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PARALLEL ALGORITHMS FOR SOME FUNCTIONS OF TWO CONVEX POLYGONS t

Mikhail J. Atallah

Michael T. Goodrich
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Purdue University
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Abstract. Let P and Q be two convex, n-vertex polygons. We consider the problem of comput-

mg, in parallel, some functions of P and Q when P and Q are disjoint The model of parallel

computation we consider is the CREW-PRAM, Le. it is the synchronous shared-memory model

where concwrem reads are allowed but no two processors can simultaneously attempt to write in

the same memory location (even if they are trying to write the same thing). We show that a

CREW-PR.A.L\1 having n llk processors can compute the following fimctions in o(k
1
+£) time: (i)

The common tangents between P and Q. (ii) The distance be[Ween P and Q (and hence a straight

line separating them). The positive constant E can be made arbilIarily close to zero. Even with a

linear number of processors. it was not previously known how to achieve constam time perfor-

mance for computing these functions.

Key words: Compmational Geometry, Convex Polygons, Parallel Algorithms
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1. Introduction

Let P and Q be two convex, n-verrex polygons. We consider the problem of computing, in

parallel, the following functions ofP and Q when P and Q are disjoint; (i) The common tangems

between P and Q. (li) The shonest distance betwee.n P and Q (and hence a line separating them).

Throughout the paper, the model of parallel computation we use is the CREW·PRA.J.\1, i.e. it is

the synchronous shared-memory model where concurreD[ reads are allowed but DO two processors

can simultaneously attempt to write in the same memory location (even if they are crying to write

the same thing). Let c and d be any integers of our choice, and let k=c
d

. We show that a

CREW-PRAM: having n Ilk processors can compute the above-mentioned functions in time

o (k l+£(c) where limE(C) = 0; hence c can be chosen to be a constant that is large enough to
, ~

make E(C) very close to zero. Our algorithms are nontrivial parallel generalizations of the known

sequential algorithms [4,51 for these problems.

Setting k=1 in our common tangents result immediately implies an optimal Oo.ogn) time, n

processor parallel convex hull algorithm that is simpler than the ones recently given in [1,2], The

parallel convex hull algorithms given in [1,2] avoid the cleaner approach of recursively solving

two subproblems of size nl2 each [3,6,7], because it was not known then how to find the common

tangents between the two subsolutions in constant time and with n processors. Instead, these pre­

vious parallel convex hull algorithms partition the input points into ...[ii sets of size ~ each and,

although asymptotically optimal, they are less natural than the standard solution [3.6,7] whose

efficient parallel implementation is made possible by this paper. Essentially the same technique

that we use for establishing our common tangents result is used to design a parallel algorithm for

computing the shortest distance between P and Q.

The paper is organized as follows. Section 2 gives the algorithm for computing the com-

mon tangents between P and Q. Section 3 gives a similar result for computing the (shortest) dis-

tance between P and Q. Section 4 concludes.
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2. Finding Common Tangents

Let P=(Pl,··· ,Pn) and Q=(qb··· ,qn) be two disjoim convex polygons, where the Pj'S

(resp. q,'s) are given in clockwise cyclic order. For convenience, we assume that no lhree succes-

sive vertices of either polygon are colinear. Let C and d be any integers of our choice, c=O (1).

Let k=c d
• Our aim is to show that a CREW-PR..-\...\1 with n 1lk processors can compute the two

common tangents between P and Q (P and Q are on the same side of a common tangent) in time

o (k1+E(c)), where lim E(C) = O. By choosing C to be a large enough constant, we can make E(C)
,~

arbitrarily close to zero. As already mentioned, even the case k=l of this result was previously

an open question.

Since P and Q are disjoint, they are separable by a straight line. Such a separating line is

not given as part of the input However, a by-product of the algorithm we give in Section 3 is

that an n 11k processor CREW-PRAM can, in 0 (k1+€(c)) time, find a straight line separating P and

Q. For the rest of this section. we assume that such a separating line (call it L) has already been

foWld. Without loss of generality, we assume that L is venical, that P is to its left and Q is to its

right We focus on the problem of computing the upper common tangent (that of computing the

lower one being symmetrical), and we hencefonh use P and Q to denote the upper portions of the

two input polygons. For notational convenience, we continue to assume that P and Q are n-goDS,

i.e. that IP I~IQ I=n. See Figure L

If we bad n2 processors available, then it would be trivial to find the desired common

tangem in constant time (the derailed specification of such a brute force algorithm is easy and is

omined). In view of this last remark, one may be tempted to give the following straightforward

constam time, n processor "solution" (which doesn't work) :

(i) Consider two evenly spaced -{ri'"-subsequences of the vertices of P and Q, obtaining the

mentioned brute force approach to find the common tangent to P' and Q' in constant time.

Say it is the line joining Pi-[,lEP' to qj..f,lEQ'.
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[Ii) The vertices of pI Crespo Q') divide P Crespo Q) into ..[ri portions. call them

p 10 ••• •P VI Crespo Q 10 ••• ,Q .;ii"). Use the brute force algorithm between the 2..[ri points

in PiuPi+l and the 2.Jn points in QjUQ j+l (i.e. between the portions of P adjacent to

Pi,;'ii and the p<Jrtions of Q adjacent to qj{il).

The reason the above approach fails is thar the '1ocaliry" property needed for Step (ii) need

not hold: Indeed. the portion of P (resp. Q) containing the left Crespo right) point of tangency

might be quite far from Ph';! Cresp. qj.[rl). (We leave it to the reader to find an example of how

this might happen.) The correct solution to the common tangent problem makes a more judicious

use of the basic idea of the above (erroneous) steps (i)-(li). It also makes use of the next two

(easy) propositions.

Proposition 1. Let P be a p:Jim external to Q. Then Lbe upper tangent to Q passing through p can

be computed in dme O(k) by an nlll: processor CREW·PRA1\.f, where k is any integer of our

choice.

Proof. Let r=n l
-

lIk
. Let Q' consist of every l-lh venex of Q, Le. Q'=(ql,q21, ... .qrrJ. Since Q'

has n Ilk vertices and we have n 11k processors, it is trivial [0 find in constant time the upper

tangent to Q' passing through p, say this tangent [Ouches Q' at qil. Let qj be !.he venex of Q at

which the desired tangent touches Q. Test whelher qj is to the left of qil, to the right of qil, or at

qil (this test trivially takes constant time with one processor). If qj=qil then we're done, so sup­

pose (without loss of generality) that the test reveals that qj is to the left of qil, Le. j <it (the case

il<j is symmerrical). Then it is not hard [0 prove that we have ( i - l ) l ~ j (we leave the proof to

the reader). Therefore it suffices [0 find the upper tangent to polygon (qil-I.qil-I+I • ... ,qir-I)

passing through p. Thus, by doing a constant amount of work. we have reduced the polygon size

by a factor of n Ilk. Doing this at mOst k times finds the desired point of tangency. 0

Proposition 2. Let p be a venex of P and let pI/. be a venex of P at which the common tangent

between P and Q [Ouches P. Then for any inleger k of our choice. an n Ilk processor CREW­

PRAi\.1 can. in 0 (k) time. determine whether PI/. is to the left ofp, to the right ofp. or <ltp.
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Proof. Use Proposition 1 to find the tangent to Q passing rhrough point P, let T be this tangent

If T is tangent to P then P;s.=P. Otherwise, let y be the venex of P just to the left ofp. It is obvi-

ous that Pu. is 10 the left ofp on P if and only if"( is above line T. D

The following preliminary algorithm shows that, for any integer c of our choice, an n l/o: proces-

sar CREW-PR.A..Y.l can find the common tangent to P and Q in 0 ee2) time.

Preliminary algorithm A for finding upper common tangent:

Input. The upper portions P and Q of two disjoint convex polygons separared by a vertical line

L. Both P=(pr. ... ,PII) and Q=(Qlo ... ,q,,) are manmane in the x direction, i.e. the x com-

panent ofPi Crespo qj) is smaller than that ofPi+1 Cresp. qj+l)' See Figure 1. Nore: The assump-

tion that we are already given L is nO[ really needed. since Section 3 shows bow to find such a

line L.

Output. The upper common tangent to P and Q.

Step O. SetP:=P, Q:=Q, s:=n l1
2l:.

- -
Step 1. Repeat the following steps 2-6 until eimer P is a single poim or Q is a single point.

Without loss of generality, assume that it is P thar ends up becoming a single point (call it p,,).

-Use Proposition 1 to find. in 0 (c) time, the tangent to Q passing ilirough p". and output the

tangent thus found (this is the desired tangent between P and Q).

Step 2. Let P'=(a" ... ,a.r) be the polygon obtained by considering every (I P [I s)-th venex of

f. i.e. the s vertices of P' divide Pima s equal portions. Call these portions A I, ... ,An so that

ai is adjacent in P to portions Ai and Ai+1• By definition. ai belongs to Aj but not to Ai +1 . Let

- -
Q'=(b 1•... •b.r) be analogously defined for Q, and let the resulting portions of Q be B I •... ,Bs •

Use the already mentioned brute force method for finding the common tangent between P' and

Q' (this is possible and takes constant time because we have s2 processors). Say the tangent thus

found joins aiEP' to bjE Q'. (See Figure 2.)

- - -
Step 3. Test whether the common tangent to P and Q touches P in Ai. (This is done in 0 (c)
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time by using Proposition 2 twice, once at venex Pi-l and once at vertex Pi.) If the answer is

- -
"yes" rten do P :=A i • otllerwise P remains unchanged.

-ImplememarionNore. The assignment P :=A i is done in constant time simply by remembering the

-new Jim and last venex of P.

- - -
Step 4. Tesr wheIher the common rnngem to P and Q touches P in A i+1• If it does !:hen do

- -
P:=A;..;.I. otherwise P remains unchanged.

A _ A A

Step 5. Test whether me common tangent to P and Q touches Q in B j _ If it does men do Q :=Bj,

-
otherwise Q remains unchanged.

- - -
Step 6. Test whemer the common tangent to P and Q touches P in Bj+1o If it does then do

- -Q:=Bf -,-!. olherwise Q remains unchanged.

(End of algorithm).

Note that the algorithm maimains the property that the tangent between P and Q is the same

- -
as me tmg='...nt between P and Q_ Thus the algorithm is correct

Since every usage ofProIXJsition 2 takes 0 (c) time, the time complexity of the algorilhm is

equal to C multiplied by the number of times that steps 2-6 get execmed. We now bound me

number of times steps 2-6 are executed.

Lemma 1. Let ai, bj' P, Q, pI, and Q' be as in Step 2 of algorithm A. Also,letPlolqy be the COID-

A A A A

mon tangent to P and Q (PIolEP, qyEQ). Then at least one of the following statements (a), (b), (c),

or (d) is true:

Proof. If PIol=ai or qy=bj rhen the lemma holds. so suppose that PIol;!:(Ji and qy:;!:lJj. By il:S

definition. the line plolqy is above both ai and bj. Therefore at least one of Pu. or qy is above the
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line ajbj_ Wiman! loss of generality, assume lhat P", is above the line ajbj . We prove that (a) or

(b) must hold by a case analysis.

Case 1: InP, PI/. is to the left of ai_ Then we claim thatPllEA; (and hence (a) holds). Suppose to

the contrary that plJ.EAw where w<i. By the definition of Qj and bj • the venex aweP' must lie on

-
or below the straight line a;bj • The three vertices p:l,a,."..aj occur in that order on P (see Figure

3). Consider the positions of these three venices relative to the line aib/ The first venex is (by

hypothesis) above Ihar line, the second is (as we have JUSt argued) on or below it, and the third is

-(by definition) on iL This conrradlets the convexity of P. Thus, (a) holds.

Case 2: InP,Pll is to the right of ai_ An argumem similar to that for Case 1 shows that PuEAi+l;

hence. (b) holds.

If qy is above line aibj. then an argument similar to rnat above shows mat one of (c) or Cd) must

hold. 0

Corollary 1. Steps 2-6 of algorithm A are executed a total of at most 4c-l times.

Proof. Lemma 1 implies thaI, every time we execute steps 2-6, at least one of the statements

" " " " " "
P:=Ai , P:=Ai"+lo Q:=Bj • Q:=Bj +1 is executed. TIlls implies thal ar least one of P or Q decreases

in size by a factor of s=n l/~. thus proving the corollary. 0

We have thus established the following:

Theorem 1. Algorithm A correctly computes tbe upper common tangent to P and Q. With nile

processors, it runs in time 0 (e 2
).

Corollary 2. With n processors, the upper common mngem to P and Q can be computed in con-

stant time.

Let Bo be the algorithm corresponding to Corollary 2, i.e. Bo runs in 0 (1) time with n pro­

cessors. Now, we define a sequence of algoriduns BI,B:!, ... such that Bd uses n tiel processors,

and is defined as follows: Bd reads exacdy like A except that

(i) In Bd , Step 0 sets s equal [0 n lie (instead of n 1/2.: in A).
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(ii) In Step 2. whereas A uses the brute force method, Bd uses Bd_ I (we can do this even

!:hough there are only n 1I~ processors available, because Bd- 1 is being used on a subprob-

lern of size only n
llc

).

(iii) Every usage of Proposition 1 or Proposition 2 now costs 0 (cd) time because we have

only n IJc
4

processors.

Obviously, Lemma 1 still holds for Bd just as it did for A. Thus. every time steps 2-6 are

executed in Bd • at least one of Por Ii decreases in size by a factor of s=n llc. This implies that

Steps 2-6 in Bd are executed at most 2c-l times. If we let Td be the time complexiry of Bd • then

we have

TO=Ci, and

where c1 ,e2 and c3 are constanIs. This has solution Td=O (c 2(c_l)-1 (2c-l)d). Choosing c to be

a constant and using k=c d gives

T d = 0 (kl+E(c) where E(c)=logc(c-1(2c-l». This establishes the following:

Theorem 2. Let P and Q be two disjoint convex n-gons. Let k=c d where c and d are any

inregers. c=O (1). A CREW-PRAlvI having n11k processors can compute the common tangents

beLWeen P and Q in 0 (kl+£(c) time, where limc-¥"E(C) = O.

3. Computing The Distance

The input consists of the two disjoint convex polygons P={Pl'··· ,PIl) and

Q=(q" ... ,qll)' where the Pi'S (resp. q;'s) are given in clockwise cyclic order and no three suc-

cessive vertices of either polygon are colinear. We are interested in computing, in parallel, the

sbonest distance betweenP and Q. This distance is formally defined as follows:

d(P,Q) ~ min d(u,w)
ueP,weQ
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where d(u,w) denotes the Euclidean distance between points u and w, and the notation "ueP"

means that u is a p:lint on the boundary of P (not necessarily a vertex of P). Our algorithm actu­

ally returns a pair of points u,w such that d(P,Q)=d(u,w). Of course. once we have these points

U,w, any perpendicular to the straight line segment joining u and w is a line separating P from Q.

Therefore our algorithm for the closest distance immediately gives us the separating line L

needed in Section 2.

In order to simplify the exposition, we assume that the desired points u. w are Wlique. Our

algoriilim can easily be modified for the general case, e.g. by adopting a suitable convention for

returning a unique u, W pair in case d (P I Q) is the distance between two parallel segments of

(respectively) P and Q (in ilia!: case there is an infinite number of choices for u,w, and this is the

only case where u and w are DO[ unique).

Let P be a point (not necessarily a vertex) on the boundary of P, and define q similarly for

Q. Let Tp Cresp. Tq} be the line perpendicular to the segment pq at point p (resp. q). It is quite

trivial to see that d(P.Q)=d (p,q) if and only if (i) Tp and Tq are tangent to (respectively) P and

Q, and (ii) P and Q are on opposite sides of the region between Tp and Tq (i.e., this region

separates them). This simple observation immediately implies that, with n2 processors and in

corutant time, it is possible to compute the closest distance between P and Q and a pair of points

achieving it (the detailed specification of this brute force procedure is left to the reader). The

algorithm we shall give uses these simple observations. It also makes use of the next two (easy)

propositions.

Proposition 3. Letp be a point external to Q. Then the point qeQ such that d(p,q)=d(p,Q) can

be computed in rime 0 (k) by an n11k processor C R E W - P R ~ " f , where k is any integer of our

choice.

Proof. Let r=n 1
-

lIk
. Let Q' consist of every t-lh vertex of Q, i.e. Q'=(qfJq21.··· .q,,). Since Q'

has n 1/,1; vertices and we have n Ilk processors, it is lrivial to find in constant time the point q'e Q'

such that d(p,q')=d(p,Q,). (NOte that q' need not be a vertex of Q'.) If the perpendicular to line

I.
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pq' at paim q' is tangent to Q, then we can stop and declare point q' as [be desired point q. Oth­

erwise let a (resp. ~ ) be the venex of Q' that immediately precedes (resp. follows) point q' when

the boundary of Q' is traced in a clockwise manner (see Figure 4). Nme that in Q. there are 2t+1

vertices between a and ~ Cmclusive) if q' is a venex, m.herwise there are t-!-1 vertices between a.

and ~ (where the word "between" refers to !:he circular ordering q 1, ... ,q,,). We leave it [Q the

reader to prove mat, in Q. the desired point q occurs between a. and ~ (inclusive). Let 'Y be the

median of Lhe (at moSt 2t+l) venices between a. and !3 (inclusive): Test whether the desired

point q is at -I, between ex. and "(, or between 'Y and !3 (this test trivially takes constant time with

one processor). If q=!'( ilien we're done. so suppose (without loss of generality) that the test

reveals that q is between a. and y. Hence we can focus our search for q to the section of Q

between a. and"{ (excluding 7), which contains at mOst t vertices. Therefore by doing a consmm

amount of work, we have reduced. the polygon size by a faerorof at least n II>:. Doing this at most

k times finds the desired point q. 0

Proposition 4. LetPi and Pj be any two vertices of P, i <j, and let Pll be the vertex of P such that

d(PluQ)=d(P,Q). Then for any integer k of our choice, an n llk processor CREW-PRAt\1 can, in

o (k) time, locare where p" occurs with respec!to Pi and Pj in the sequence P I,P2, ... ,Pn (Le. it

can determine whether u=i, u=j, i <u<j, or none of these).

Proof. For any two indices lSo,bSn. let cra.b denote the sequence

d(Pa,Q),d(pa.;.-! ,Q), ... ,d(Pb,Q) (assuming index n+l equals 1). For example.

(J9,:2=d(P9,Q),'" ,d(pn,Q),d(PI,Q),'" ,d(P2.Q)· Observe that, because of convexity, there

exist two indices a and b, 1::;a:Sb:9z, such that cra.b and (Jb,a are both soned, one in increasing

order and the other in decreasing order. This implies that we can locate where Pll occurs with

respect to any pair Pi,Pj in the sequence Pl>' .. ,Pn by performing a constant number of dismnce

computations of the type d(p/,Q). By Proposition 3, each such distance computation can be done

within the desired time and processor bounds. 0

The following preliminary algorithm shows !.hat, for any integer c of our choice, an nile proces-
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sor CREW-PRA...1..\.1 can find. in 0 (c 2
) time, the poims ue? and ~ E Q such thatd(u,w)=d(P,Q).

Preliminary algorithm D for computing distance:

Input. Two disjoint convex polygons P=(p! • ...... ,PIl) and Q={ql' ..... ,q,,). The Pi'S Cresp_ qj'S)

are given in clockwise cyclic order.

Output. Points lL,W such that d(u,w)=d(P,Q).

Step O. SetP:=P. Q:=Q. s:=n 1f2c
•

. .
Step 1. Repe3I the following steps 2-4 until eiilier P is a single point or Q is a single point

.
Without loss of generality, assume it is P that ends up becoming a single point (call it x): Use

Proposition 3 [Q find, in 0 (c) time. the pointyeQ such that d(x,y)=d(x,Q). Output the points x

and y (mese are the desired points u,w).

Step 2. Let P'=(al • ..... ,aj') be the polygon obtained by considering every (IP I/s)-l.h vertex of

. .
P, i.e. the s vertices ofP' divide P into s equal portions. Call these portions AI• .... ,As. so that

.
ai is adjacem in P to portions Ai and A i+1_ By definition, ai belongs to Ai but not to Ai+1o Let

. .
Q'==(b I •... 'O:S.) be analogously defined for Q. and let the resulting portions of Q be B i. " . " ,Ss.

Use the already mendoned brute force method for fincling the poims aeP' and beQ' such that

d(a,b)=d(P',Q,). Since we have s2 processors. !.his takes constant time.

Let Ct.p (resp. ~ p ) be the venex ofpI that immediately precedes (resp. follows) a on the boundary

of P'. (Flgure 5 illustraIes the case when a is not a vertex of Pl.) If a is a vertex of pI then ap

and ~ p are (respectively) irs predecessor and successor vertices on P', and hence there are then

. .
:! 1P IIs +1 vertices of P between ap and ~ p (inclusive). Ifa is not a vertex of pI then ap and ~ p

are consecutive vertices of P', point a is on r.he segment of pI that joins Ct.p [Q ~ P . and r.here are

. .
1P lIs -:-1 vertices of P between Ct.p and ~ p (inclusive). Let yp be the median of the (at most

. .
21 P [I s +1) venices of P that are between ap and ~ p (inclusive). (Note that. if a is a vertex of

pI, then yp=a.) We use pafJ to denote the portion of P that is between ap and ~ p (excluding ap

and ~ p ) . prrr andP"iP are analogously defined.
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Let Ct.Q. ~Q' "fQ_ Qa/3, Qrr'f and Q~ be similarly defined for b, Q' and Q. (Figure 5 illusrrales me

case when b is a vertex of Q'.)

Step 3. Use Proposition 4 to detect whether u=={X.P. u=~P. u='{p, uepa:r, U E P ' ~ , or none of

these. If u equals rtp Crespo "{p, ~p) then set P equal to CJ.p (resp. "(p, Pp) and go to Step 4. Other­

wise. if uePcrt then do p:=prrr and go to Step 4. Otherwise. if uep"r13 then do P:=p-r13 and go to

. .
Step 4. Otherwise leave P unchanged. (An assignmenr like P :=p rrr is done in consram time sim-

.
ply by remembering the new first and last verrex ofP.)

Step 4. Use Proposition 4 to detect whether w==CtQ. w=l3Q. w="(Q. weQrrt, weQ-r1l. or none of

these. Ifw equals ClQ Crespo "fQ I PQ} then set Q equal to CCQ (resp. "lQ. j3Q) and go to Step 2. Oth­

erwise, if we QIX"f !:hen do Q:=Qcq and go to Step 2. Otherwise, ifweQ·J3 men do Q:=Qi'13 and

.
go to Step 2. Otherwise leave Q unchanged.

(End of algorithm).

Since every usage of Proposition 4 takes 0 (c) time, the time complexicy of the algorithm is

equal to C multiplied by the number of times that steps 2-4 get execmed. We now bound me

number of times steps 2-4 are executed.

Lemma 2. Let a, b, paf., Qaj3" u., and w be as in algorithm D. Assume that u E { a p , ~ p } and

WE {ClQ'~Q}. Then at least one ofme following statements Ca) or (b) is !:rUe:

CaJ uePof>,

Proof. Let TrtJ. (resp. Tb ) be the line perpendicular ill a Crespo b) to the segmem ab (see Figure 5).

By the definition of a and b, Ta (resp. Tb) is tangem to P' (resp. Q'). Wimout loss of genernlity,

Ta and Tb are vertical, P' is to me left of Ta , and Q' is to the right of Tb. If u=a or w=b men me

lemma holds, so suppose that u:;::a and w:#J. By the definition of u and w, we muSt have

d(ll,w)9:t(a,b). This implies that u is to the right of Ta or w is [0 lhe left of Tb (possibly both).

Hence, it suffices to show that if u (resp. w) is to the right (resp. left) of Ta Crespo Tb), then (a)
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(resp. (b» holds. We prove this by contradiction. Suppose that u is to the right of Ta and (a) does

not hold, i.e. uepafJ. Wilham loss of generality, assume iliat u is below (p. Now, by walking

from vertex "(p clockwise along the I:xmndary of P, one encouDCers venex ~ p before reaching u.

Since Yp is on or [0 the right of Ta , ~p on or to the left of Ta , and u to the right of Ta • iliis contrad-

iets the convexity ofP. A similar argumem shows that ifw is to the left ofTb • then (b) holds. 0

Corollary 3. Steps 2-4 of algorithm D are execured a rotal of at most 4c-l times.

. .
Proofs. Lemma 2 implies that. every time we execute Steps 2-4. at least one of P or Q decreases

in size by a factor of at least s=n 1I2c. thus proving !:he corollary. 0

We have thus established the following:

Theorem 3. Algorilhm D correctly finds points ueP and weQ such that d(u,w)=d(P,Q). It

uses n lie processors and it runs in time 0 (c 2
), where c is any imeger of OUf choice.

We now define a sequence of algoritluns Eo.E1 , ... in a manner entirely analogous to me

way we defined sequence Bo,BI • . .. in the previous section. The analysis, which is very similar

to that done in Section 2 (and hence is omitted), establishes the following:

Theorem 4. Let P and Q be two disjoint convex n-goDS. Let k=cd where c and d are any

inregers, c=O(1). A CREW-PRAM having n11J: processors can compme points ueP and weQ

such that d(u, w)=d(P,Q) in 0 (k1+£(c» time, where lime E(C) = O.

Corollary 4. Let P and Q be two disjoint convex n-gons. Let k=cd where C and d are any

integers, c=O (1). A CREW-PRAM having n 11k processors can compme a straight line L which

separates P from Q in o (k1-+E(c» lime, where limc E(C) = O.

It is woITh pointing out that, given a straight line L and a convex polygon P, a method siml-

lar to that given above (actually an easier version of it) can be used to derermine if Land P inrer­

sect or nor, and if so [Q give a point of this intersection. Tbis is done in time 0 (k) if we have n 11k

processors. where k is any integer of our choice. The derails are left to the reader.
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4. Conclusion

We gave new parallel algorithms for computing some functions of convex polygons in the

CREW-PR..A..\1 modeL In particular. we showed that constant time suffices for computing these

functions even ifwe have a sublinear number of processors (in fact n lIe processors suffice for any

constam inreger c). Even wirh a line3I" number of processors, it was not previously known how to

achieve constant time performance for computing these functions.
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Figure 1: The two polygons P and Q. WLOG, the line separating P and

Q is vertical and P is to the left of Q.
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Figure 2: The two subpolygons pI and QI and their common supporting

tangent a;b j . The polygons P and Qare shown in dashed lines.
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Figure 3: We show that if Pu E AIL/I W < i, then convexity is violated.
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Figure 4: Searching for the point in a convex polygon Q closest to a point

p. The polygon Q is outlined in dashed lines, and the polygon QI is outlined

in solid lines.
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Figure 5: Reducing the size of P and/or Q. pap is the (dashed) portion

of P bel;ween O:p and fJp (inclusive), and ip subdivides pap into pa'7 and

P'7P. qap
, QQ" and Q'7/3 are defined analougously.




