{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1007/BF01762130
Parallel algorithms for some functions of two convex polygons — Source link [/

Mikhail J. Atallah, Michael T. Goodrich

Institutions: Purdue University
Published on: 01 Nov 1988 - Algorithmica (Springer-Verlag)

Topics: Parallel algorithm, Disjoint sets and Regular polygon

Related papers:

- Efficient parallel solutions to some geometric problems
« Parallel computational geometry

« Parallel algorithms for geometric problems

« Computational Geometry: An Introduction

» Cascading divide-and-conquer: a technique for designing parallel algorithms

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-
3yzj2841fm

https://typeset.io/
https://www.doi.org/10.1007/BF01762130
https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm
https://typeset.io/authors/mikhail-j-atallah-4k2iqqc9nq
https://typeset.io/authors/michael-t-goodrich-1k34b7ih29
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/journals/algorithmica-3exo1e4r
https://typeset.io/topics/parallel-algorithm-19g8gsza
https://typeset.io/topics/disjoint-sets-2caus7z3
https://typeset.io/topics/regular-polygon-3ogroc4a
https://typeset.io/papers/efficient-parallel-solutions-to-some-geometric-problems-7b1a2mentk
https://typeset.io/papers/parallel-computational-geometry-31409hj2nw
https://typeset.io/papers/parallel-algorithms-for-geometric-problems-101meczyk5
https://typeset.io/papers/computational-geometry-an-introduction-4d4gbe4h13
https://typeset.io/papers/cascading-divide-and-conquer-a-technique-for-designing-1spa95j4wu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm
https://twitter.com/intent/tweet?text=Parallel%20algorithms%20for%20some%20functions%20of%20two%20convex%20polygons&url=https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm
https://typeset.io/papers/parallel-algorithms-for-some-functions-of-two-convex-3yzj2841fm

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

Parallel Algorithms for Some Functions of Two Convex Polygons

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Michael T. Goodrich

Report Number:
86-617

Atallah, Mikhail J. and Goodrich, Michael T., "Parallel Algorithms for Some Functions of Two Convex
Polygons" (1986). Department of Computer Science Technical Reports. Paper 535.
https://docs.lib.purdue.edu/cstech/535

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL ALGORITHMS FOR SOME
FUNCTIONS OF TWO CONVEX POLYGONS

Mikhail J. Atallah
Michael T. Goodrich

CSD-TR-617
August 1986
Revised April 1987

PARALLEL ALGORITHMS FOR SOME FUNCTIONS OF TWO CONVEX POLYGONST

Mikhail J. Atallah
Michael T. Goodrich

Dept. of Computer Science
Purdue Umversicy
West Lafayette, IN 47907

Abstract. Let P and Q be two convex, n-vertex polygons. We consider the problem of comput-
ing, in paraflel, some functions of P and Q when P and @ are disjoint. The model of parallel
computation we consider is the CREW-PRAM, i.e. it is the synchronous shared-memory model
where concurrent reads are allowed but no two processors can simulianeously attempt to write in
the same memory location (even if they are trying to write the same thing). We show that a
CREW-PRAM having n'/* processors can compute the following functions in O (k'*€) time: @)
The common tangents between P and @, (1) The distance berween P and O (and hence a straight
line separaring them). The positive constant € can be made arbitrarily close to zero. Even with a
linear number of processors, it was not previously known how to achieve constant time perfor-

mance for computing these functions.

Key words: Compurational Geometry, Convex Polygons, Parallel Algorithms

+ This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and
NO0014-86-K-0689, and the National Science Foundation under Grant DCR-8451393, with maiching funds
from AT&T.

1. Introduction

Let P and O be two convex, n-veriex polygons. We consider the problem of computing, in
parallel, the following functions of P and @ when P and Q are disjoint : (i) The common tangents
between P and @, (ii) The shortest distance between P and Q (and hence a line separating them).
Throughout the paper, the model of parallel computation we use is the CREW-PRAM, 1.e. it i§
the synchronous shared-memory model where concurrent reads are allowed but no two processors
can simultaneously attempt to write in the same memory location (even if they are rying to write
the same thing). Let ¢ and 4 be any integers of our choice, and let k=c%. We show that a
CREW-PRAM having n'* processors can compute the above-mentioned functons in time

O (k1)) where lime(c) =0; hence ¢ can be chosen to be a constant that is large enough to
c—

make e(c) very close to zero. Our algorithms are nontrivial parallel generalizadons of the known
sequential algorithms (4,5] for these problems.

Setting £=1 in our common tangents result immediately implies an optimal @ (logr) time, n
processor parallel convex hull algorithm thar is simpler than the ones recendy given in [1,2). The
parallel convex hull algorithms given in [1,2) avoid the cleaner approach of recursively solving
two subproblems of size n/2 each [3,6,7], because it was not known then how to find the common
tangents between the two subsolutions in constant time and with # processors. Instead, these pre-
vious parallel convex hull algorithms partiton the input points into +/# sets of size ~n each and,
although asymptotically optimal, they are less natural than the standard solution {3,6,7) whose
efficient parallel implementation is made possible by this paper. Essendally the same technique
that we use for establishing our common tangents result is used to design a parallel algorithm for

compulting the shortest distance between P and Q.

The paper is organized as follows. Section 2 gives the algorithm for compurng the com-
mon tangents between P and Q. Section 3 gives a similar result for computing the (shortest) dis-

tance berween P and . Section 4 concludes.

2. Finding Common Tangents

Let P=(p,y,---,p,) and O=(q1, - - - .4.) be two disjoint convex polygons, where the p;'s
(resp. g;’s) are given in clockwise cyclic order. For convenience, we assume that no three succes-
sive verices of either polygon are colinear. Let ¢ and d be any integers of our choice, ¢=0 (1).
Let k=c%. Our aim is to show that a CREW-PRAM with n'/* processors can compute the two
common tangents between P and Q (P and © are on the same side of a common tangent) in ime

0 (k“a(“)), where lim e(c)=0. By choosing c to be a large enough constant, we can make g(c)
e]

arbitrarily close o zero. As already mentioned, even the case k=1 of this result was previcusly
an open question.

Since P and Q are disjoint, they are separable by a straight line. Such a separating line is
not given as part of the input However, a by-product of the algorithm we give in Section 3 is
that an n'/* processor CREW-PRAM can, in O (¢1*¢)) time, find a straight line separating P and
Q. For the rest of this section, we assume that such a separating line (call it L) has already been
found. Withour loss of generality, we assume that L is vertical, that P is to its left and @ is to its
right. We focus on the problem of computing the upper common tangent (that of computing the
lower one being symmetrical), and we henceforth use P and Q to denote the upper portions of the
two input polygons. For notational convenience, we continue to assume that P and Q are n-gons,
ie_that [P |=|Q |=n. See Figure 1.

If we had n* processors available, then it would be trivial to find the desired common
tangent in constant time (the detailed specification of such a brute force algorithm is easy and is
omitted). In view of this last remark, one may be tempted (0 give the following straightforward
constant dme, z processor "solution” (which doesn’t work) :

() Comnsider two evenly spaced +r -subseguences of the vertices of P and @, obtaining the

two ~fn-gons P'=(pg.pog. - .Pa) and Q'=g m.g207, v .ga). Use the above-

mentoned brute force approach to find the common tangent to P” and Q7 in constant time.

Say it is the line joining p; zeP’ 10 gjyeQ’.

-4.

Gi) The vertices of P’ (resp. Q") divide P (resp. Q) imto +n portions, call them
Py,---,Pg(resp. 0, -.,Q)- Use the brute force algorithm between the 2+/r points
in Pjy_yP;41 and the 2+ points in O\ _Qj+ (.. between the portions of P adjacent Lo
piy7 and the pordons of O adjacent to ¢;.7).

The reason the above approach fails is thar the "ioca]ity" property needed for Step (ii) need
not hold: Indeed, the portion of P (resp. Q) containing the left (resp. right) point of tangehcy
might be quite far from p;5 (tesp. ¢;). (We leave it to the reader 1o find an example of how
this might happen.) The correct solution (o the common tangent problem makes a more judicious
use of the basic idea of the above (ermoneous) steps (i)-(ii). It also makes use of the next two
(easy) propositions.

Proposition 1. Let p be a point extemnal to Q. Then the upper tangent 1o @ passing through p can
be computed in dme O (k) by an n'* processor CREW-PRAM, where & is any integer of our

choice.

Proof. Let r=n'"V* Let Q’ consist of every r-th vertex of 0, i.e. Q'=(¢:,g2. " * .gx). Since Q°
has n'/* vertices and we have a'* processors, it is trivial to find in constant time the upper
tangent to Q' passing through p, say this tangent touches ()’ at g;. Let g; be the vertex of & at
which the desired tangent touches Q. Test whether g; is to the left of gy, to the right of ¢, or at
gy (this test trivially takes constanr ime with one processor). If g;=¢; then we're done, so sup-
pose (without loss of generality) that the test reveals that g; is to the left of g, ie. j <t (the case
ir<j is symmetrical). Then it is not hard to prove that we have (i—I)t<j (we leave the proof to
the reader). Therefore it suffices to find the upper tangent 1© polygon (Guws Gi—rs1r ~ " +Gir—1)
passing through p. Thus, by doing a constant amount of work, we have reduced the polygon size

by a factor of n'/%. Doing this at most & times finds the desired point of tangency. O

Proposition 2. Let p be a vertex of P and Iet p, be a vertex of P at which the common tangent
between P and Q touches P. Then for any integer k of our choice, an »!'** processor CREW-

PRAM can, in O (k) ime, determine whether p, is to the left of p, to the right of p, or ar p.

-5-

Proof. Use Propositon 1 o find the tangent to (passing through point p, let T be this tangent.
If T is tangent to P then p,=p. Otherwise, let 7y be the veriex of P just to the left of p. 1t is obvi-

ous that p, is 10 the left of p on P if and only if yis above Iine 7. O

The following preliminary algorithm shows that, for any integer ¢ of our choice, an n'/* proces-

sor CREW-PRAM can find the common tangent to £ and in O (¢?) time.
Preliminary algorithm A for finding upper common tangent:

Input. The upper portions P and @ of two disjoint convex polygons separated by a vertical line
L. Both P=(py, ' - -.p,) and 0={(q,, ' - - ,4.) are monotone in the x direction, 1.e. the x com-
ponent of p; (resp. g;) is smaller than that of p;,; (resp. g;,1). See Figure 1. Nore: The assump-
tion that we are aiready given L is not really needed, since Section 3 shows how 1o find such a
line L.

Qutput. The upper common tangent to P and J.

Step 0. Set P:=P, 0:=0, s:=n'%¢.

Step 1. Repeat the following steps 2-6 until either Pisa single point or é is a single point
Without Ioss of generality, assume that it is P that ends up becoming a single point (call it p,).
Use Proposition 1 to find, in O (c) time, the tangent to é passing through p,, and output the
tangent thus found (this is the desired tangent between P and 3).

Step 2. Let P'<{(a;,, - - - ,a,) be the polygon obtained by considering every (II; | /5)-th vertex of
}_5, i.e. the s vertices of P’ divide P into s equal portions. Call these portions A, - - - ,As, so that
a; is adjacent in Pro portions A; and A4;,;. By definition, a; belongs to 4; but not to 4;,;. Let
Q’=(b,, - -+ ,b,) be analogously defined for é, and ter the resulting portions of é be By, - - - .B..
Use the already mentioned brute force method for finding the commoen tangent between P/ and
Q' (this is possible and rakes constant time because we have s processors). Say the tangent thus
found joins a;e P 1o bje Q’. (See Figure 2.)

Step 3. Test whether the common tangent to P and ,5_ touches P in A;. (This is done in O (¢)

-6-

time by using Proposition 2 twice, once at vertex p;, and once at vertex p;.) If the answer is
"ves” then do ﬁ::A,—, otherwise P remains unchanged.

Implementarion Note. The assignment }3 =A; is done in constant time simply by remembering the
new first and last vertex of P.

Step 4. Test whether the common tangent 1o P and é touches P in Aiy1. If it does then do
P=A i1, Otherwise P remains unchanged.

Step 3. Teast whether the common tangent to P and é touches é in B;. If it does then do é::B i
otherwise é remains unchanged.

Step 6. Test whether the common tangent to P and é touches Pin Bj;y. If it does then do
é =3,.;, otherwise é remains unchanged.

(End of algorithm).

Note that the algorithm maintains the property that the tangent between P and O is the same
as the tangeat between P and é Thus the algorithm is correct.

Since every usage of Proposition 2 takes O (¢) time, the time complexity of the algorithm is
equal o ¢ multiplied by the number of times that steps 2-6 get executed. We now bound the
number of times steps 2-6 are executed.

Lemma 1. Let a;, b, f’, é. P’, and Q’ be as in Step 2 of algorithm A. Also, let p,g, be the com-
moen tangeat (o Pand é (p.c f’. ls = é). Then at least one of the following statements (a), (b), (c),
or (d) is tue:

(a} p.€ Ay

®) puEAisis

() g.€8;

(d) g,€8B;41.

Proof. If p,=a; or g,=b; then the lemma holds. so suppose that p,=a; and ¢,=b;. By its

definidon, ihe line p,q, is above both g; and b;. Therefore at least one of p, or g, is above the

-7-

Line a;b;. Without loss of generality, assume that p,, is above the line g;b ;. We prove that (a) or
() must hold by a case analysis.
Case 1: Ims, D is o the left of g;. Then we clzim that p,e A; (and hence (a) holds). Suppose to
the contrary that p,e A,, where w<i. By the definition of 4; and &y, the vertex a,,e P” must lie on
or below the straight line a;5;. 'I'he three vertices p,,4,,,4; occur in that order on P (see Figure
3). Consider the positions of these three vertices relative to the line a;b;: The first vertex is (by
hypothesis) above thar Iine, the second is (as we have just argued) on or below it, and the third is
(by definition) on it This conmradicts the convexity of }3 Thus, (a) holds.
Case 2: qu’, P 15 1o the right of @¢;. An argument similar to that for Case 1 shows that p,e A;4;
hence, (b) holds.
If ¢, is above line g;5;, then an argument similar to that above shows that one of (c) or (d) must
hold. O
Corollary 1. Steps 2-6 of algorithm A are executed a total of at most 4¢—1 times.
Proof. Lemma 1 implies thar, every time we execute steps 2-6, at least one of the statements
ﬁ::A;, };:-—-A;H. é::Bj, Q::B ;41 1s executed. This implies that ar least one ofﬁ or é decreases
in size by a factor of s=n'/**, thus proving the corollary. O
We have thus established the following:
Theorem 1. Algorithm A correctly computes the upper common tangent to P and Q. With n'/¢
processors, it runs in time O (¢2).
Corollary 2, With » processors, the upper common tangent 1o P and Q can be computed in con-
stant rime.

Let By be the algorithm corresponding to Corollary 2, i.e. By runs in O (1) time with n pro-
cessors. Now, we define a sequence of algorithms By,Ba, - -+ such that By uses nlret Processors,

and is defined as follows: By reads exactly like A excepe that

(i) InBq, Step O sets s equal to 11/ (instead of n /% in A).

-8-

(it) In Step 2, whereas A uses the brute force method, By uses B4y (we can do this even

though there are only #'/“ processors available, because By_; is being used on a subprob-

lem of size only n1/¢).

(iii) Every usage of Proposition 1 or Proposition 2 now costs O (c%) time because we have

only n et Processors.

Obviously, Lemma 1 still holds for By just as it did for A. Thus, every time steps 2-6 are
exescuted in By, at least one of P or _é decreases in size by a factor of s=n!/¢. This implies that
steps 2-6 in By are executed at most 2¢ -1 times. If we et T, be the time complexity of By, then

we have
To=cy,and
Ti=Qe=1).Tyg4cr.cH +cq.c8
where c,c4 and ¢ are constants, This has solution T;=0 (¢?(c=1)"! 2c~1)%). Choosing ¢ to be
2 constant and using k=c¢ gives
Ts=0 (km(‘)) where e(c)=log.(¢ ~1(2¢-1)). This establishes the following:
Theorem 2. Let P and Q be two disjoint convex n-gons. Let k=c¢ where ¢ and 4 are any

inregers, c=0 (1). A CREW-PRAM having n'** processors can compute the common tangents

berween P and Q in O (k *¥€)) time, where lim, _,..£(c) = 0.

3. Computing The Distance

The input consists of the two disjoint convex polygons P=(p;,---,p,.) and
2=(q:, - .g.), where the p;’s (resp. g;'s} are given in clockwise cyclic order and no three suc-
cessive vertices of either polygen are colingar. We are interested in computing, in parallel, the

shortest distance between P and (). This distance is formally defined as follows:

diP,0)= min duw)

ue P weld

-9.

where d(u,w) denotes the Euclidean distance between points u and w, and the notadon "ue P"
means that # 1s a point on the boundary of P (not necessarily a vertex of P). Qur algorithm actu-
ally returns a pair of points u,w such that d(P,Q)=d (u,w). Of course, once we have these points
u,w, any perpendicular to the siraight line segment jolning u and w is a line separating P from Q.
Therefore our algorithm for the closest distance immediately gives us the separaring line L

neaded in Section 2.

In order o simplify the exposition, we assume that the desired points u,w are unique. Our
algorithm can easily be modified for the general case, ¢.g. by adopting a suitable convention for
[eNming a unique ,w pair in case d{(P,0) is the distance between two parallel segments of
(respectively) P and Q (in that case there is an infinite number of choices for u,w, and this is the
only case where z and w are oot unique).)

Let p be a point (not necessarily a vertex) on the boundary of P, and define g similarly for
Q. Let T, (resp. T,) be the line perpendicular to the segment pq at point p (resp. q). Itis quite.
trivial to see that 4(P,Q)=d (p,q} if and only if (i) T, and T, are tangent to (respectively) P and
Q, and (i) P and Q are on opposite sides of the region between T, and T, (ie., this region

eparates them). This simple observation immediately implies thar, with n? processors and in
constant time, it is possible to compute the closest distance between P and @ and a pair of points
achieving it (the detailed specification of this brute force procedure is left to the reader). The
algorithm we shall give uses these simple observations. It also makes use of the next two (easy)
propositions.
Proposition 3. Let p be a point external to . Then the point ge Q such that d(p,g)=d (p.Q) can

be computed in time O (k) by an nl’* processor CREW-PRAM, where & is any integer of our
choice.

Proof. Let r=n'"1%, Let O’ consist of every s-th vertex of 0, i.e. 0’=(¢,.g2 - * * 1qn). Since Q°
has n'/* vertices and we have n'/* processors, it is trivial to find in constant time the point g’< Q”

such that d(p,q")=d(p,Q"). (Note that ¢’ need not be a vertex of Q’.) If the perpendicular 1o line

-10-

pq’ at point g’ is tangent 0 @, then we can stop and declare point ¢” as the desired point ¢. Oth-
erwise let « (resp. B) be the vertex of O that immediately precedes (resp. follows) point ¢ when
the boundary of Q is traced in a clockwise manner (see Figure 4). Note that in @, there are 2¢+1
vertices between a and B (inclusive) if g7 is a vertex, otherwise there are +1 vertices between o
and B (where the word "between” refers 1o the circular ordering ¢, - - - ,¢,)- We leave it to the
reader to prove that, in O, the desired point g occurs between o and B (inclusive). Let v be the
median of the (at most 2:+1) verices between ¢ and B (inclusive): Test whether the desired
point ¢ is at %, berween ¢z and v, or becween ¥ and B (this test mivially takes constant time with
one processor). If g=y then we're done, so suppose (without loss of generality) that the test
reveals that ¢ is between o and v. Hence we can focus our search for ¢ to the section of Q
between o and v (excluding), which contains at most ¢ verdces. Therefore by doing a constant
amount of work, we have reduced the polygon size by a factor of at least #'*4, Doing this at most

k times finds the desired point g. O3

Proposition 4. Let p; and p; be any two vertces of P, i <j, and let p, be the vertex of P such that
d(p.,@)y=d(P.Q). Then for any integer k£ of our choice, an n L7k processor CREW-PRAM can, in
O (k) time, locare where p,, occurs with respect to p; and p; in the sequence pq,pa, * -~ ,pp (Le. 1t

can determine whether u=i, u=j, { <u<j, or none of these).

Proof. For any two iIndices Isa,bsn, et o,, denote the sequence
AP 0),d@a1,0), - - - (P, Q) (assuming index n+l equals 1). For example,
Gor=d(pg,2), -+ -, d (P Q)d(p1.0), - - - ,d(p2.0Q). Observe that, because of convexity, there
exist two indices @ and b, 1<a<b<n, such that G, and G, , are both sorted, one in increasing
order and the other in decreasing order. This implies that we can locate where p, cceurs with
respect to any pair p;,p; in the sequence py, - - - .p, by performing a constant number of distance
computations of the type d(p;, Q). By Propositon 3, each such distance computation can be done

within the desired time and processor bounds. O3

1fc

The following preliminary atgorithm shows that, for any integer ¢ of our choice, an 2" proces-

-11-

sor CREW-PRAM can find, in O (¢*) time, the points #e P and we @ such that d (u, w)=d (P, Q).
Preliminary algorithm D for computing distance:

Input. Two disjoint convex polygons P=(p,, - - - ,p,) and @={(g;, - - - ,¢,). The p;’s (resp. g;’s)
are given in clockwise cyclic order.

Output. Points u,w such that d (u,w)=d (P,0).

Step 0. Set P:=P, 0:=(0, s:=n1/%.

Step 1. Repear the following steps 2-4 untl either Pisa single point or é is a single point
Without loss of generality, assume it is P that ends up becoming a single point (call it x): Use
Proposirion 3 10 find, in O (¢) time, the point ye @ such that d(x,y)=d(x,Q): Output the points x
and ¥ (these are the desired points uz,w).

Step 2. Let P’=ay, - - - .a,) be the polygon obtained by considering every (|13 | /5)-1h vertex of
P, i.e. the s vertices of P/ divide P into s equal portions. Call these portions Ay, - - - ,A,, 50 that
a; is adjacent in }3 to pordons A; and A;.;. By definidon, g; belongs to A; but not to 4;,;. Let
Q’=(by, -+ ,b;) be analogously defined for (, and let the resulting portions of Q be B/, - - - ,B,.
Use the already mentioned brute force method for finding the poimts ae P’ and be Q” such that

d(a,b)=d(P’,Q0"). Since we have s> processors, this takes constant time.

Let ap (resp. Bp) be the vertex of P/ that immediately precedes (resp. follows) a on the boundary
of P’. (Figure 5 illustrares the case when g is not a vertex of P’) If a is a vertex of P’ then op
and Bp are (respectively) its predecessor and successor vertices on P/, and hence there are then
2] P /s +1 vertices of P between ¢p and Bp (inclusive). If a is not a vertex of P/ then o and Bp
-are consecutive vertices of P’, point a is on the segment of P that joins ¢p 0 (p, and there are
Iﬁils +1 vertices of P between op and Bp (inclusive). Let ¥ be the median of the (at most
2|}; [/5 +1) vertices ofﬁ that are berween ap and Bp (inclusive). (Note that, if @ is a vertex of
P’, then vp=a.) We use P°® 1o denote the portion of P that is between ap and Bp (excluding p

and Bp). P and P*® are analogousiy defined.

-12-

Let o, By, Yo. @, @ and QP be similarly defined for b, 0 and 0. (Figure 5 illustrates the
case when & is a vertex of Q°))

Step 3. Use Proposition 4 to detect whether u=ttp, u=Bp, u=yp, ucP™, ueP™®, or none of
these. If 4 equals otp (resp. ¥p, Bp) then set P equal to op (resp. Yp, Bp) and go to Step 4. Other-
wise, if z& P then do P:=P™ and go to Step 4. Otherwise, if ue P then do P:=P™® and go to
Step 4. Otherwise leave P unchanged. (An assignment like P:=P% is done in constant time sim-

ply by remembering the new first and last vertex of }3.)

Step 4. Use Proposition 4 to detect whether w=p, w=Bg, w=yp, we 0™, we 0®, or none of
these. If wequals oy (resp. ¥g, Bp) then set é equal to 0y (resp. ¥g, Bp) and go to Step 2. Oth-
erwise, if we O then do Q=0 and go to Step 2. Otherwise, if we @ then do 9:=0*® and
go to Step 2. Otherwise leave é unchanged.
(End of algorithm).

Since every usage of Proposition 4 takes O (c) time, the time complexity of the algorithm is
equal to ¢ muldplied by the number of dmes that steps 24 get executed. We now bound the

number of tdmes steps 2-4 are executed.

Lemmz 2. Let a, b, P°®, Q°®, 4, and w be as in algorithm D. Assume that ué {op,Bp} and

we {05,080} Then at Ieast one of the following statements (a) or (b) is true:
(a) ueP%b,

®) weQ®.
Proof. Let T, (resp. Tp) be the line perpendicular at a (resp. b) to the segment ab (see Figure 3).
By the definition of and b, T, (resp. T3) is tangent to P’ (resp. Q7). Without loss of genemlity,
T, and T, are vertical, P is to the left of T, and O is to the right of 7. If #=a or w=b then the
lemma holds, so suppose that u=a and w=b. By the definition of 4 and w, we must have
d (u,w)<d(a,b). This implies that u is to the right of T, or w is 1o the left of T}, (possibly both).

Hence, it suffices to show that if « (resp. w) is to the right (resp. left) of T, (resp. T}), then (a)

-13-

(resp. (b)) holds. We prove this by contradiction. Suppose that z is to the right of T, and (2) does
not hold, i.e. u¢P™®. Without loss of generality, assume that u is below yp. Now, by walking
from vertex vp clockwise aiong the boundary of 13. one encounters veriex fp before reaching u.
Since vp is on or to the right of T, Bp on orto the left of T, and « to the right of T, this contrad-

icts the convexity of P. A similar argument shows that if w is to the left of 7}, then (b) holds. O
Corollary 3. Steps 24 of algorithm D are executed a total of at most 4¢ —1 tmes.

Proofs. Lemma 2 implies that, every ime we execute Steps 2-4, at least one of Por é decreases

in size by a factor of at least s=n 1%, thus proving the coroilary. O
We have thus established the following:

Theorem 3. Algorithm D correctly finds points ueP and we Q such that 44, w)=d(P,0). It

lie

uses n'/¢ processors and it runs in time O (¢2), where ¢ is any integer of our choice.

We now define a sequence of algorithms Ey,Eq, - - - in a manner entirely aralogous to the
way we defined sequence By,B4, - - - in the previous section. The analysis, which is very similar

to that done in Section 2 (and hence is omitted), establishes the following:

Theorem 4. Let P and Q be two disjoint convex #-gons. Let k=c? where ¢ and 4 are any
integers, c=0(1). A CREW-PRAM having n'’* processors can compute points ue P and we Q
such that d (z,w)=d (P,Q) in O (¢1**)) time, where lim, _,..e(c) =0.

Corollary 4. Let P and Q be two disjoint convex n-gons. Let k=c? where ¢ and d are any
integers, ¢c=0 (1). A CREW-PRAM having n'’* processors can compute a smraight line L which

separates P from Q in O (¢"*4)) time, where lim,_,..£(¢) = 0.

It is worth pointing out that, given a straight line L and a convex polygon P, a method simi-
lar 1o that given above (actually an easier version of it) can be used to determine if L and P inter-
sect or not, and if so to give a point of this intersection. This is done in time O (k) if we have n '/

processors, where £ is any integer of our choice. The details are left 1o the reader.

-14 -

4. Conclusion

We gave new parallel algorithms for computing some functions of convex polygons in the
CREW-PRAM model. In pardcular, we showed that constant time suffices for computing these
functions even if we have a sublinear mumber of processors (in fact #'/¢ processors suffice for any
constant integer c). Even with a linear number of processors, it was not previcusly known how to

achieve constant time performance for computing these functions.

References

[11 A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing and C. Yap, "Parallel Computational
Geomemry,” Proc. 26th Annual IEEE Symposium on Foundations of Computer Science,
October 1985, pp. 468—477.

[21 ML I Atallah and M. T. Goodrich, "Efficient Parallel Solutions to Some Geometric Prob-
lems," Journal of Parallel and Disributed Computing, No. 3, 1986, pp. 492-507.

[3] A. Chow, "Parallel Algorthms for Geometric Problems,” Ph.D. dissertation, Computer Sci-
ence Dept, University of Illinois at Urhana-Champaign, 1980.

[4]. H. Edelsbrunner, "Computing the Exreme Distances between Two Convex Polygons,” J.
Algorithms, VoL 6, 1985, 213-224.

[5] MH Overmars and J, Van Leeuwen, "Maintenance of Configurations in the Plane”, Jour-
nat of Compurer and Systems Sciences, Vol. 23, pp. 166-204 (1981).

(6] F. P. Preparata and S. J. Hong, "Convex Hulls of Finite Sets of Points in Two and Three
Dimensions,” CACM, Vol. 20, No. 2, February 1977, pp. 87-93.

{71 F. P. Preparata and M. 1. Shamos, Compurarional Geomerry, An Introduction, Springer
Verlag, New York, 1985.

q3

gz

gL °

Figure 1: The two polygons P and Q. WLOG, the line separating P and
Q is vertical and P is to the left of Q.

Figure 2: The two subpolygons P’ and Q' and their common supporting
tangent a;b;. The polygons P and § are shown in dashed lines.

b;
Figure 3: We show that if p, € A,,, w < 1, then convexity is viclated.

Figure 4: Searching for the point in a convex polygon Q closest to a point

p. The polygon Q is outlined in dashed lines, and the polygon Q' is outlined
in solid lines.

P (dashed)

P’ (solid)

pef

Ty

Figure 5: Reducing the size of P and/or Q. Pf ig the (dashed) portion

of P between ap and fp (inclusive), and vp subdivides P*# into P*7 and

P, Q% Q=7 and Q7 are defined analougously.

