresponding to intervals of A find the nearest point of any

interval of B not properly containing the A interval, and then groups corresponding to intervals of B find

the nearest point of any interval of A not properly containing the B interval. Finding the global minimum

gives the answer. The running time of the algorithm is given by the recurrence T(n) = T(n/2) + Θ(n1/2),
which is Θ(n1/2). ·

The solution to the all-nearest neighbor problem for point sets can be solved by using the underlying

structure of the algorithm associated with Theorem 4.7. That is, the problem is first solved recursively for

disjoint vertical slabs and then disjoint horizontal slabs. Within each rectangular region formed by the

intersection of a vertical and horizontal slab, there will be points from at most 8 sets (2 with respect to

each corner of the region) which may not know the correct global solution. For each such set of points in

every rectangular region, the result of the previous lemma can be applied (sequentially) with respect to a

corner of the rectangular region.

Theorem 4.10 Given n or fewer labeled points representing sets of points, distributed one per processor
on a mesh computer of size n, in Θ(n1/2) time the all-nearest neighbor problem for point sets can be
solved.

Proof. Each point will attempt to find a nearest point of a different label, quitting only when it

determines that it cannot find a nearer neighbor than some other point in its set can find. The algorithm in

Theorem 4.7 is used, resulting in the same conclusion that for each corner of every rectangular region

(determined by the intersection of a vertical and horizontal slab) there are points from at most 2 sets

which may be able to find closer points in the direction of the corner. The slight difference is that in each

of these regions there may be Ο(n) points from the same set considering possibilities in the same

direction. For a given rectangular region R, assume that a set A of labeled points is one of the, at most,

two closest sets of labeled points to a corner c of the region. A tilted line L through c and tangent to R is a

separating line from A ∩ R and the points in S - A on the other side of L in the target direction, where S

represents the entire set of n labeled points. (See Figure 4.9, where the direction is northeast.) Therefore,

at most 128 applications of the algorithm associated with Lemma 4.9 are needed. A final concurrent

write and concurrent read complete the operation. ·

Page 174

• Points in A ∩ R

 Points of S - A in northwest direction from R.

Figure 4.9:

Solution to the all-nearest neighbor problem for point sets.

Page 175

Given a collection S of planar points, a spanning tree can be constructed by using the points as vertices

and straight lines between them as edges. A minimal-distance spanning tree is a spanning tree of S which

minimizes the sum of the Euclidean lengths of the tree edges. A standard approach to building minimal

spanning trees was given in Section 3.2.3. Start off with each point as being its own labeled component

(club). Then each connected component (as a point set) merges with a nearest neighbor (in case of ties,

the one of minimal label is chosen), and an edge corresponding to this minimal distance is added to the

edge set of the minimal distance spanning tree. This occurs simultaneously for all components. Each

iteration reduces the number of components by at least a factor of two, so at most log2 n iterations are

needed. Using Theorem 4.7 to find nearest neighbors, and the graph labeling algorithm of [ReSt] to label

components, a minimal-distance spanning tree of a set of n or fewer planar points, distributed one per

processor on a mesh computer of size n, may be determined in Θ(n1/2log n) time.

Unfortunately, this algorithm is not optimal. In Section 4.10, an optimal Θ(n1/2) time mesh algorithm is

given to solve the minimal-distance spanning tree problem for point data. This optimal solution is based

on a Θ(n1/2) time mesh algorithm for constructing the Voronoi diagram of a set of points, coupled with

the minimum-weight spanning tree algorithm for graphs appearing in [ReSt]. A definition of the Voronoi

diagram, an optimal mesh algorithm for constructing it, and a number of applications of the Voronoi

diagram are given in Section 4.10.

4.6 Line Segments and Simple Polygons

In this section, problems involving line segments and simple polygons are examined. The first problem

considered is that of determining whether or not there is an intersection among sets of planar line

segments. This is a fundamental problem in computational geometry [Sham78, BeOt79, PrSh85]. In fact,

Preparata and Shamos [PrSh85] conjecture that in order to efficiently solve hidden-line problems, one

must first be able to solve basic intersection problems.

The first algorithm presented in this section introduces the use of a paradigm known as multidimensional
divide-and-conquer [Bent80]. In this approach, k-dimensional problems are solved by subdividing them

into smaller k-dimensional problems, plus similar (k - 1)-dimensional problems. These pieces are solved

recursively and are then glued together. When this paradigm is used on parallel computers, the smaller

Page 176

pieces can be solved simultaneously. However, this raises the possibility that an initial object may be

subdivided into several smaller objects, and if the recursion causes this to happen repeatedly, there can

be an explosion in the amount of data. The algorithms of this section prevent this by insuring that any

initial line segment never has more than two pieces representing it at the start of any level of recursion,

no matter how many levels of recursion have occurred.

The algorithm that follows in the proof of Theorem 4.11 uses multidimensional divide-and-conquer to

provide an optimal mesh solution to the problem of determining whether or not there exists an

intersection between line segments with different labels, where line segments of the same label are

assumed to be nonintersecting except possibly at endpoints. The algorithm works by creating vertical

slabs, sending a representative of each line segment to every slab that it passes through or has an

endpoint in, and then recursively solving the problem in each vertical slab. A pitfall to this approach is

that if it is performed in a straightforward fashion, there may be an explosion in the amount of data that

exists due to the fact that each line segment may recursively generate multiple representatives at each

stage of the recursion. To avoid this, at every stage of the recursion, in each vertical slab, every

representative associated with a line segment that passes completely through the slab is examined to

determine whether or not it is intersected in the slab by a distinctly labeled line segment. If such an

intersection exists, then the algorithm records that an intersection was detected and terminates. If there

are no intersections within a slab involving these spanning line segments (i.e., line segments that pass

completely through the slab), then the representatives corresponding to the spanning line segments may

be discarded and the algorithm may proceed recursively within the slab. This guarantees that there will

never be more than two representatives associated with any line segment at the beginning of any stage of

recursion, and that there will never be more than some fixed number of representatives associated with

each line segment in the entire mesh at any time during the algorithm.

Theorem 4.11 Given n or fewer labeled line segments, distributed one per processor on a mesh
computer of size n, if no two line segments with the same label intersect other than at endpoints, then inΘ
(n1/2) time it can be determined whether or not there are any intersections of line segments with different
labels.

Proof. Each processor with a labeled line segment creates two line segment records. One record has

the x-coordinate of a as key, with the

Page 177

y-coordinate of a, coordinates of b, and label of as data, while the other record has the x-coordinate of

b as key, with the y-coordinate of b, coordinates of a, and label of as data. In Θ(n1/2) time, these 2n
records are sorted into proximity order by the key field.

After sorting, the keys (x-coordinates) of the first record in processors Pn/4, Pn/2, and P3n/4
(with respect to

proximity order index) are used to partition the plane into 4 vertical slabs. These 3 values are then

broadcast to all processors in Θ(n1/2) time. For each record representing the left endpoint a of a line

segment , the processor holding the record determines if there are any slabs which the line segment

crosses completely. For each such line segment and slab pair, the processor containing the line segment

record generates a spanning line record equivalent to the line segment record except that the key is the

left x-coordinate of the slab. The spanning line records will be used temporarily and then destroyed,

which prevents the overaccumulation of data records. Sort the spanning line records by slab, breaking

ties arbitrarily, and perform a semigroup (i.e., associative binary) operation within each ordered interval

corresponding to a slab to enumerate the spanning line segments of each slab. Finally, using these

numbers, a concurrent write is used to send the spanning line records to their slab. This is accomplished

in Θ(n1/2) time.

Each slab is now stored in a quadrant of the mesh. Within each quadrant of processors, in Θ(n1/2) time it

can be determined as to whether or not there is an intersection among the spanning line segments. This

can be accomplished as follows. Sort the spanning line segments by y-intercept with the left boundary of

the slab. This determines for each spanning line segment its position relative to the other spanning line

segments with respect to the left boundary of the slab. Repeat the process to find the relative position of

each spanning line segment with respect to the right boundary of the slab. If any spanning line segment

has different order positions for the left and right boundary, or if there were any ties involving line

segments with different labels, then there is an intersection within the slab, and the problem is solved.

Otherwise, in each slab, the spanning line segments divide the slab into nonoverlapping regions. (It
should be noted that the property that line segments of the same label can only intersect at their endpoints

is used here to guarantee that these regions are nonoverlapping. If arbitrary intersections were allowed

among line segments with the same label, then spanning line segments of the same label could cross each

other in the interior of the slab.) Any line segment not spanning this slab will intersect spanning line

segments if and only if its endpoints lie

Page 178

Figure 4.10:

Spanning line segments, leaders, regions, and major regions.

in different regions or on one of the spanning line segments. (If the line segment does not span, but does

extend outside the slab, then one of its endpoints is temporarily treated as being the appropriate y-

intercept.)

A 2-pass grouping operation, as described on page 27, may be used to determine whether or not spanning

line segments are intersected in a given slab. Sort all spanning line segments by the y-intercept of the left

boundary. The spanning line segments in each disjoint interval of n1/2 processors form a group, and the

first spanning line segment of each group is the leader of the group. See Figure 4.10. In Θ(n1/2) time,

rotate the leaders through the processors of the slab (stored in a quadrant of the mesh), using the rotation

algorithm of Section 4.2.3, where the number of processors is i(r) = Θ(n) and the number of records

being rotated is m(r) = Ο(n1/2). During the rotation, the major region that a nonspanning line segment lies

in is recorded in its record, where a major region is determined by a consecutive pair of leaders, as

shown in Figure 4.10..

With respect to the left boundary of the slab, use the y-intercept of the spanning line segments and the y-

intercept of the top boundary of

Page 179

the major region for each nonspanning line segment as keys, and sort the spanning line segment and

nonspanning line segment records together, with ties broken in favor of spanning line segments. A

concurrent read is performed so that the leader of each major region can determine the proximity order

index of the next leader of a major region, forming a group. Within each group, in Θ(n1/2) time, the Ο

(n1/2) spanning line segments are rotated. During the rotation, any intersection between a spanning line

segment and a nonspanning line segment of a different label can be detected, and the fact that such an

intersection was detected can be recorded in the appropriate nonspanning line segment record. Finally, a

semigroup (i.e., associative binary) operation determines if any of the spanning lines segments in the slab

were intersected.

If such an intersection exists, then the algorithm is done, while otherwise the spanning line segments are

discarded, and in each slab the problem is recursively solved to determine whether or not there are any

intersections among line segments of different labels with endpoints in the slab.

The running time of a single step of the algorithm is dominated by a fixed number of data movement

operations such as sorting, concurrent read, concurrent write, and (interval) grouping operations.

Therefore, step i of the algorithm operates on a subsquare of size k = n/4i and finishes in Θ(k1/2) time.

Hence, the running time of the entire algorithm obeys the recurrence T(n) = T(n/4) + Θ(n1/2), which is Θ
(n1/2). ·

With minor changes, the above algorithm can be modified to ignore intersections of line segments at

common endpoints, or to ignore intersections involving the endpoint of one line segment but the middle

of another.

The next problem considered is the all-nearest neighbor problem for sets of line segments. That is, for

each set of line segments, find the label and distance to a nearest distinct set of line segments. When the

algorithm terminates, each processor that is responsible for a labeled line segment will know the nearest

neighbor for the set that its line segment is a member of.

The algorithm to solve this problem combines features of the algorithm presented in the preceding

theorem with that of the algorithm of Theorem 4.10. The plane is divided into 5 vertical slabs and 5

horizontal slabs, and nearest neighbors within each are found. To find nearest neighbors in a slab, first

each line segment with an endpoint in the slab finds the nearest spanning line segment, and each

spanning line segment finds the nearest neighbor among the spanning line segments and line

Page 180

segments with an endpoint in the slab. The spanning line segments use a concurrent write to report this

back to the endpoint that generated them, and are then discarded.

As in the algorithm of Theorem 4.10, after the nearest neighbors in slabs have been found, in each

rectangular region (determined by the intersection of a vertical and horizontal slab) there are at most 8

labels with endpoints of line segments in the region which may not yet have found their nearest neighbor.

Lemma 4.9 can be straightforwardly extended to line segments, with the slight difference that k
nonoverlapping (except at endpoints) line segments may partition the separating line L into as many as

2k - 1 regions. A statement of the theorem follows.

Theorem 4.12 Given n or fewer labeled line segments, distributed one per processor on a mesh
computer of size n, where line segments intersect at most at their endpoints, in Θ(n1/2) time the all-
nearest neighbor problem for sets of line segments can be solved. ·

An algorithm derived from the one associated with Theorem 4.12, where each line segment finds a

nearest neighbor with a different label directly above it, will be useful in some of the algorithms that

appear later in this section. Horizontal slabs are not needed, nor is there a final stage involving line

segments close to corners of rectangular regions. Since the final stage is eliminated, each line segment

can find a nearest neighbor in an upward direction, rather than just finding a nearest neighbor for each

label.

Corollary 4.13 Given n or fewer labeled line segments, distributed one per processor on a mesh
computer of size n, where line segments intersect at most at their endpoints, in Θ(n1/2) time every line
segment can determine a nearest neighbor of a different label above it. ·

A polygon is simple if it has the property that every two consecutive edges share only a common

endpoint, and no two nonconsecutive edges intersect. While vertices can be used to uniquely represent a

convex figure, a simple polygon cannot be represented by vertices unless they are given in an

enumerated fashion. The input to problems in this section involving simple polygons will be in the form

of line segments that represent the polygons.

Some of the algorithms that follow will make use of an efficient solution to the connected component
labeling problem for line segments, where two line segments are connected if and only if they share a

common endpoint. Proposition 4.14 is due to Reif and Stout [ReSt].

Page 181

Proposition 4.14 Given n or fewer line segments (edges), distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every processor containing a line segment can know the label of the
connected component that its segment is a member of.

Consider the problem of determining for each labeled set of line segments, whether or not it forms a

simple polygon. The algorithm follows directly from the results of Proposition 4.14, which is used to

determine for each labeled set whether or not it is connected, and Theorem 4.11, which is used to

determine for each connected labeled set whether or not any of its edges intersect.

Theorem 4.15 Given n or fewer nondegenerate labeled line segments, distributed one per processor on a
mesh computer of size n, in Θ(n1/2) time it can be determined for each set whether or not the line
segments form a simple polygon.

Proof. Sort the line segments by labels into proximity order in Θ(n1/2) time. Using the algorithm

associated with Proposition 4.14, for each set of line segments, simultaneously label all connected

components in Θ(n1/2) time. Using a report and broadcast within each set of line segments, in Θ(n1/2) time

discard those sets for which not all line segments received the same component label. Next, using a

concurrent read within each set, in Θ(n1/2) time mark each line segment that does not satisfy the condition

that each of its endpoints intersects exactly one endpoint from a distinct line segment of its component

(set). Those components that contain marked line segments do not form simple polygons and are also

discarded. For each of the remaining sets of line segments, apply the intersection algorithm of Theorem

4.11, treating each line segment as having a unique label, and ignoring intersections at common

endpoints. Those components that contain intersections are not simple polygons, while the remaining

nondiscarded polygons are simple. A final Θ(n1/2) time concurrent read returns the line segments to their

original processors with the solution to the query.

Consider the problem of determining whether or not there is an intersection among a set of simple

polygons. Before presenting a solution to this problem, a useful result that distinguishes the inside from

the outside of each polygon will be given. The algorithm works by finding the point of each polygon

with minimal x-coordinate, using the convex angle formed by the two edges incident on this point to

identify the inside of the polygon, and then propagating interior/exterior information to all other edges of

the polygon.

Page 182

Lemma 4.16 Given multiple simple polygons, represented by n or fewer labeled line segments,
distributed one per processor on a mesh computer of size n, in Θ(n1/2) time each processor containing a
line segment can determine which side of its line segment is towards the interior of its polygon.

Proof. Every processor that contains a line segment creates a line segment record with the polygon label

as major key and the x-coordinate of the leftmost of the two endpoints as minor key. Sort the line

segment records by polygon labels (key), with ties broken in favor of minimum x-coordinate. After

sorting, the first two line segments of each label intersect at the leftmost point of that polygon. Therefore,

their interior angle must be towards the interior of the polygon. For each labeled polygon, conceptually

eliminate the leftmost point from the bottommost of these two line segments. This serves to conceptually

eliminate the link between these two line segments. Now, in this modified graph, select the leftmost point

as root, and orient the edges to form an upward directed graph. (Algorithms appearing in [Stou85a,

AtHa85] do this in the required time.) This graph represents a counterclockwise traversal of the polygon,

so for each edge the inside is the left-hand side when going upward (in the tree). A final concurrent read

allows every processor to know the orientation of the line segment that it initially contained, with respect

to its simple polygon. ·

An algorithm to detect an intersection among a set of simple polygons follows directly from previous

results. First, use the line segment intersection algorithm to determine whether or not there are any

intersections among edges of polygons. If not, then the only possibility for intersection is via

containment, i.e., if one polygon is completely contained within another. After each edge of a polygon

distinguishes the outside from the inside of its polygon, every edge finds a nearest edge directly above it.

Containment exists if and only if some edge is on the inside side of the nearest edge that it detects

directly above it.

Theorem 4.17 Given multiple simple polygons, represented by n or fewer labeled line segments,
distributed one per processor on a mesh computer of size n, in Θ(n1/2) time it can be decided whether or
not there is an intersection among the polygons.

Proof. From Theorem 4.11, in Θ(n1/2) time it can be detected whether or not there is an intersection of

line segments. It only remains to detect if one simple polygon contains another. If there is a containment

Page 183

relationship among some polygons, then there is at least one line segment 1 for which the closest line

segment to l, among the line segments directly above it, is a line segment k of a polygon that contains 1.
That is, l is on the inside of k, and hence the polygon that l is a member of is contained in the polygon

that k is a member of. Further, if no polygons are inside of others, then for every line segment l, the

closest line segment k directly above it either belongs to the same polygon as l, or else l is on the outside

of k, and hence the polygon that l belongs to is not contained in the polygon that k belongs to.

In Θ(n1/2) time, temporarily give each line segment its own label and use the modified version of the

algorithm in Theorem 4.12 to find, for each line segment, the nearest neighbor directly above it (if any).

Using Lemma 4.16 to determine orientations, in Θ(n1/2) time it can be decided as to whether or not any

polygon is contained in another. The algorithm from Theorem 4.11, the modification of the algorithm

from Theorem 4.12, and the algorithm from Lemma 4.16 all finish in Θ(n1/2) time. Therefore, the running

time of the algorithm is as claimed.

The following result is an immediate corollary of Theorem 4.12.

Corollary 4.18 Given multiple nonintersecting simple polygons, represented by n or fewer labeled line
segments distributed one per processor on a mesh computer of size n, in Θ(n1/2) time the all-nearest
neighbor problem for simple polygons can be solved.

The final problem considered in this section involves query points and a set of nonintersecting simple

polygons. The problem is to determine for every query point, whether or not it is contained in a polygon,

and if so, the label of such a polygon.

Corollary 4.19 Given multiple nonintersecting simple polygons, represented by labeled line segments,
and given a collection of points, such that there are no more than n segments and points, stored no more
than one per processor on a mesh computer of size n, in Θ(n1/2) time each point can determine the label
of a polygon it is in, if any.

Proof. Assign to all points a label that is different from all of the polygons. Then use the modified

version of the algorithm in Theorem 4.12 to find the nearest line segment above each point. If the point is

on the inside side of this segment, then the point is in the polygon, while otherwise it is outside of it.

Page 184

4.7 Intersection of Convex Sets

This section presents efficient mesh algorithms to determine intersection properties of convex sets and to

solve the 2-variable linear programming problem. Intersection problems involving convex sets have been

considered for the serial model (c.f., [OCON82, PrSh85, ShHo76]), since many of these problems solve

classic pattern recognition queries.

The first result of this section shows that a mesh computer can be used to efficiently determine whether

or not the convex hulls of two arbitrary sets of planar points intersect. A related problem is that of

determining whether or not two sets of planar points S1 and S2, are linearly separable [Tous80], where S1

and S2 are linearly separable if and only if there exists a line in the plane such that all points in S1 lies on

one side of the line, and all points in S2 lies on the other side. It is not hard to show that sets of planar

points are linearly separable if and only if their convex hulls are disjoint.

The algorithm that follows in the proof of Theorem 4.20, to determine whether or not the convex hulls of

two sets of points are linearly separable, relies heavily on the notion of angles of support, as defined on

page 19. The algorithm exploits the fact that two convex sets, S1 and S2, are linearly separable if and only

if there exists a pair of extreme points, p ∈ S1 and q ∈ S2, as shown in Figure 4.11, such that an angle of

support of p differs by π from an angle of support of q, and that the half-planes that these angles

represent do not intersect. Every extreme point attempts to find such an extreme point of the other set.

This is accomplished by a one pass grouping operation based on the monotonicity of angles of support

for extreme points.

Theorem 4.20 Given n or fewer labeled planar points, representing sets S1 and S2, distributed one per

processor on a mesh computer of size n, in Θ(n1/2) time it can be determined as to whether or not hull(S1)
and hull(S2) intersect. Further, if they do not intersect, then a separating line between S1 and S2 can be
determined.

Proof. If S1 and S2 are separated by a line L, then there are extreme points p ∈ S1 and q ∈ S2 such that

each of p and q has an angle of support parallel to L, and these angles of support differ by π from each

other (see Figure 4.11). Further, given extreme points p' ∈ S1 and q' ∈ S2, along with their angles of

support, in constant time it can be determined if there is such a separating line. To locate a separating

line, if one exists, representatives of the angles of support of the extreme

Page 185

Figure 4.11:

Line L separates p and q.

points of S1 and S2 will use a grouping technique to locate extreme points of the other set with an angle of

support differing by π.

Each extreme point p ∈ S1 creates two records containing p's coordinates and its range of supporting

angles, along with an indicator that p is in S1. One of these records has p's smallest supporting angle as its

key, and the other has p's largest supporting angle as its key. Each extreme point of S2 creates two similar

records, adding π (mod 2π) to each angle. Further, to convert the circular ordering of angles of support

into a linear ordering, additional records are generated for an extreme point of S1 having 0 as an angle of

support and an extreme point of S2 having π as an angle of support. (These records will have keys of 0

and 2π.) All records are then sorted by key, using smallest supporting angles as a secondary key.

Notice that if extreme points p ∈ S1 and q ∈ S2 have a separating line, then either an endpoint of q's range

of angles of support (plus π) is within the range of p's angles of support, or vice versa, or both. For the

first and third cases, if the records are viewed as grouped by intervals of angles of support determined by

extreme points in S1, then by circulating the information about each extreme point in S1 throughout its

interval,

Page 186

every processor holding a record corresponding to an extreme point in S2 can determine if there is a line

separating them. Similarly, for the second case, the records can be viewed as grouped by intervals

determined by extreme points in S2.

The previous theorem presents an interesting algorithm to determine whether or not the convex hulls of

two sets of planar points intersect. In fact, the problem of determining whether or not there is an

intersection among the convex hulls of multiple sets of planar points can be solved in the same

asymptotically optimal time, as follows. Use the algorithm associated with Corollary 4.2 to enumerate

the extreme points of each labeled set. Then use a concurrent read to generate the edges of the convex

hulls. Finally, use the polygon intersection algorithm of Theorem 4.17 to give the desired result.

Theorem 4.21 Given n or fewer labeled planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time it can be determined whether or not any two labeled sets have convex
hulls which intersect. ·

The next problem considered is that of constructing the intersection of multiple half-planes, which is

based on a straightforward bottom-up merging algorithm, where at each stage ordered intersections of

half-planes are merged. Serial solutions to this problem appear in [PrSh85].

Theorem 4.22 Given the description of n or fewer half-planes, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time their intersection can be determined.

Proof. Sort the half-planes into proximity order by their angles. Half-planes with the same angle can be

combined into a single half-plane using simple prefix calculations. The core of the algorithm is a simple

bottom-up merge procedure, where stage i merges 2i half-planes into their intersection in Θ(2i/2) time. At

each stage, the result is a (perhaps infinite) convex figure, and when two figures are being merged, the

initial sorting guarantees that at most one is noninfinite and either one is contained in the other, they have

no intersection, their boundaries intersect in exactly one point, or their boundaries intersect in exactly

two points. These cases can easily be determined and solved using, say, the algorithm in Theorem 4.11 to

locate the intersections and the algorithm of Theorem 4.17 to determine if there is containment. ·

Page 187

It was noted in [Gass69] that linear programming can be viewed as an intersection problem, determining

the intersection of half-planes and evaluating the objective function at each extreme point. Corollary 4.23

follows directly from Theorem 4.22.

Corollary 4.23 Given n or fewer 2-variable linear inequalities, distributed one per processor on a mesh
computer of size n, and a unit-time computable objective function to be maximized (minimized), then in Θ
(n1/2) time the linear programming problem can be solved. ·

Since each convex polygon is the intersection of the incident half-planes corresponding to its edges, the

problem of constructing the intersection of multiple convex polygons can be solved by a simple

application of the algorithm associated with Theorem 4.22. It should be noted that the following

corollary can also be obtained by using a bottom-up merging approach which intersects pairs of convex

polygons together.

Corollary 4.24 Given multiple labeled convex polygons, represented by n or fewer labeled planar points,
distributed one per processor on a mesh computer of size n, in Θ(n1/2) time the common intersection of
the polygons can be constructed. ·

4.8 Diameter

The problem of detecting a farthest pair and computing the diameter of a set of planar points is closely

related to the convex hull problem. In fact, a farthest pair of points must be a pair of extreme points of

the convex hull of the set of points [Sham78]. The distance between such a pair of points gives the

diameter of the set. An optimal mesh algorithm for computing a farthest pair and the diameter of a set, or

multiple labeled sets, of planar points follows directly from the techniques and algorithms presented in

Section 4.7. Given a set S of n planar points, distributed one per processor on a mesh computer of size n,
first mark the extreme points of hull(S) using the algorithm associated with Corollary 4.2, then determine

for each extreme point its angles of support as described in Section 4.7, and then based on these angles,

perform a grouping operation to find a farthest point from every point. Performing a semigroup (i.e.,

associative binary) operation over the set of point-wise farthest pairs, gives a farthest pair and the

diameter of S.

Page 188

Theorem 4.25 Given n or fewer labeled planar points, distributed one per processor on a mesh
computer of size n, a farthest pair and the diameter of every labeled set can be determined in Θ(n1/2)

time. ·

4.9 Iso-oriented Rectangles and

Polygons

Problems involving rectangles have been well studied for the serial model of computation [MeCo79,

PrSh85, McCr81], since they are important to many packing and layout problems. An important class of

rectangles are the iso-oriented ones, where an iso-oriented (planar) rectangle is a planar rectangle with

the property that one pair of opposite sides is parallel to the x-axis and the other pair is parallel to the y-

axis. In this section, the input to the problems considered is n or fewer iso-oriented planar rectangles,

distributed one per processor on a mesh computer of size n. It is assumed that each iso-oriented rectangle

is described by the Cartesian coordinates of its four planar vertices. To distinguish the rectangles during

the course of an algorithm, each rectangle is labeled by the index of the processor that it is initially

contained in. Multidimensional divide-and-conquer, as introduced in Section 4.6, will be used

extensively.

Recall from Section 4.6 that for general simple polygons, it was only possible to detect whether or not an

intersection exists. The first theorem of this section shows that when the polygons are restricted to iso-

oriented rectangles, then in Θ(n1/2) time, every rectangle can determine whether or not it is intersected by

another rectangle. The algorithm presented to solve this problem is based on the slab method, which has

been used extensively in this chapter. Vertical slabs are created and every rectangle sends a

representative to each slab that the rectangle passes through or terminates in. The problem is then solved

for spanning rectangles within each slab, after which the representatives of the spanning rectangles are

discarded. The algorithm then proceeds recursively within each slab. Processing and discarding the

spanning rectangle representatives at the beginning of each stage of the recursion guarantees that there

will not be an overaccumulation of data.

Theorem 4.26 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every rectangle can determine whether or not it is intersected by
another rectangle.

Proof. Every processor initially storing a rectangle creates two representatives of the rectangle, one with

the x-coordinate of the left side

Page 189

as key, with the rest of the rectangle's description, proximity index of the processor (to be used as the

label of the rectangle), and a flag set to 'left' as data, and the other with the x-coordinate of the right side

as the key, with the description, proximity index of the processor, and 'right' as data. After this

initialization step, there are at most 2n representatives. Each processor keeps track of the left and right

limits of the region under consideration as the algorithm progresses, similar to other slab partitioning

algorithms that have been presented in this chapter. Initially, each processor sets the left and right limits

to -∞ and +∞, respectively.

Sort the representatives by the key field. The key (an x-coordinate) of the second representative in

processors Pn/4, Pn/2, and P3n/4
(in proximity order) are broadcast to all processors. This serves to partition

the region into 4 vertical slabs. Every processor holding a representative of a rectangle that spans one or

more slabs generates a special record describing the rectangle for each slab the rectangle completely

crosses. Initially, a rectangle can cross at most two vertical slabs, but in latter stages of recursion a

rectangle may cross three slabs. The special records are then sent to the quadrant of the mesh that is

responsible for maintaining representatives of the spanned slab. This is accomplished by sorting the

special records with respect to slabs, performing a semigroup (i.e., associative binary) operation within

ordered intervals corresponding to slabs to enumerate the special records of each slab, and performing a

concurrent write to send special records to their appropriate slabs.

In each slab, these special records represent spanning rectangles. Notice that a spanning rectangle is

intersected by another iso-oriented rectangle in the slab, if and only if their y-coordinates overlap.

Therefore, spanning rectangle intersections have been reduced to a 1-dimensional intersection problem,

and can be solved as follows. First, perform a sort step to eliminate duplicate entries that might have

been created by a left and right representative of the same rectangle. For each spanning and nonspanning

rectangle, two records are created, one corresponding to the y-coordinate of its top edge, and one

corresponding to the y-coordinate of its bottom edge. Sort all of these records together. Use a parallel

prefix operation to count the number of top and bottom spanning rectangle edges preceding every edge.

Use a sort to reunite top and bottom records representing the same rectangle. For every rectangle, four

important pieces of information are now known, namely, the number of top and bottom spanning

rectangle edges that precede each of its two horizontal edges. For every rectangle, if all four pieces of

data are identical then the rectangle is not intersected by a spanning

Page 190

rectangle, while otherwise it is. The rectangles then report back to the representative that created them,

and the spanning rectangles are then discarded.

Next, each processor updates the left and right limits of its slab and the algorithm proceeds recursively.

Since the spanning rectangles are discarded before the recursive call, no rectangle can ever have more

than 2 representatives (and up to 6 spanning rectangle representatives) at any one time. The time of the

algorithm satisfies the recurrence T(n) = Θ(n1/2) + T(n/4). Therefore, the algorithm finishes in the time

claimed. ·

By applying a similar technique, this result can be extended to circles, assuming that each circle is

represented by a record consisting of its center and radius.

Corollary 4.27 Given the descriptions of n or fewer circles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every circle can determine whether or not it is intersected by another
circle.

Consider the problem of determining the area covered by a set of iso-oriented planar rectangles. Notice

that if the set of rectangles were nonintersecting, then this would be trivial. However, such a restriction is

unnecessary. The algorithm presented below is a straightforward adaptation of the algorithm associated

with Theorem 4.26, where at the beginning of each stage of recursion, the spanning rectangles are used

to eliminate portions of the nonspanning rectangles that they intersect.

Theorem 4.28 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time all processors can know the total area covered by the rectangles.

Proof. The algorithm is similar to the algorithm associated with Theorem 4.26. At each stage, when the

spanning rectangles are sent to each slab, they first determine the total measure of the y-axis that they

cover. The total area covered by the spanning rectangles is this measure times the width of the slab. Each

representative of a nonspanning rectangle in the slab now 'eliminates' the portion of itself that overlaps

spanning rectangles. That is, for a given nonspanning rectangle R with top y-coordinate y1 and bottom y-

coordinate y2, the total measure M1
of the y-axis covered by spanning rectangles below y2 and the total

measure M2 of the y-axis covered by spanning rectangles below y1 is determined.

Page 191

Figure 4.12:

'Cutting out' the spanning rectangles from a slab.

The processor responsible for R subtracts M1
from y2 and M2

from y1. Figure 4.12 illustrates this. It has

the effect of 'cutting out' the spanning rectangles and moving everything else down. The algorithms to

determine these measures can be complete in Θ(n1/2) time and are left to the reader. A final semigroup (i.

e., associative binary) operation will determine the total area covered by the rectangles.

In the remainder of this section, results are stated that either follow or are closely related to other results

of this section. For certain packing and layout problems, it is often desirable to know the area of each

rectangle that is covered by other rectangles. An algorithm to solve this problem is quite similar to the

previous algorithm, with the exception being that the recursion takes place within the spanning

rectangles, and the total area covered within the spanning rectangle is recorded, so as to be subtracted

from the area of the spanning rectangle.

Theorem 4.29 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every processor can know the area that its rectangle covers and that is
covered by no other rectangle.

A problem related to some of the rectangle intersection problems just described is that of determining the

maximum number of overlapping

Page 192

rectangles. A solution to this problem can be used to solve the fixed-size rectangle placement problem.
That is, given a set of planar points and a rectangle, determine a placement of the rectangle in the plane

so that the number of points covered by the rectangle is maximal. Optimal mesh algorithms solving these

problems are presented in [LuVa86b]. The results are stated in the Theorem and Corollary that follow.

Theorem 4.30 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every processor can know the maximum number of overlapping
rectangles. ·

Corollary 4.31 Given a set of planar points and a fixed rectangle, distributed one per processor on a
mesh computer of size n, in Θ(n1/2) time a placement of the rectangle in the plane that will cover a
maximal number of points can be determined. ·

By combining the basic technique of multidimensional divide-and-conquer with the use of spanning

rectangles, and using the fact that the spanning rectangles have particularly simple properties, the

following two results are obtained.

Theorem 4.32 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every processor can know a nearest neighboring rectangle to the one
that it contains. ·

Theorem 4.33 Given a total of n or fewer iso-oriented planar rectangles and planar points, distributed
one per processor on a mesh computer of size n, in Θ(n1/2) time every processor containing a point can
determine the number of rectangles containing the point, and every processor containing a rectangle can
determine the number of points contained in the rectangle. ·

A minor modification to Theorem 4.32 will yield an optimal mesh solution to the all-nearest neighbor
problem for circles.

Corollary 4.34 Given n or fewer nonintersecting circles, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time every processor can know the nearest neighboring circle to the one
that it contains. ·

Page 193

Figure 4.13:

Decomposing an orthogonal polygon into iso-oriented rectangles.

Problems in VLSI layout often involve more than iso-oriented rectangles. Frequently the objects that

need to be considered are simple polygons with iso-oriented sides, referred to as orthogonal polygons. It
is quite straightforward to add horizontal line segments which decompose each orthogonal polygon into a

collection of rectangles overlapping only along their edges, where the number of rectangles is less than

the number of initial edges, and where the process takes only Θ(n1/2) time. (See Figure 4.13.) Having

done this, each of the results in Theorems 4.28, 4.29, 4.32, and 4.33 can be extended to orthogonal

polygons, still requiring only Θ(n1/2) time. The only difference is that Theorem 4.32 must be extended to

handle labeled rectangles, finding the nearest neighbor of a different label.

Theorem 4.35 a) Given multiple simple polygons with iso-oriented sides, represented by n or fewer
labeled line segments, distributed one per processor on a mesh computer of size n, in Θ(n1/2) time the
total area covered by the polygons can be determined, a nearest neighbor of each polygon can be
determined, and the area uniquely covered by each polygon can be determined.

 b) Given a total of n or fewer labeled line segments (representing isooriented simple polygons) and
planar points, distributed one per processor on a mesh computer of size n, in Θ(n1/2) time every
processor containing a point can determine the number of polygons containing the point, and every
processor containing a line segment of a polygon can determine the number of points contained in its
polygon.

Page 194

4.10 Voronoi Diagram

The Voronoi diagram is a well known structure in computational geometry that is used to derive efficient

serial solutions to a host of proximity queries, including many of those that have been considered in this

chapter. Given a set S of n planar points, the Voronoi diagram of S is the union of n convex polygons V
(pi), pi ∈ S, where V(pi) is the convex polygon associated with point pi that marks the region of the plane

that is closer to point pi than to any of the other n - 1 points of S. See Figures 4.14 - 4.16. The Voronoi

diagram of S has at most 2n - 5 vertices and at most 3n - 6 edges. In [ShHo75], an optimal Ο(n log n)

serial algorithm is presented to compute the Voronoi diagram of a set of n planar points by a divide-and-

conquer solution. The reader is referred to [PrSh85], and the references contained therein, for an in-depth

examination of Voronoi diagrams, serial algorithms to compute properties of Voronoi diagrams, and

applications of Voronoi diagrams.

4.10.1 Algorithm

In this section, an asymptotically optimal mesh algorithm to compute the Voronoi diagram of a set of

planar points, based on the algorithm described in [JeLe90], is presented. This result is then used in

Section 4.10.2 to give optimal mesh solutions to a number of geometric properties, some of which have

already been solved by other methods in this chapter.

Given a set S of n planar points, if pi, pj ∈ S, then the set of points closer to pi than to pj is just the half-

plane containing pi that is defined by the perpendicular bisector (bisector) of . This half-plane will be

denoted H(pi, pj). The locus of points closer to pi than to any other point, is a convex region, given by V

(pi) = ∩i≠j
 H(pi, pj), which is referred to as the Voronoi polygon associated with pi. As stated previously,

the Voronoi diagram of S is the union of all V(pi), 1 ≤ i ≤ n. See Figure 4.16. The edges of V(pi) are

called Voronoi edges, and the end vertices of such as edge are referred to as Voronoi vertices. Each

Voronoi edge is a continuous portion of the bisector of two points pi, pj ∈ S, denoted B(pi, pj). Given a

directed edge e = B(pi, pj), where bisector point pi lies to the left of e and bisector point pj lies to the right

of e, then pi is called the left bisector point of e and pj is called the right bisector point of e. (Notice that

left and right are in reference to the relationship between the bisector points and the directed edge in the

plane, and have nothing to do with their relationship between the two

Page 195

Figure 4.14:

A set S of planar points.

Figure 4.15:

The Voronoi polygon of a selected point in S.

Page 196

Figure 4.16:

The Voronoi diagram of S, denoted V(S).

Page 197

Figure 4.17:

Subsets L and R of S are linearly separable,

with each set containing half of the points.

Figure 4.18:

The Voronoi diagram of L, denoted V(L).

Page 198

Figure 4.19:

The Voronoi diagram of R, denoted V(R).

Figure 4.20:

The Voronoi diagram of L, the Voronoi diagram of R, and the dividing chain C.

Page 199

Figure 4.21:

The Voronoi diagram of S with the points labeled.

Page 200

bisector points.)

The mesh solution presented in this section is based on a divide-and-conquer paradigm. Consider a

partition of S into two subsets, L and R, where all points of L lie to the left of a separating line, and all

points of R lie to the right of the line, as shown in Figure 4.17. Let C be the collection of Voronoi edges

in V(S) which are determined by polygons representing one point from L and one point from R. Orient C
so that the points in L and R lie to the left and right of C, respectively, as the edges of C are traversed

from bottom up. C will be referred to as the dividing chain of L and R. See Figure 4.20.

A general mesh algorithm for constructing the Voronoi diagram of a set S of n planar points follows.

1. Partition a set S of n planar points into linearly separable sets L and R, each of which has n/2 points,

such that the points of L lie to the left of the points of R.

2. Recursively construct V(L) and V(R). (See Figures 4.18 and 4.19.)

3. Merge V(L) and V(R) into V(S), as follows. (See Figure 4.20.)

(a) Construct C, the dividing chain of L and R, as follows.

i. Determine the set B of edges from V(L) and V(R) that are intersected by C.

ii. Arrange the edges in B by the order in which they are intersected by C.

(b) Discard any unnecessary portions of edges in V(L) and V(R), as determined by C.

The key to the algorithm is the merge step. For each edge e in either V(L) or V(R), it can be decided

whether or not that edge is in B (the set of edges intersected by the dividing chain C) by determining for

each of its end vertices whether it is closer to L or to R. Given an edge e = B(q1, q2) of V(L) with end

vertex v1 that lies in Voronoi region V(qj) of V(R), it can be decided if v1 is closer to L or to R by

comparing the distances d(qj, v1) and d(q1, v1). In order to determine the Voronoi region of V(R) that vl

lies in, the algorithm associated with Corollary 4.19 may be used to determine the Voronoi edge of V(R)
that is directly above v1. This information yields the Voronoi polygon of R that contains v1. This method

can be used so that all Voronoi vertices of L and all Voronoi vertices of R can simultaneously determine

if they are closer to L or to R.

Page 201

Let El and Er be the set of Voronoi edges of V(L) and V(R), respectively. The set of edges E = El ∪ Er can

be partitioned into three sets, as follows.

1. Ell: the set of edges both of whose end vertices are closer to L.

2. Elr,: the set of edges one of whose end vertices is closer to L and the other to R.

3. Err: the set of edges both of whose end vertices are closer to R.

In [JeLe90] it has been shown that for e ∈ El,

• if e ∈ Ell then C does not intersect e,

• if e ∈ Elr then C intersects e exactly once, and

• if e ∈ Err then if C intersects e, it does so twice.

Similarly, for e ∈ Er,

• if e ∈ Err then C does not intersect e,

• if e ∈ Elr then C intersects e exactly once, and

• if e ∈ Ell then if C intersects e, it does so twice.

After identifying the edges B that are intersected by C, they must be sorted by the order in which they

intersect C, as C is traversed from the bottom up. Let Bl be the Voronoi edges of V(L) intersected by C,

and Br be the Voronoi edges of V(R) intersected by C, where B = Bl ∪ Br. For any two edges ei ej ∈ B,
define ei < ej if ei is intersected by C before ej in the sense of traversing C from the bottom up. For each ei

∈ B, the end vertex closer to L is denoted lv(ei) and the end vertex closer to R is denoted rv(ei). Notice

that lv(ei) lies to the left of C, while rv(ei) lies to the right of C.

For the situation where ei ∈ B is intersected twice by C, ei is divided into two parts, ei1 and ei2, such that

each part is i) intersected by C exactly once and ii) has one end vertex closer to L and the other closer to

R. Specifically, ei = B(pj, pk) ∈ Bl ∩ Err is divided into two parts, ei1 and ei2, such that rv(ei1) = lv(ei2) = qi,
where qi is the intersection of B(pj,pk) and the horizontal line passing through pk. Similarly, ei = B(pj, Pk)

∈ Br ∩ Ell is divided into two parts, ei1, and ei2, such that rv(ei1) = lv(ei2) = qi, where qi is the intersection

of B(pj, pk) and the horizontal line passing through pj.

Page 202

Each ei ∈ B is assumed to be directed from lv(ei) to rv(ei). The left and right bisector points of ei are

denoted by lp(ei) and rp(ei), respectively. The dividing chain C intersects a sequence of restricted

Voronoi polygons while crossing edges in B. (The reader is referred to [PrSh85] for details of

constructing C on a serial machine in time linear in the number of edges.) In [JeLe90], it is shown how to

order any two edges ei, ej e B with respect to the order in which they are intersected by C.

Define MINy(e) and MAXy(e) of an edge e ∈ B to be the minimum and maximum y-values of the two

end vertices of e, respectively. Two edges ei and ej are said to be y-disjoint if MINy(ei) > MAXy(ej) or

MINy(ej) > MAXy(ei). Further, ei is said to be left of ej if ei lies totally to the left of the directed line from

lv(ej) to rv(ej) with respect to the direction. The notion of right is defined similarly. If ei and ej are y-

disjoint, then it is easy to order ei and ej since C is monotone with respect to y. However, if ei and ej are

not y-disjoint, then ei and ej can be ordered according to the following. (See Figure 4.22 for intuitive

arguments. The reader is referred to [JeLe90] for details and proof of correctness.)

1. If ei and ej intersect at a point m, then

(a) If both ei and ej are in either Bi or Br, then ei < ej if ei lies to the right of ej, otherwise ej < ei.

(b) If exactly one of ei and ej is in B1, then

i. ei < ej if m is closer to L than to R and lv(ej) lies to the right of ei, otherwise

ii. ei < ej if m is closer to R than to L and lv(ei) lies to the right of ej, otherwise

iii. ej < ei.

2. If ej lies to the left of ei, then

(a) ej < ei if y(rv(ej)) < y(lv(ei)) < y(rv(ei)) or y(lv(ej)) < y(rv(ei)) < y(lv(ei)), otherwise

(b) ei < ej.

3. If ej lies to the right of ei, then

(a) ei < ej if y(lv(ei)) < y(rv(ei)) < y(lv(ej)) or y(rv(ei)) < y(lv(ei)) < y(rv(ej)), otherwise

(b) ej < ei.

Page 203

(a) Examples for the situation where ei and ej intersect at a point m.

(b) Examples for the situation where ej lies to the left of ei.

Page 204

(c) Examples for the situation where ej lies to the right of ei.

Figure 4.22:

Ordering ei and ej with respect to the traversal of C.

Since the set of edges B that are intersected by C can be ordered, the details of the merge step in the

algorithm outlined at the beginning of the section is complete. An optimal Θ(n1/2) time mesh algorithm is

now presented for constructing the Voronoi diagram of a set S of n planar points, initially distributed one

per processor on a mesh of size n. Notice that no step of the algorithm requires more than Θ(n1/2) time.

1. Sort the points of S by x-coordinate. Let L be the set of points in processors P1, P2, . . . , Pn/2, and R be

the set of points in processors Pn/2+1, Pn/2+2, . . . , Pn.

2. Recursively find V(L) and V(R).

3. Merge V(L) and V(R) into V(S) by constructing the dividing chain C and discarding portions of

Voronoi edges in V(L) to the right of C and portions of Voronoi edges in V(R) to the left of C.

(a) Find the set of edges B in V(L) and V(R) that are intersected by C.

i. Use the algorithm associated with Corollary 4.19 to compute for each Voronoi vertex in V(L),
the Voronoi polygon of V(R) that the vertex is contained in. Similarly, for each Voronoi vertex in V
(R), determine the Voronoi polygon of V(L) that the vertex is contained in. Using this information,

determine for each such vertex whether it is closer to L or to R.

Page 205

ii. Based on the discussion preceding this algorithm, determine for each Voronoi edge in V(L) and

V(R) whether or not it is intersected by C. These edges represent the set B.

iii. For the purpose of constructing the dividing chain, conceptually discard edges which lie totally

to the left or totally to the right of C.

(b) Construct the dividing chain C.

i. If the number of edges in B is less than 2, then

A. find the edges of C directly from the starting and terminating bisectors. Notice that the

starting and terminating bisectors correspond to the lower and upper tangent lines, respectively,

between hull(L) and hull(R), and can be determined by applying the algorithm associated with

Theorem 4.1 to L and R. However, as noted in [JeLe90], in general this should not occur, unless

the 11 metric is used as the distance metric.

B. Exit.

ii. Based on the discussion preceding this algorithm, sort the edges in B according to the order in

which they are intersected by C, viewing the traversal of C from bottom up.

A. Let B = {e1,e2, . . . ,ek} be sorted so that e1 < e2 < . . . <ek.

B. Let Ec = {e0'
e1'

, . . . , ek'} denote the set of edges of C such that ei' is immediately above ei

and such that eo' and ek' are the starting and terminating edges of C, respectively.

iii. Find the bisector points for each edge ei, ∈ Ec as follows. (Refer to Figure 4.20.)

A. Compute for each edge ei ∈ Bl, the greatest edge egi < ei, where egi ∈ Br. (The case in which

ei ∈ Br is handled similarly.)

B. If there is no such greatest edge egi, then store the least edge in Br as egi. Record bisector

points lp(ei) and rp(egi) for ei, ∈ Ec.

C. If there is such a greatest edge egi, then record bisector points lp(ei) and lp(egi) for edge ei' ∈
E, since

Page 206

ei', lies in the region V(lp(ei)) of V(L) and V(lp(egi)) of V(R).

iv. Find the end vertices of all edges in Ec and modify, for each edge in B, its end vertices. Each

processor containing an edge ei performs the following.

A. Locate one end vertex ci, which is the intersection of ei and ei'.

B. Obtain the other end vertex from an adjacent processor.

C. Discard the portion of the edges in V(L) and V(R) to the right and left of the dividing chain,

respectively, by replacing the right and left end vertices, respectively, of ei in Bl and Br with ci.

(c) For each Voronoi edge e = B(pi, pj), create two records. One record will have pi as the key and the

other will have pj as the key. Sort all records by key fields so as to create ordered intervals out of the

Voronoi polygons.

Theorem 4.36 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time the Voronoi diagram of S can be constructed.

4.10.2 Applications

Preparata and Shamos [PrSh85] have shown that the Voronoi diagram is useful for solving a number of

proximity problems. They also cite examples from fields such as archaeology, ecology, and molecular

modeling, for which the Voronoi diagram is an end in itself. In this section, optimal mesh solutions to a

number of proximity problems are stated that are based on Theorem 4.36. It should be noted that some of

these problems have been solved directly in previous sections of this chapter.

The first problem, which was previously discussed in Section 4.5 and solved in optimal time on a mesh

by the algorithm associated with Theorem 4.7, is the all-nearest neighbor problem. Given a set S of

points, once V(S) is constructed, every point p ∈ S can find a nearest neighbor by examining the edges of

V(p). This can be done in the required time by performing a semigroup (i.e., associative binary) operation

within ordered intervals. (When the algorithm associated with Theorem 4.36 terminates, the Voronoi

polygon associated with each point is stored in an ordered interval of the mesh.)

Page 207

Corollary 4.37 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the all-nearest neighbor problem for points can be solved in Θ(n1/2) time. ·

A semigroup (i.e., associative binary) operation over the all-nearest neighbor results, gives an

asymptotically optimal algorithm to solve the closest pair problem.

Corollary 4.38 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the closest pair problem for points can be solved in Θ(n1/2) time. ·

Given a set of planar points S, a point p is an extreme point of S if and only if the Voronoi polygon of p
is unbounded. Therefore, given a set S of planar points, the extreme points of S that represent hull(S) can

be detected by constructing the Voronoi diagram of S and then using a concurrent read within ordered

intervals to detect for each point p ∈ S whether or not V(p) is bounded (c.f., the algorithm associated with

Theorem 4.15).

Corollary 4.39 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, the extreme points of S can be identified in Θ(n1/2) time. ·

The straight line dual of the Voronoi diagram is important for a number of applications. This diagram,

called the Delaunay diagram, represents the graph embedded in the plane obtained by adding a straight-

line segment between each pair of points of S whose Voronoi polygons share an edge. Notice that the

diagram may be unusual in that an edge and its dual do not necessarily intersect. One immediate property

of the Delaunay diagram is that it gives a triangulation of S.

Corollary 4.40 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time the Delaunay triangulation of S can be determined. ·

In Section 4.5, a nonoptimal mesh solution to the minimal-distance spanning tree problem for planar

point data was mentioned, referring the reader to this section for an optimal solution. Given a collection S

of planar points, a spanning tree can be constructed by using the points

Page 208

as vertices and straight lines between them as edges. A minimal-distance spanning tree is a spanning tree

of S which minimizes the sum of the Euclidean lengths of the tree edges. A minimal-distance spanning

tree of a set of planar points may be constructed in Θ(n1/2) time on a mesh by constructing the Delaunay

diagram in Θ(n1/2) time, and then applying the Θ(n1/2) time minimum-weight spanning tree algorithm for

graphs appearing in [ReSt].

Corollary 4.41 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, in Θ(n1/2) time a minimal-distance spanning tree can be constructed. ·

In the remainder of this section, problems are discussed that have not been previously mentioned in this

chapter. Given two sets of planar points, S1 and S2, a solution to the all-nearest neighbor between two

sets problem requires finding i) for every point pi ∈ S1, a nearest neighboring point in S2, and ii) for every

point P2 ∈ S2, a nearest neighboring point in S1. This problem is simply solved by constructing V(S1) and

V(S2), and then using the algorithm associated with Corollary 4.19 to find, for every point, the Voronoi

polygon of the other set that it resides in.

Corollary 4.42 Given n or fewer planar points representing sets S1 and S2, distributed one per processor

on a mesh computer of size n, in Θ(n1/2) time the all-nearest neighbor between two sets problem can be
solved. ·

Given a set S of planar points, a largest empty circle in S is a largest circle with the properties that i) its

center is internal to hull(S) and ii) it contains no points of S in its interior. It can be shown that the center

of a largest empty circle in S lies either at a Voronoi vertex of S or at the intersection of a Voronoi edge

and an edge of hull(S). Computing the largest empty circle centered at a Voronoi vertex of S is

straightforward, as is computing the largest empty circle for a point that lies along a Voronoi edge. Once

the result is known for each such possible center, a simple semigroup (i.e., associative binary) operation

determines the global largest. The challenge to this problem is finding the points of intersection between

the Voronoi edges and the edges of the convex hull of S. It should be noted that a Voronoi edge may

intersect at most 2 hull edges, whereas an edge on hull(S) may intersect multiple Voronoi edges. A

solution to this intersection problem is similar to other intersection algorithms presented previously in

this chapter, and is left to the reader.

Page 209

Corollary 4.43 Given a set n or fewer planar points, distributed one per processor on a mesh computer
of size n, in Θ(n1/2) time the largest empty circle problem can be solved. ·

Additional problems can be solved by first constructing the Voronoi diagram of a set of points. The

reader is referred to [PrSh85, PrLe84, Tous80], and the references contained therein, for a discussion of

such problems. Solutions to some of these problems require constructing generalized Voronoi diagrams

or farthest-neighbor Voronoi diagrams. The properties of the (nearest-neighbor) Voronoi diagram are

similar enough to those of the farthest-neighbor Voronoi diagram, so that the farthest-neighbor Voronoi

diagram can be constructed in asymptotically optimal time on a mesh by an algorithm similar to the one

described in the previous section [JeLe90].

For instance, given a set S of n planar points, distributed one per processor on a mesh computer of size n,
once the farthest-neighbor Voronoi diagram, denoted FVor(S), is constructed in Θ(n1/2) time, a Θ(n1/2)

time solution to the all-farthest neighbor problem is immediate.

Corollary 4.44 Given a set of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time the all-farthest neighbor problem can be solved. ·

In addition, once FVor(S) is constructed, the smallest enclosing circle of S can be determined in Θ(n1/2)
time [JeLe90].

Corollary 4.45 Given a set S of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in Θ(n1/2) time the smallest enclosing circle of S can be determined. ·

4.11 Further

Remarks

In the early 1980's, efficient parallel algorithms to solve convex hull problems involving point data began

to appear [Akl83, Chow81, NMB81]. In 1984, Miller and Stout [MiSt84b] published a paper that

included efficient parallel algorithms to solve several problems involving geometric properties and

distances on a mesh computer, and Chazelle [Chaz84] published a paper that gave efficient algorithms to

solve some distance

Page 210

and intersection problems on a 1-dimensional systolic computer. Subsequently, efficient parallel

algorithms have been presented to solve additional problems on a variety of models [ACGO88, AkLy93,

ADMR94, AtGo86a, Dehn86a, JeLe90, LuVa85, MiSt88b, MiSt89a].

Given n or fewer planar points, distributed one per processor on a mesh computer of size n, algorithms

were presented in this chapter to determine a number of formal geometric structures in Θ(n1/2) time.

Since it takes Ω(n1/2) time for data to travel across a mesh computer of size n, all of the algorithms have

optimal worst-case running times and are significantly faster than the Ω(n) time required for a serial

computer to process Ο(n) pieces of data. (In fact, many of these problems require Ω(nlog n) time on a

serial computer.)

The algorithms presented in this chapter employ different approaches to solving geometric problems than

those that have been explored for these problems on a serial computer. A variety of general techniques

have been presented for the mesh computer, including multidimensional divide-and-conquer and

grouping operations to solve parallel search problems. These techniques should be applicable to

constructing efficient solutions to a wide variety of problems.

There may be situations in which the algorithms presented in this chapter can be slightly modified to

produce even faster solutions to problems. For instance, when multiple sets of objects exist, each initially

stored in a subsquare of size no more than D, then solutions to many of the problems addressed in this

chapter may be extended so that the necessary result can be determined simultaneously for all such

objects in Θ(D1/2) time.

In this chapter, the concentration was on 2-dimensional meshes, since they are the ones most commonly

built. A j-dimensional mesh of size n (where n is the jth power of some integer) has n processors arranged

in a j-dimensional cubic lattice. Processors are connected if and only if

. That is, a generic processor in a j-dimensional mesh has 2j neighbors. In the Ο-

notational analyses of algorithms for j-dimensional meshes, it makes sense to consider j as fixed. That is,

there is no differentiation between a step needing a constant amount of time and one needing 2j units of

time. The reason for this is that a processor in a j-dimensional mesh is fundamentally different from one

in a k-dimensional mesh when j ≠ k, since they have a different number of communication links.

A proximity ordering can be defined for a j-dimensional mesh, and all of the data movement operations

described in Section 4.2.3 can be

Page 211

extended to run in Θ(n1/j) time, which again is optimal. Therefore, all of the optimal 2-dimensional mesh

algorithms written solely in terms of these data movement operations yield asymptotically optimal Θ(n1/j)

time j-dimensional mesh algorithms. For a few algorithms, values of constants were chosen to make the

recurrence yield the desired result. For j-dimensional mesh algorithms, these constants need to be chosen

as a function of j. For example, in Theorem 4.7, for 2-dimensional meshes, 5 slabs were used in each

direction, while for j-dimensional meshes, at least 1 + 2j slabs should be used in each direction.

A number of algorithms given in this chapter exploit Bentley's [Bent80] paradigm of multidimensional
divide-and-conquer. The mesh algorithms presenter in this chapter were careful to avoid possible pitfalls

that exist when multidimensional divide-and-conquer is used naively on a parallel machine. The results

presented in this chapter demonstrate that multidimensional divide-and-conquer can be applied more

simply on mesh computers to solve geometric problems involving points than it can be to solve

geometric problems involving polygonal figures. case in this chapter. A point p is said to dominate a

point q if and only if the x and y coordinates of p are greater than the respective x and y coordinates of q.
(This definition can be naturally extended to higher dimensional data.) By applying a straightforward

multidimensional divide-and-conquer technique to n or fewer points on a j-dimensional mesh of size n,
dominance problems can be solved in optimal Θ(n1/j) time. Such problems include determining for every

point how many other points it dominates, and finding for every point whether or not it is a maxima (i.e.,

not dominated by any point). Serial algorithms for these problems appear in [Bent80] and optimal 2-

dimensional mesh algorithms appear in [Dehn86a].

A variety of visibility problems can also be solved in asymptotically optimal time on a mesh computer by

exploiting multidimensional divide-and-conquer. The parallel visibility problem for line segments can be

defined as follows. Given a set of n or fewer line segments and a light source located at infinity which

emits rays parallel to a given direction r, determine the portion of each line segment that is illuminated.

Given one line segment per processor on a mesh of size n, partition the mesh into two submeshes, each

of size n/2, and solve the visibility problem recursively for each of the two sets of line segments. The

problem has now been reduced from a two dimensional problem to a one dimensional problem, in that

the solution for each set is in the form of maximal disjoint intervals with respect to a line at infinity

perpendicular to r, where each interval represents a portion of a line segment visible from

Page 212

the light source or the fact that none of the line segments in the set are visible in the interval. A simple

one dimensional merge operation involving intervals of line segments completes the solution. In addition

to parallel visibility, problems involving perspective visibility (i.e., given a source q, determine all points

p such that does not intersect any object in the set) can also be solved in optimal time on a mesh.

Details of visibility algorithms for line segments and simple polygons can be found in [Dehn87, Lu88].

Other problems can be solved in asymptotically optimal time on a mesh computer by exploiting

multidimensional divide-and-conquer to reduce the problem to the same problem in lower dimensions,

such as deciding which iso-oriented boxes are intersected be others. Some algorithms can be extended in

a natural fashion to derive optimal algorithms for higher dimensional data, even though they do not use

multidimensional divide-and-conquer. For example, for any fixed dimension j, the all-nearest neighbor

problem for points can be solved in Θ(n1/j) time on a j-dimensional mesh by using a straightforward

extension of the algorithm associated with Theorem 4.7. For a few problems, such as finding the convex

hull, it should be possible to extend to 3-dimensional data in the same time bounds. (In fact, an optimal

algorithm is presented in [ADMR94] for solving the 3-dimensional convex hull problem on a 2-

dimensional mesh computer.) However, many of the remaining problems seem to either require too

much data movement, or the generation of too much data, when the dimension of the input increases. For

example, it is known that the convex hull of n points in d-dimensional space may have faces,

so for d ≥ 4, any algorithm which generates and keeps all the faces will need Ω(nd/2) processors to store

them, or else the memory available in each processor must be increased.

Page 213

5

Tree-like Pyramid Algorithms

5.1 Introduction

Pyramid-like parallel computers have long been proposed for performing high-speed low-level image

processing [Dyer8la, Dyer8lb, Dyer82, MiSt84c, MiSt85c, Rose84, Stou82c, Stou83c, Tani81, Tani82a,

TaK180, Uhr72, Uhr84], and a variety of such machines have been constructed [Buva87, CFLS85,

ClMe87, FKLV83, Scha85, SHBV87, Tani82a]. The pyramid has a simple geometry that adapts

naturally to many types of problems, and which may have ties to human vision processing. Furthermore,

the pyramid can be projected into a regular pattern in the plane, which makes it ideal for VLSI

implementation [Dyer81a].

The interconnection topology of the pyramid computer consists of a combination of tree and mesh

connections, as outlined in Section 1.2.4. In Chapters 2-4, a variety of efficient mesh algorithms were

presented. Notice that such algorithms can run directly on the base mesh of a pyramid. In contrast, in this

chapter, pyramid algorithms are presented that use predominantly the child-parent links of the pyramid in

order to obtain running times that are poly-logarithmic (i.e., that run in Ο(logc n) time, for c a constant) in

the number of processors. In Chapter 6, pyramid algorithms will be given that exploit the pyramid's

combination of tree and mesh connections by combining tree and mesh algorithms to give efficient

solutions to a variety of problems in image processing, graph theory, and digital geometry when the input

is a digitized picture, adjacency/weight matrix, or a set of unordered edges that represent a graph.

A review of the pyramid computer is presented in Section 5.2. The focus of Section 5.3 is on lower

bounds for problems on the pyramid. At the beginning of Section 5.4, an algorithm is presented that

shows how to initialize the identity registers of all processors in the pyramid in time proportional to the

height of the pyramid. The remainder of Section 5.4 concentrates on several standard (quad) tree-type

algorithms, where the input is either a digitized black/white picture or a set of values, initially distributed

one element per base processor.

In Section 5.5, algorithms are presented that are concerned with convexity properties of a given set of

base processors. In Section 5.5.1, convexity algorithms are presented that range in running times from

Page 214

Θ(log n) to decide whether or not a digitized figure is convex and to enumerate the extreme points of a

convex figure, to Θ(log2 n/log log n) to enumerate the extreme points of a (not necessarily convex) set of

base processors. In Section 5.5.1, it is also shown that the extreme points of a figure can be used to solve

problems such as determining whether or not two figures are linearly separable, as well as determining a

smallest enclosing box, the smallest enclosing circle, and the diameter of a given set of base processors.

In Section 5.5.2, some results from digital geometry are combined with convexity algorithms from

Section 5.5.1 to show that it is possible to determine in Θ(log n) time whether or not a digitized n1/2 × n1/2

black/white figure could have arisen as the digitization of a straight line segment.

5.2 Definitions

As a convenience, this section reviews the definition of a pyramid computer from Section 1.2.4. A

pyramid computer (pyramid) of size n is a machine that can be viewed as a full, rooted, 4-ary tree of

height log4 n, with additional horizontal links so that each horizontal level is a mesh. A pyramid of size n
has at its base a mesh of size n, and a total of 4/3n-1/3 processors. The levels are numbered so that the base

is level 0 and the apex is level log4 n. A processor at level i is connected via bidirectional unit-time

communication links to its 9 neighbors (assuming they exist): 4 siblings at level i, 4 children at level i -
1, and a parent at level i + 1. (A sample pyramid is given in Figure 5.1.) It is assumed that each processor

has a fixed number of words (registers), each of length Θ(log n), and that all arithmetic, Boolean, and

communication operations with a neighbor take unit time. Each processor contains registers with its

level, row, and column coordinates, the concatenation of which are in the processor identification

register. (In Section 5.4.1, an algorithm is given that shows how to initialize these registers in Θ(log n)

time.)

5.3 Lower Bounds

A pyramid computer of size n has a communication diameter of Θ(log n), meaning that any two

processors can exchange messages in Ο(log n) time, by communicating via the apex, and some pairs of

processors, such as those at opposite corners of the base mesh, require Ω(log n) time to exchange

messages. This gives a worst-case lower bound of Ω(log n) time on any problem that may require

information to be exchanged between

Page 215

Figure 5.1:

A pyramid computer of size 16.

Page 216

arbitrary processors. For problems such as counting the number of black pixels in the base, computing a

semigroup operation (i.e., an associative binary operation such as minimum, summation, or parity) over a

set of values stored in the base, determining certain convexity properties of a digitized figure, or deciding

whether or not a digitized picture could have arisen as the digitization of a straight line segment,

algorithms will be presented later in this chapter that finish in Θ(log n) time.

However, in order to sort data that initially resides one item per base processor, Ω(n1/2) time is required

in the worst case. This can be seen by using a wire-counting argument that compares the number of wires

that cross the middle of the pyramid with the number of items that potentially must move from one half

of the pyramid to the other. In the base of the pyramid there are n1/2 wires that cross the middle of the

pyramid, in the next level there are such wires, and so on, giving the total number of wires that cross

the middle of a pyramid of size n to be , which is 2n1/2 - 2. Since all n pieces of data that

initially reside in the base of the pyramid may need to cross from one side of the base mesh to the other,

then time units, or Ω(n1/2) time is required just to get the data across the middle of the pyramid.

This bound applies to many other problems, including most problems in computational geometry for

which the input is a collection of points arbitrarily distributed one per processor in the base. Since the

base mesh alone can sort in Θ(n1/2) time, as described in Section 2.6.1, the pyramid computer is a poor

choice for problems involving extensive data movement.

For problems considered in this chapter, poly-logarithmic running times are attainable. However, for

many of the problems considered in Chapter 6, neither the Ω(log n) nor the Ω(n1/2) bounds are

appropriate. In fact, for the problems considered in Chapter 6, the logarithmic bound is still true, but

overly optimistic, while the Ω(n1/2) bound does not apply because not as much data needs to be moved. It

will be shown in Chapter 6 that by exploiting properties of image data, many geometric problems for

multiple figures can be solved in time approximately proportional to n1/4.

5.4 Fundamental Algorithms

In this section, several fundamental pyramid computer algorithms are presented. These, and other tree-

like pyramid algorithms, may be found

Page 217

in [AhSw84, DWR81, Dyer79, Dyer80, Mill85a, Tani75, Tani76].

5.4.1 Initializing Identity Registers

In this section, a Θ(log n) time algorithm is presented to initialize the identity registers of all processors

in a pyramid computer of size n. Initially, it is assumed that the processors do not know any of the

dimensions of the pyramid, including the number of levels in the pyramid, the size of the base mesh, or

their mesh level with respect to the pyramid. However, the assumption is made that those processors in

the base of the pyramid can detect that they are base processors, by querying for nonexistent children,

and that the processor at the apex of the pyramid can detect that it is the apex, by querying for a

nonexistent parent.

The algorithm, as given in Figure 5.2, proceeds in two phases. During Phase 1, level information is

propagated from the base towards the apex so that every processor can determine its mesh level within

the pyramid. During Phase 2, the information flows through the pyramid from the apex to the base in

order to allow every processor to determine its row and column coordinates with respect to its mesh level.

After completing both phases of the algorithm, every processor will know its correct row, column, and

level coordinates. Recall that every processor can perform a fixed number of arithmetic and Boolean

operations, as well as send or receive a fixed number of words from each of its nine neighbors, all in Θ

(1) time. Therefore, step 1 of Phase 1 and steps 1 and 2 of Phase 2, can be performed in Θ(1) time. Every

iteration of the loop in step 3 of Phase 1, and every iteration of the loop in step 3 of Phase 2, can also be

performed in Θ(1) time. Since both phases of the algorithm require a constant amount of work per

pyramid level, and since there are log4(n) + 1 levels in the pyramid, then each of the two phases of the

algorithm requires Θ(log n) time. Hence, the algorithm terminates after every processor has the required

information, which takes Θ(log n) time. Note that Phase 1 and Phase 2 may be performed simultaneously

since they are independent.

Proposition 5.1 The identity registers of all processors of a pyramid computer of size n can be initialized
in Θ(log n) time. ·

5.4.2 Bit Counting Problems

In this section, it is assumed that a digitized black/white picture is initially stored one pixel per processor

in the base of the pyramid. The

Page 218

Phase 1

1. Every base processor sets its level register to 0.

2. While the apex has not determined its level do:

(a) Every processor that just initialized its level register sends the value of level
to its parent.

(b) Every processor receiving 4 identical values from its children, call them

clevel, sets its level←clevel+1.

Phase 2

1. The apex initializes (row, column) to (0,0).

2. The apex informs

(a) its northwest child that its (row, column) is (0,0),

(b) its northeast child that its (row, column) is (0,1),

(c) its southwest child that its (row, column) is (1,0), and

(d) its southeast child that its (row, column) is (1,1).

3. While the base processors are uninitialized do:

Every processor that just received its (row, column) coordinates, informs

its children as to their (row, column) coordinates, as follows.

(a) northwest child: (2 * row - 1, 2 * column - 1)

(b) northeast child: (2 * row - 1, 2 * column)

(c) southwest child: (2 * row, 2 * column - 1)

(d) southeast child: (2 * row, 2 * column)

Figure 5.2:

Initializing the identity registers.

Page 219

interpretation is that the picture represents a single black figure on a white background. The area of the

figure, that is, the number of black pixels in the figure, can be determined in Θ(log n) time. During the

first stage of the algorithm, every processor at level 1 obtains the values of the pixels stored in its four

children (these children are base processors) and computes the number of these that are black, storing the

result in register local_count. So, at the end of stage 1, every processor at level 1 will know the number

of black pixels that exist in base of the subpyramid under it. At stage i, every processor at level i- 1 sends

local_count to its parent. Every processor P at level i adds the 4 values sent from its children, which

gives the total number of black pixels in the base of the subpyramid under P, and stores this value in

local_count. At the conclusion of stage log4 n, the apex knows the total number of black pixels in the

entire base. Since each of the log4 n stages requires constant computation time, the algorithm runs in Θ

(log n) time.

Proposition 5.2 Given a digitized black/white picture, stored one pixel per base processor, in Θ(log n)
time all processors of a pyramid computer of size n can know the area of the digitized picture.

Proof. As just described, in Θ(log n) time the apex of the pyramid can know the area (number of black

pixels) of the digitized picture. Further, any piece of information stored in the apex can be sent to all

processors of the pyramid in Θ(log n) time (starting with the apex and moving down to the base, at each

stage a parent distributes the information obtained during the previous stage to its four children). ·

A number of additional queries for binary input, including majority, equality, and parity, can be

answered in Θ(log n) time by a straightforward bottom-up counting procedure, as just described.

Proposition 5.3 Given a digitized black/white picture, stored one pixel per base processor, in Θ(log n)
time all processors of a pyramid computer of size n can know the answers to the following queries.

1. Majority - Are there more black pixels than white pixels in the picture?

2. Equality - Are the number of black and white pixels in the picture the same?

3. Parity - Are there an odd number of black pixels in the picture?

Page 220

Proof. From Proposition 5.2, in Θ(log n) time the apex can know the number of black (and similarly

white) pixels present in the digitized black/white picture that resides in the base of a pyramid computer

of size n. In (1) additional units of time, the apex can then answer the majority, equality, and parity

queries. Finally, the apex can pass the answers down through the pyramid to every processor in Θ(log n)

time.

Given an arbitrary connected planar graph G, with v vertices and e edges, the number of regions,

including the unbounded region, is given by the topologically invariant Euler number Θ(G) = e - v + 2.

Given a single arbitrary digitized black figure (i.e., connected component) F on a white background,

Minsky and Papert [MiPa69] showed that the Euler number of F can be computed by determining the

cardinality of four sets of pixels, and then computing a fixed number of arithmetic operations on these

values. Specifically, they showed that for a given figure F, Θ(F) = C1 - C2 - C3 + C4, where C1
is the

number of black pixels, C2 is the number of black pixels for which the eastern neighboring pixel is black,

C3
is the number of black pixels for which the southern neighboring pixel is black, and C4 is the number

of black pixels for which the eastern, southern, and southeastern neighboring pixels are black.

A pyramid algorithm follows.

1. In constant time, every base processor of a pyramid of size n determines which, if any, of the four sets

its pixel is a member of.

2. For i := 1 to log4 n do,

(a) Every processor at level i obtains the running sum of the cardinality of the four sets of pixels from

each of its four children at level i - 1.

(b) Every processor at level i sums the four values associated with each set, compressing the 16 pieces

of data just received down to 4 pieces of data (1 piece of data for each of the four sets).

(c) Comment: At this point, every processor at level i knows the values of C1, C2, C3, and C4, with

respect to the base processors in its subpyramid.

3. The apex of the pyramid computes Θ(F) = C1
- C2 - C3

+ C4.

4. Θ(F) is broadcast from the apex to all processors of the pyramid in a straightforward top-down fashion.

Page 221

During the algorithm, notice that no processor ever needs more than a fixed number of registers, each of

size Θ(log n). Steps 1 and 3 each require Θ(1) time. Step 4 requires Θ(log n) time. Each of the Θ(log n)

stages of step 2 require a fixed amount of computation time. Therefore, the Euler number of a single

figure stored in the base of a pyramid can be computed and distributed to all processors of the pyramid of

size n in Θ(log n) time.

Proposition 5.4 Given a digitized black/white picture containing a single figure (i.e., connected
component), stored one pixel per base processor, in Θ(log n) time all processors of a pyramid computer
of size n can know the Euler number of the figure. ·

5.4.3 Computing Commutative Associative Binary Functions

Assume that every processor Pi in the base of a pyramid of size n contains a, not necessarily unique,

value vi. Suppose that there exists a commutative, associative, binary operation a defined on these values

and that α(v1, . . . , vn) is to be determined. (Common examples of a are minimum, maximum, and

summation.) Notice that all processors can know the result of applying α to these values in Θ(log n) time

by combining the results, with respect to α, from the base to the apex in Θ(log n) time, and then

distributing the result from the apex down to all processors in Θ(log n) time. For example, the bit-

counting algorithms of Section 5.4.2 correspond to the situation where a base processor with a black

pixel has a 1, a base processor with a white pixel has a 0, and α is defined to be addition (+).

Proposition 5.5 Given that the processors in the base of a pyramid each contain a value, and that a
commutative, associative, binary operation a can be computed in Θ(1) time, then in Θ(log n) time all
processors of a pyramid computer of size n can know the result of applying a over all of these base
values. ·

5.4.4 Point Queries

Assume that every processor in the base of the pyramid contains a value (e.g., black or white for a

digitized picture, a component label, or an integer value) and that the apex contains the coordinates of

some base

Page 222

processor. Then in Θ(log n) time, numerous queries about the value contained in this base processor can

be answered. Briefly, this is done by first informing all base processors as to the coordinates of the query

point, and then using a bottom-up merging algorithm to obtain the desired result in Θ(log n) time.

Certain queries may actually require a fixed number of applications of this top-down, bottom-up

procedure. For instance, suppose that every base processor contains a, not necessarily unique, label, and

that it is necessary to determine a nearest distinctly labeled processor to the query point (the coordinates

of which are known to the apex of the pyramid). An efficient Θ(log n) time algorithm to solve this

nearest-neighbor query on a pyramid of size n follows.

1. Use a standard Θ(log n) time top-down algorithm to inform all base processors as to the coordinates of

the query point.

2. Use a standard Θ(log n) time bottom-up algorithm to send the label of the query point to the apex.

3. Use a standard Θ(log n) time top-down algorithm to propagate this label down to all base processors.

4. Every base processor Pi, j
 creates a distance record (dist, i, j), where dist is the distance to the query

point, if the query point has a different label, or else it is set to ∞.

5. Now the minimum distance is determined in Θ(log n) time using a nearly standard bottom-up

computing algorithm, where the minimum is taken over the first field in these distance records, with ties

broken arbitrarily. (Notice that while the minimum distance to a distinctly labeled processor is unique,

there may be more than one processor at this distance. In the case of multiple nearest processors, this

algorithm chooses one arbitrarily.)

Therefore, in Θ(log n) time the apex of the pyramid knows a closest distinctly labeled point to the query

point.

5.5 Image Algorithms

In this section, algorithms that use predominantly the child-parent links of the pyramid are presented to

detect geometric properties of sets of base processors or digitized pictures that are stored in the base of

the

Page 223

pyramid. These algorithms solve problems such as enumerating the extreme points of a set of base

processors, deciding whether or not a given figure is convex, deciding whether or not two labeled sets of

base processors are linearly separable, and deciding whether or not a given figure could have arisen as

the digitization of a straight line segment. In Chapter 6, specifically in Sections 6.4 and 6.5, additional

pyramid algorithms are presented in conjunction with sophisticated data movement operations to provide

efficient solutions to problems involving multiple figures, such as labeling figures, determining a nearest

distinctly labeled figure for each figure, and solving a variety of convexity problems.

5.5.1 Convexity Properties

As discussed in Section 1.4.2, for problems involving convexity, the base processor at position (i, j) is

identified with the integer lattice point (i, j), and a set of base processors is said to be convex if and only

if the corresponding set of integer lattice points is convex, i.e., the smallest convex polygon containing

them contains no other integer lattice points. This is the proper notion of convexity for integer lattice

points, but it does have the annoying property that some disconnected sets of points, such as {(1, 1), (3,

4)}, are convex.

Given a set S of base processors, the convex hull of S, denoted hull(S), is the smallest convex set of

(base) processors that includes S. A processor P ∈ S is defined to be an extreme point of S if and only if

P ∉ hull(S - {P}). That is, the extreme points of S are the corners of the smallest convex polygon

containing S. It is said that the extreme points of S have been marked if every processor P in the base of

the pyramid has a Boolean variable that is true if and only if P is an extreme point of S. It is said that the

extreme points of S have been enumerated if for every (base) processor Pi containing a point p ∈ S, the

following hold. (See Figure 5.3.)

1. Pi has a Boolean variable 'extreme', and extreme is true if and only if p is an extreme point of S.

2. Pi stores the total number of extreme points of hull(S).

3. If p is an extreme point of S, then Pi stores the position of p in the counterclockwise ordering of

extreme points. (The rightmost extreme point is assigned the number 1. If there are two rightmost

extreme points, then the lower one is assigned the number 1.)

Page 224

Figure 5.3:

Enumerated extreme points of S.

4. If p is an extreme point of S, then Pi stores the Cartesian coordinates of the extreme points that precede

and succeed p, as well as the ID of the processors that contain them.

In this section, the input at the base of the pyramid consists of either a single digitized black figure on a

white background (i.e., there is exactly one connected component in the base) or a set of consistently

labeled processors (i.e., all base processors that contain a label, contain the same label). Before solving

some general convexity problems for single figures, a useful lemma is presented. The algorithm

associated with this lemma shows how to enumerate a marked set of extreme points in Θ(log n) time.

The algorithm works by using standard bottom-up and top-down tree-like operations, as described

previously in Section 5.4. Initially, the set of (at most) 8 perimeter partition points is determined, as

shown in Figure 5.4. After every processor determines the number of

Page 225

extreme points in the base of its subpyramid in each of the eight triangular regions, the apex will

recursively propagate intervals of numbers to children corresponding to the numbers that will be used in

enumerating the extreme points of that child's base processors.

Lemma 5.6 In a pyramid computer of size n, suppose the extreme points of a set S of base processors
have been marked. Then the extreme points of S can be enumerated in Θ(log n) time.

Proof. The algorithm requires that the processors determine certain basic information, as follows.

1. By using a bottom-up report, followed by a top-down broadcast operation, in 2log4 n steps all

processors in the pyramid computer can know

(a) the total number of extreme points, and

(b) the coordinates of the rightmost-bottommost, rightmost-topmost, topmost-rightmost, topmost-

leftmost, leftmost-topmost, leftmost-bottommost, bottommost-leftmost, and bottommost-rightmost

extreme points, as shown in Figure 5.4.

2. In 2log4 n steps, every processor in the pyramid can know the total numbers of extreme points of S in

the base of its subpyramid that are in each of these 8 regions. Notice that the boundaries of these

(possibly degenerate) triangular regions may be generated in unit-time by every processor of the pyramid

once they are informed as to the locations of these 8 points.

Once this information has been determined, the extreme points of S can be labeled in Θ(log n) steps by

having the apex recursively distribute ranges of the numbers to its children for each of the eight regions.

Distributing the proper numbers to the children is straightforward since the extreme points represent a

convex polygon. Notice that within each region, this is a prefix computation.

It only remains to show that each every processor containing an extreme point of S can determine the

location of the preceding and succeeding extreme points of S in Θ(log n) steps. During the numbering

process, as every processor passes ranges of numbers to its children, it also determines if any of its

children are responsible for extreme points that have a preceding or succeeding extreme point in another

one of its

Page 226

Figure 5.4:

The 8 perimeter points consist of the rightmost-bottommost, rightmost-topmost,

topmost-rightmost, topmost-leftmost, leftmost-topmost, leftmost-bottommost,

bottommost-leftmost, and bottommost-rightmost extreme points. These points

 partition the set of extreme points into 8 'triangular regions', which are labeled

1, 2,. . . , 8. Four of these regions (i.e., 1, 3, 5, and 7) are necessarily degenerate,

while the remaining four (i.e., 2, 4, 6, and 8) might contain additional extreme points.

Page 227

children. For each such case, the processor creates a neighbor record, which consists of the numbers of

the extreme points involved, as well as the identity of the processor creating the record. When the

numbering phase of the algorithm terminates, these neighbor records are sent down to the base in

lockstep fashion. When a base processor receives a neighbor record, it is examined to determine if either

of the numbers in the record correspond to its extreme point number. If there is a match, then the location

of the extreme point is appended to the record, and the record is sent back up to the processor that

generated it, while otherwise the record is discarded. Finally, the neighboring information is sent down to

the base in lockstep fashion so that every base processor in S knows its number, as well as the location of

its predecessor and successor.

The algorithm requires a fixed number of Θ(log n) time top-down and bottom-up tree-like operations.

Therefore, the running time of the algorithm is Θ(log n).

The next problem considered is that of enumerating the extreme points of a convex set of base

processors. This is important in many processing applications that require a compact description of a

single convex figure for storage or transmission purposes.

Before giving the result for enumerating the extreme points of a single convex figure, a simple technical

lemma is presented. The lemma is concerned with the fact that it is possible to take a digitized convex

figure, divide it into two parts by a straight line parallel to one of the grid axes, and have points which are

extreme points of the parts but not of the entire figure. An important consequence of the following

lemma is that there are only Ο(log n) such points.

Lemma 5.7 Given a convex figure F on a grid, suppose the grid is divided vertically in half and the
extreme points of the restriction of F to the right half are determined. Suppose p and q are extreme
points of the upper envelope of the righthand portion. Further, suppose p and q are not extreme points of
F, and that q is further from the dividing line than is p. Then q is more than twice as far from the
dividing line as p is.

Proof. Consider a convex figure F partitioned into two pieces, Fl and Fr, by a vertical line, where F1
lies

to the left of Fr. Let e and w be an easternmost and westernmost point, respectively, of Fr. Without loss

of generality, let p = (px, py) and q = (qx, qy) be extreme points of Fr that are on or above the line .
Further, assume p and q are not extreme

Page 228

points of F. Then the line segment L from q, passing through p, and continuing on to the dividing line,

lies in the convex hull of F when viewed as a figure in the real plane (rather than just on the grid). If q

were less than twice p's distance to the dividing line, then the grid point r = (2px - qx, 2py - qy) would lie

on L and be on the same side of the dividing line as p and q. This means that r would be in F and, in fact,

in Fr. However, since p is halfway between q and r, this contradicts the assumption that p is an extreme

point of Fr. ·

The result that follows shows that the extreme points of a single convex set S of base processors can be

enumerated efficiently on a pyramid computer. The algorithm first marks the extreme points and then

uses the algorithm associated with Lemma 5.6 to enumerate them. Notice that given a pair of adjacent

subsquares in the base, there are at most two places along the border between the subsquares where

elements of the convex set S need to be considered when combining these subsquares. Unfortunately, if a

straightforward bottom-up divide-and-conquer algorithm is used, Lemma 5.7 shows that in the worst

case there are a logarithmic number of extreme points near the border of adjacent subsquares that need to

be eliminated. While it may be possible to work out the details of such an algorithm, an interesting

recursive bottom-up divide-and-conquer algorithm will be presented instead that has no such

complications. Unlike previous algorithms presented in this chapter that rely predominantly on the child-

parent links of the pyramid, the marking algorithm presented below takes advantage of the mesh

connections in levels above the base in order to allow the apices over neighboring subsquares in the base

to exchange information.

Theorem 5.8 In a pyramid computer of size n, suppose the base processors with a given label form a
convex set S. Then in Θ(log n) time the extreme points of S can be enumerated.

Proof. The algorithm proceeds in two phases. The first phase of the algorithm will mark the extreme

points of S, and the second phase of the algorithm will enumerate them by applying the algorithm

associated with Lemma 5.6. Therefore, only the details of the first phase need to be presented.

The algorithm for marking extreme points works in a bottom-up fashion, where at step k, 0 ≤ k ≤ log4 n,
decisions regarding extreme points are made by processors at level k. Consider the processors at level k
in the pyramid. These are the apices of disjoint subpyramids with bases of size 2k × 2k. Call the base of

each of these disjoint subpyramids a subsquare. At the end of step k, suppose that

Page 229

1. in each 2k × 2k subsquare, those points that are not extreme points of the restriction of the figure to

their subsquare have been marked as not being extreme points, while those that are extreme points in

their subsquare remain as candidate extreme points for the entire figure, and

2. for every way of forming a 2k+1 × 2k+1 square from four 2k × 2k subsquares, each point that is not an

extreme point in the restriction of the figure to a 2k+1 × 2k+1 square has also been marked as not being an

extreme point. (Notice that these larger squares overlap, and some correspond to bases of subpyramids of

height k + 1, while others do not.)

Now, consider step k + 1, where for processors at level k + 1 the base of each of the corresponding

subpyramids is called a block. Since each block is a 2k+1 × 2k+1 square formed from four 2k × 2k
subsquares, it is known that at the beginning of step k + 1, those points that are not extreme points in the

restriction of the figure to their block, have already been marked as not extreme points. The purpose of

step k + 1 (i.e., the recursive step) is to identify those points that were candidate extreme points at the

end of step k, but that are not extreme points in some square of 4 blocks. This must be done for all

possible squares of 4 blocks, not just those corresponding to the base of a subpyramid of height k + 2.

Each square of 4 blocks can be formed by merging 2 pairs of blocks together (simultaneously), and then

merging these rectangles together. Both merge steps are similar, so only the first will be described. Since

all 2k+1 × 2k+1 squares formed from four 2k × 2k subsquares have been considered during step k, for a

(current) candidate extreme point p to be marked as not being a candidate during step k + 1, there must

be a triangle containing p with a pair of vertices, say q and r, at least 2k apart from each other, with one

of them, say q, being at least 2k-1 from p. Further, if q causes more than p to be eliminated, then the

second point it eliminates must be at least 2k from q, the third must be at least 2k+1 from q, and the fourth

point must be at least 2k+2 from q. Thus, by knowing for each subsquare only some small fixed number

of candidate extreme points along the top, bottom, left, and right of a square, a processor can determine

all false extreme points in the merger of the blocks.

The apex of each block maintains the necessary information about its block. By exchanging information

with its neighbors at level k + 1, in constant time, simultaneously for every apex, an apex can determine

for

Page 230

each possible square of 4 blocks, which of its candidate extreme points should be eliminated from further

consideration. To finish step k + 1, every processor at level k + 1 initiates a top-down broadcast message

of the information to its block, and supplies its parent with the information necessary to start step k + 2.

The time between the start of step k + 1 and the start of step k + 2 is Θ(1). The time it takes to finish the

final top-down broadcast after the last step is complete is Θ(log n). Therefore, the total running time is Θ
(log n). ·

Given a set of enumerated extreme points, the next problem is concerned with marking a convex figure

associated with the extreme points. If the extreme points correspond to a figure that was not convex, then

the figure that is generated will be an approximation of the original figure. However, if the original figure

was 'blob'-like, then this operation can be viewed approximately as the inverse operation to that of

generating the extreme points of the figure. The algorithm is straightforward. It consists of first passing

extreme point information up the pyramid, and then passing information down to base processors so that

every base processor can decide whether or not it is in the convex hull represented by the set of

enumerated extreme points.

Theorem 5.9 In the base of a pyramid computer of size n, suppose a set of extreme points has been
enumerated. Then in Θ(log n) time, the base processors corresponding to a convex figure that would
yield such a set of extreme points, can be marked.

Proof. Since the extreme points have been enumerated, every base processor containing an extreme point

knows the location of the extreme points preceding and succeeding it, with respect to the

counterclockwise ordering of extreme points. Assume that there are p extreme points in the figure, where

the base processor containing the ith extreme point is denoted Pi, 1 ≤ i ≤ p. Each base processor Pi
assumes responsibility for the hull edge, call it ei, between its (extreme) point and the extreme point that

follows it in the counterclockwise ordering. Every processor Pi can now determine in Θ(1) time, the

processor in the pyramid at maximum level (i.e., closest to the apex), denoted Pi (m), that is an ancestor of

Pi such that ei crosses the boundary between the subpyramids rooted at the children of Pi (m). Every base

processor Pi now passes the hull edge ei that it is responsible for, as well as a flag indicating which side

of ei is on the inside of the convex hull, up to Pi (m). Notice that no processor in the pyramid will be

responsible for more than 4 such

Page 231

edges. After Θ(log n) time, all processors in the pyramid will know the (at most) 4 edges in the base that

cross the boundaries of the subpyramids of its children. This information is then passed down the

pyramid in lockstep fashion from all Pi(m) to their descendants. As each base processor receives such

information, it decides in Θ(1) time whether or not it is in the convex hull. Since the algorithm consists

of a straightforward bottom-up phase followed by a straightforward top-down phase, the running time is

as claimed.

The next result provides an optimal solution to the problem of deciding whether or not a marked set of

base processors is convex. The algorithm is straightforward, combining the results just presented in

Theorem 5.8 and Theorem 5.9. First, use the algorithm associated with Theorem 5.8 to mark the

''extreme points" of the set. Every processor containing an extreme point determines whether or not it can

decide that the figure is not convex by examining the preceding pair of "extreme points" and the

succeeding pair of "extreme points." Combining these results, it can be decided whether or not the

"extreme points" are convex. If the set of "extreme points" are not convex, then the algorithm halts and it

is known that the original marked set of processors is not convex. Otherwise, use the algorithm

associated with Theorem 5.8 to mark the convex hull represented by the extreme points, and compare

those marked processors with the original marked set of processors. This gives the following result.

Corollary 5.10 In a pyramid computer of size n, in Θ(log n) time the set of base processors with a given
label can decide whether or not they are convex.

A set A of base processors is linearly separable from a set B of base processors if and only if there is a

straight line in the plane such that all elements of A lie on one side of the line, and all elements of B lie

on the other side. A well-known observation is that two such sets are linearly separable if and only if

their convex hulls are disjoint. Given the enumerated extreme points of two sets of (not necessarily

distinct) base processors, in Θ(log n) time it can be determined whether or not these two sets are linearly

separable, as follows. Mark the convex hull of A such that a base processor has the value a if it is in the

convex hull of A, and the convex hull B such that a base processor has the value 3 if it is in the convex

hull of B. This takes Θ(log n) time by applying the algorithm associated with Theorem 5.9 once for A
and a second time for B. All base processors send to the apex a Boolean flag that is set

Page 232

to 'true' if the processor is labeled α and β, and that is set to 'false' otherwise. As each processor in the

pyramid receives the four Boolean values from its children, they are logically 'or'ed together and passed

up. In Θ(log n) the apex knows the answer to the query, which it propagates to all processors in the

pyramid in Θ(log n) time. Hence the algorithm is complete in Θ(log n) time.

Corollary 5.11 In a pyramid computer of size n, suppose the extreme points corresponding to a set A of
base processors have been enumerated, as have the extreme points of a set B of base processors. Then in
Θ(log n) time it can be decided whether or not A is linearly separable from B. ·

The next problem considered is that of enumerating the extreme points of an arbitrary set of base

processors. This extreme point generation algorithm degrades by a factor of Θ(log n/log log n) over the

convexity query algorithm in Corollary 5.10. This is counterintuitive in that the solution to the convexity

query problem can be obtained faster than generating the extreme points of a given set of base

processors. It should be noted that a Θ(log n) time extreme point generation algorithm is an open

problem.

The extreme point generation algorithm that is presented in the proof of Theorem 5.12 follows a top-

down divide-and-conquer solution that exploits the following fact about extreme points. A point is an

extreme point if and only if it is the first point of the figure contacted as some line is moved towards the

figure from infinity. By way of an example, suppose that for a given digital figure embedded in an n1/2 ×

n1/2 grid, there exist unique topmost, bottommost, leftmost, and rightmost extreme points. Then the

topmost point may be detected by finding the first point contacted as a line of slope 0 approaches the

figure from the top, the bottommost point may be detected as a line of slope 0 approaches from the

bottom, the leftmost point may be detected as a line of slope ∞ approaches from the left, and the

rightmost point may be detected as a line of slope ∞ approaches from the right. In addition, for any

extreme point p of the figure that is between the topmost point and the leftmost point, there must be a

slope in the range (n-1/2, n1/2) such that p is the first point of the figure contacted as a line with this slope

comes towards the figure from the upper-left direction. If the line with slope is used to detect

an extreme point between the topmost and leftmost extreme points, then

Page 233

1. if the first point contacted is the topmost extreme point, then there are no extreme points of the figure

between the topmost and leftmost extreme points that will be detected by slopes in the range

,while

2. if the first point contacted is the leftmost extreme point, then there are no extreme points of the figure

between the topmost and leftmost extreme points that will be detected by slopes in the range

, while

3. if a first point contacted was not the topmost or leftmost extreme point, then this first point (or, in the

case of a multiple detection, the outermost points contacted) is an extreme point.

These situations define a recursive search procedure that is used to detect extreme points. Notice that if a

single new extreme point is found in an interval, then this new extreme point is used to create two

subintervals, both of which are searched for additional extreme points. These observations form the basis

of the algorithm that follows.

Theorem 5.12 In a pyramid computer of size n, the extreme points of a labeled set of base processors
can be enumerated in Θ(log2 n/log log n) time.

Proof. The algorithm uses a top-down divide-and-conquer solution strategy. First, an algorithm requiring

Ο(log2 n) time will be given, after which it is shown how to modify this algorithm to reduce the running

time to Θ(log2 n/loglog n). Let S be the set of base processors with a given label. Observe that as a line I
of fixed slope is brought towards S, then the first element of S to come in contact with I must be an

extreme point of S. (If several elements of S come in contact with I simultaneously, then only the two

extreme points of this 1-dimensional set of points are extreme points of S.) Notice that a processor P that

is an extreme point of S, with P1 and P2 the preceding and succeeding extreme points, respectively, will

be detected as an extreme point of S by a line I that has a slope between slope and slope , as it

moves towards S from the concave side of the angle formed by P1PP2, as shown in Figure 5.5.

The set S of base processors is embedded in an n1/2 × n1/2 grid. Therefore, except for vertical lines, all

lines through two processors have slopes between -n1/2 and n1/2. Further, only Θ(n) different slopes can

actually occur. However, since it is simpler to consider slopes that are

Page 234

Figure 5.5:

Detecting P as an extreme point.

multiples of 1/n, and since this will not cause a significant time delay, the algorithm will, in fact,

examine Ο(n3/2) slopes.

In Θ(log n) time, a straightforward bottom-up algorithm is used so that the apex knows the coordinates of

the (not necessarily distinct) rightmost-bottommost, rightmost-topmost, topmost-rightmost, topmost-

leftmost, leftmost-topmost, leftmost-bottommost, bottommost-leftmost, and bottommost-rightmost

members of S. These are all extreme points of S, and they divide the perimeter of S into 8 (or fewer)

intervals, as shown in Figure 5.4 on page 226. Four of these intervals, e.g., between the topmost-

rightmost and the topmost-leftmost points, contain no more extreme points, while the other four

intervals, e.g., between the topmost-rightmost and the rightmost-topmost points, might contain more

extreme points. For each of the four intervals that might contain more extreme points, there is a

corresponding interval of line slopes that may be used to locate the extreme points in the interval. For

example, in the interval between the rightmost-topmost and the topmost-rightmost extreme points, the

slopes are in the range of -n1/2 to -n-1/2. Let an interval refer to a pair of endpoint coordinates, along with

their associated interval of slopes. Notice that when a slope m is being used, if each base processor

computes the inner product of its (x, y) position

Page 235

with (1/m, 1), then the base processor with the greatest inner product is the one that would be reached

first. (If the line approaches from the opposite side then the base processor with the least inner product is

the one reached first.)

Initially, the apex of the pyramid is responsible for the four intervals that may contain additional extreme

points. (Referring to Figure 5.4, these are intervals 2, 4, 6, and 8.) The algorithm proceeds in stages,

where a processor is responsible for at most 8 intervals during any stage. At the beginning of each stage,

if both endpoints of an interval that a processor is responsible for lie in the base of the subpyramid of one

of its children, then responsibility for that interval is passed on to that child (which may in turn pass it

further down). Next, for each interval that a processor is responsible for, the processor creates a record

corresponding to the interval's endpoints and the middle slope. In a top-down fashion, starting with the

apex, copies of these records are then sent from every processor to each of its four children. Every

processor receiving such a record ignores it if none of the base processors in its subpyramid could be an

extreme point as discovered by that slope, while otherwise it passes the record down to its children, along

with any such records it may generate. Notice that no processor passes more than 8 such records to any

of its children.

When these records reach the base, each element of S determines its inner product with the indicated

slope and appends this to the record, along with the processor's coordinates, and passes this record back

to its parent. This information is passed up through the pyramid, where when a parent receives multiple

copies of an interval, it passes along only the one with the largest inner product. (If there are ties, then the

two outermost extreme points among the ties are passed up.) When this information returns to the

processor that generated the request, this generating processor will decide on the appropriate course of

action. For example, if two new extreme points, say N1 and N2, were discovered between extreme points
P1 and P2 , as in Figure 5.6, then the original P1P2

interval is divided into 3 new intervals, namely, P1N1

and N2P2, both of which have no more than half as many slopes as the original P1P2 interval, and N1N2

which requires no further work. Other scenerios are treated similarly. Finally, each time an extreme point

is found, it is marked.

Each stage of the algorithm takes Θ(log n) time. Since there are Ο(n3/2) slopes considered, and since each

stage subdivides an interval's slopes by at least half, then there are at most Θ(log n3/2) = Θ(log n) steps.

When finished, all extreme points have been marked, and in

Page 236

Figure 5.6:

Discovering 2 new extreme points in an interval.

an additional Θ(log n) time, the extreme points can be enumerated by applying the algorithm of Lemma

5.6.

The algorithm as described requires Θ(log2 n) time. To reduce the time of the algorithm to Θ(log2 n/log

log n), have each processor that is responsible for an interval divide that interval's slopes into log2 n
pieces, instead of 2 pieces. These records are sent down in serial fashion (i.e., pipelined), where no

processor passes more than 8log2 n records to its children. Each stage still takes Θ(log n) time, but

because the intervals are being broken up faster, only Θ(log n/log log n) stages are needed. Therefore, the

algorithm finishes in the time indicated. ·

Given a ser of base processors, a variety of properties of the set can be determined once the extreme

points have been enumerated. Algorithms for determining properties of a given set of processors, such as

a smallest enclosing box, the smallest enclosing circle, and the diameter, are presented in Section 6.5.

(Additional references for efficient pyramid computer algorithms that use extreme points to generate

geometric properties of images include [MiSt84c, MiSt84d, MiSt85c, MiSt91].) The reason that such

algorithms are not presented in this section is that they rely on advanced data movement operations that

form the foundation of Chapter 6.

5.5.2 Digitized Straight Line Segments

A major effort in digital image processing and pattern recognition has been on the fundamental problem

of deciding whether or not a digitized

Page 237

figure could have arisen as the digitization of a straight line segment (c.f., [Gaaf77, Kim82a, KiRo82b,

Kim83, Rose74, Rose79, RoKi82]). In this section, a result about digital arcs [KiRo82b] is combined

with Corollary 5.10 in order to prove that in optimal Θ(log n) time, a pyramid computer can determine

whether or not a digitized black/white figure could have arisen as the digitization of a straight line

segment.

Digitization can make the detection of even basic properties of a figure nontrivial to determine. The

digitization scheme that is used in this section is the standard grid-intersection scheme [Rose74] for

digitizing arcs. (Section 3.5 mentions several digitization schemes, but for an in-depth discussion of

digitization schemes, the reader is referred to [DoSm84, Gaaf77, Rose79, RoKi82, Kim81, Kim82a,

Kim83, KiRo82b, KiSk82c], and the references contained therein.) Given a coordinate grid

superimposed on an arc A, then as A is traversed, a succession of grid lines will be crossed. Whenever A
crosses a grid line, the processor associated with the integer lattice point nearest to the crossing line

becomes a part of A's digitization. In the case where A crosses a grid line halfway between two lattice

points, the tie is resolved by choosing the processor associated with the lattice point that lies to the right

of A (in the sense that A is being traversed) to be a member of the digitization of A. See Figure 5.7.

Define processors Pi±1, j
, Pi, j±1, and Pi±1, j±1 to be the 8-neighbors of processor Pi, j

, assuming they exist.

Given a set S of processors, with processors Pi, Pj ∈ S, then Pi and Pj are said to be 8-connected if and

only if there exists a connected path of 8-neighbors in S between Pi and Pj . A set S of processors is an 8-

connected set if and only if for all processors Pi, Pj ∈ S, Pi and Pj are 8-connected.

An 8-connected set D of processors is a digital arc if all but two of the processors in D have exactly two

8-neighbors in D, and the exceptional two, called the endpoints, each have exactly one 8-neighbor in D
[KiRo82b]. Given two lattice points p and q, corresponding to two processors in D, the line segment
is defined to lie near D if for any point (x, y) of , (x, y) ∈ R2, there exists a lattice point (a, b)
corresponding to a processor Pa, b

 ∈ D such that max . Finally, D is said to have the

chord property if for every p, q ∈ D, the line segment lies near D [Rose74].

Lemma 5.13 [Rose74] A digital arc has the chord property if and only if it is the digitization of a
straight line segment. ·

Page 238

Coordinate grid superimposed on arc A Processor digitization of A

Figure 5.7:

Grid-intersection scheme of digitization.

Lemma 5.14 [KiRo82b] A set S of base processors has the chord property if and only if S is convex. ·

From Lemmas 5.13 and 5.14, notice that D could have arisen as the digitization of a straight line segment

if and only if it is a convex digital arc. From [KiRo82b], this implies that a convex set D of two or more

processors is the digitization of a straight line segment if and only if

1. all but two of the processors of D have exactly two 8-neighbors in D, and the exceptional two have

exactly one 8-neighbor in D, and

2. D is 8-connected.

Further, it can be shown that if D is convex and satisfies property 1, then it satisfies property 2 as well.

(This is false for nonconvex sets, as can be seen by considering a disconnected set consisting of

digitizations of a circle and a line.) Thus, a convex set D of two or more processors is the digitization of a

straight line if and only if it satisfies property 1.

This characterization yields an efficient algorithm to determine whether or not a set D of lattice points

could have arisen as the digitization of a straight line segment. (It is assumed that D corresponds

Page 239

to a set of labeled processors.) From Corollary 5.10, it can be decided in Θ(log n) time, whether or not D
is convex. If D is not convex, then the algorithm halts and it is known that D could not have arisen as the

digitization of a straight line segment, while otherwise the algorithm continues in an effort to determine

whether or not D is a digital arc (Property 1). To determine if Property 1 holds, each base processor that

is a member of D determines, in Θ(1) time, the number of its 8-neighbors that are members of D. By

passing these results up to the apex and combining them at each level, in Θ(log n) time the apex will

know whether or not Property 1 holds, and hence knows whether D could have arisen as the digitization

of a straight line segment. This gives the following.

Theorem 5.15 Given a digitized black/white picture stored in a natural fashion one pixel per processor
in the base of a pyramid computer of size n, in Θ(log n) time it can be decided whether or not the set of
black pixels could have arisen as the digitization of a straight line segment. ·

5.6 Further Remarks

In this chapter, algorithms that use predominantly the child-parent links of a pyramid have been

presented. These algorithms include solutions to a variety of fundamental problems, such as initializing

the identity registers of all processors, solving bit counting problems, computing commutative

associative binary functions, and answering point queries. All these algorithms have optimal Θ(log n)

running times.

Several optimal Θ(log n) time algorithms were also presented to solve problems involving convexity

properties of a single figure or set of base processors. These problems include determining whether or

not an arbitrary set of base processors is convex and enumerating the extreme points of a convex set of

base processors. For the problem of enumerating the extreme points of an arbitrary set of base

processors, the running time of the algorithm presented in this chapter is Θ(log2 n/log log n), and the

optimality of this algorithm was left as an open problem. Assuming that the extreme points of two

figures have been enumerated, a Θ(log n) time algorithm was presented to determine whether or not the

two figures are linearly separable. Finally, a Θ(log n) time algorithm was presented to decide whether or

not a digitized picture could have arisen as the digitization of a straight line segment.

Page 240

Additional algorithms that exploit the pyramid's child-parent communication links abound. Examples

include the component labeling algorithm in [Dyer82, Tani82a, Tuck86], the feature extraction algorithm

in [Reev80], the median filtering algorithm in [Tani82b], the selection algorithm in [Stou83c], and the

polygon construction algorithm in [Sako81].

In the next chapter, algorithms and data movement operations will be presented to solve fundamental

problems in image processing and graph theory, where the input is either an adjacency/weight matrix, a

set of unordered edges distributed arbitrarily throughout the base of the pyramid, or a digitized picture

representing multiple figures. These algorithms will require the use of intricate data movement

operations that exploit the pyramid's mixture of child-parent and mesh-connected links.

Page 241

6

Hybrid Pyramid Algorithms

6.1 Introduction

Although the geometry of the pyramid makes it a natural architecture for image processing, there is no

reason to limit pyramid computers to low-level image processing involving tree-like operations. The

pyramid can be adapted to many other problems and should be considered as an alternative to the mesh

computer. In this chapter, a variety of data movement operations are presented for the pyramid, some of

which are customized for particular forms of input. These operations are incorporated into efficient

pyramid computer algorithms to solve fundamental problems in graph theory, image processing, and

digital geometry.

Much of the literature on pyramids consists of two classes of algorithms. The first concentrates on the

tree structure, using predominantly child-parent links, as discussed in Chapter 5. These algorithms work

efficiently only when the amount of data can be drastically reduced, for otherwise too much data must

pass through the apex, creating a bottleneck. The second class of pyramid algorithms concentrates on the

mesh, essentially ignoring everything above the base. Efficient mesh algorithms for a variety of problems

and input formats were presented in Chapters 2, 3, and 4.

In this chapter, a third class of pyramid computer algorithms is considered. These algorithms utilize both

the mesh and tree connections. The basic approach is as follows. Reduce Ο(n) pieces of initial data,

stored one piece per base processor, down to Ο(n1/2) pieces of data. Move this data to a region of the

pyramid where interprocessor communication is as fast as possible. Obtain the solution to the

subproblem in this region, and move the results to their final locations. The region of the pyramid that

the Ο(n1/2) pieces of data will be moved to is the middle level of the pyramid, which is a mesh of size Θ

(n1/2). The movement to and from the middle level will often be the most time-consuming part of the

algorithm. Therefore, the focus of this chapter is on providing efficient techniques for reducing data and

on providing a collection of efficient fundamental data movement operations.

Fundamental data movement operations are presented for several algorithmic strategies, such as divide-

and-conquer, and for various formats of input data. These operations are used to give efficient solutions to

Page 242

a variety of problems that involve a graph G = (V, E), where V is the set of vertices and E is the set of

edges. The graph can be expressed as a collection of unordered edges, an adjacency/weight matrix, or as

a digitized black/white picture. Algorithms based on these data movement operations are presented to

solve problems including component labeling, minimal spanning forest, nearest neighbor, transitive

closure, bipartite graph, cyclic index, bridge edges, articulation points, biconnectivity, and various

geometric problems involving convexity properties. Many of these problems were discussed in Section

1.4.1. The reader is referred to Chapter 1 for definitions of input formats and descriptions of the

problems.

The algorithms presented in this chapter have running times that are about the square root of the running

times for their mesh counterparts. Most of these algorithms are either optimal or very near optimal for

the pyramid. In Section 6.2, the concurrent read and concurrent write operations are presented for the

pyramid. These operations are then used in an algorithm to label the components of a graph, consisting of

Θ(n1/2) vertices, in Θ(n1/4 log n) time, where the graph is given as a set of unordered edges stored one per

base processor. In Section 6.3, problems are considered for graphs represented as an adjacency matrix,

stored in a natural fashion in the base of the pyramid. For this more structured input, pyramid matrix read

and pyramid matrix write operations are introduced and used to reduce the time to solve some graph

problems to Θ(n1/4).

In Section 6.4, problems are considered for digitized black/white pictures, such as labeling the black

figures (i.e., connected components). Since each black pixel is a vertex, there may be Θ(n) vertices, but

the geometry of the situation and the funnel read operation, which is introduced in Section 6.4, allows the

labeling to be complete in Θ(n1/4) time. Section 6.4 also introduces the operation of reducing a function.

This is used to solve the nearest neighbor problem for figures. This operation is somewhat unusual in that

once the relevant data has been collected at the proper level of the pyramid, it is then spread downward

to finish the calculations.

Section 6.5 concentrates on convexity problems involving i) multiple labeled sets of processors and ii)
digitized black/white pictures that consist of multiple labeled figures. The operation of a sparse pyramid

write is introduced, and problems for multiple figures, such as determining the extreme points, a smallest

box, the smallest enclosing circle, and the diameter of each figure are examined. Section 6.6 presents

details of the data movement operations, and Section 6.7 discusses the optimality of

Page 243

the algorithms presented in this chapter.

Throughout the chapter, related problems, such as marking minimal-weight spanning forests, finding the

transitive closure of a symmetric Boolean matrix, marking articulation points, and deciding if a graph is

bipartite, are also solved.

6.2 Graphs as Unordered

Edges

In this section, the input graph is given as a collection of unordered edges, arbitrarily distributed one per

base processor, where edges may be represented more than once. This format is the most general of the

input formats considered, including matrix input and digitized picture input as special cases.

6.2.1 Data Movement Operations

The generic concurrent read and concurrent write operations are described in Section 1.5. In Section

2.6.4, algorithms were presented to perform the concurrent read and concurrent write operations in Θ

(n1/2) time on a mesh of size n. On a pyramid, the concurrent read and concurrent write operations are

extended to the pyramid read and pyramid write, respectively. These operations are now described,

deferring the details of the algorithms to perform these operations until Section 6.6.1.

• In a pyramid write, all processors containing master records are on one level, and all processors

generating update records are on the same level or some level below. (If both levels are the same, then a

given processor might be responsible for a master record and also generate an update record.) As an

example, consider the following ''sample" call.

Pyramid write from level L up to level M,
 For every processor on level L,
 if test1 then send(Al, B1, C1), send(A2, B2, C2);

 For every processor on level M,

 if test2 then receive(D, E, F);

Since processors generating update records are descendents of processors maintaining master records, it

must be that L ≤ M. The terms test1 and test2 are used to represent arbitrary Boolean tests.

Page 244

For a processor on level L, if test1 is true then the processor creates and sends two records (in this

example), one with the key value A1, with values B1
and C1 as data, and a second with key value A2,

with data items B2
and C2. (The key is always the first component.) If test1 is false, then the

processor does not send any records. A processor on level M will not try to receive a record if test2 is

false. If test2 is true, a processor on level M will try to receive a single record (in this example),

where the value of the key goes into D, and copies of the data items go into E and F. If test2 is true

and no record is received, then the values of D, E, and F become ∞.

• A pyramid read parallels the concurrent read in the same way that the pyramid write parallels the

concurrent write. In a pyramid read, master records are maintained in processors at a given level, and

request records are generated by processors on the same level or some level below. As an example,

consider the following "sample" call.

Pyramid read at level L from level M,

 For every processor on level M,

 if test1 then send(A,B);
 For every processor on level L,
 if test2 then receive(C, D);

Similar to the pyramid write, if a processor on level L requests a key C that has not been sent, then

the data field D will be set to ∞.

Section 6.6.1 gives implementations of the pyramid write and pyramid read. If the top level M is a mesh

of size m, and the bottom level L is i - 1 levels below, then the time for a pyramid write (read) from (at)

level L to (from) level M is Θ(i + (mi)1/2).

Lemma 6.1 In a pyramid computer of size n, a pyramid read or pyramid write involving master records
stored at level M, a mesh of size m, and request or update records, respectively, generated at level L, L ≤
M, takes Θ(i + (mi)1/2) time, where L is i - 1 levels below M. ·

Page 245

6.2.2 Component Labeling

Except for obvious differences in the computer model and data movements operations, the pyramid

computer (connected) component labeling algorithm presented in this section is similar to those

presented in [Hamb83, HCW79, Mill84a, NaSa80], Section 3.3.2, and the generic Component Labeling

Algorithm of Section 1.6.1. Given an undirected graph G = (V,E), the algorithm proceeds through a

series of stages, where at each stage the vertices are partitioned into disjoint clubs. Vertices are in the

same club only if they are in the same component of the graph. A club is called unstable if it is not an

entire component.

Initially each vertex is its own club. During a single stage of the algorithm, unstable clubs are merged

together to form larger clubs, and the number of unstable clubs decreases by at least half. This process is

repeated until no unstable clubs remain. Since each stage of the algorithm reduces the number of unstable

clubs by at least half, then at most stages of the algorithm are needed to label a graph with v
vertices.

Every club has a unique label, which is defined to be the minimum label of any vertex in the club.

During the algorithm, let L(x) denote the current label of the club containing vertex x. Initially L(x) = x,
indicating that each vertex is its own club. During a stage of the algorithm, clubs are merged as follows.

Let u be the label of an unstable club. Compute M(u) = min{L(y) (x, y) ∈ E, L(x) = u}. The graph

consisting of vertices that are labels of unstable clubs, and edges are of the form (u, M(u)), for all

unstable clubs u, is called a min-tree forest. Merging clubs takes the form of relabeling the min-tree

forest so that for each tree in the min-tree forest a new club is formed that is the union of all clubs in the

tree. Given a min-tree T = (V', E'), the new club that is formed from T is assigned the label N(u), where N
(u) = minu∈V'

 M(u). Notice that in a min-tree forest, each unstable club is connected to at least one other

unstable club, which guarantees that the number of unstable clubs is at least halved after each stage of the

algorithm. (See the example given in Figure 6.1.)

The component labeling algorithm for a pyramid computer of size n is given in Figure 6.2. It

incorporates an integer function count_keys that counts the number of distinct keys in the base. The

operation of count_keys is similar to that of the pyramid write, and is given in detail in Section 6.6.1.

Notice that the algorithm operates by moving the data to a place where the min-tree forest can be quickly

relabeled. In Figure 6.2, the

Page 246

Figure 6.1:

An example of the component labeling algorithm.

term forest_level is used to indicate the level of the pyramid at which the forest is formed. Initially, this

level must have at least v processors. Each stage of the algorithm reduces the size of the forest by at least

half, so after 2 stages, forest_level can be increased by 1. Without this upward movement, the time of the

algorithm would increase by a factor of log n. Given a forest with f vertices, the forest can be relabeled in

Θ(f1/2) time on a mesh of size Θ(f) by the algorithm presented in [NaSa80]. This relabeling algorithm

exploits the property that a min-tree forest is essentially upward directed, in that M(u) ≤ u. Notice that if

the forest data remained at the base of the pyramid, then the min-tree relabeling would take Θ(n1/2) time.

However, by first moving the data up the pyramid, the relabeling step will take only Θ(v1/2) time.

Theorem 6.2 Given a pyramid computer of size n, if the base contains

Page 247

For every base PE ,

 Label1:=Vertex1;

 Label2:=Vertex2;

v:=count_keys; {v is the number of vertices}

forest_level:=log4
(n/v);

for stage:=1 to log2 v do

Pyramid write from the base upto level forest_level,
 For every base PE ,

 send(Label1, Label2), send(Label2, Label1);

 For every PE Pi at level forest_level,
 receive(Vertex2i

, neighbor), receive(Vertex2i+1, neighbor);

Relabel the min-tree forest, so that every PE Pi at

 level forest_level has

 Label2i
:=N(Vertex2i

) and Label2i
+ :=N(Vertex2i+1);

Pyramid read at the base from level forest_level,
 For every PE Pi at level forest_level,

 if Vertex2i
< ∞ then send(Vertex2i

,Label2i
);

 if Vertex2i+1< ∞ then send(Vertex2i
+ ,Label2i+1);

 For every base PE

 receive(Label1, templabel1),

 receive(Label2, templabel2);

For every base PE ,

 if templabel1< ∞ then Label1:=templabel1,

 if templabel2< ∞ then Label2:=templabel2;

if (stage mod 2)=0 then forest_level:=forest_level + 1;

end{for};

Figure 6.2:

Component labeling algorithm.

Page 248

the unordered edges of an undirected graph with v vertices, then the above algorithm labels the
components in Θ(log(n)+v1/2[1+log(n/v)]1/2) time.

Proof. Proposition 6.24 of Section 6.6.1 shows that count_keys finishes in the time claimed. Within the

loop, at the start of an iteration, let k be the number of processors at level forest_level. The pyramid read

and pyramid write each take

Θ(forest_level + k1/2[1 + forest level]1/2)

time, and the min-tree forest relabeling takes Θ(k1/2) time. Since k = n/4forest_level, the time for this iteration

of the loop is

The initial value of forest_level is , and forest_level increases every 2 iterations, so the total

running time of the algorithm is

which is

In the worst case, when the number of vertices in the graph is v = Θ(n), the pyramid algorithm takes Θ
(n1/2) time, which is asymptotically equivalent to the running time of the mesh algorithm presented in

[ReSt]. This situation arises, for example, when considering planar graphs, for which the number of

vertices v ≤ 3e - 6 edges. For smaller values of v, however, the pyramid algorithm exhibits significant

improvement over the mesh algorithm. Any mesh algorithm to solve this problem must take Ω(n1/2) time,

but for a dense graph with v= Θ(n1/2) vertices, the pyramid algorithm requires only Θ(n1/4log1/2 n) time.

Given a forest with f vertices distributed one edge per base processor in a pyramid of size f, the algorithm

presented in Figure 6.2 will label the connected components (i.e., the trees of the forest) in Θ(f1/2) time.

Therefore, the mesh algorithm of [NaSa80] that is used to perform min-tree forest relabeling in the

pyramid component labeling algorithm given in Figure 6.2, may be replaced by a recursive call with

level forest_level viewed as the base of the pyramid.

Page 249

6.2.3 Minimal Spanning Forests

The strong similarities between component labeling algorithms and minimal spanning forest algorithms

are well known. In particular, it has been noted that small changes to a component labeling algorithm for

a parallel computer can give a minimal spanning forest algorithm for the same computer [CLC82,

HaSi81, SaJa81]. There are two modifications that must be made to the pyramid computer component

labeling algorithm, as presented in Figure 6.2, in order to arrive at a minimal spanning forest algorithm.

First, a record must be kept of the edges that are used. Second, when clubs are being merged, each club

must use an edge of minimal weight, rather than an edge to a club of minimal index. Notice that a club

may have more than one minimal-weight edge, which may introduce cycles in the min-tree forest if the

edges are not chosen in a consistent manner. In order to prevent cycles, the edges may be ordered in a

consistent manner, as follows. An edge with weight w between vertex v1 and vertex v2 is represented by

the ordered triple (w, v1, v2). Define the weighted edge (w1, x1, y1) to be less than weighted edge (w2, x2,
y2) if i) w1 < w2, or ii) if w1

= w2 and min(x1, y1) < min(x2, y2), or iii) if w1 = w2, min(x1, y1) = min(x2, y2),

and max(x1, y1) < max(x2, y2).

Incorporating these changes is straightforward, giving the following result.

Theorem 6.3 Given a pyramid computer of size n, if the base contains the unordered weighted edges of
an undirected graph with v vertices, then a minimal spanning forest may be determined in Θ(log(n) + v1/2

[1 + log(n/v)]1/2) time. ·

Even if the edges are unweighted, spanning forests can be quite useful. In order to decide whether or not

an undirected graph G = (V, E) is bipartite, let each edge have weight 1 and use the algorithm associated

with Theorem 6.3 to select a spanning forest. Using a pyramid write, send the edges of the forest to level

. In each tree of the forest, select the vertex of minimum label as the root, and use the mesh

algorithm in [Stou85a] at level to determine the depth of each vertex in its rooted tree. (This

algorithm takes Θ(v1/2) time on a mesh of size v.) Say that a node is in V1
if its depth is even, and is in V2

if its depth is odd. It is easy to show that G is bipartite if and only if this particular choice of V1 and V2 is

such that every edge of E joins a member of V1 and a member of V2. To check whether this property is

true, perform a pyramid read so that every base processor can

Page 250

determine the depths corresponding to the vertices of the edge that it contains. Finally, pass these results

to the apex, combining them along the way.

This algorithm takes Θ(log(n) + v1/2[1 + log(n/v)]1/2) time. Notice that a variety of graph-theoretic

problems can be solved by using Theorem 6.3 to pick a spanning forest, moving the forest to level

, using a mesh algorithm at that level, and using pyramid reads and writes to move data up

and down. Mesh algorithms for several graph-theoretic problems are given in [Stou85a].

Corollary 6.4 Given a pyramid computer of size n, if the base contains the unordered edges of an
undirected graph G with v vertices, then in Θ(log(n) + v1/2[1 + log(n/v)]1/2) time the pyramid can be used
to

a) decide if G is bipartite,

b) determine the cyclic index of G,

c) find all bridge edges of G,

d) find all articulation points of G, and

e) decide if G is biconnected.

Note that some of the mesh algorithms presented in [Stou85a] are patterned after mesh algorithms

appearing in [AtKo84], with the difference being that the algorithms in [AtKo84] require matrix input,

while those in [Stou85a] use only unordered edge input. The algorithms from [AtKo84] are unsuitable

because there may not be v2 processors to hold the adjacency matrix. More importantly, the algorithms

from [AtKo84] are too slow because they use matrix calculations that take Θ(v) time on a pyramid.

(Algorithms from [AtKo84] appear in Section 3.2.)

6.3 Graphs as Adjacency Matrices

In this section, undirected graphs with n1/2 vertices are considered, where the graph is given as an

adjacency or weight matrix. The (i, j) entry of the matrix is assumed to be stored in base processor Pi, j
.

Because the input is now more structured, algorithms that are slightly faster than those of Section 6.2 are

possible.

6.3.1 Data Movement Operations

The algorithms presented in this section require two new data movement operations, namely the pyramid
matrix write and pyramid matrix read.

Page 251

A pyramid matrix write performs the same basic action as a pyramid write and comes in two versions,

one for rows and one for columns. In the row (column) version, update records are generated by base

processors, where the base processors in the same row (column) generate update records with the same

key. The pyramid matrix read performs the same basic action as a pyramid read, and also comes in two

versions. For the row (column) version, request records are generated by base processors, where the base

processors in the same row (column) request information regarding the same key.

Detailed implementations of these operations appear in Section 6.6.2, where it is shown that if the master

records are maintained in a mesh of size k, k ≤ 2n1/2, then the pyramid matrix read and pyramid matrix

write operations are complete in

Θ(log(n) + k1/2[1 + log(n/k2)]1/2)

time. (Though there will never be more than n1/2 keys, k = 2n1/2 is allowed since the highest level holding

n1/2 processors actually has 2n1/2 processors when n > 256 is an odd power of 4.)

6.3.2 Component Labeling and Minimal Spanning Forests

Algorithms for graphs given as adjacency or weight matrices can be adapted from those algorithms

presented in Section 6.2. for unordered edge input. This can be done by removing the call to count_keys,
initializing v to n1/2, replacing pyramid read with pyramid matrix read, and replacing pyramid write with

pyramid matrix write. The resulting algorithms are faster than those presented in Section 6.2 by a factor

of Θ(log1/2 n). This comes from the fact that the running times of both the unordered edge algorithms and

the matrix algorithms sum as a geometric series, with the major term (ignoring count-keys for the

moment) being dictated by the time to move data between the base and the middle level of the pyramid

that contains n1/2 processors. The pyramid read and pyramid write between the base and this level each

require

Page 252

time, as does count_keys, while the pyramid matrix read and pyramid matrix write between the base and

this level only require

time. In both cases, it is assumed that n is sufficiently large (i.e., the additive log n term is insignificant in

the Θ-notation).

Theorem 6.5 Suppose the adjacency matrix of an undirected graph with n1/2 vertices is stored in the base
of a pyramid computer of size n. Then the connected components can be labeled in Θ(n1/4) time. ·

Theorem 6.6 Suppose the weight matrix of a weighted undirected graph with n1/2 vertices is stored in the
base of a pyramid computer of size n. Then a minimal spanning forest can be marked in Θ(n1/4) time. ·

Corollary 6.7 Suppose the adjacency matrix of an undirected graph G with n1/2 vertices is stored in the
base of a pyramid computer of size n. Then in Θ(n1/4) time the pyramid can be used to

a) decide if G is bipartite,

b) determine the cyclic index of G,

c) find all bridge edges of G,

d) find all articulation points of G, and

e) decide if G is biconnected.

Determining the transitive closure of a symmetric Boolean matrix stored in the base of a pyramid is a

simple adaptation of component labeling. First, perform component labeling for matrix input. For

processors that are storing off-diagonal entries (i.e., for which the row and column are different), the new

entry is 1 if the row label equals the column label, while otherwise it remains 0. For processors on the

diagonal, if the original entry was 1, it remains so, while if it was 0, then it becomes I only if some other

entry in the row is 1. Pyramid matrix reads and writes can be used to determine the proper diagonal

entries, as follows. Each base processor creates a record consisting of its row index as

Page 253

the key, with its new entry stored in the data field. A pyramid matrix write to the middle level of the

pyramid is used to combine records with the same key, breaking ties in favor of maximum data fields. A

pyramid matrix read from this level is then used so that every diagonal entry of the matrix can determine

whether or not there is a 1 in its row.

Corollary 6.8 Suppose an n1/2 × n1/2 symmetric Boolean matrix is stored in the base of a pyramid
computer of size n. Then the transitive closure of this matrix can be determined in Θ(n1/4) time. ·

6.4 Digitized Pictures

In this section, a bottom-up divide-and-conquer approach is used to solve a variety of geometric

problems involving digitized black/white pictures stored in the base of the pyramid. In the previous

chapter, it was shown that divide-and-conquer can be used on the pyramid to produce efficient

algorithms to solve problems by quickly eliminating data as partial solutions are merged from the base to

the apex. Unfortunately, for the problems considered in this section, the data movement requirements are

substantially greater than for the problems considered in Chapter 5. In this section, new data movement

operations are introduced and efficient implementations of a divide-and-conquer strategy are

demonstrated for the pyramid. It will also be shown, in Section 6.7, that the results obtained in this

section are at most a factor of Θ(log1/2 n) from optimal for the pyramid.

Throughout this section, the mesh at some level will be divided into squares of some size t. This means

that the mesh will be completely partitioned into disjoint squares of size t, where t is a power of 4. Using

this partitioning, the concept of the square of size t at level l containing processor P is well-defined,

assuming that level l is of size t or greater. The term picture square will be used to refer to such a square

in the base.

The computations will proceed in a bottom-up fashion. The first stage of the algorithm will involve

analyzing picture squares of size 4c, for some constant c that depends upon the particular problem. In

general, at the end of stage i, i ≥ 1, picture squares of size 4c+i-1 have been analyzed, where the analysis is

with respect to the particular problem being solved (e.g., labeling figures or determining nearest

neighbors). During stage i + 1, results from stage i are combined so as to analyze picture squares of size

4c+i.

Page 254

An important property of the solution strategy presented in this section is to reduce the amount of data

from an amount proportional to the area of the picture square to an amount proportional to the perimeter

of the picture square under examination. So at the end of stage i, every picture square of size 4c+i-1 will be

reduced to Ο(2i) pieces of data, from which stage i + 1 can produce the analysis for picture squares of

size 4c+i. The algorithms presented in this section proceed rapidly by moving the perimeter amount of

data that is used to represent a picture square up through the subpyramid over that picture square.

For a picture square S of size 4c+i-1, the square of size at level of the pyramid that

contains the ancestors of S is called the data square corresponding to the picture square of S. Intuitively,

the data square corresponding to a picture square S of size m will be a square of size Ο(m1/2). Further,

this data square will be located at the middle level of the subpyramid that has S as its base. This means

that a data square contains enough processors to store a perimeter amount of data from its respective

picture square. For the algorithms presented in this section, the focal point of work to be performed on a

picture square S is at the data square corresponding to the picture square S.

Note that the data square corresponding to a picture square is either the union of the data squares

corresponding to the picture square's quadrants, or else it is the union of the parents of the quadrants' data

squares. This means that the data used during stage i of the algorithm is either already in place, or must

move up only one level in the pyramid, in order to be where it is required for processing during stage i +

1.

The last stage of the bottom-up divide-and-conquer algorithm is stage log4(n) - c + 1, which is

responsible for an analysis over the entire picture. During the course of the algorithm, intermediate

results will not be sent down to picture squares. Therefore, at the end of the algorithm, a final step is

needed to move these results back down to the base. This final data movement is accomplished with a

funnel read, which is described in Section 6.4.1. Section 6.4.1 also introduces a data movement operation

called reducing a function. This operation allows data squares to perform some calculations (such as

computing a nearest neighbor for each point from a set of points) in time proportional to the edgelength

of the square, even though mesh algorithms that finish in this time are not currently available. The

operation of reducing a function uses processors below the data square to help perform the calculations

in the desired time.

Page 255

6.4.1 Data Movement Operations

In this section, data movement operations are described that will be used in some of the bottom-up divide-

and-conquer algorithms presented later in this chapter.

• Funnel Read: Assume every base processor knows the key corresponding to data it wishes to read

from its stage 1 data square. Further, assume that for a stage i data square that is responsible for

supplying the data for a given key, either

1. one of its processors has the data, or

2. it must read the data from its stage i + 1 data square (where a stage i + 1 data square means

the data square it supplies data to), or

3. one of its processors has an alias for the key and must read the data for the alias from its stage

i + 1 data square.

Notice that if i is the last stage of the algorithm, then the data square must have the desired data.

Finally, assume a data square of size m never receives more than Θ(m) such requests. Then, the

funnel read ultimately obtains the data for all base processors in Θ(m1/2) time, where m is the

size of the data squares at the final stage. Figure 6.3 gives a picture of a funnel read. The details

of the funnel read are deferred to Section 6.6.3.

• Reducing a function: Given sets Q, R, and S, let g be a function mapping Q × R into S, and let * be

a commutative, associative, binary operator over S. Define a map f from Q into S by f(q) = *{g(q, r) r ∈

R}, where f is said to be the reduction of g. For example, if Q and R are sets of points in some metric

space, if S is the real numbers, if g(q, r) is the distance from q to r, and if * is minimum, then f(q) is the

distance from q to the nearest point in R.

Suppose the elements of Q are stored one per processor in a square of size m at level i of the

pyramid, and the elements of R are also stored one per processor in the square. (A processor may

contain an element of Q and an element of R.) Suppose g and * can both be computed in Θ(1)

time. Then the operation of reducing a function will compute f(q) and store the result in the

processor containing q, for all q ∈ Q, in Θ(m1/2 +m/4i) time. The details of this operation appear

in Section 6.6.3.

Page 256

Figure 6.3:

A single processor's view of a funnel read.

6.4.2 Component Labeling

A digitized picture can be viewed as an undirected graph, where the black pixels are vertices, and

adjacent black pixels have an (undirected) edge between them. Upon termination of the digitized picture

component labeling algorithm, every base processor containing a black pixel must contain the label of

the pixel's figure (i.e., connected component), which will correspond to the minimum index of any

processor containing a pixel in its figure.

The component labeling algorithm presented in this section follows the basic divide-and-conquer

strategy outlined at the beginning of Section 6.4, and is similar to the mesh algorithm of Section 3.3.2.

However, the algorithm presented in this section for the pyramid computer is significantly faster than the

optimal mesh algorithm presented in Section 3.3.2.

To initialize the algorithm, every base processor that contains a black pixel will generate an edge record

corresponding to each of its, at most four, neighboring base processors that also contains a black pixel.

So, every black processor P (i.e., every base processor P containing a black pixel) will generate an edge
record (p, q, ∞) corresponding to each neighboring black processor Q, where p is the index of P, q is the

index of Q, and the third component of the record will be used to store the com-

Page 257

ponent label of p and q generated during stage 1. Therefore, every base processor may generate as many

as four edge records, one corresponding to each of its neighbors.

Picture squares of size 256 are labeled during stage 1.. (That is, c = 4 in the generic divide-and-conquer

strategy.) For every picture square of size 256, a labeling algorithm is applied to the subset of records (x,
y, ∞) for which both x and y are in the picture square. This means that those records for which x is on the

border of one such picture square and y is on the border of an adjacent picture square are omitted from

the stage 1 labeling process. Notice that since x and y are concatenated coordinates of processors, that in

Θ(1) time a processor containing a record of the form (x, y, ∞) can decide whether or not x and y are in

the same picture square of size 256, and therefore can decide whether or not this record is to be included

in the stage 1 labeling. Since the size of the square to be labeled is a constant, stage 1 labeling can be

performed in Θ(1) time simultaneously for every picture square of size 256. A simple propagation

algorithm, or the unordered edge component labeling algorithm of Section 6.2.2, is all that is needed.

After completing the stage 1 labeling, notice that records of the form (x, y, ∞) represent edges between

distinctly labeled figures in adjacent picture squares. (These records were not included in the stage 1

labeling algorithm.) For every such record (x, y, ∞), perform a mesh concurrent read within x's picture

square to determine the (possibly) new label of x. Store this new label, call it lx, in the third field of the

record, so that the record now has the form (x, y, lx). Since these records represent edges between

distinctly labeled figures of adjacent picture squares, the correct labels for the figures that these edges are

incident on have yet to be determined (even after the mesh concurrent read). However, for all other

figures (i.e., for those that do not span at least two picture squares), their final labels have already been

determined by the stage 1 unordered edge labeling algorithm.

All original records (with updated third fields) are kept in their stage 1 data squares, and every processor

containing a record (x, y, lx) with y outside of x's picture square generates a record (x.orig, y.orig, x.label,

y.label), where x.orig = x, y.orig = y, x.label = lx, and y.label = ∞, for use in the next stage of the

algorithm. There are at most 64 such records generated within a single picture square of size 256. (Each

corner pixel may generate 2 such records, and all other border pixels may generate 1.) These records are

now spread out in their stage 1 data squares so that no processor holds more than one such record. This

concludes stage 1.

Page 258

During stage i, the algorithm labels picture squares of size 43+i, using data squares of size at level

, as follows. If i is odd, then all of the necessary data (i.e., the records generated at the end of stage i
- 1) is already present, while if i is even, then the necessary data is in the four data squares one level

below. In the latter case, in Θ(2i/2) time, the data is moved up and distributed so that no processor has

more than one record.

Next, perform a mesh concurrent read within each stage i data square so that every record (x.orig, y.orig,
x.label, ∞) can fill in the fourth field that corresponds to the label of y from the end of stage i - 1. Every

processor containing a record (x.orig, y.orig, x.label, y.label) now creates a record (x.label, y.label, ∞),

and component labeling is performed for this unordered edge input in the stage i data square, again using

only edges for which both vertices lie in the same stage i picture square. When finished, a processor

containing a record with a vertex outside of the picture square generates a record (with 4 fields) for the

next stage. Since work is being performed on picture squares of size 43+i, at most 25+i records can be

generated for the next stage.

After stage log4(n) - 3, the labels of all figures have been decided. The data square for the last stage is a

level of the pyramid consisting of a mesh of size Θ(n1/2), for which the mesh unordered edge component

labeling algorithm of [ReSt] takes Θ(n1/4) time. The running time of the algorithm, as described, is given

by the recurrence T(n) = T(n/4) + Θ(nl/4), which is Θ(n1/4). Unfortunately, at the end of the algorithm that

has been described, the labels remain scattered throughout the pyramid. A collation step is needed that

will enable every base processor to obtain the final label of its pixel.

Notice that if P's figure extends outside of P's stage 1 picture square, then the labeling information in the

stage 1 data square may be incorrect, and P would need to consult data squares of later stages in order to

obtain the correct component label. The figure may extend outside of P's picture square for many stages,

so in advance P does not know which data square has the needed labeling information. This is where a

funnel read is used, moving labels from the data squares of the last stage back down towards the base,

taking Θ(n1/4) time, and completing the algorithm substantially faster than the optimal Θ(n1/2) mesh

algorithm of Section 3.3.2.

Theorem 6.9 Given a digitized picture stored one pixel per processor in a natural fashion in the base of
a pyramid computer of size n, in Θ(nl/4) time, the connected components can be labeled. ·

Page 259

A pyramid computer component labeling algorithm designed to operate efficiently in a more restrictive

domain was introduced in [Tani82a]. The algorithm is designed to consistently label every ''convex blob"

with the label of a distinguished member of the blob (component). The algorithm uses predominantly the

child-parent links in the pyramid, but is somewhat different from the tree-like pyramid algorithms

presented in Section 5.4.4, in that data 'bounces' between levels instead of just traveling directly between

the base and the apex. The algorithm finishes labeling a "convex blob" of diameter D in Θ(log D) time

by continually propagating the label of a distinguished black base processor to neighboring processors

that cover an entirely black piece of the blob. Therefore, the algorithm terminates in time proportional to

the logarithm of the "convex blob" with largest diameter. This algorithm is not intended for arbitrary

digitized pictures. In fact, it would require Θ(n1/2) time to label a D × n1/2 rectangle, for any constant D. In

contrast, the algorithm presented in this section will label any digitized picture containing multiple

figures of any shape in Θ(n1/4) time.

6.4.3 Nearest Neighbors

Given digitized picture input in the base of the pyramid, an efficient solution to the all-nearest neighbor

problem for figures can be obtained quite simply from the solution just presented to the digitized picture

component labeling problem. Therefore, in this section, only those aspects of the algorithm that change

will be described in detail.

In the all-nearest neighbor problem for figures, it is required that the kin of each figure be detected,

where the kin of a figure is the label/distance pair representing a nearest distinctly labeled figure. (In case

of ties, the figure of smallest label is chosen.) In this section, input to the all-nearest neighbor problem is

a digitized picture with its figures already labeled, and at the conclusion of the algorithm, every base

processor containing a black pixel will know the kin of its pixel's figure.

The bottom-up divide-and-conquer algorithm is based on the following observation. Assume that the 4

quadrants within a picture square have been analyzed. Then the only figures that might not have their

correct kin information with respect to the entire picture square, are those figures that have pixels that are

either the topmost or bottommost black pixel in its column, or the leftmost or rightmost black pixel in its

row. (In fact, it is possible to restrict the set of candidates even further, but this is not necessary.) A pixel

that is either the topmost or bottommost black pixel in its column, or the leftmost or rightmost black

Page 260

pixel in its row, is called a special pixel. Within a quadrant, figures with no special pixels must have

determined their kin during earlier stages of the algorithm since they are totally surrounded by other

figures within their quadrant.

Stage 1 of the algorithm analyzes picture squares of size 256. Within every picture square, for each

figure C, a closest figure within the square is determined and stored in a record (C, kin(C)). (This kin

information maybe incorrect globally, but the final funnel read will bring the correct global information

down from data squares above.) For every column i in the picture square, form the records (1, i, tr(i), tl
(i)) and (2, i, br(i), bl(i)), where tr(i) is the row of the topmost black pixel in the column restricted to the

square, br(i) is the row of the bottommost black pixel in the column restricted to the square, and tl(i) and

bl(i) are the labels of the pixels at locations (tr(i), i) and (br(i), i), respectively. (If the column has no

black pixel, then set the coordinates to ∞.) Similarly, for every row j, form records (3, j, lc(j), ll(j)) and

(4, j, rc(j), rl(j)), corresponding to the leftmost and rightmost black pixels in the row, respectively. These

are the records needed for the next stage of the algorithm.

The purpose of stage i + 1 is to find for every black pixel represented in a stage i + 1 data square, a

nearest black pixel of a different label within that data square. This is accomplished by using the

operation of reducing a function, where Q and R are the records, S is the real numbers, * is minimum,

and g is distance, with the exception that g gives an infinite distance if the two points have the same

label. When the operation is finished, a mesh concurrent read is used to form a record (C, kin(C)) for

every figure C represented by one or more pixels. To generate the records for the next stage, notice that

for every column in the stage i + 1 picture square there are two type 1 records. The one representing the

topmost pixel is passed to the next stage, and similar reductions occur for records of types 2, 3, and 4.

Finally, after the last stage of the algorithm, a funnel read brings the correct kin information back to the

base.

Theorem 6.10 Given a digitized picture stored one pixel per processor in a natural fashion in the base of
a pyramid computer of size n, in Θ(n1/4) time, the all-nearest neighbor problem for figures can be solved.

It should be noted that every black pixel can determine the location of a nearest black pixel in Θ(log n)

time [Stou85b].

Page 261

6.5 Convexity

In this section, problems are considered that involve convexity of multiple figures or multiple labeled

sets of base processors. The problems include enumerating extreme points, deciding convexity, and using

extreme points to solve problems such as determining diameter, smallest enclosing rectangles, and

smallest enclosing circles for every figure. Since there may be Θ(n) disjoint sets of base processors in a

pyramid computer of size n, applying the tree-like algorithms of Section 5.5.1 to one set of processors at

a time would yield substantially suboptimal running times in the worst case. In order to efficiently

determine convexity properties for multiple sets of base processors, it appears that the algorithms must

be designed to work on multiple sets simultaneously. Further, since Ω(n1/2) time is required if only the

base mesh of the pyramid is used, faster algorithms must use both the parent-child and mesh links that

are available in the pyramid. (Refer to Section 3.5 for optimal mesh algorithms concerning convexity of

multiple sets of processors.) Finally, the algorithms must avoid having many figures trying to send data

through the apex, for then the apex becomes a bottleneck.

The running times of algorithms presented in this section are slower than the running times of algorithms

from Section 5.5.1 that involved single figures. Nevertheless, the results presented in this section are at

most a logarithmic factor from optimal for the pyramid.

6.5.1 Data Movement Operations

The pyramid write, which was introduced in Section 6.2.1, is used to move data up the pyramid from a

given mesh level to a desired level that contains enough processors to hold all of the distinct pieces of

data being sent. For the algorithms in this section, only a restricted version of the pyramid write is

needed. The restriction is for the situation where only CnP base processors wish to send a piece of data to

the highest mesh level that can hold all of this data, for fixed constants p and C. This restricted version of

the pyramid write can be performed in Θ(nP/2log1/2 n) time. The details of the pyramid write are given in

Section 6.6.1, and the restricted version of the pyramid write is derived directly from that.

Lemma 6.11 Fix constants p and C, where 0 < C and 0 < p < 1. Given a pyramid computer of size n,
suppose there are no more than CnP processors in the base that have a piece of data to be sent to level

Page 262

log4 . (This level is the highest one with at least CnP processors.) The pyramid write will move the

data to its proper location in Θ(nP/2log1/2 n) time. ·

A closely related data movement operation is the sparse pyramid write, which is an extension of the

pyramid write operation, and which is crucial to some of the algorithms in this section. The sparse

pyramid write again assumes that for fixed constants p and C, only CnP base processors have a piece of

data to be sent to the mesh at the highest level of the pyramid that can hold all of this data. However, one

further restriction applies to the sparse pyramid write, namely, the assumption that in each subsquare of

size k in the base of the pyramid, 0 ≤ k ≤ n, there are no more than CkP processors sending data. With this

additional constraint, the time for the sparse pyramid write is reduced by a factor of log1/2 n over the

restricted pyramid write given in Lemma 6.11. The details are given in Section 6.6.1.

Lemma 6.12 Fix constants p and C, where 0 < C and 0 < p < 1. Given a pyramid computer of size n,
suppose there are no more than CnP processors in the base that have a piece of data to be sent to level
log4 . Further, in each subsquare of size k in the base of the pyramid, 0 ≤ k ≤ n, assume that there
are no more than CkP processors sending data. Then a sparse pyramid write will move the data to level
log4 n Θ(nP/2) time.

The algorithms of this section will also use the operation of reducing a function, as described in Section

6.4.1, as well as an extended reduction operation. This extended reduction operation is performed for the

situation where there are three sets A1, A2, and A3, a function g mapping A1 × A2
× A3

into C, and an

associative, commutative operation * on C. The extended reduction of g is the function f mapping A1 to C
given by

f(a) = *{g(a, x, y) x ∈ A2, y ∈ A3},

for a ∈ A1. Details of this operation are presented in Section 6.6.

Lemma 6.13 Suppose that g and * can be computed in unit time, and that A1, A2, and A3
are stored one

item per processor at a level with m processors, 1 ≤ m ≤ n1/3. Then the reduction of g can be computed in
Θ(m1/2) time, storing f(a) in the processor storing a. ·

Page 263

6.5.2 Enumerating Extreme Points

The first algorithm presented in this section is used to enumerate the extreme points for each figure (i.e.,

connected component) in a digitized picture. The algorithm uses a bottom-up divide-and-conquer

strategy, as follows.

For each figure, first enumerate the extreme points of the restriction of the figure to each of the 4

quadrants of the picture. Next for each figure in two or more quadrants, as shown in Figure 6.4,

determine which points are extreme points in the quadrant, but are not extreme points in the entire figure.

These form an interval, e.g., in Figure 6.4 they are the ones between the dotted lines. To find these dotted

lines, use a binary search on the convex hull edges of the (at most 4) pieces of the figure. This binary

search follows the generic Fixed Subset Division Algorithm given in Section 1.6.2. For example, in

Figure 6.4, the topmost dotted line can be found as follows. Find a leftmost and rightmost extreme point

of the restriction of the figure to the right subimage. Using this information, find and send the upper

convex hull edge that is in the middle of these two extreme points in the enumeration ordering (as

restricted to the right subimage) to the left subimage. Next, determine if the line collinear with this edge

passes above the restriction of the figure to the left subimage, passes through or below it, or is tangent to

it (and hence is the dotted line). In the first case, the edge and all convex hull edges preceding it in the

counterclockwise ordering (with respect to the restriction of the figure to the right subimage) are

eliminated from further consideration, while in the second case the edge and all convex hull edges

following it are eliminated.

Next, the lefthand piece sends over its middle edge, and a similar check eliminates half of the convex

hull edges. A binary search for the top dotted line continues in a natural fashion, alternating between the

halves. Eventually, either an edge on the dotted line is found, or else both pieces locate a processor

representing an extreme point such that the edge on one side is too high, and the edge on the other side is

too low. In this case the dotted line passes through the processor. Once the intervals of extreme points

between the dotted lines have been determined, it is easy to enumerate the remaining points using their

old enumeration information.

There may be Θ(n1/2) figures merging pieces together, so for each step of the binary search, for all figures

simultaneously, a hull edge is moved up to a level of size Θ(n1/2), across the level, and down to the piece

on the other side. A sparse pyramid write, with p = 1/2, may

Page 264

Figure 6.4:

Not all extreme points of a quadrant are extreme points of the figure.

be used to move the data up. This sparse pyramid write can be used since, in any subsquare of size k, if a

piece of data is being moved up, then it is in a figure crossing the border of the subsquare, and there are Ο

(k1/2) such figures. A similar operation moves the data down. The time obeys a recurrence equation of the

form T(n) = T(n/4)+cn1/4log n, c a constant, which has a solution of T(n) = Θ(n1/4log n).

Theorem 6.14 Given a digitized black/white picture in the base of a pyramid computer of size n, in Θ
(n1/41og n) time the extreme points of every figure can be enumerated. ·

Suppose it is known that all of the figures in the digitized picture are convex. Then by incorporating the

approach of Theorem 5.8, the time of the previous theorem for enumerating the extreme points of each

figure can be reduced by a factor of Θ(log n).

Corollary 6.15 In a pyramid computer of size n with a digitized picture in its base, suppose all the
figures are convex. Then the extreme points of every figure can be enumerated in Θ(n1/4) time. ·

In Section 5.5.1, the algorithm associated with Corollary 5.10 can be used to decide whether or not a

figure in a digitized picture is convex.

Page 265

This algorithm was designed by making a minor modification to the algorithm associated with Theorem

5.8, which enumerates the extreme points of a convex figure. A similar modification can be made so that

for each figure in a digitized picture, it can be detected whether or not the figure is convex.

Corollary 6.16 Given a digitized picture stored one pixel per processor in a natural fashion in the base
of a pyramid computer of size n, in Θ(n1/4) time every figure can decide whether or not it is convex. ·

Suppose that an arbitrary number of (not necessarily connected) labeled sets of processors are given in

the base of the pyramid, and that the extreme points of each such labeled set are to be enumerated. A

wire counting argument shows that in the worst case, Θ(n) messages may have to cross from the left half

of the pyramid to the right half of the pyramid. Therefore, any pyramid computer algorithm to solve this

problem will require Ω(n1/2) time. Since a mesh algorithm to solve this problem in Θ(n1/2) time was

presented in Section 3.5, the pyramid structure above the base mesh may be ignored, and the mesh

computer algorithm may be used to enumerate the extreme points of every set of base processors.

Proposition 6.17 In a pyramid computer of size n, in Θ(n1/2) time the extreme points of the processors
with the same label can be enumerated, simultaneously for all labels. ·

6.5.3 Applications of Extreme Points

Given multiple labeled sets of base processors, the algorithms presented in this section make use of

enumerated extreme points. The problems considered include determining a smallest enclosing box, the

smallest enclosing circle, and the diameter for every labeled set of base processors.

Given a metric d and a set S of base processors, the diameter of S with respect to d is max{d(P, Q) P, Q
∈ S}. Assume that d is one of the lp metrics, such as the l1 (taxi-cab) metric, the l∞ (chessboard) metric, or

the l2 (Euclidean) metric. The lp distance from (a, b) to (c, d) is (a -c P + b - d P)1/P, for 1 ≤ p < ∞, and

the l∞ distance from (a, b) to (c, d) is max(a- c , b- d). These metrics can be computed in unit-time,

and for them the diameter is max{d(P, Q) P and Q are extreme points of S}. It should be noted that

metrics other than the lp metrics could also be used, and although

Page 266

a discussion of appropriate metrics is outside the focus of this book, the reader might care to review the

discussion of metrics that was distributed throughout Section 3.6.

Given a set S of points in the plane, a smallest enclosing rectangle (also known as a smallest box) is a

rectangle of least area containing S. (If rectangles of zero area contain S, then the smallest such line

segment is used as the smallest enclosing box of S.) If S is finite, then it can be shown that a smallest

enclosing rectangle must contain an extreme point of S on each side, and at least one side must contain

two consecutive extreme points [FrSh75] (i.e., an edge of the convex hull of S). The smallest enclosing
circle is the circle of least area containing S. Smallest enclosing rectangles and smallest enclosing circles

appear in [FrSh75, MiSt85b, Tous80] and were discussed in Chapters 3 and 4 for the mesh.

Algorithms to solve these problems for a single set of processors rely on the number-theoretic fact that

for a set of lattice points in a square of size k, there are Ο(k1/3) extreme points [VoK182]. Therefore, in Θ

(n1/6) time, a sparse pyramid write can be used to move the extreme points of a labeled set of processors

to a level in the pyramid that consists of a mesh of size Θ(n1/3).

To determine diameter, let E be the set of extreme points and let d compute the given metric. Let g(e)
represent the maximum distance from e ∈ E to any other processor in set E. Then g is defined on E as g
(e) = max{d(e, x) x ∈ E}. Using the operation of reducing a function, g can be computed in Θ(n1/6) time

for all e ∈ E. Once this is accomplished, the diameter of E, which is just max{g(e) e ∈ E}, can be

computed in Θ(log n) time.

A smallest enclosing rectangle can be found in a similar manner. For each hull edge, assume an

orientation of the points that has this edge as the southernmost edge parallel to the x-axis, and use the

reduction operator to find the northernmost, westernmost, and easternmost points. For each hull edge,

these three points determine the minimum-area enclosing rectangle that includes the edge. A smallest

enclosing rectangle of the entire set is found by taking a minimum over these rectangles (ties broken

arbitrarily).

The smallest enclosing circle is the largest circle either passing through 3 of the extreme points or having

2 of the extreme points as a diameter. Thus, the smallest enclosing circle can be found by using an

extended reduction of a function, which is complete in Θ(n1/6) time.

The results are summarized in the following theorem.

Theorem 6.18 In a pyramid computer of size n, suppose the extreme

Page 267

points of a labeled set of processors have been marked. Then in Θ(n1/6) time, the diameter (measured

with any given lp metric), smallest enclosing circle, and a smallest enclosing rectangle can be determined.

·

An interesting open problem is extending the results of Theorem 6.18 to the situation where multiple

figures exist (possibly with their extreme points enumerated) in the digitized picture stored in the base of

a pyramid of size n. While [MiSt84c] did not consider finding the diameter, a smallest enclosing box,

and the smallest enclosing circle for multiple figures, it is straightforward to modify the algorithms in

that paper to do so in Θ(n1/3) time. However, the optimality of these results is open.

In Section 5.5.2, Theorem 5.15 shows that determining whether or not a figure in a digitized picture is

convex, can be used to decide whether or not the figure could have arisen as the digitization of a straight

line segment. Using the algorithm of Corollary 6.16 to decide whether or not each figure is convex, and

following the general procedure outlined in Theorem 5.15, in Θ(n1/4) time, it can be decided whether or

not each of these figures could have arisen as the digitization of a straight line segment.

Corollary 6.19 Given a digitized picture stored one pixel per processor in a natural fashion in the base
of a pyramid computer of size n, in Θ(n1/4) time it can be decided for every figure whether or not it could
have arisen as the digitization of a straight line segment. ·

Consider the problem of detecting whether or not the convex hull of each figure is intersected by the

convex hull of some other figure. An algorithm similar to those presented in Section 6.5.2 that makes use

of a sparse pyramid write, a grouping operation for the mesh, as described in Chapter 4, and a funnel

read, will provide an efficient pyramid solution.

Theorem 6.20 In a pyramid computer of size n, if the extreme points of each figure have been
determined, then in Θ(n1/4) time each figure can determine whether or not its convex hull intersects the
convex hull of any other figure. ·

6.6 Data Movement Operations

In this section, details of the data movement operations used throughout this chapter are presented.

Page 268

6.6.1 Pyramid Read, Pyramid Write, and Count_keys

The pyramid read and pyramid write involve master records stored at some level i, with request or update

records, respectively, generated at some level j, j ≤ i. The description of the pyramid read algorithm,

which follows, is somewhat counterintuitive. Instead of request records traveling from level j to level i,
obtaining their data, and returning to level j, the algorithm works by sending the master records from

level i down to level j. For example, suppose level i is a mesh of size m that contains the master records.

At iteration t, 1 < t < i - j, squares of size m are copied from level i - t + 1 to level i - t in unit time, where

they are decoupled in Θ(m1/2) time so that every square of size m at level i - t + 1 creates four squares of

size m at level i - t. After t iterations, 4t disjoint squares of size m exist at level j, each of which is a

duplicate of the master records as they are stored at level i. In order to obtain the desired information,

request records at level j simply perform a mesh concurrent read within their square of size m. This

algorithm is complete in Θ(i - j + 1 + (i - j + 1)m1/2) time. A pyramid write algorithm that finishes in the

same time may be performed similarly. Instead of data moving down the pyramid, data flows up the

pyramid from level j to level i, where each iteration consists of combining squares of size m. When the

data arrives at level i, a final mesh concurrent write is performed to complete the operation.

Notice that during each iteration of the algorithm, work is only performed at one level of the pyramid.

The running times of these algorithms can be improved by incorporating pipelining, so that work is

performed concurrently at multiple levels of the pyramid, as follows.

Let m = n/4i and S = . Conceptually, level i is a mesh of size m, and levels j . . . i are

divided into disjoint squares of size S. The squares at level i are numbered from 1 to m/S using a snake-

like ordering, as in Figure 1.2. All of the data starting in square k at level i is called packet k.

Define a cycle to be cS1/2 time units, where the constant c, independent of n and S, is chosen so that in

one cycle a square can perform all of the following.

1. Exchange packets with the next square on the same level (where next is with respect to the snake-like

ordering).

2. Make a copy of the packet in each of the four descendant squares at the level below.

Page 269

3. Perform a mesh concurrent read.

A description of an improved pyramid read algorithm follows. Packets are first passed backwards along

level i towards square 1, using the snake-like ordering, one square per cycle. Once at square 1, a packet is

moved forwards along level i, again using the snake-like ordering. Each time that a square at level i
receives a packet moving forwards, it first creates a copy of the packet in each of its four descendant

squares at level i - 1, before passing it along. Each square at level (j + 1) . . . (i - 1) that receives a packet,

makes a copy of the packet in each of the four squares at the level below. Finally, each time a square at

level j receives a packet, it performs a mesh concurrent read so that the processors in the square can read

information from the current packet, after which, the packet can be discarded.

Proposition 6.21 In a pyramid computer of size n, a pyramid read at level j from level i takes Θ(i - j + 1

+ [m(i - j + 1)]1/2) time, where m = n/4i

Proof. The operation is finished when packet m/S has moved backwards to square 1, forwards to square

m/S, down to level j, and all level j squares beneath square m/S have done a mesh concurrent read. This

takes 2m/s-1 + i - j cycles, or Θ(i - j + 1+ [m(i - j + 1)]1/2) time. ·

For the pyramid write, assume that master records are maintained by processors on level i and update

records are generated by processors are on level j, j ≤ i, and m and S are defined as above. The pyramid

write is basically performed by running the pyramid read in reverse. Slight differences arise because

several processors at level j can send records with the same key, but perhaps different data parts, in

which case it is necessary to take a minimum (or some other appropriate commutative associate binary

function). Also, it is not initially known which packet a given record will end up in.

In general, a square Z will have a packet's worth of data from each square feeding into it (either the four

squares below, or, for squares at level i, the four squares below and the preceding square in the snake-

like ordering). From this, Z has enough to make at least one packet's worth of data. However, since the

square it is feeding data to may have some left-over data from the previous cycle, the square it is feeding

informs Z as to the number of records required. In one cycle, Z supplies the necessary data and informs

each square feeding into it as to how many records need to be replaced. Since it takes one cycle to

receive the data,

Page 270

and one cycle for Z to pass on data after the new data is received, each step of the pyramid write takes

two cycles.

Making these minor changes to the pyramid read, the following is obtained.

Proposition 6.22 In a pyramid computer of size n, a pyramid write from level j up to level i can be
performed in Θ(i-j+1 +[m(i -j+1)]1/2) time, where m = n/4i. •

Section 6.5 makes use of a data movement operation that is closely related to the pyramid write. The

operation is the sparse pyramid write, and it is used in circumstances where a rigid relationship exists

between the amount of data in the base that needs to be sent and the amount of data that needs to be sent

from each square of the base.

Proposition 6.23 Fix constants p and C, where 0 < C and 0 < p < 1. Given a pyramid computer of size n,
suppose there are no more than CnP processors in the base which have a piece of data that is to be sent
to level log4 . (This level is the highest one with at least CnP processors.) Further, in each

subsquare of size k in the base of the pyramid, 0 ≤ k ≤ n, assume that there are no more than CkP

processors sending data. Then a sparse pyramid write will move the data to level log4 in Θ(nP/2)
time.

Proof. To perform a sparse pyramid write, fix p and C, and in parallel perform a sparse pyramid write in

each quadrant of the pyramid. The level that the data is written to is either the same as the desired final

level, or else it is one level below. Merge the data together using a mesh computer operation such as a

concurrent read (see Section 2.6.4), and move up one level if necessary. For fixed p and C, the time

obeys a recurrence of the form T(n) = T(n/4) + dnP/2, d a constant, which has a solution of Θ(nP/2). ·

The function count-keys is responsible for counting the number of distinct keys present in the base of a

pyramid of size n. If each key were represented only once, then count_keys could finish in Θ(log n) time.

However, keys may be duplicated, so count-keys uses the pyramid write to eliminate duplicates. It first

tries to determine if the number of unique keys is less than or equal to K, where K = . This

is accomplished by performing a pyramid write of the keys from the base to level L = log4(n/K), where

each processor at level L acts as if it

Page 271

is maintaining one master record. When finished, a pyramid read and a tree-like semigroup operation (i.

e., an associative binary operation) are used to determine whether or not all keys reached level L. Since

each processor at level L, a mesh of size K, permitted only one record to be viewed, then if there are

more than K distinct keys in the base, not all keys would have reached level L. If it is determined that all

keys have reached level L, then the number of distinct keys in the base is the number of processors at

level L that actually received a record. Otherwise, count_keys determines if the number of keys is less

than or equal to 4K by performing a new pyramid write to level L ← L - 1. The algorithm continues by

multiplying the number of keys by 4 at each stage, and decrementing the level L representing the location

of the master records, until it reaches a stage where the pyramid write succeeds in moving all distinct

keys to level L. At this point, since exactly one copy of each key has reached level L, the total number of

keys can be counted and distributed to all processors in Θ(log n) time by performing a semigroup

operation.

Proposition 6.24 If there are k different keys present in the base of a pyramid computer of size n, then in
O(log(n) + k1/2[1 + log(n/k)]1/2) time, count_keys will count them.

6.6.2 Pyramid Matrix Read and Pyramid Matrix Write

The pyramid matrix read and pyramid matrix write both assume that a matrix M = {mi, j
} is stored in the

pyramid so that base processor Pi, j
 stores matrix entry mi, j

. A pyramid matrix write performs the same

basic action as a pyramid write, with the exception that all processors in the same row of the matrix send

update records corresponding to the same key. (A column version of the pyramid matrix write can be

defined similarly.) Assume that update records for the pyramid matrix write are generated by base

processors, and that master records are maintained by processors at level i, and let m = n/4i. (Recall from

Section 6.3 that m ≤ 2n1/2.) Also, assume that ties are broken in favor of the minimum record. The

pyramid matrix write has two steps, namely

1. move the data to level j = log4 m, and then

2. move the data from level j to level i.

(Note: if m = 2n1/2 then set j = i instead of i + 1.)

Page 272

To perform the first step of the row version of the pyramid matrix write (the column version is similar),

partition the processors at level j into disjoint strings of k = 2j processors all in the same row, and call

such a string and all descendant processors of the string a prism. Notice that a prism includes k2 columns

of k rows in the base. Therefore, a prism sits over no more than k different keys. In each prism, at time j,
the first string processor receives the minimum record sent from any of its k base descendants that are in

the first row of its prism. This processor passes the record on to the next processor in its string. In

general, the computations are pipelined so that at time j + r - 1+p - 1, the pth processor in the string of

each prism receives the minimum record sent from any descendant base processor in the rth row of the

prism, and also receives from the preceding string processor, the minimum record sent from any base

processor in the rth row beneath any of the preceding string processors. The pth processor in the string

takes the minimum of these two values and passes it to the (p + 1)st processor in its string.

At time j + k- 1, the last processor in each string forms the minimum sent by any base processor in the

first row of its prism, and this value is sent back towards the first processor of its string. These reverse

messages are passed simultaneously with the previously mentioned ones. Finally, at time j + 2k - 2, the

last string processor (the kth one) finds the minimum record sent by any base processor in the kth row of

the prism. Simultaneously, the minimum record sent by any base processor in the first row of a prism has

moved back to the first processor of its string, and the first step of the algorithm is finished.

The second step is just a pyramid write from level j to level i. This gives the following result.

Proposition 6.25 In a pyramid computer of size n, a pyramid matrix write to level i, i ≥ , takes Θ

(log(n) + m1/2[2 + log(n/m2)]1/2) time, where m = 4i.

Proof. If m ≤ n1/2, then the time for the first step is Θ(m1/2), and the time for the second step is Θ(i - j + 1

+ m1/2[i - j + 1]1/2). Since j = log4 m and i = log4(n/m), the result is as claimed. Otherwise, if m = 2n1/2, then

the time is Θ(m1/2). In this case, log4(n/m2) = -1, which is why there is a 2 instead of the usual 1 inside the

brackets. ·

The pyramid matrix read performs the same basic action as a pyramid read, and also comes in a row and

column version. The discussion will again be for the row version, with the column version being similar.

Page 273

Assume that all request records are generated by base processors, that those in the same row request

information about the same key, and that master records are maintained by processors at level i, where m
= n/4i. The pyramid matrix read takes 3 steps. The first step uses prisms of height j, where j = log4 m. By

using the first step of the pyramid matrix write, in Θ(m1/2) time, the top row (string) of each prism

contains the keys needed by the rows beneath. The second step is a pyramid read at level j from level i.
The third step reverses the first one, taking data to the base.

Proposition 6.26 In a pyramid computer of size n, a pyramid matrix read from level i, i ≥ , takes

Θ(log(n)+m1/2 [2+ log(n/m2)]1/2) time, where m = 4i. ·

6.6.3 Funnel Read and Reducing a Function

The funnel read was initially discussed in Section 6.4.1. It is useful for the situation where an algorithm

leaves intermediate results in data squares scattered throughout the pyramid that must be collated and

moved to the base. Its implementation is straightforward. Suppose the final stage of an algorithm is stage

f. Then every stage f - 1 data square uses a pyramid read to obtain the necessary data from its stage f data

square. (Notice that this runs in time proportional to the edgelength of a stage f data square.) Continuing

downwards, every stage i - 1 data square uses a pyramid read to obtain its data from its stage i data

square. As data moves down the pyramid, the squares get smaller by a factor of 4 at each stage (see

Figure 6.3). Therefore, if the final stage of an algorithm produces data in a square of size m at level k, the

running time of the funnel read is , for c a constant, which is Θ(m1/2).

Proposition 6.27 Assume that the final stage of an algorithm is stage f, and that a stage f data square is
a mesh of size m. Then a funnel read runs in Θ(m1/2) time. ·

The operation of reducing a function was initially discussed in Section 6.4.1. Given sets Q, R, and S, let g
be a function mapping Q × R into S, and let * be a commutative, associative, binary operator over S.

Define f to be the reduction of g, where f maps Q into S by f(q) = *{g(q, r) r ∈ R}. For example, if Q

and R are sets of points

Page 274

in some metric space, if S is the real numbers, if g(q, r) is the distance from q to r, and if * is minimum,

then f(q) is the distance from q to a nearest point in R.

Assume that the elements of Q are stored one per processor in a square, call it T, of size m at level i, and

the elements of R are also stored one per processor in T. (A processor of T may contain an element of Q
and an element of R.) Further, assume g and * can both be computed in Θ(1) time.

In order to describe the algorithm, some notation is in order. Let G(Q, R) denote the reduction, where for

q ∈ Q, G(Q, R)(q) = *{g(q, r) r ∈ R}. The term computing G(Q, R) in T, means that for a set T of

processors, for each element q ∈ Q, there is a processor in T that computes and stores the value of G(Q,

R)(q). Notice that if a set A ⊆ Q is partitioned into subsets A1, A2, A3, and A4, then G(A, R) = G(A1, R) ∪ G

(A2, R) ∪ G(A3, R) ∪ G(A4, R). Also, if a set B ⊆ R is partitioned into subsets B1, B2, B3, and B4, then G

(Q, B)(q) = G(Q, B1)(q)* G(Q, B2)(q) * G(Q, B3)(q) * G(Q, B4)(q), for any q ∈ Q.

Using these observations, the operation of reducing a function can now be presented in a straightforward

fashion. If m = 1 (i.e., the number of processors in T is 1), then the single processor just computes the

required value in Θ(1) time. If i = 0 (i.e., if all of the data is at the base), then in Θ(m) time, all values of

R are circulated among all processors holding members of Q, and each such processor calculate its

associated f value. Otherwise, Q is partitioned at level i by quadrants into 4 subsets, namely, Q1, Q2, Q3,
and Q4, as in the top of Figure 6.5.

The quadrant storing Qj assumes responsibility for computing G(Qj, R). In order to compute G(Qj, R),
each processor that contains an element of Qj first sends a copy of this element to its four children. A

mesh sort-like step is used at level i -1 to create 4 copies of Qj, one in each quadrant of the descendant

processors of Qj from level i. Next, the processors at level i - 1 that are descendants of Qj from level i,
perform a pyramid read from level i in order to obtain a copy of R. (See the bottom of Figure 6.5.) A

square of size m/4 on level i - 1 holding Qj and Rk is now responsible for computing G(Qj, Rk), which it

does recursively. When this is finished, beneath each quadrant of level i, the four squares of size m/4 at

level i - 1 use a pyramid write to send up their results so that a processor at level i that is responsible for

an element q ∈ Q will receive G(Q, R1)(q), G(Q, R2)(q), G(Q, R3)(q), and G(Q, R4)(q). By taking the * of

these values, the processor responsible for q will compute G(Q, R)(q), and the operation is complete.

Page 275

level i

level i-1

Figure 6.5:

Reduction of a function.

Page 276

Proposition 6.28 Suppose the elements of Q are stored one per processor in a square of size m at level i,
and the elements of R are also stored one per processor in this square, and suppose g and * can be
computed in Θ(1) time. Then the reduction of g can be computed in Θ(m1/2 + m/4i) time.

Proof. It takes Θ(m) time to copy the values of Q and R from level i to level i - 1. Since the size of the

squares reduces by a factor of 4 at each level, it takes Θ(m) time to copy the values all the way down to

the base. (If m < n1/2, then the data does not even reach the base, instead only moving down log4 m levels

until the problem has been broken into squares of size 1.) The base squares are of size m/4i, so they take

Θ(m/4i) time to compute their values. Moving data back up the pyramid, and combining results along the

way, again takes Θ(m) time. Hence, the running time is as claimed. ·

The preceding operation may be extended to the following situation. Given sets P, Q, R, and S, let g be a

function mapping P × Q × R into S, and let * be a commutative, associative, binary operator over S.

Define f to be the extended reduction of g, where f maps P into S by

f(p) = *{g(p, q, r) q ∈ Q, r ∈ R}.

If g and * can be computed in unit time, and if P, Q, and R are stored one element per processor at a

mesh level in the pyramid with m processors, 1 ≤ m ≤ n1/3, then this reduction of g can be computed in Θ
(m1/2) time. The algorithm for this reduction is analogous to the one of Proposition 6.28, except that the

partitioning and merging of the data now follows the pattern illustrated in Figure 6.6.

Proposition 6.29 Suppose the elements of P, Q, and R are stored one per processor in a square of size m,
1 ≤ m ≤ n1/3, and suppose * and g can be computed in Θ(1) time. Then the extended reduction of g over P

× Q × R can be computed in Θ(m1/2) time. •

6.7 Optimality

This section is concerned with the optimality of the results presented in this chapter.

Proposition 6.30 In a pyramid computer of size n, the time needed to move B > 1 bits of data from the
first column of the base to the last column of the base is Ω(log(n) + [B/log n]1/2).

Page 277

level i

level i-2

Figure 6.6:

Extended reduction of a function.

Page 278

Figure 6.7:

Another view of the pyramid computer.

Proof. Assume B ≥ log2n, and let L = and E = . For each column of processors at

level L, call the entire column and all of its descendants a prism. The data initially resides in the leftmost

prism and must move to the rightmost one. If a bit only moves along communication links involving

processors at level L or below, then at least E - 1 communication links must be traversed, since there are

E prisms, and each communication link either keeps the bit in the same prism or moves it to an adjacent

one.

Figure 6.7 shows a side view of the processors at level L and above. The usual way of drawing the

pyramid has been slightly altered so that all processors in the same column and level are represented as a

single processor. The labels along the wires (communication links) indicate the number of steps that

could be saved in moving data from the leftmost prism to the rightmost prism by using the wire. The

time spent traversing vertical wires is ignored since these wires do not provide any savings. As such,

vertically drawn wires are not labeled. Notice that there are E/2 (
E/2 - 1) horizontal wires labeled 1 ,2 (E/4)2

slanted wires labeled 1, (E/4) (
E/4 - 1) horizontal wires labeled 3, and so forth. Since each wire can carry at

most Clog2 n bits per unit time, for some constant C, in 1 unit of time the maximum number of bits

moved by the nonvertical

Page 279

wires above level L is

which is less than CE21og2
n. Therefore, in t units of time the maximum number of bits moved by wires

above level L, i.e., the maximum savings in moving data from the leftmost prism to the rightmost prism

by using wires above level L, is less than CE2tlog2
n.

Conversely, a bit of data that reaches the rightmost prism in t units of time must have crossed labeled

wires above level L with a total weight of at least E - 1 - t. Furthermore, if all B bits of data reach the

rightmost prism in t units of time, the total savings by using wires (i.e., the cumulative weight of the

wires) above level L must be at least B(E - 1 - t). Therefore, t must be such that

B(E - 1 - t) < CE2tlog2
n,

or

Since the pyramid computer of size n has a communication diameter of 2log4 n, then t ≥ log4 n. Hence,

the desired result is obtained. ·

For many of the problems considered in this chapter, inputs can be devised for which Proposition 6.30

applies. For example, consider the problem of labeling the connected components of a digitized picture

stored in the base of a pyramid, where the input is of the form shown in Figure 6.8, where an X indicates

a pixel that may or may not be black and a Y indicates a pixel that is always white. Notice that if the two

black processors neighboring a processor marked Y end up with the same label, then the processor

marked X that is in Y's row must be black. Since a Y can determine if its black neighbors have the same

label in Θ(1) time after the component labeling algorithm is finished, the component labeling algorithm

requires at least as much time as it takes to transmit Θ(n1/2) bits from one edge to the opposite edge of the

pyramid. By Proposition 6.30, this is Ω(n1/4/log1/2 n). This lower bound is a factor of Θ(log1/2 n) smaller

than the time achieved in Theorem 6.9, which shows that Theorem 6.9 is at most Θ(log1/2 n) times

optimal. For many of the problems considered in this chapter, Proposition 6.30 can be used to show that

the algorithms presented to solve these problems are not

Page 280

Figure 6.8:

An image requiring extensive data movement.

far from optimal. However, the optimality of the results presented in this chapter remains open.

Conservative data movement is defined to be the situation under which data must be moved as separate

packets that may not be combined. Note that with respect to the conservative data movement model,

several of the algorithms given in this chapter are optimal, including, for example, the digitized picture

component labeling algorithm associated with Theorem 6.9.

6.8 Further

Remarks

Because of its similarity to some animal optic systems, its similarity to the (region) quadtree structure,

and its natural use in multiresolution image processing, the pyramid computer has long been suggested

for lowlevel image processing [Dyer8la, Dyer8lb, Dyer82, MiSt84c, MiSt85c, Rose84, Stou82c,

Stou83c, Tani81, Tani82a, TaK180, Uhr72, Uhr84]. In fact, several pyramid computers are in various

stages of construction [Buva87, CFLS85, ClMe87, FKLV83, Scha85, SHBV87, Tani82a]. This chapter

demonstrates that the pyramid computer can be used for more complex tasks than originally considered.

For example, efficient pyramid computer algorithms were presented in this chapter to solve higher-level

Page 281

problems in image analysis, as well as problems in graph theory and digital geometry.

In this chapter, fundamental data movement operations for the pyramid computer were presented for a

variety of standard input formats. The algorithms that were presented relied heavily on these data

movement operations, as well as on fundamental solution strategies, such as divide-and-conquer. Note

that these data movement operations intermingle the use of both the child-parent and mesh-connected

links. They also make extensive use of intermediate levels of the pyramid to do calculations, store

results, and communicate data. Furthermore, the algorithms presented in this chapter show how to exploit

lower levels of the pyramid to aid in the computation of functions being performed at higher levels.

In Section 5.3, lower bounds on the running times of algorithms on a pyramid were discussed. The

communication diameter of a pyramid of size n gives a lower bound of Ω(log n) for problems in which

information must be exchanged between arbitrary processors. In Chapter 5, a number of pyramid

algorithms were given that have running times that are poly-logarithmic in the size of the input. In this

chapter, it was shown that for many problems on a pyramid of size n, the Ω(log n) bound is overly

optimistic, and that lower bounds for these problems are closer to Ω(n1/4). While algorithms that are

within a logarithmic factor of this lower bound were presented, the general question of optimality for the

problems considered remains open.

In this chapter, the concentration was on 2-dimensional pyramids (i.e., pyramids over 2-dimensional

meshes at the base) since they are the ones most commonly built. However, it is interesting to consider

higher dimensional pyramids, especially for situations involving higher dimensional data. A j-
dimensional pyramid (j-pyramid) of size n is a machine viewed as a full 2j-ary tree with additional

horizontal links. The base of the j-pyramid of size n is a j-dimensional mesh of size n, as discussed in

Section 4.11. Each level of the pyramid is a j-dimensional mesh with 1/2j as many processors as the

previous level. A processor at level i is connected to its neighbors (assuming they exist): 2j adjacent

processors at level i, 2j children at level i - 1, and a parent at level i + 1. In [MiSt87a], it is shown that

several of the data movement operations and algorithms presented in this chapter may be extended to j-
dimensional pyramids.

It is interesting to compare the pyramid computer to other parallel architectures. Using the standard VLSI

model in which processors are separated by at least unit distance and a wire has unit width, it has been

Page 282

shown that a pyramid computer of size n can be laid out in Θ(n) area by a simple modification of the

standard ''H tree" layout scheme [Dyer81a]. The space of a layout for an interconnection scheme is one

measure of its cost, as is the regularity of the layout. A mesh computer of size n also requires Θ(n) area

with an extremely regular layout, but because it has a communication diameter of Θ(n1/2), it requires Ω

(n1/2) time to solve all of the problems considered in this and the previous chapter, compared to, say, Θ
(n1/4) time needed by the pyramid computer to label the figures of an image. (Mesh computer algorithms

taking Θ(n1/2) time to solve problems presented in this chapter appear in Chapters 2, 3, and 4.)

Another model that can be easily laid out in Θ(n) area is the quadtree machine, which is simply a

pyramid computer without the nearest neighbor (mesh) links. Like the pyramid, the quadtree has a

logarithmic communication diameter, but unlike the pyramid, the apex often acts as a bottleneck. For

example, it is easy to show that the quadtree needs Ω(n1/2) time to label figures or find nearest neighbors

of an image, even if higher processors have additional memory (as suggested in [AhSw84]). On the

pyramid, nearest neighbor connections may be used at the intermediate levels to circumvent this

bottleneck.

General-purpose interconnection schemes such as the shuffle-exchange, butterfly, and cube-connected
cycles can be used to provide poly-logarithmic time solutions to all the problems considered in this and

the previous chapter. Unfortunately, these interconnection schemes require area that is nearly

proportional to the square of that required to lay out the pyramid computer [Ullm84].

A more interesting model is the orthogonal trees or mesh-of-trees [Ullm84]. This model has a mesh-

connected base of size n, augmented so that each row and column of the base mesh has a binary tree over

it, with these trees being disjoint except at their leaves. In this model, Θ(n1/21og2 n) bits can be moved

from the leftmost log n columns to the rightmost log n columns in Θ(log n) time. This is a significant

improvement over the pyramid computer bound presented in Proposition 6.30, though not enough to

provide poly-logarithmic time sorting. The mesh-of-trees has not received much consideration as an

image processing machine, but for all of the problems considered in this and the previous chapter

involving images or adjacency matrices, orthogonal trees can be used to solve them in poly-logarithmic

time.

Orthogonal trees do have some drawbacks, however. While the pyramid computer can be laid out in

linear area, orthogonal trees need a factor of log2 n more area [Ullm84]. Further, orthogonal trees seem to

have few ties to other objects of interest for researchers in image pro-

Page 283

cessing, as opposed to the neural, data structure, and multiresolution ties mentioned above for the

pyramid computer. Additional models which are closer to the pyramids, and which solve all of the image

processing problems considered herein in poly-logarithmic time, have been suggested [Stou87].

Finally, many of the problems that have been considered for the pyramid have poly-logarithmic time

solutions on a hypercube. The major disadvantage of a hypercube, however, is that as the number of

processors is doubled, each processor of the hypercube is required to add an additional communication

link. That is, the number of bidirectional communication links required for each processor of the

hypercube is not Θ(1), as it is for the mesh, pyramid, and mesh-of-trees, but rather Θ(log n).

Page 285

A

Order Notation

Intuitively, Θ is used to mean 'order exactly', Ο is used to mean 'order at most', Ω is used to mean 'order

at least', o is used to mean 'order less than', and ω is used to mean 'order greater than'. Let f and g be

nonnegative functions defined on the positive integers.

1. The notation f = Θ(g) (read as "f is theta of g") may be used if and only if there are positive constants

C1, C2, and a positive integer N such that Ci*g(n) ≤ f(n) ≤ C2*g(n), whenever n > N.

2. The notation f = Ο(g) (read as "f is oh of g") may be used if and only if there is a positive constant C

and an integer N such that 0 ≤ f(n) ≤ C * g(n), for all n > N.

3. The notation f = Ω(g) (read as "f is omega of g") may be used if and only if there is a positive constant

C and an integer N such that 0 ≤ C * g(n) ≤ f(n), for all n > N.

4. The notation f = o(g) (read as "f is little-oh of g") may be used if and only if there is a positive constant

C and an integer N such that 0 ≤ f(n) < C * g(n), for all n > N.

5. The notation f = ω(g) (read as "f is little-omega of g") may be used if and only if there is a positive

constant C and an integer N such that 0 ≤ C * g(n) < f(n), for all n > N.

When using order notation, the simplest function possible should be used within the Θ, Ο, Ω, o, or ω.
The idea is to use the notation to reduce complicated functions to simpler ones whose behavior is easier

to understand. Intuitively, the order notation seeks to capture the dominant term of the function, so as to

represent its asymptotic growth rate. The reader should be aware that when using order notation, the

symbol '=' should be read as 'is' and not 'equals.' In fact, since order notation is used to describe set

membership, it would have been better if the symbol ∈ were used instead of the symbol =. However,

since the symbol '=' has become a defacto standard in the literature, it will be used throughout the book.

Using Θ arbitrarily for an example, it should now be clear that f = Θ(g) is not the same as Θ(g) = f. In

fact, Θ(g) = f is meaningless.

Page 286

Notice from the definition of Θ that if f = Θ(g), then g = Θ(f), since if there are positive constants C1,C2,

and N such that C1
*g(n) ≤ f(n) ≤ C2 * g(n) for all n > N, then * f(n) ≤ g(n) ≤ * f(n), for all n > N.

Some examples of Θ are 2 + sin(n) = Θ(n), 3n + 2 = Θ(n), 10n2 + 4n + 2 = Θ(n2), 10n2 + 4n + 2 ≠ Θ(n),

and 10 * log(n) + 4 = Θ(log n).

It is not always possible to determine the behavior of an algorithm using Θ-notation. For example, given

a problem with n inputs, it may be that a given algorithm takes Dn2 time when n is even and Cn time

when n is odd, or one may only be able to prove that some given algorithm never uses more than En2

time and never less than Fnlog n time (as is the case for the serial version of quicksort). In the first case,

one can claim nexther Θ(n) nor Θ(n2) to represent the running time of the algorithm, and in the second

case one can claim nexther Θ(n) nor Θ(nlog n) to represent the running time of the algorithm. Ο and Ω

notation allow for partial descriptions of functions.

Some examples of Ο notation are 3n + 2 = Ο(n), since 3n + 2 ≤ 4n, for all n ≥ 2, 100n + 6 = Ο(n), since

100n + 6 < 101n, for all n ≥ 10, 10n2 + 4n + 2 = Ο(n2), since 10n2 + 4n + 2 ≤ 11n2, for all n ≥ 5, 3n+2 ≠ Ο

(1), since 3n + 2 is not less than or equal to c for any constant c and all n ≥ N, 10n2 + 4n + 2 ≠ Ο(n), and

10n2 + 4n + 2 = Ο(n4). Of course a more desirable relationship to represent the last function is 10n2 + 4n
+ 2 = Ο(n2), but since Ο-notation is used to represent an upper bound, 10n2 + 4n + 2 = Ο(n4) is also

technically correct.

Examples of Ω notation are 3n + 2 = Ω (n), since 3n + 2 ≥ 3n for all n >= 1, 100n + 6 = Ω (n), since 100n

+ 6 ≥ 100n for all n >= 1, 10n2 + 4n+2 = Ω(n2) since 10n2+4n+2 ≥ n2 for all n ≥ 1, 10n2+4n+2 = Ω(n),
and 10n2 + 4n + 2 = Ω (1). Again, the simplest and most accurate representation of the last function

would be 10n2 + 4n + 2 = Ω (n2).

Examples of o notation are 3n2 ≠ o(n2), since 3n2 = Θ(n2), 7n = o(n2), and 7n1/2 = o(n2).

Examples of w notation are 3n2 ≠ w(n2), since 3n2 = Θ(n2), 7n3 = w(n2), and 7nr = w(n3)

For many of the algorithms in the book, it will be shown that the running time is Ο(T(n)) on a particular

machine model, for some function T(n). Further, if it is known that the problem requires Ω(T(n)) time on

that model, then it can be concluded that the running time of the algorithm is in fact optimal at Θ(T(n)).

Page 287

B

Recurrence

Equations

The running times for many of the algorithms presented in this book involve recurrences of the form

where n is a power of b. The growth rate of T(n), which expresses the asymptotic running time of the

algorithm, is given by

Further, for most of the algorithms presented in this book, i takes on the value 0 or 1, which further

simplifies the solution to the recurrence.

For example, many of the mesh algorithms in the book operate on n2 pieces of data distributed one piece

per processor, and have running times T(n2) that are expressed as T(n2) = T(n2/4)+cn, or equivalently as T
(n2) = T(n2/4) + Θ(n). From the above solution to the general recurrence, one can see that i = 1/2 and 1 =

a < bi = 41/2 = 2, so the asymptotic running time of such an algorithm is T(n2) = Θ(n).

Page 289

Bibliography

A

[APP85] F. Afrati, C. Papadimitriou, and G. Papageorgiou, The complexity of cubical graphs,

Information and Control 66 (1985), 53-60.

[ACGO88] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, Parallel computational

geometry, Algorithmica 3 (1988), 293-327. (A preliminary version appeared in Proceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, 1985, 468-477.)

[AhSw84] N. Ahuja and S. Swamy, Multiprocessor pyramid architecture for bottom-up image analysis,

IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 463-474.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi, An Ο(n log n) sorting network, Proceedings of the 15th
ACM Symposium on Theory of Computing, 1983, 1-9.

[Akl83] S.G. Akl, Optimal parallel algorithms for computing convex hulls and for sorting, Computing 33

(1984), 1-11.

[Akl85] S.G. Akl, Parallel Sorting Algorithms, Academic Press, Inc., New York, 1985.

[AkLy93] S. G. Akl and K. A. Lyon, Parallel Computational Geometry, Prentice-Hall, 1993.

[Amet86] Ametek, Inc., Ametek System 14 User's Guide, August, 1986.

[ADMR94] M.J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. Tsay, Multisearch techniques

for implementing data structures on a mesh-connected computer, Journal of Parallel and Distributed
Computing 20 (1994), 1-13.

[AtGo86a] M.J. Atallah and M.T. Goodrich, Efficient parallel solutions to some geometric problems,

Journal of Parallel and Distributed Computing 3 (1986), 492-507.

Page 290

[AtGo86b] M.J. Atallah and M.T. Goodrich, Parallel algorithms for some functions of two convex

polygons, Proceedings of the 24th Allerton Conference on Communications, Control, and Computation,
1986, 758-767.

[AtHa85] M.J. Atallah and S.E. Hambrusch, Solving tree problems on a mesh-connected processor array,

Proceedings of the 26th Annual IEEE Symposium on the Foundations of Computer Science, 1985, 222-

231.

[AtKo84] M.J. Atallah and S.R. Kosaraju, Graph problems on a mesh-connected processor array,

Journal of the ACM 31 (1984), 649-667.

[Avis79] D. Avis, On the complexity of finding the convex hull of a set of points, Tech. Rept. SOCS

79.2, School of Computer Science, McGill University, 1979.

[AwShi83] B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for ultracomputer and

PRAM, Proceedings of the 1983 International Conference on Parallel Processing, 175-179.

B

[BBKK68] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes, The ILLIAC

IV computer, IEEE Transactions on Computers 17 (1968), 746-757.

[Batc68] K.E. Batcher, Sorting networks and their applications, Proceedings of the AFIPS Spring Joint
Computer Conference 32, 1968, 307-314.

[Batc81] K.E. Batcher, Design of a Massively Parallel Processor, IEEE Transactions on Computers 29

(1981), 836-840.

[Bene64] V.E. Benes, Optimal rearrangeable multistage connection networks, Bell System Technical
Journal 43 (1964), 1641-1656.

[Bent80] J.L. Bentley, Multidimensional divide-and-conquer, Communications of the ACM 23 (1980),

214-229.

[BeOt79] J.L. Bentley and T.A. Ottman, Algorithms for counting and reporting geometric intersections,

IEEE Transactions on Computers 28 (1979), 643-647.

Page 291

[BWY78] J.L. Bentley, B.W. Weide, and A.C. Yao, Optimal expected-time algorithms for closest point

problems, Proceedings of the 16th Allerton Conference on Communication, Control, and Computing,
1978.

[Beye69] W. T. Beyer, Recognition of Topological Invariants by Iterative Arrays, Ph .D. thesis, M.I.T.,

1969.

[BCLR92] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg, Efficient embeddings of trees

in hypercubes, SIAM Journal on Computing 21 (1992), 151-162.

[BhIp85] S.N. Bhatt and I.C.F. Ipsen, How to embed trees in hypercubes, Yale University Research

Report YALEU/DCS/RR-443, 1985.

[BoRa90] R. Boppana and C.S. Raghavendra, Optimal self-routing of linear-complement permutations in

hypercubes, Proceedings of the 5th Distributed Memory Computing Conference, 1990, 800-808.

[Buva87] P.J. Burt and G.S. van der Wal, Iconic image analysis with the pyramid vision machine

(PVM), Proceedings of the IEEE 1987 Workshop on Pattern Analysis and Machine Intelligence, 137-144.

C

[CFLM85] V. Cantoni, M. Ferretti, S. Levialdi, and F. Maloberti, A pyramid project using integrated

technology, in Integrated Technology for Parallel Image Processing, S. Levialdi, ed., Academic Press,

1985, 121-132.

[CFLS85] V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, Papia: pyramidal architecture for

parallel image analysis, Proceedings of the 7th Symposium on Computer Arithmetic, 1985, 237-242.

[Chan88] M.Y. Chan, Dilation-2 embeddings of grids into hypercubes, Proceedings of the 1988
International Conference on Parallel Processing, vol. III, 295-298.

[Chan91] M.Y. Chan, Embedding of grids into optimal hypercubes, SIAM Journal on Computing 20

(1991), 834-864.

[Chaz84] B. Chazelle, Computational geometry on a systolic chip, IEEE Transactions on Computers 33

(1984), 774-785.

Page 292

[CSK90] M.-S. Chen, K.G. Shin, and D.D. Kandlur, Addressing, routing, and broadcasting in hexagonal

mesh multiprocessors, IEEE Transactions on Computers 39 (1990), 10-18.

[CLC82] F.Y. Chin, J. Lam and I.-N. Chen, Efficient parallel algorithms for some graph problems,

Communications of the ACM 25 (1982), 659-665.

[Chow81] A. Chow, A parallel algorithm for determining convex hulls of sets of points in two

dimensions, Proceedings of the 19th Allerton Conference on Communication, Control, and Computing,
1981, 214-233.

[ClMe87] Ph . Clermont and A. Merigot, Real time synchronization in a multi-SIMD massively parallel

machine, Proceedings of the IEEE 1987 Workshop on Pattern Analysis and Machine Intelligence, 131-

136.

[Cohn89] E. Cohn, Implementing the multi-prefix operation efficiently, Stanford Univ., Computer

Science Tech. Report, 1989.

[Cole88] R. Cole, Parallel merge sort, SIAM Journal of Computing 17 (1988), 770-785.

[CLR92] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-Hill Book

Company, New York, 1992.

[CyP193] R. Cypher and C.G. Plaxton, Deterministic sorting in nearly logarithmic time on the hypercube

and related computers, Journal of Computer and System Sciences 47, 1993, 501-548.

[CySa88] R. Cypher and J. Sanz, Optimal sorting on reduced architectures, Proceedings of the 1988
International Conference on Parallel Processing, vol. III, 308-311.

[CySa89] R. Cypher and J. Sanz, Data reduction and fast routing: a strategy for efficient algorithms for

message-passing parallel computers, Algorithmica 7 (1992), 77-89.

[CSS87] R. Cypher, J. Sanz, and L. Snyder, Hypercube and shuffle-exchange algorithms for image

component labeling, Proceedings of the IEEE 1987 Workshop on Computer Architecture for Pattern
Analysis and Machine Intelligence, 5-9.

Page 293

[CSS89] R. Cypher, J. Sanz, and L. Snyder, EREW PRAM and mesh connected computer algorithms for

image component labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (1989),

258-262.

D

[DaLe81] P. E. Danielsson and S. Levialdi, Computer architectures for pictorial information systems,

IEEE Computer 14 (1981), 53-67.

[Dehn86a] F. Dehne, Ο(n1/2) algorithms for the maximal elements and ECDF searching problem on a

mesh-connected parallel computer, Information Processing Letters 22 (1986), 303-306.

[Dehn86b] F. Dehne, Parallel Computational Geometry and Clustering Methods, Ph .D. thesis, Tech.

Rept. SCS-TR-104, School of Computer Science, Carleton University, 1986.

[Dehn87] F. Dehne, Solving visibility and separability problems on a mesh-of-processors, Tech. Rept.

SCS-TR-123, School of Computer Science, Carleton University, 1987.

[DFR93] F. Dehne, A. Fabri and A. Rau-Chaplin, Scalable Parallel Computational Geometry for

Multicomputers, Proceedings of the 1993 ACM Symposium on Computational Geometry, 298-307.

[DHSS87] F. Dehne, A. Hassenklover, J.-R. Sack, and N. Santoro, Parallel visibility on a mesh-

connected parallel computer, Proceedings of the International Conference on Parallel Processing and
Applications, 1987, 173-178.

[DHSS91] F. Dehne, A. Hassenklover, J.-R. Sack, and N. Santoro, Computational geometry on a systolic

screen, Algorithmica 6 (1991), 734-761.

[DoSm84] L. Dorst and W.M. Smeulders, Discrete representation of straight lines, IEEE Transactions on
Pattern Analysis and Machine Intelligence 6 (1984), 450-463.

[DWR81] T. Dubitzki, A.Y. Wu, and A. Rosenfeld, Parallel region property computation by active

quadtree networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 3 (1981), 626-633.

Page 294

[DuWa77] M.L.B. Duff and D.M. Watson, The cellular logic array image processor, Computer Journal
20 (1977), 68-72.

[Dyer79] C.R. Dyer, Augmented Cellular Automata for Image Analysis, Ph .D. thesis, University of

Maryland, 1979.

[Dyer80] C.R. Dyer, Computing the Euler number of an image from its quadtrees, Computer Graphics
and Image Processing 13 (1980), 270-276.

[Dyer81a] C.R. Dyer, A VLSI pyramid machine for hierarchical parallel image processing, Proceedings
of the IEEE Computer Society Conference on Pattern Recognition and Image Processing, 1981, 381-386.

[Dyer81b] C.R. Dyer, A Quadtree Machine for Parallel Image Processing, Tech. report KSL 51 (1981),

U. of Ill. at Chicago Circle.

[Dyer82] C.R. Dyer, Pyramid algorithms and machines, Multicomputers and Image Processing
Algorithms and Programs, K. Preston and L. Uhr, eds., Academic Press, New York, 1982, 409-420.

[DyRo81] C.R. Dyer and A. Rosenfeld, Parallel image processing by memory augmented cellular

automata, IEEE Transactions on Pattern Analysis and Machine Intelligence 3 (1981), 29-41.

F

[Fisc80] M. A. Fischler, Fast algorithms for two maximal distance problems with applications to image

analysis, Pattern Recognition 12 (1980), 35-40.

[FoFu88] G.C. Fox and W. Furmanski, Optimal communication algorithms for regular decompositions

on the hypercube, Proceedings of the 3rd Conference on Hypercube Concurrent Computers and
Applications, 1988, 648-713.

[FrSh75] H. Freeman and R. Shapira, Determining the minimal-area encasing rectangle for an arbitrary

closed curve, Communications of the ACM 18 (1975), 409-413.

[FKLV83] G. Fritsch, W. Kleinoeder, C.U. Linster, and J. Volkert, EMSY85-The Erlanger multi-

processor system for a broad

Page 295

spectrum of applications, Proceedings of the 1983 International Conference on Parallel Processing,
325-330.

G

[Gaaf77] M. Gaafar, Convexity verification, block-chords, and digital straight lines, Computer Graphics
and Image Processing 6 (1977), 361-370.

[Gass69] S.I. Gass, Linear Programming, McGraw-Hill, New York, 1969.

[Gent78] W.M. Gentleman, Some complexity results for matrix computations on parallel processors,

Journal of the ACM 25 (1978), 112-115.

[GeKu81] W.M. Gentleman and H.T. Kung, Matrix triangularization by systolic arrays, Proceedings of
SPIE Vol. 298 Real-Time Signal Processing IV, 1981, 19-26.

[Gola69] M.J.E. Golay, Hexagonal parallel pattern transformations, IEEE Transactions on Computers 18

(1969), 733-740.

[Gord90] J.M. Gordon, Analysis of minimal path routing schemes in the presence of faults, Discrete
Applied Mathematics, 1990.

[Gray71] S. B. Gray, Local properties of binary images in two dimensions, IEEE Transactions on
Computers 20 (1971), 551-561.

[GVJK] F.C.A. Groen, P.W. Verbeek, N.d. Jong, and J.W. Klumper, The smallest box around a package,

Tech. Rept., Institute of Applied Physics, Delft University of Technology.

[GHS86] J.L. Gustafson, S. Hawkinson, and K. Scott, The architecture of a homogeneous vector

supercomputer, Proceedings of the 1986 International Conference on Parallel Processing, 649-652.

H

[Habe72] A.N. Habermann, Parallel neighbor sort, Tech. Rept., Carnegie-Mellon University, 1972.

[Hamb83] S.E. Hambrusch, VLSI algorithms for the connected component problem, SIAM Journal on
Computing 12 (1983), 354-365.

Page 296

[HaSi81] S.E. Hambrusch and J. Simon, Solving undirected graph problems on VLSI, Tech. rep. CS-81-

23, Computer Science, Penn. State Univ., 1981.

[HaLi72] I. Havel and P. Liebl, Embedding the dichotomic tree into the n-cube, Casopis Pro Pestorani
Matematiky 97 (1972), 201-205.

[HaLi73] I. Havel and P. Liebl, Embedding the polytomic tree into the n-cube, Casopis Pro Pestorani
Matematiky 98 (1973), 307-314.

[HaMo72] I. Havel and J. Moravek, B-valuations of graphs, Czechoslovak Mathematics Journal 22

(1972), 338-351.

[HMSC86] J. Hayes, T.N. Mudge, Q.F. Stout, S. Colley, and J. Palmer, A microprocessor-based

hypercube, IEEE Micro 6 (1986), 6-17.

[Hill85] D. Hillis, The Connection Machine, The MIT Press, Cambridge, Mass., 1985.

[HCW79] D.S. Hirschberg, A.K. Chandra and D.V. Sarwate, Computing connected components on

parallel computers, Communications of the ACM 22 (1979), 461-464.

[HoJo86] C.-T. Ho and S.L. Johnsson, Distributed routing algorithms for broadcasting and personalized

communication in hypercubes, Proceedings of the 1986 International Conference on Parallel
Processing, 640-648.

[HoJo88] C.-T. Ho and S.L. Johnsson, Optimal algorithms for stable dimension permutations on Boolean

cubes, Proceedings of the 3rd Conference on Hypercube Concurrent Computers and Applications, 1988,

725-736.

[Huan85] M.D.A. Huang, Solving some graph problems with optimal or near-optimal speedup on mesh-

of-trees networks, Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer
Science, 1985, 232-240.

[HKW82] A. Hubler, R. Klette, and G. Werner, Shortest path algorithms for graphs of restricted in-

degree and out-degree, Elektronische Informationsverarbeitung und Kybernetik (Journal of Information
Processing and Cybernetics - EIK) 18 (1982), 141-151.

Page 297

[HwFu82] K. Hwang and K-S. Fu, Integrated computer architectures for image processing and database

management, IEEE Computer 15 (1982), 51-60.

[HyMu86] Hypercube Multiprocessors 1986, M.T. Heath, ed., SIAM, 1986.

[HyMu87] Hypercube Multiprocessors 1987, M.T. Heath, ed., SIAM, 1987.

I

[Inte86] Intel Corporation, iPSC System Overview, January 1986.

J

[JaJa92] J. Ja'Ja', An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA., 1992.

[JGD87] L.H. Jamieson, D.B. Gannon, and R.J. Douglas, eds., The Characteristics of Parallel
Algorithms, The MIT Press, Cambridge, Mass., 1987.

[JeLe90] C.S. Jeong and D.T. Lee, Parallel geometric algorithms on a mesh connected computer,

Algorithmica 5 (1990), 155-178.

[John84] S.L. Johnsson, Combining parallel and sequential sorting on a Boolean n-cube, Proceedings of
the 1984 International Conference on Parallel Processing, 444-448.

K

[KaRa90] R.M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory

machines, Handbook of Theoretical Computer Science, North-Holland, 1990, 869-941.

[Kim81] C.E. Kim, On the cellular convexity of complexes, IEEE Transactions on Pattern Analysis and
Machine Intelligence 3 (1981), 617-625.

[Kim82a] C.E. Kim, Digital convexity, straightness, and convex polygons, IEEE Transactions on
Pattern Analysis and Machine Intelligence 4 (1982), 618-626.

[Kim83] C.E. Kim, Three-dimensional digital line segments, IEEE Transactions on Pattern Analysis and
Machine Intelligence 5 (1983), 231-234.

[KiRo82b] C. E. Kim and A. Rosenfeld, Digital straight lines and convexity of digital regions, IEEE
Transactions on Pattern Analysis and Machine Intelligence 4 (1982), 149-153.

Page v

To Brian, for making it all worthwhile.
Russ Miller

To my teachers in the public schools of Euclid, Ohio, for
encouraging play that adults call research.
Quentin F. Stout

