
INFORMATIQUE THÉORIQUE ET APPLICATIONS

V. B. BALAYOGAN

C. PANDU RANGAN

Parallel algorithms on interval graphs

Informatique théorique et applications, tome 29, no 6 (1995), p. 451-
470.

<http://www.numdam.org/item?id=ITA_1995__29_6_451_0>

© AFCET, 1995, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1995__29_6_451_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 29, n° 6, 1995, p. 451 à 470)

PARALLEL ALGORITHMS ON INTERVAL GRAPHS (*)

b y V . B . B A L A Y O G A N C1) a n d C . P A N D U R A N G A N (l)

Communicated by Jean BERSTEL

Abstract. - This paper présents thefirst optimal, sublogarithmic algorithms for finding the Depth
First Search and Breadth First Search trees of an interval graph. Improved/Optimal algorithms are
givenfor Domination problems, and for finding biconnecîed components, eut vertices and bridges
of an interval graph.

Résumé. - Cet article présente les premiers algorithmes optimaux, sous logarithmiques pour
déterminer les_arhr_es des parcours en profondeur et en largeur de graphes d'intervalles. On donne
des algorithmes améliorés ou optimaux pour le problème de domination, et pour déterminer les
composantes biconnexes, les points d'articulation et les ponts d'un graphe d'intervalle.

1. INTRODUCTION

A graph G = (y, E) is said to be an Interval Graph if the vertex set V
can be put into an one-to-one correspondance with a set / of intervals on
the real line such that two vertices are adjacent in G iff their corresponding
intervais intersect. Interval graphs form an important subclass of perfect
graphs. Several NP-Complete graph problems admit polynomial solutions
when the input is restricted to an interval graph. Hence, extensive studies
on the algorithmic and graph theoretic aspects of the interval graphs have
been carried out in the past. See [G80] [R76] for a detailed discussion on
the class of the interval graphs and their applications. In the recent past a
growing interest on the design of parallel algorithms has been witnessed.
The parallel algorithm design will often call for an entirely new approach
for solving the problem at hand as most of the efficient sequential algorithms
do not admit "direct parallelisation". Bertossi et al [BB87] were the first
ones to present parallel algorithms on interval graphs. They have assumed

(*) Manuscript received March 1992; accepted September 1993, final version received May 1995.
(}) Department of Computer Science and Engineering, Indian Institute of Technology, Madras,

600 036, India. Email: rangan@iitm.ernet.in

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/95/06/$ 4.00/© AFCET-Gauthier-Villars

452 V. B. BALAYOGAN, C PANDU RANGAN

that the interval représentation is available and solved Maximum weighted
clique, Minimum independent set, Maximum clique cover, and Minimum
dominating set in O (log n) time using O (n2 log n) processors of a CREW
PRAM. Ramalingam and Pandu Rangan [RP87] and Klien [K87] proposed
NC algorithms for the interval graph récognition. Recently Moitra et al.
[MJ88] presented NC algorithms for a variety of problems on interval graphs
and proper interval graphs such as depth first search, maximum matching and
bandwidth minimisation. NC algorithms for BFS, Hamiltonian paths/cycles,
center, shortest paths, minimum colouring, bridges and eut vertices are
also reported in the literature. [K89] [OSZ90] [SK91] [SG91] [DC92]. In
this paper we present parallel algorithms for the depth first search tree and
breadth first tree construction, parallel algorithms for a number of domination
problems and algorithms for eut vertices and biconnected components. All
our algorithms are either optimum or significant improvement over the
previously known results or new and first efficient algorithm for the problem.
Comparisons are done in the appropriate sections of this paper.

We use the nearest smallers problem, defined in [BSV88], as a key sub
problem and arrive at certain sublogrithmic algorithms for the problems on
interval graphs. To the best of our knowledge, these are the first sublogrithmic
algorithms on the class of interval graphs. The parallel algorithms presented
in this paper are designed for the Parallel Random Access Machine (PRAM)
model of parallel computation in which all processors have simultaneous,
unit time access to a shared memory for reading and writing. Depending on
whether reads and writes to a particular memory location are exclusive or
concurrent, the PRAMs are further classified into Exclusive Read Exclusive
Write (EREW), Concurrent Read Exclusive Write (CREW) and Concurrent
Read Concurrent Write (CRCW) models. The CRCW PRAMS used for
algorithms in this paper are of the Common Write Type in which multiple
processors may attempt to write to the same memory location only if all of
them are seeking to write the same value. A parallel algorithm is said to be
efficient if it solves the problem in O ((log n)k) time for some constant k
using POLYNOMIAL (n) number of processors, where n is the size of
the input. We often call such efficient algorithms as POLY-LOG algorithms
or NC algorithms. A parallel algorithm is said to be optimal if the product
of processor count and run time is of the same order as the complexity of
the best known sequential algorithm or is of the same order as the lower
bound to the problem. See [R93] [JJ92] for more details on PRAM Models
and their algorithmic aspects.

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 453

Représentation of Input

As is the common convention for parallel algorithms on interval graphs, the
algorithms in this paper assume that the right sorted interval représentation
is available. Some algorithms require the sorted list of all endpoints. Note
that given an interval model, Cole's parallel merge sort can be used to
obtain either of these input représentations in O (log n) time with O (n)
EREW PRAM processors [C86]. However, the adjacency list input imposes
a heavy overhead since the best known algorithms for récognition of interval
graphs and construction of the interval model take O (log2 n) time with
O ((n + m)/log n) processors on a CRCW PRAM [K88], Let us recall an
important characterisation of an interval graph in terms of certain ordering
or numbering of its vertices. A graph G = (V, E) is an interval graph iff its
vertices can be numbered vi, T/2, -.. , vn such that i < k and (VÏ, Vk) £ E
imply that, for all i < j < fc, (v3, vk) € E [RP87]. This scheme of
numbering the vertices, called the IG-numbering, has been used extensively
in the design of several sequential algorithms on Interval graphs. Let /
dénote the séquence of intervals corresponding to the vertices of the interval
graph sorted according to their right endpoints. It is readily seen that the
ranks of intervals in / satisfy the conditions for being an IG-numbering.
Thus, in what follows, we assume G — (V, E) to be an interval graph given
in the form of two arrays and L = [l\, h, . . . , ln\ and R — [n, T2, . . . , rn]
where (^, rt) is the interval ï{ representing vertex V{7 1 < i < n, and that
the R array is sorted in the increasing order.

2. ALGORITHMS

In this section, a unified approach is taken to dérive optimal parallel
algorithms for several interval graph problems. Given the intervals (/«, n)
as input, we construct three auxiliary arrays Ep, EB and Ej, of length 2n
each. They contain permutations of the l{ and Ti values or their négatives.
Three parent functions Pp (), PB () and Pj () are defined based on
the corresponding E array by the relation: Px (v%) = VJ iff Ij is the right
match of r% when the nearest smallers problem (to be defined later) is solved
on Ex-, X G {D, 5 , ƒ }. It is then proved that the trees implicity defined by
parent functions Pp () and Pg () give the depth first search spanning
tree and the breadth first search spanning tree, respectively, of the given
interval graph while the path from v\ to root in Pj () tree is shown to
consist of the vertices in the largest independent set of G. The minimum

vol. 29, n° 6, 1995

4 5 4 V. B. BALAYOGAN, C. PANDU RANGAN

dominating set, the minimum connected dominating set and the minimum
total dominating set of G are similarly shown to be vertex to root paths
in trees defined by appropriate parent functions obtained from PB () and
Pi () (by function composition).

The algorithms for eut vertices, bridges and biconnected components work
on the segments of the real line demarcated by the endpoints of the intervals.

The following two well known problems are frequently used as key
subproblems in our algorithms.

Parallel Prefix Sum

Given an array A — [ai, a2, . . . , an] of numbers, the Parallel Prefix Sum
problem is to compute the partial sums Si — ^ aj9 for 1 < i < n. This

problem can be solved in O (log n) time using O (n/ log n) processors on
an EREW PRAM using standard techniques [R93] [JJ92].

The Nearest Smallers Problem

The input to this problem is an array A — [a\, 0,2, . . . , an] of éléments
drawn from a totally ordered domain. It is required to find, for each
«i- 1 < i < n* the nearest element to its right that is smaller than ai,
if it exists. Such an element, if it exists, is called the right match of a«. This
problem can be solved in O (log n) time with O (n/ log n) processors on
an EREW PRAM [K89] or in O (log log n) time using O (n/log log n)
processors of a CRCW PRAM [BSV88].

Parallel construction of the DFS tree

Constructing the depth first search tree of an arbitrary graph is one of
the problems that is considered "inherently sequential" and there is little
likelihood of finding NC algorithms for this problem [R85]. However on
restricted classes of graphs such as planar graphs and chordal graphs NC-
algorithms have been proposed [H89] [K88]. [MJ88] and [GDSP90] gave
O (n2 / log n) processor O (log n) time algorithms for constructing the DFS
tree of an interval graph when the interval représentation is available. Moitra's
algorithm used CREW model while GDS algorithm employed EREW model.
The processor count was subsequently improved to O (n) in [DC92] for the
EREW model. The algorithm presented here reduces the processor count
further to O (n/ log n) for EREW PRAM without increasing the time
complexity. Clearly our algorithm is optimal and the processor count can

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 455

not be reduced any further. Let Tp (G) be the DFS tree of the interval
graph G where the traversai started at the vertex n and let PB (VÎ) dénote
the parent of vertex v% in the DFS tree. In this section, we develop a method
of constructing Tjy (G) implicity by finding Pp (vi) for each vertex Vi. In
order to make the construction of the DFS tree deterministic, the convention
of choosing the highest numbered vertex in the set of eligible vertices (at
each stage of the DFS) is followed. As seen from the Lemma below, this
leads to a particularly simple traversai séquence.

LEMMA 1: The preorder traversai of the vertices of DFS tree TB (G) is

Proof: Easy.

The next lemma gives a new characterisation of the parent function PB
that leads to the algorithm.

LEMMA 2: The parent of vertex Vi in TB (G) is vertex Vj iff the following
condition holds: j = min {k\k > i, Ij- int er s eet s I{}. In other words, the
parent of any vertex v in To (G) is the lowest numbered vertex among the
higher numbered neighbours ofv.

Proof: The proof is by contradiction. Let S — { k \ k > i, I^intersecisïi }
and assume P (vi) = vw, and not Vj where j = min (S). w > i since the
parent should come earlier in the preorder séquence, according to Lemma 1.
This implies that w G S and since j = min (5) and j ^ w, j < w. But
i < j < w and It intersects Iw imply that Ij intersects Iw. Hence the choice
of Vi after vw contradicts our policy that we choose the largest unvisited
neighbour as the next vertex in the DFS traversai. D

The following lemma summaries the properties of the DFS tree in terms
of the sorted interval représentation.

LEMMA 3: Let Tp (G) be the DFS tree of G rooted at n, obtained on
the assumption the higher its IG-number of a vertex the higher its priority
for being visited next, at every stage of the depth first search, Then, for
each vertex V{, the parent of V{ in Tp (G), denoted P& (vi), is given by
PD (vi) = v3 where j — min { k | k > i, /& < T{ }.

LEMMA 4: Let ED = [lu n, l2, r2, . . . , ln, rn]. Then PD (v{) = Vj iff Ij is
the rightmatch of ri when the nearest smallers problem is solved on EJJ [].

Proof: 4= : This follows straight form Lemma 2.

vol. 29, n° 6, 1995

456 V. B. BALAYOGAN, C. PANDU RANGAN

=>* : Note that, since the right endpoints form an ascending subsequence
in E, no right endpoint can be the rightmatch of any V{, By lemma 3,
PD{^Ï) = VJ => i (j , ri)lj and for all k, i < k < j , r% < lk. Hence

the proof.

Algorithm Parallel-DFS

begin

(1) for i := 1 to n in parallel do

E[2*i-1] :=<*,-, 0 ;

E[2*i] : = <r 2 , i) ;

od;

(2) Let the right match of E (i) be denoted by RM [i\.

//Note that E(2i) = (rj, i) . Thus by Lemma 4, the right match of
E{2i), RM[2i], contains the index of parent of V{.il

(3) Let RM[2i] = (at, f3l) for 1 < i < n.

IIPi is the index and ai is some end point of the interval.//

PD{vi) = vp. for 1 < i < n.

end.

As noted earlier, solving Nearest-Smallers will take O (log n) time with
O(n/ log n) processors on an EREW PRAM or O (log log n) time on
O(n/ log log n) CRCW PRAM processors. Hence,

THEOREM 1: Given the right sorted interval représentation, the Depth First
Search spanning tree of an interval graph can be constructed in O (log n)
with O (n/ log n) processors on an EREW PRAM or in O (log log n) time
with O (n/ log log n) processors on a CRCW PRAM, O

Parallel construction of the BFS tree

Although there are NC-algorithms for the BFS Tree construction for a
genera! graph, it suffers from "Transitive Closure Bottleneck". Till today, we
are not able to overcome the same and the processor count remains same at
O (n2 '36) for an O (log n) finish time. For the ciass of the interval graphs,
[DC92] demonstrates how to construct the BFS Tree in O (log n) time using
only O (n) processors in EREW PRAM. We further reduce the processor

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 457

count to O(n/log n) and achieve the optimality. We also dérive the first
sublogrithmic algorithm for this problem based on the same method.

Let G — (V, E) be an interval graph, given in the right sorted interval
représentation, and let TB (G) be its breadth first search spanning tree rooted
at n. Let PB (vi) dénote the parent vertex of V{ in TB (G). Lemma 5 defines
PB () in terms of the interval représentation while Lemma 6 reduces the
compilation of PB () to the nearest smallers problem.

LEMMA 5: The parent of vertex v% is VJ in TB (G) iff the following condition
holds: j = max { k | k > z, Z& < r% }.

Proof: Let d(v) dénote the depth of vertex v in TB (G). The Lemma
is proved by showing that for any pair of adjacent vertices v% and
Vj, \d(v{) — d(vj)\ < 1. Assume i < j , Since Vi and VJ intersect, either
VJ is the parent of V{ (in which case the depth différence is 1) or neither
is an ancestor of the other. In the latter case let vc be the lowest common
ancestor of vi and VJ and let A = (vt = va^} va(2), • • * , v a (a) = vc)
and^S = (VJ — ^ (i) , ^(2)7^--"> vP{b) — vc) be the âncestral paths
from Vi to vc and VJ to vc respectively. Since i < j , a > 6. By
construction, r a (1) < r^^) and (va(i),vp(i)} e £ (G) imply rQ (2) < ^(2)
and (^(2), ^(2)) € ^ (G) - Hence, by induction, ra(6) < r ^ ^ and
(va(b)i v/3(b)) ^ E(G). This implies that v a (^ is either vc (in which case
a = b) or adjacent to vc (in which case fa(5+i) — vc or a — 6 + 1 . Hence
the resuit. D

L E M M A 6 : Define E B — [n , V2, . . . , r n ï / „ , . . . , Z2, *i
iff Ij is the rightmatch of vi when the nearest smallers problem is solved on
EB.

Proof: Similar to Lemma 4.
Hence,

THEOREM 2: Given the right sorted interval représentation, the Breadth First
Search spanning tree of an interval graph can be constructed in O (log n)
time with O (n/ log n) processors on an EREW PRAM or in O (log log n)
time with O (n/ log log n) processors on a CRCW PRAM. D

Parallel algorithms for bridges, eut vertices and bi-connected

components

For gênerai graphs, the best known algorithms for finding bridges,
eut vertices and biconnected components take O (log2 n) time using

vol. 29, n° 6, 1995

458 V. B. BALAYOGAN, C. PANDU RANGAN

O(n 2 / log 2 n) processors in EREW PRAM model [TSIN84]. Algorithms
spécifie to interval graphs, which runs in O (log n) time using O (n2 / log n)
processors, were first presented in [GDSP90]. The processor count was
reduced to O (n) in [DC92] [SK91]. The approach followed in [GDSP90]
is to first construct the DFS spanning tree from the interval model, and
then to use the DFS tree and some associated tree functions to identify the
bridges, eut vertices and biconnected components. In this section, algorithms
that work directly on the interval model to do the same identification are
presented. Given the array of sorted endpoints, the algorithms in this section
take O (log n) time on 0 (n / l o g n) EREW PRAM processors. For the
rest of this section, let S [1 . . . 2 * n] be the array that contains the sorted
list of endpoints of the interval graph G = (V, E). Let each S [j] be a
tripiet (Zj, i, 1) or (r^, i, - 1) according to whether it is a left endpoint
or right endpoint (where (Zj, rj) is the interval representing vertex v% with
IG-number ï).

Define L~l [i] and R"1 [i] to be the ranks of l{ and r2, respectively, in
the sorted ordering of all endpoints. Define NR [i] (NL [i]) to be the total
number of right (left) endpoints that have ranks not greater than i in the
sorted ordering of all endpoints. The 2 n endpoints of the intervals in G
(assumed, without loss of generality, to be unique) define 2 n — 1 segments
of the real line demarcated on either side by endpoints. In the discussion that
follows, each segment is consistently associated to the endpoint immediately
to its left. An interval covers a segment if it contains the segment and W [i]
is defined to be the number of intervals that cover the segment that begins
at the i-th endpoint from the left. From the définitions of W [i]y NR [i] and
NL [i], it follows that for 1 < i < 2n, W [i] = NL [i] - NR [i].

Cut Vertices

It is easily seen that a cut vertex of the interval graph, as it appears on the
real line, will contain at least one segment over which it is the sole covering
vertex. Conversely, the unique covering interval of a segment with W [i] — 1
is a cut vertex unless the segment is the first or the last one of a connected
component. Note that in the latter case W [i — 1] = 0 o r l f [i + l] = 0 . Since
for 1 < i < 2n, | W[i] — W [i + 1] | = 1 (from uniqueness of endpoints),
this implies that the covering interval of a segment i is a cut vertex iff
W [i - 1] = 2, W [i] = 1 and W [i + 1] = 2. As can easily be seen, the
interval Ii covers segments from L ' 1 [i] to R~r [i] - 1. Hence, a vertex v%

is a cut vertex iff there exists a j , L~l [i] < j < R"1 [i] — 1, such that

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 459

W [j] = 1 and W [j -ï\ = W\j + ï\ = 2,
Although the pattern 2 - 1 - 2 is identified easily, checking that for the entire

range L " 1 [i] . . . R~l [i] — 1 for each vertex cannot easily be parallelised.
This can be overcome as follows: Define x[i] to be 1 if W [i] — 1 and
W [i - 1] = W [i + 1] = 2 and 0 otherwise. Let X [i] to be ^ x [j], Then

v% is a eut vertex iff X [R~l [i] - 1] > X [L~l [i]]. We are now ready for
the parallel algorithm.

Algorithm Cut-Vertices

begin

/* Create an array 5 of records with each record containing three
components. The first component is an end point of an interval the second
one is the index of the interval for which the first component is an end
point and the third component is called the sign component which is 1
or — 1 depending on whether the first component is the left or the right
end point. */

(1) for i :— 1 to n in parallel do

S [2 * i - 1] : = (/ „ i , 1) ;

S[2*z] : = < r t , i, - 1) ;

od;

(2) Soit (S [1 . . . 2 * n]) on the first component

Dénote the new S [i] by S [i] := {end [i], id [i], sign [i])

(3) for i := 1 to 2 * n in parallel do

W[i] :=sign[i] ;

if sign [i] — 1 then

L™1 [id [i]] := i

else

fi

od;

(4) Prefix-Sum (W [1 . . . 2 * n]);

vol. 29, n° 6, 1995

4 6 0 V. B. BALAYOGAN, C. PANDU RANGAN

(5) for i := 1 to 2 * n in parallel do

X [i] := 0;

od;

(6) for i := 2 to 2 * n — 2 in parallel do

if W [i] - 1 and W [i - 1] = 2 and W [i + 1] = 2 then

fi

od;

(7) Prefix-Sum (X [1 . . . 2 * n]);

(8) for i :— 1 to 2 * n in parallel do

if X [Rr1 [i] - 1] > X [L-1 [i]] then

Output (VJ);

fi

od;

end.

The calls to Prefix-Sum take O (log n) time on O (n/ log n) EREW PRAM

processors. All steps after (2) can be done within the same bounds. Hence,

THEOREM 3: Given the sorted endpoint représentation of an interval
graph G, all eut vertices of G can be identified in O (log n) time with
O (n/log n) processors on an EREW PRAM. D

Bridges

Let e = (vi, Vj), i < j , be a bridge of the given interval graph. Since
deletion of e disconnects the graph, no other interval covers the segment
of overlap [Zj, r2] on the real line. Hence, if k = L~l [j], W[k] — 2 and
W[A;-l] = l.IfW[fc + l]>2 , fc + l cannot be a right endpoint and e is not
a bridge. Hence, the condition that W [k] = 2, W [k - 1] = W [k + 1] = 1
characterise a bridge. To identify Vi and Vj, note that S[k] is the left
endpoint of VJ and S [k + 1] is the right endpoint of vi. The complete
parallel algorithm is given below:

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 461

Algorithm Bridges

begin
Perform Steps 1 and 2 as in the previous algorithm cut-vertices

(3) for i := 1 to 2 * n in parallel do

W[i] := sign[i];

od;
(4) Prefix-Sum (W [1 . . . 2 * n]);
(5) for i :~ 2 to 2 * n — 2 in parallel do

if W [i] = 2 and W [i - 1] = 1 and W [i + 1] = 1 then

Output ((vid[ij, Vid[i+i]));
fi

od;
end.

The calls to Prefix-Sum take O (log n) time on O (n/ log n) EREW
PRAM processors. All other steps after (2) can be done within the same
bounds. Hence,

THEOREM 4: Given the sorted endpoint représentation of an interval
graph G, the bridges in G can be identified in O (log n) time with
O (n/ log n) processors on an EREW PRAM. D

Biconnected Components

Observe that biconnected components and eut vertices of proper interval
graphs form a linear chain-and-link structure. Although this is not true for
gênerai interval graphs, a direct characterisation in terms of the segments
on the real line is still possible. A segment i with W [i] — 1 will have two
different biconnected components on either side of it. Hence for a connected
interval graph, counting the segments with W [i] ~ 1, 1 < i < 2n — 2,
assigns a "left to right" numbering to all the biconnected components
of G. Consider the problem of identifying the biconnected component that
contains the edge (^, VJ). The segments between max(L^1 [i], L~l [j]) and
min(^^ 1 [i] — 1, R^1 [j] — 1) lie on the same biconnected component and
any segment in this range can be chosen as the représentative to find the rank
(from left) of the biconnected component that contains (vi7 VJ). Ho wever for
if the graph contains more than one connected component, a segment i with

vol. 29, n° 6, 1995

462 V. B. BALAYOGAN, C. PANDU RANGAN

W [i] — 1 and W [i +1] = 0 does not begin any new biconnected component
and it should not be counted (the new component begins at W [i + 2] = 1).
This can now be implemented as a parallel preprocessing algorithm that
answers queries in O (1) time.

Algorithm Biconnected-Components

begin
Perform Steps 1 and 2 as in the previous algorithm cut-vertices

(3) for i := 1 to 2 * n in parallel do

W[i] :=sign[i];

if sign [i] ~ 1 then

fi
od;

(4) Prefix-Sum (W [1 . . . 2 * n]);
(5) for i := 1 to 2 * n — 1 in parallel do
(5.1) if W [i] = 1 and W[i + Ï\ = 2 then

BiCC [i] := 1

else

[i] := 0

fi

od;

(6) Prefix-Sum {BiCC [1 . . . 2 * n - 1] 4)

end.

Algorithm Find_Owner_BiCC((^, VJ))

begin
(1) Output (BiCC [maxtL-1 [i], L~l [j]}})

end.
The complexity analysis of the algorithms are straightforward.

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 463

Hence,

THEOREM 5: Given the sorted endpoint représentation of an interval
graph G, the biconnected components can be identified in O (log n) time
with O (n/ log n) processors on an EREW PRAM such that edge membership
queries on the biconnected components can be answered in constant time, D

Some Other Problems Solvable by Overlap Counting

Given the sorted endpoint représentation of an interval graph, several
other problems also can be efficiently solved in parallel by the technique
of counting overlapping intervals of segments. An algorithm to identify the
k-connected components of a A; — 1 connected interval graph can easily be
obtained by generalising algorithm for biconnected components as follows:
Change step (5.1) to

UW[i] = h - l and W[i + 1] = k.

Several clique problems too.can be solved using this technique. Note
that a segment i with W [i] > max (W [i — 1], W [i + 1]) corresponds to a
maximal clique of the graph. Hence the problems of finding the maximum
clique, weighted maximum clique, maximum weighted maximal clique etc.
can all be solved in O (log n) time with O (n/ log n) processors on an
EREW PRAM.

REMARK 1: Given a sorted endpoint représentation of an interval graph, all
the following problems can be solved in O (log n) time using O (n/ log n)
processors in EREW PRAM model,

a) fc-connected components

b) (Weighted) maximum clique.

Parallel algorithms for dominating sets

Finding a dominating set is a typical example of a problem that is
intractable in gênerai graphs but admits an efficient solution in some special
classes of graphs. Interval graphs are among the classes of graphs for
which there are efficient algorithms for sequentially finding the minimum
set for domination, connected domination, total domination and independent
domination. A unified approach to the weighted case of the sequential
problem is given in [RP88]. The first parallel algorithm for minimum
dominating set problem on Interval graph was presented in [BB87], It

vol. 29, n° 6, 1995

4 6 4 V. B. BALAYOGAN, C. PANDU RANGAN

takes O (log n) time but employs O(n2/log n) processors of a CREW
PRAJVL The processor count was subsequently improved to O (n) in the
weaker EREW PRAM model in [K89] and [OSZ90]. In this section, a
unified approach for obtaining the independent set and various dominating
sets in parallel is presented. All the algorithms run in O (log n) time but
employ only O (n/ log n) processors of EREW PRAM.

First, the nearest smallers problem is used to evaluate two parent functions,
PB () and Pj () (defined below). Then corresponding to each dominating
set, a new parent function is defined in terms of PB () and Pj (), The
domination problems are then reduced to finding an ancestral path from
a spécifie vertex to the root in the trees defined by the respective parent
functions. The problem of identifying the vertices of a path of a tree in
parallel is solved by the Eulerian tour techniques.

The Maximum Independent Set

Define Pj (vi) — v3 iff j = min { k \ lk > Ti} and define Tj (G) to be
the tree formed by the parent function Pj () defined above. Let I be
the vertices in the path t?i, Pj (vi). Pi (Pi (vi))i • •* • By induction on the
IG-number of vertices in / it can easily be shown that / is an independent
set and that | I | is at least as large as the size of any other independent set.

LEMMA 6: Let Ei = [-rn, - r n _ i , . . . , -ru -lu -l2, . . . , -ln]- Then
Pj (^) — v3 iff the rightmatch of-ri is -Ij when the nearest smallers problem
is solved on EL

Proof: Easy, details are omitted. D

The next lemma proves an important result that is necessary for efficient
extraction of the independent set from the tree TI (G) using Eulerian tour.

LEMMA 7: Let PB () and Pi () be the parent functions of the BFS and

independence trees. Then, for i < j ,

(i) PB {vi) = PB (VJ) = vp => for all fc, i < k < j , PB {vk) = vp

(ii) Pi (vi) = Pi (V3) = vq =» for all fc, i < k < j , Pi (vk) = vq

Proof: Straightforward from the property of IG-numbering. D

Any function that satisfies the above lemma is said to have the adjacent
children property. By Lemma 7, all children of a vertex (in either tree) are
numbered consecutively. We now give an algorithm to compute the path
from a leaf to the root in a tree given that (i) The tree is represented in

Informatique théorique et AppHcations/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 465

the form of a parent (P) array and (ii) The P array satisfies the adjacent
children property.

Assume that v\ is the given leaf.

A) Find the adjacency list

A.l) Assign log n éléments of P to each of n/log n processors.

A.2) Each processor scans the log n éléments assigned to it from left to right,
and if P [i] + P [i + 1], then it sets Max [P [i] = i, Min [P [i + 1}} = i + 1,
where Min and Max are the first and last children of a node.

A.3) Min [i] . . . Max [i] gives the children of node i for i < i < n.

B) From this adjacency information, we construct a directed graph by
replacing each edge in the tree by a forward and a backward edge. Then, we
construct the Eulerian tour using nj log n processors and log n time [KR88].

C) Find the preorder number of each node.

D) Find the last occurence of v\ and then find the first occurence of the
root after the last occurence of v\. The position of the last occurence of v\
is found out by the following method: Assign a weight of 1 to an edge in
the tour if it is incident on v\ and 0 otherwise. Perform a parallel prefix
sum. The values got are in nondecreasing order. The value associated with
the last edge of the tour gives the number of times v\ occures in this tour.
The edge where this value first occures, which can be found out by a binary
search, is the last occurence of v\. In a similar manner, the position of the
root can be found out.

E) Take all the vertices in the tour that exist between the above computed
positions in the Eulerian tour. Remove those vertices whose preorder numbers
are greater than the preorder number of v\. The list of preorder numbers got
will be in nonincreasing order. Removing duplicates from this list will give
the vertices in the path from v\ to root. Correctness of the above algorithm is
established as follows: Consider the portion of the Eulerian tour computed.
This is a walk from the vertex v\ to the root. This walk, when condensed
by removing duplicating vertices, will give a path from v\ to the root, this
should be identical to the path computed. Thus, the walk will contain all
the required vertices. We can identify the unnecessary vertices by the fact
that their preorder number will be greater than that of v\. This is because,
vertices which have preorder number less than v\ and do not belong to the
path from v\ to the root, will have a preorder number less than of v\. Hence
the correctness follows.

vol. 29, n° 6, 1995

466 V. B. BALAYOGAN, C. PANDU RANGAN

Complexity: Step A requires O (log n) time with nj log n processors.
Step B can be done in O (1) time using n processors, and hence in O (log n)
time with O (n/ log n) processors. Steps C, D use parallel prefix algorithm,
and hence can be done optimally. Step E involves deletion of marked
éléments from a list, which requires O (log n) time with O (n/ log n)
processors.

THEOREM: Given a P array représentation of a tree which satisfies the
adjacent children property, the path from a leaf to the root can be computed
in O (log n) time using nj log n processors on an EREW-PRAM.

LEMMA 8: Given the right sorted interval représentation, a maximum
independent set of an interval graph can be constructed in O (log n) time
with O (n/ log n) processors on an EREW PRAM. D

COROLLARY: A minimum clique cover of an interval graph can be
constructed in O (log n) time with O (n/ log n) processors on an EREW
PRAM.

Proof: Let / — {va(i)- • * - Î va(k) } be the maximum independent
set as obtained above and let va(&+i) = oo. For 1 < i < k, defme
d = {vj\raty < Tj < r a (i + 1) } and Cj = {Ci\l < i < k}. Note
that Cj is a partition of V and each C2 induces a clique. Cj is a minimum
clique cover since no clique cover can have a size smaller than \I\,Cj can
be constructed from / by parallel prefix in O (log n) time with O (n / log n)
processors on an EREW PRAM. D

REMARK 2: For the rest of the section on dominating sets} the details
common to connected dominating sets, total dominating sets and the
dominating sets are omitted and only the correctness of the composite parent
functions and the proof of adjacent children property are given.

Hence time complexity of O (log n) with O (n/ log n) EREW PRAM
processors applies to all algorithms below.

Minimum Dominating Set

LEMMA 9: Let D — {vari\, Va(2)i •*• ? va(k)} where the séquence of
a() values are defined by: va (1) — PB (^ I) and, for 1 < % < fe, va ^ =
PB (PI (va(i-i)))- Then D is a minimum dominating set of G.

Proof: Easy.

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 467

LEMMA 10: The parent function PB (PI ()) satisfies the adjacent children
property.

Proof: If the rightmost and leftmost children, say vp and vq, of PB (PI (V))
have the same P/ () value then the adjacent children property of Pi ()
gives the required result. Else, by the property of IG-numbering every vertex
between vp and vq has a F / () value bounded by those of vp and vq and
the result follows from the adjacent children property of PB ()• •

THEOREM: Given a sorted interval représentation, the minimum dominating
set problem can be solved for Interval graphs in O (log n) time using
O (n/log n) processors o f an EREW PRAM.

Proof: Follows from Lemma 9, Lemma 10, and Remark 2.

Minimum Connected Dominating Set

LEMMA 11: Let DQ =4"^ a(i)r-%(2)r •• • ••• -> v®-{k) } where the séquence of
a() values are defined by: van\ = PB (vl) eind for 1 < i < fc, va(i) —
PB (PB (va(i-l)))- Then De is a minimum connected dominating set of G.

Proof: In any minimum connected dominating set Df
c of G, there exists

a vertex vc which is adjacent to v\. The result easily follows from induction
on i on the subgraph induced by the first a (i) vertices in the IG-numbering.
As an alternative proof, one can use the fact that the above séquence is
actually the v\ to root shortest path in the BFS spanning tree of G. D

LEMMA 12: The parent function PB (PB ()) satisfies the adjacent children
property.

Proof: If the rightmost and leftmost children, say vp and vq, of
PB (PB (^)) have the same PB () value then the adjacent children property
of PB () gives the required result. Else, by the property of IG-numbering
every vertex between vp and vq has a PB () value bounded by those
of vp and vq and the result follows from the adjacent children property
of PB ()• •

THEOREM: Given a sorted interval représentation, the minimum connected
dominating set problem can be solvedfor Interval graphs in O (log n) time
using O(n/log n) processors of an EREW PRAM.

Proof: Follows from Lemma 11, Lemma 12, and Remark 2.

vol. 29, n° 6, 1995

468 V. B. BALAYOGAN, C. PANDU RANGAN

Minimum Total Dominating Set

LEMMA 13: Let DT — {va(i)^
 va(2)<> ••• ? va(k)} where the séquence

of a () values are defined by the récurrence: va{\) ~ PB (vl) va(2) =

pB Oa(i)) and for 1 <i < k/2, va{2i-\) = PB OPr Oa(2z-2))) va(2i) =
PB (PB (PI (va(2i-2))))- Then DT is a minimum total dominating set ofG.

Proof: Define j3() such that, vpm — PB (va(2i))- Let Df
T be an

arbitrary minimum total dominating set of G. Then there are two adjacent
vertices in Df

T, say Vd and Vdd* a t l e a s t o n e °f which is adjacent to v\. Since
va(i) is t n e right most vertex adjacent to v\ and va(2\ is the right most
vertex adjacent to vam, it follows that { ̂ , vdd} cannot dominate a larger
set than {vi, V2, . . . , V0(i) }• F^om the properties of the IG-numbering, it
is easily seen that no minimum dominating set (of any type) of the subgraph
induced by the vertex set {^(i)+i , . . . , vn } need contain a vertex in
i>i, . . . , ^ (ï) . The result follows from this by induction. D

The composite parent fonction defined for DT is not a simple recursive
relation as was the case with other dominating sets. Ho we ver by taking every
odd numbered vertex in D?, is possible to get the single parent function
PB (PI (PB ()))• For every vertex v in the set obtained from this parent
function, PB (V) should also be added. (If vn is in the first set, add an
arbitrary neighbour of vn.)

LEMMA 14: The parent function PB (PI (PB ())) satisfies the adjacent
children property.

Proof: As in the earlier cases, this can be proved from the property
of IG-numbering and the adjacent children property of the individual
functions. D

THEOREM: Given a sorted interval représentation, the minimum total
dominating set problem can be solvedfor Interval graphs in O (log n) time
using O (n/log n) processors of an EREW PRAM.

Proof: Follows from Lemma 13, Lemma 14, and Remark 2.

3. CONCLUSION

We have presented the örst sublogarithmic and optimal algorithms for
finding the DFS tree and BFS tree. We have also improved the complexity
for domination problems and our algorithms are all derived in a unified

Informatique théorique et Applications/Theoretical Informaties and Applications

PARALLEL ALGORITHMS ON INTERVAL GRAPHS 469

marmer. We have used the nearest smallers and the IG ordering to improve
the complexity of the algorithms. It remains to see if such techniques
can be applied to wider classes of graphs such as chordal graphs and
cocomparability graphs.

REFERENCES

[BSV88] O. BERKMAN, B. SCHIEBER and U. VISHKIN, Some doubly logarithmic optimal
algorithms based on nearest smallers, Research Report RC 14128 (#63291),
IBM Research Division, Israël, 1988.

[BB87] A. A. BERTOSSI, and M. A. BONUCCELLI, Some parallel algorithms on interval
graphs, Discrete Applied Mathematics, 1987, 16, pp. 101-111.

[C86] R. COLE, Parallel merge sort, Proc. 27th Annual Symposium on the
Foundations of Computer Science, 1986, pp. 511-516.

[GDSP90] G. D. S. RAMKUMAR and C. PANDU, RANGAN, Parallel algorithms on interval
graphs, Volume 3 in the Proc. 1990 International Conference on Parallel
Processing, 1990, pp. 72-75.

[G80] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academie
Press, New York, USA, 1980.

[K88] P. KLEESF, Efficient parallel algorithms on chordal graphs, Laboratory for
Computer Science, MIT, USA, 1988. Also Appeared as Chapter 8 in [R93].

[MJ88] A. MOITRA and R. JOHNSON, Parallel algorithms for maximum matching and
other problems on interval graphs, TR 88-927, Cornell University, Ithaca,
USA, 1988.

[RP88] G. RAMAUNGAM and C. PANDU, RANGAN, A unified approach to domination
problems on interval graphs, Information Processing Letters, 1988, 27,
pp. 271-274.

[R85] J. H. REIF, Depth First Search is inherently sequential, Information
Processing Letters, 1985, 20, pp. 229-234.

[R93] J. H. REIF, Synthesis of Parallel Algorithms, Morgan Kaufmann, California,
USA, 1993.

[R76] F. S. ROBERTS, Discrete Mathematical Models with Applications to Social,
Biological and Environmental problems, Prentice-Hall, Englewood Cliffs,
New Jersey, USA, 1976.

[SW88] J. E. SAVAGE and M. G. WLOKA, A parallel algorithm for channel routing,
Proceedings of WG'88, Graph-theoretic Concepts in Computer Science
(published as Lecture Notes in Computer Science, Springer-Verlag, New
York, 1988).

vol. 29, n° 6, 1995

470 V. B BALAYOGAN, C. PANDU RANGAN

[TC84] Y. H. TSIN and F. Y. CHIN, Efficient parallel algorithms for a class of graph
theoretic problems, SI AM Journal of Computing, 1984, 13, pp. 580*599.

[SG91] M. A. SRTDHAR and S. GOYAL, Efficient parallel Computation of Hamiltonian
Paths and Circuits in Interval Graphs, Proc. Int. Conf On Parallel
Processing, VoL 3, 1991, pp. 83-90.

[K89] S. K. KIM, Optimal Parallel Algorithms on Sorted Intervals, Proc. 27th
Annual Allerton Conf on Comm., control and Computing, 1989, pp. 766-
775.

[OSZ90] S. OLARIU, J. L. SCHWING and J. ZHANG, Optimal Parallel Algorithms for

Problems Modelled by a Family of Intervals, Proc. 28th Annual Allerton
Conf. on Comm., Control and Computing, 1990, pp. 282-291.

[SK91] Alan P. SPRAGUE and K. H. KULKARNI, Optimal Parallel algorithms for
finding the Cut vertices and Bridges of Interval graphs, Technical report,
University of Alabama, USA, June, 1991.

[DC92] S. K. DAS and C. C. Y. CHEN, Efficient Parallel Algorithms on Interval
graphs, Technical report, Department of Computer science, University of
North texas, USA, 1992.

[JJ92] Joseph JA JA, An Introduction to Parallel Algorithms, Addison Wesley,
USA, 1992.

Informatique théorique et Applications/Theoretical Informaties and Applications

