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30.1 Introduction

We present several polylogarithmic-time parallel string algorithms using a high level description of the
parallel random access machine (PRAM). We select only basic problems: string matching, construction of
the dictionary of basic subwords, suffix arrays, and suffix trees. Especially, the suffix tree is a very useful
data structure in string algorithmics, once it is constructed it can be used to solve easily in parallel many
other problems expressed in terms of suffix trees. Most problems related to trees are easily computable in
parallel.

A very general model is assumed, since we are interested mainly in exposing the parallel nature of
some problems without going into the details of the parallel hardware. The PRAM, a parallel version
of the random access machine, is used as a standard model for presentation of parallel algorithms.
The PRAM consists of a number of processors working synchronously and communicating through a
common random access memory. Each processor is a random access machine with the usual operations.
The processors are indexed by consecutive natural numbers, and synchronously execute the same central
program; but, the action of a given processor also depends on its number (known to the processor). In one
step, a processor can access one memory location. The models differ with respect to simultaneous access
to the same memory location by more than one processor. For the CREW (concurrent read, exclusive
write) variety of PRAM machine, any number of processors can read from the same memory location
simultaneously, but write conflicts are not allowed: no two processors can attempt to write simultaneously
into the same location. If we allow many processors to write in a single step into a same location, provided
that they all write the same, then such a model is called CRCW PRAM. In this chapter we assume the
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CREW model of the PRAM. Parallelism will be expressed by the following type of parallel statement: for
all i ∈ X do in parallel action(i). The execution of this statement consists in

• Assigning a processor to each element of X
• Executing in parallel by assigned processors the operations specified by action(i)

Usually the part “x ∈ X” looks like “1 ≤ i ≤ n” if X is an interval of integers.
A typical basic problem computed on PRAM is known as prefix computation. Given a vector x of n

values the problem is to compute all prefix products:

y[1] = x[1], y[2] = x[1] ⊗ x[2], y[3] = x[1] ⊗ x[2] ⊗ x[3], . . . .

The prefix computation problem can be computed in logarithmic time with O(n/ log(n)) processors.
The total work, measured as the product of time and number of processors is linear. Such parallel

algorithms are called optimal.
There is another measure of optimality, the total number of operations. Some processors are idle at

some stages and they do not contribute in this stages to the total number of operations. There is a general
result that translates the number of operations into the total work.

Lemma 30.1 [Brent’s Lemma], Assume we have a PRAM algorithm working in parallel time t (n) and
performing W (n) operations, assume also that we can easily identify processors that are not active in a
given parallel step. Then we can simulate this algorithm in O(t (n) + 	W (n)/t (n)
) parallel time with
O(W (n)/t (n)) processors.

The lemma essentially says that in most situations the total work and total number of operations are
asymptotically equal. This happens in situations that appear in this chapter.

30.2 Parallel String Matching

We say that a word is basic iff its length is a power of two. The string-matching problem is to find all
occurrences of a pattern-string x[1..m] in a text y of size n, where m ≤ n.

Denote by period(x) the size of the smallest period of text x , for example,

period(abaababa) = 5.

A string x is called iff period(x) ≤ |x|/2. Otherwise it is called aperiodic. We consider three cases:

• Periodic patterns: period(x) ≤ |x|/2
• Aperiodic patterns: period(x) > |x|/2
• Strongly aperiodic patterns: all basic prefixes of x are aperiodic

30.2.1 Reduction of Periodic Case to Aperiodic

Assume the pattern is periodic. Suppose that v is the shortest prefix of the pattern that is a period of the
pattern. Then vv− is called the nonperiodic part of the pattern (v− denotes the word v with the last symbol
removed). We omit the proof of the following lemma, which justifies the name “nonperiodic part” of the
pattern.

Lemma 30.2 If the pattern is periodic then its nonperiodic part is nonperiodic.

Lemma 30.3 Assume that the pattern is periodic, and that all occurrences (in the text) of its nonperiodic part
are known. Then, we can find all occurrences of the whole pattern in the text in O(log m) time with n/ log m
processors.
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Proof. We reduce the general problem to unary string matching. Let w = vv− be the nonperiodic part
of the pattern. Assume that w starts at position i on the text. By a segment containing position i we mean
the largest segment of the text containing position i and having a period of size |v|. We assign a processor
to each position. All these processors simultaneously write 1 into their positions if the symbol at distance
|v| to the left contains the same symbol. The last position containing 1 to the right of i (all positions
between them also contain ones) is the end of the segment containing i. Similarly, we can compute the
first position of the segment containing i. It is easy to compute it optimally for all positions i in O(log m)
time by a parallel prefix computation. The string matching is now reduced to a search for a unary pattern,
which is an easy task.

30.2.2 A Simple Algorithm for Strongly Aperiodic Case

Assume the pattern x is strongly aperiodic and assume that its length is a power of two (otherwise a
straightforward modification is needed). Let TestPartial(i, r) be the test for a match of x[1..r] starting at
position i in text y . The value of TestPartial(i, r) is true iff y[i..i + r − 1] = x[1..r]. It can be checked in
O(log r) time with O(r/ log r) processors.

The algorithm is using an elimination strategy.
Figure 30.1 illustrates performance of this algorithm for

x = abaababa, y = abaababaabaababa.

Initially, all positions are candidates for a match.
Then, we perform the following algorithm:

Algorithm Strongly Aperiodic String Matching
for k = 0 to log |x| do

for each candidate position i do in parallel
if TestPartial(i, 2k)=false then

remove i as a candidate for a match;
return the set of remaining candidates as occurrences of x .

The algorithm Strongly Aperiodic String Matching works in O(log2 n) time with O(n) processors. The total
number of operations is O(n log n), so the number of processors can be reduced to O(n/ log n) owing to
Brent’s Lemma.

a   b   a   a   b   a   b   a   a   b   a   a   b   a   b   a   a   b   a   b   a   a   b   a 

a   b   a   a   b   a   b   a   a   b   a   a   b   a   b   a   a   b   a   b   a   a   b   a 

a   b   a   a   b   a   b   a   a   b   a   a   b   a   b   a   a   b   a   b   a   a   b   a 
k = 0

k = 1

k = 2

k = 3
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a   b a   b a   b a   b a   b a   b a   b

a   b   a   a   b   a   b   a   a   b   a   a   b   a   b   a   a   b   a   b   a   a   b   a 

a   b   a   a

a   b   a   a   b   a   b   a a   b   a   a   b   a   b   a

a   b   a   a   b   a   b   a
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a   b   a   a
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FIGURE 30.1 Performance of the algorithm Strongly Aperiodic String Matching for the strongly aperiodic pattern
x = abaababa.
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30.2.3 Nonperiodic Patterns: Witnesses and Duels

The first optimal polylogarithmic time parallel algorithm for string matching has been given by Uzi
Vishkin, who introduced the crucial notion of a duel, an operation that eliminates in a constant time one
of two candidates for a match. The total work of Vishkin’s algorithm is O(n).

We assume later in this section that the pattern x is aperiodic, which means that its smallest period is
larger than |x|/2.

This assumption implies that two consecutive occurrences of the pattern in a text (if any) are at a
distance greater than |x|/2. However, it is not clear how to use this property for searching the pattern. We
proceed as follows: after a suitable preprocessing phase, given too close positions in the text, we eliminate
one of them as a candidate for a match. In a window of size m/2 of the text we can eliminate all but one
candidate using an elimination strategy, the time is logarithmic and the work is linear with respect to m.
Hence, the total work is linear with respect to n, since there are only O(n/m).

We define the following witness table WIT : for 0 < i < |m|,

WIT [i] = any k such that x[i + k − 1] = x[k], or

WIT [i] = 0, if there is no such k.

This definition is illustrated in Figures 30.2 and 30.3.
A position i1 on y is said to be in the range of a position i2 if |i1− i2| < m. We also say that two positions

i1 < i2 on the text are consistent if i2 is not in the range of i1, or if WIT [i2 − i1] = 0.

a    b     a    a    b     a     b     a      a      b     a     a      b      a      b     a

0    1     2    4    1     7     1     2

a     b     a      a      b     a     b

Mismatch

The table of witnesses

FIGURE 30.2 The witness table WIT = [0, 1, 2, 4, 7, 1, 2] for the text abaababaabaababa, WIT [7] = 7, owing to
the mismatch shown in the figure by the arrow.

a

k = WIT [i ]

i2i1

b

c

i = i2 – i1

α

β

FIGURE 30.3 The duel between positions i1, i2 and computation of the witness for the loser. We know that a = b,
so a = c or b = c . The strings αa, βb are prefixes of the pattern. If i2 is a loser then we know a possible value
WIT [i2] = k, otherwise a possible value WIT [i1] = i + k − 1 is known.
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a    b     a    a    b     a     b     a      a      b     a     a      b      a      b    a            a

 a    b   a     a     b      a               b
a     b      a           a    

3 6

6 – 3 +1
WIT [4]

a    b     a    a    b     a     b     a      a      b     a     a      b      a      b    a            a

 a    b   a     a     b      a               b
a     b      a           a    

3 6

6 – 3 +1
WIT [4]

FIGURE 30.4 A duel between two inconsistent positions 3 and 6. The first of them is eliminated since the prefix of
the pattern of size 7 placed at starting position 3 does not match the pattern at position 6 +WIT [6− 3+ 1] − 1. By
the way, we know that possible value of WIT [3] is 7.

If the positions are not consistent, then we can remove one of them as a candidate for the starting
position of an occurrence of the pattern just by considering position i2 +WIT [i2 − i1 + 1] on the text.
This is the operation called a duel (see Figure 30.4).

Let i = i2 − i1 + 1, and k = WIT [i]. Assume that we have k > 0, that is, positions i1, i2 are not
consistent. Let a = x[k] and b = x[i + k − 1], then a = b. Let c be the symbol in the text y at position
i2 + k − 1. We can eliminate at least one of the positions i1 or i2 as a candidate for a match by comparing
c with a and b.

In some situations, both positions can be eliminated, but, for simplicity, the algorithm below always
removes exactly one position.

Let us define, with a = x[WIT [i2 − i1 + 1]]:

duel(i1, i2) = (if a = c then i1 else i1).

The position that “survives” is the value of duel , the other position is eliminated. We also say that the
survival position is a winner and the other one is a loser.

The duel operation is illustrated in Figures 30.4 and 30.3.
In the preprocessing phase we have y = x , the pattern makes duels on itself.

30.2.4 Preprocessing the Pattern

In the preprocessing phase we assume that y = x and each duel makes additional operation of com-
puting the witness value for the losing position. This means that if k = duel(i1, i2) is the winning
position and j = {i1, i2} − {k}, then j is a loser and as a side-effect of duel(i1, i2) the value of WIT [j] is
computed.

We use a straightforward function ComputeWit (i) which computes the first witness j for i in time
O(log n · log	(i + j)/i
) using O(i + j) processors. If there is no witness then define ComputeWit (i) = 0.
The function uses a kind of prefix sum computation to find the first mismatch for j ∈ [1 . . . i], then for
j ∈ [1 . . . 2i] and so forth, doubling the “distance” until the first witness is computed or the end of x is
reached.

The preprocessing algorithm operates on a logarithmic sequence of prefix windows that has sizes growing
at least as powers of two.
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The i-th windowWi is an interval [1 . . . j]. The algorithm maintains the following invariant:

after the i-th iteration the witnesses for positions in Wi are computed and for each k ∈Wi , WIT [k] ∈
Wi or x is periodic with period k,

the size of the windowWi is at least 2i .

IfWi is an interval [1 . . . j] then define the i-th working interval as Ii = [j + 1 . . . 2j].
The preprocessing algorithm works in iterations, in the (i + 1)-st iteration we perform as follows:

witnesses are computed for the positions in the working interval Ii using already computed part of the
witness table for positions inWi and performing in parallel the tree of duels; see Figures 30.5 and 30.6.
The witnesses for losers are computed. Only one position j in [k + 1 . . . 2k], the final winner, has no
witness value. We compute its witness value k in parallel using ComputeWit (j). There are three cases:

Case 1: aperiodic case: k ∈Wi , x[1 . . . j−1] does not start a periodic prefix, see Figure 30.6. The iteration
is finished. New window calWi+1 is twice larger thanWi .

Case 2: periodic case: k > 0 and k /∈ Wi , x[1 . . . j − 1] starts a periodic prefix that ends at k. Then the
witness table for positions in [j . . . k − j are computed using periodicity copying from the witness values
inWi , see Figure 30.7.

Case 3: k = 0, the whole pattern is periodic. We have already computed witness table for aperiodic part.
This is sufficient for the searching phase, owing to Lemma 30.3.

Our construction implies the following fact.

129 14 15

9
14

14Winners

a b a a b a b a

9 10 11 12 13 14 15 16

a b a a b a b a a b a b a b

FIGURE 30.5 Preprocessing the pattern abaababaabaababaababab . . ., the iteration corresponds to the working
interval in x of positions [9..16]: the tree of winners in the duels between positions in the interval [9..16].

Known witnesses

1          2          3          4          5          6          7          8          9          10          11          12          13          14          15          16    

a      b      a      a      b      a      b      a      a       b     a      a      b      a       b      a      a      b      a    b     a

10 11 13 16

12 15

Losers

0          1          2          4          2          7          2          2          12         2         3         4           3          *            1          2    

Working  interval
and witnesses computed for losers

 9

Positions

FIGURE 30.6 Processing the working interval [9..16] and computing WIT [9..16]: the tree of losers in the duels
between positions in the interval [9..16]. For each loser, as a side-effect of the corresponding duel, the value of its
witness is computed. The witness of position 14 is not computed when making duels since it has not lost any duel and
it should be computed by applying the procedure ComputeWit (14). It computes WIT [14] = 9.
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a         b           a           a          b        a        b          a           a           b       a       b            a            a            b       a        b         a           a         b         a          b        a           c    

Period = 5

0        1            2           4          2         *       1           2            4          2        *       1            2            4           2         *        1          2          4          2         *

19

WIT [6] = 19

14 9 4

MismatchPrevious window

Working  interval 

New window

FIGURE 30.7 Periodic case, one iteration of preprocessing the pattern (abaab)4aba#. During computation of
witnesses in the working interval [5..8] we found that the witness for position 6 is very far away: ComputeWit (6) =
WIT [6] = 19. This implies a long periodic segment and witnesses are copied to positions to the right of the working
interval in a periodic way, except positions 6, 6+5, 6+10, 6+15 denoted by ∗. For these positions, the witnesses are
computed by the formula WIT [6+ 5k] = 19− 5k for k = 0, 1, 2, 3.

Lemma 30.4 We can locate nonperiodic part of x (possibly the whole x) and compute its witness table in
O(log2 n) parallel time with O(n) totalwork.

30.2.5 Searching Phase

Assume that the pattern is aperiodic and the witness table has been computed. Define the operation⊗ by

i ⊗ j = duel(i, j).

The operation ⊗ is “practically” associative. This means that the value of i1 ⊗ i2 ⊗ i3 ⊗ . . . ⊗ im/2

depends on the order of multiplications, but all values (for all possible orders) are good for our purpose.
We need any of the possible values.

Once the witness table is computed, the string-matching problem reduces to instances of the parallel
prefix computation problem. We have the following algorithm. Its behavior on an example string is shown
in Figure 30.8 for searching the pattern abaababa, for which the witness table is precomputed:

Algorithm Vishkin-string-matching-by-duels;
consider windows of size m/2 on y ;
{ sieve phase }
for each window do in parallel

{⊗ can be treated as if it were associative }
compute the surviving position i1 ⊗ i2 ⊗ i3 ⊗ · · · ⊗ im/2

where i1, i2, i3, . . . , im/2 are consecutive positions
in the window;

{ naive phase }
for each surviving position i do in parallel

check naively an occurrence of x at position i
using m processors;
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Theorem 30.1 Assume we know the witness table and the period of the pattern. Then, the string-matching
problem can be solved optimally in O(log m) time with O(n/ log m) processors of a CREW PRAM.

Proof. Let i1, i2, i3, … , im/2 be the sequence of positions in a given window. We can compute i1 ⊗ i2 ⊗
i3 ⊗ · · · ⊗ im/2 using an optimal parallel algorithm for the parallel prefix computation. Then, in a given
window, only one position survives; this position is the value of i1 ⊗ i2 ⊗ i3 ⊗ · · · ⊗ im/2. This operation
can be executed simultaneously for all windows of size m/2.

For all windows, this takes O(log m) time with O(n/ log m) processors of a CREW PRAM.
Afterward, we have O(n/m) surviving positions altogether. For each of them we can check the match

using m/ log m processors. Again, a parallel prefix computation is used to collect the result, that is, to
compute the conjunction of m Boolean values (match or mismatch, for a given position). This takes again
O(log m) time with O(n/ log m) processors.

Finally, we collect the O(n/m) Boolean values using a similar process.

Corollary 30.1 There is an O(log2 n) time parallel algorithm that solves the string-matching problem
(including preprocessing) with O(n/ log2 n) processors of a CREW PRAM.

30.3 Naming Technique

The numbering or naming of subwords of a text, corresponding to the sorted order of these subwords,
can be used to build a useful data structure. We assign names to certain subwords, or pairs of subwords.
Assume we have a sequence

S = (s1, s2, . . . , st )

of at most n different objects. The naming of S is a table

X [1], X [2], . . . , X [t ]

that satisfies conditions (1–2). If, in addition, it satisfies the third condition then the naming is called a
sorted naming.

1. si = sj ⇔ X [i] = X [j], for 1 ≤ i, j ≤ t
2. X [i] ∈ [1. .n] for each position i, 1 ≤ i ≤ t
3. X [i] is the rank of si in the ordered list of the different elements of S

Given the string y of length n, we say that two positions are k-equivalent if the subwords of length k
starting at these positions are equal. Such an equivalence is best represented by assigning to each position i
a name or a number to the subword of length k starting at this position. The name is denoted by Namek [i]
and called a k-name. We assume that the table Namek is a good and sorted numbering of all subwords of
a given length k.

We consider only those subwords of the text whose length k is a power of two. Such subwords are called
basic subwords. The name of a subword is denoted by its rank in the lexicographic ordering of subwords
of a given length. For each k-name r we also require (for further applications) a link Posk [r] to any one
position at which an occurrence of the k-name r starts. Symbol # is a special end marker that has the
highest rank in the alphabet. The text is padded with enough end markers to let the k-name at position n
defined.

The tables Name and Pos for a given text w are together called its dictionary of basic subwords and is
denoted by DBS(w).

Example The tables below show the dictionary of basic subwords for an example text: tables of k-names
and of their positions. The k-name at position i corresponds to the subword y[i. .i + k − 1]; its name is
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its rank according to lexicographic order of all subwords of length k (order of symbols is a < b < #).
Indices k are powers of two. The tables can be stored in O(n log n) space.

Positions = 1 2 3 4 5 6 7 8
y = a b a a b b a a # # #

Name1 = 1 2 1 1 2 2 1 1
Name2 = 2 4 1 2 5 4 1 3
Name4 = 3 6 1 4 8 7 2 5

Name of subword = 1 2 3 4 5 6 7 8
Pos1 = 1 2
Pos2 = 3 1 8 2 5
Pos4 = 3 7 1 4 8 2 6 5

Remark String matching for y and pattern x of length m can be easily reduced to the computation of a
table Namem . Consider the string w = x&y , where & is a special symbol not in the alphabet. Let Namem

be the array which is part of DBS(x&y). If q = Namem[1] then the pattern x starts at all positions i on y
such that Namem[i +m + 1] = q.

The tables above display DBS(abaabbaa#). Three additional #’s are appended to guarantee that all
subwords of length 4 starting at positions 1, 2, …, 8 are well defined. The figure presents tables Name and
Pos. In particular, the entries of Pos4 give the lexicographically sorted sequence of subwords of length 4.
This is the sequence of subwords of length 4 starting at positions 3, 7, 1, 4, 8, 2, 6, 5. The ordered sequence is

aabb, aa##, abaa, abba, a###, baab, baa#, bbaa.

We introduce the procedure Sort-Rename that is defined now. Let S be a sequence of total size t ≤ n
containing elements of some linearly ordered set. The output of Sort-Rename(S) is an array of size t ,
which is a good and sorted naming of S.

Example Let S = (ab, aa, ab, ba, ab, ba, aa). Then,

Sort-Rename(S) = (2, 1, 2, 3, 2, 3, 1).

For a given k, define

Composite-Namek [i] = (Namek [i], Namek [i + k]).
KMR algorithm is based on the following simple property of naming tables.

Lemma 30.5 [Key-Lemma], Name2k = Sort-Rename(Composite-Namek).

The main part of algorithm Sort-Rename is the lexicographic sort. We explain the action of Sort-Rename
on the following example:

x = ((1, 2), (3, 1), (2, 2), (1, 1), (2, 3), (1, 2)).

The method to compute a vector X of names satisfying conditions (1–3) is as follows. We first create the
vector y of composite entries y[i] = (x[i], i). Then, the entries of y are lexicographically sorted. Therefore,
we get the ordered sequence

((1, 1), 4), ((1, 2), 1), ((1, 2), 6), ((2, 2), 3), ((2, 3), 5), ((3, 1), 2).
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Next, we partition this sequence into groups of elements having the same first component. These groups
are consecutively numbered starting from 1. The last component i of each element is used to define the
output element X [i] as the number associated with the group. Therefore, in the example, we get

X [4] = 1, X [1] = 2, X [6] = 2, X [3] = 3, X [5] = 4, X [2] = 5.

Doing so, the procedure Sort-Rename has the same complexity as sorting n elements.

Lemma 30.6 If the vector x has size n, and its components are pairs of integers in the range (1, 2, . . . , n),
Sort-Rename(x) can be computed in parallel time O(log n) with O(n) processors.

The dictionary of basic subwords is computed by the algorithm Compute-DBS. Its correctness results
from fact (∗) below. The number of iterations is logarithmic, and the dominating operation is the call to
procedure Sort-Rename.

Once all vectors Namep , for all powers of two smaller than r , are computed, we easily compute the
vector Nameq in linear time for each integer q < r . Let t be the greatest power of two not greater than q.
We can compute Nameq by using the following fact:

(∗) Nameq[i] = Nameq[j] iff Namet [i] = Namet [j] and Namet [i + q − t ] = Namet [j + q − t ]

Algorithm Compute-DBS;
{ a parallel version of the Karp-Miller-Rosenberg algorithm }

K := largest power of 2 not exceeding n;

Name1 := Sort-Rename(x);
for k := 2, 4, . . . , K do

Name2k := Sort-Rename(Composite-Namek);

for each k = 1, 2, 4, . . . , K do in parallel
for each 1 ≤ i ≤ n do in parallel

Posk [Namek [i] ] := i;

This construction proves the following theorem.

Theorem 30.2 The dictionary of basic subwords of a text of length n can be constructed in log2(n) time with
O(n) processors of a CREW PRAM.

We show a straightforward application of the dictionary of basic subwords. Denote by
LongestRepFactor(x) the length of the longest repeated subword of y . It is the longest word occurring
at least twice in y (occurrences are not necessarily consecutive). When there are several such longest
repeated subwords, we consider any of them. Let also LongestRepFactork(x) be the maximal length of the
subword that occurs at least k times in y . Let us denote by REPk(r , y) the function that tests is there is a
k-repeating subword of size r . Such function can be easily implemented to run in log n parallel time if we
have DBS(w).

Theorem 30.3 The function LongestRepFactork(x) can be computed in O(log2 n) time with O(n) processors.

Proof. We can assume that the length n of the text is a power of two; otherwise a suitable number
of “dummy” symbols are appended to the text. The algorithm KMR is used to compute DBS(x). We
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then apply a kind of binary search using function REPk(r , y): the binary search looks for the maximum
r such that REPk(r , y) = nil. If the search is successful then we return the longest (k times) repeated
subword. Otherwise, we report that there is no such repetition. The sequence of values of REPk(r , y)
(for r = 1, 2, . . . , n − 1) is “monotonic” in the following sense: if r1 < r2 and REPk(r2, y) = nil, then
REPk(r1, y) = nil. The binary search behaves similarly to searching an element in a monotonic sequence.
It has log n stages; at each stage the value REPk(r , y) is computed in logarithmic time. Altogether the
computation takes O(log n) parallel time.

30.4 Parallel Construction of Suffix Arrays

Assume we are given a string x of length n, assume also that we append to x a special end marker symbol
xn+1 = #, which is smaller than any other symbol of x . We assume in the paper that the alphabet is a
subset of [1 . . . n].
The suffix array SUF = [i1, i2, . . . , in] is the permutation that gives the sorted list of all suffixes of the
string x . This means that

suf (i1) < suf (i2) < suf (i3) < · · · < suf (in),

where<means here lexicographic order, and suf (ik) = x[ik . . . n] #.
In other words suf (ik) is the k-th suffix of x in sense of lexicographic order (Figure 30.9).

AQ: Please
confirm whether
the placement of
Figures 30.9 and
30.12 are
appropriate.

There is another useful table LCP of the lengths of adjacent common prefixes:
For 1 < i < n, LCP[k] is the length of the longest common prefix of suf (ik) and suf (ik−1).
In addition, define LCP[1] = 0.

Example Let us consider an example string: x = b a b a a b a b a b b a #.

For this string we have:
SUF = [4, 2, 5, 7, 9, 12, 3, 1, 6, 8, 11, 10]

LCP = [0 , 1, 3, 4, 2, 1, 0, 2, 4, 3, 2, 1]

b   b a #

b a #

a #

a b b a #

b   a a b a b a b b   a #

b b a b a b b a

b a b a b b a #

#a b a a
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FIGURE 30.9 The sorted sequence (top-down) of 12 suffixes of the string x = babaabababba# with the LCP-values
between suffixes (length of shaded straps). The special suffix # and the empty suffix are not considered.
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The data structure consisting of both tables SUF, LCP is called the suffix array. The dictionary of basic
subwords can be used to show directly the following fact.

Theorem 30.4 [12] The suffix array can be constructed in O(log2 n) time with O(n) processors.

The work of the algorithm from this theorem is O(n log2 n).

Once DBS(x) and suffix arrays of x has been computed the table LCP can be computed in a straight-
forward way in O(log n) time with O(n) processors. We perform similarly as in the computation of the
longest repeating subword. We assign a single processor to each i that computes the length of the longest
common prefix between two consecutive (in lexicographic order) suffixes of x in logarithmic sequential
time using a kind of binary search.

The work of constructing suffix arrays has been improved in Reference 12 to O(n log n) using the Skew
Algorithm which computed only a part of the dictionary DBS of basic subwords of linear size. Observe
that the whole dictionary DBS has O(n log n) size.

Theorem 30.5 [12] The arrays SUF , LCP can be constructed in O(log2 n) time and O(n log n) work.

We shortly describe the construction behind the proof of this theorem. The construction is especially
interesting in sequential setting where a linear time algorithm is given.

Let Z ⊆ {1, 2, 3, . . .}. Denote by SUFZ the part of the suffix array corresponding only to positions in Z .
The set Z is good iff for each x of length n it satisfied the following conditions: (1) We can reduce the
computation of SUFZ of x to the computation of SUF for a string x ′ of size at most cn, where c < 1 is a
constant; (2) If we know the table SUFZ then we can compare lexicographically any two suffixes of x in
constant work.

We take later Z = {i ≥ 1 : i modulo 3 ∈ {0, 2}}. We leave to the reader the proof that our set Z
satisfies the second condition for a good set. We show on an example how the first condition is satisfied.

Example For our example string x = babaabababba# we have

SUFZ = [2, 5, 9, 12, 3, 6, 8, 11].

Sorting suffixes starting at positions 2, 5, 8, 11 correpsonds to sorting suffixes of the string
[aba][aba][bab][ba#], where 3-letter blocks can be grouped together. Similarly sorting suffixes start-
ing at positions 3, 6, 9, 12 corresponds to sorting suffixes of the string [baa][bab][bab][abb][a##]. We
can encode, preserving lexicographic order, the blocks into single letters A, B, C , D, E , F ; see Figure 30.10,
where it is shown how the computation of SUFZ is reduced to the computation of the suffix array for
x ′ = BBFD$EFCA. The symbol $ is lexicographically smallest.

The Skew Algorithm recursively computes the suffix array for x ′. Then we sort all suffixes using the
property (2) of good sets. We can reduce it to merging, since the sort of suffixes at unclassified positions
(outside Z ) can be done by referring to the sorting sequence of positons in Z . Then we can merge two
sorted sequence, and this can be done in logarithmic time with O(n) work.

The table LCP can be computed in the process of parallel computation of the suffix array in the Skew
Algorithm. This means that we recursively compute the suffix array and LCP table for the smaller string
x ′, then we reconstruct the suffix array together with LCP for the initial string x . We refer the reader to
Reference 12.

30.5 Transformation of Suffix Arrays into Suffix Trees

A simple algorithm for suffix arrays suggests that the simplest way to compute in parallel suffix trees
could be to transform in parallel suffix arrays into suffix trees. Assume that the tables SUF and LCP for
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an input string are already computed. We show two simple transformations. Especially, the first one is
very simple. If we compute suffix arrays using DBS(x), then descibed below algorithm BUILD1 is a very
unsophisticated construction of the suffix tree in polylogarithmic time with the work only slightly larger
than for other algorithms. We have simplicity against sophisticated, losing a polylogarithmic factor.

30.5.1 Algorithm BUILD1

We use a parallel divide-and-conquer approach. Its correctness is based on the following fact.

Observation Assume i < j < k, then the lowest common ancestor in the suffix tree of leaves SUF [i]
and SUF [j] is on the branch from the root to the leaf SUF [k]. Hence, for a fixed k all lowest common
ancestors of SUF [i] and SUF [j] for all i < k < j are on a same branch.

Let SUF = [i1, i2, . . . , in]. The input to the function is a subsegment α of the sequence [i1, i2, . . . , in].
The suffix trees are built for the subsegments of of suf (i1), suf (i2), . . . , suf (in). α is split into two parts

α1, α2 of approximately same size. The suffix trees T 1 and T 2 are constructed in parallel for the left
and the right parts. The last element of α1 is the same as of α2. Hence the resulting suffix tree results by
merging together the rightmost branch of T 1 with the leftmost branch of T 2. The algorithm is written as
a recursive function BUILD1.

Example In our example, see Figure 30.11b, the sequence corresponding to the suffix array is α =
[i1, i2, . . . , in] = [12, 11, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8]. Let us consider SUF[6] = 1, and the branch from the
root to 1 is a separator of the suffix tree, it separates the tree into two subtrees with a common branch: the
first subtree is for the first half α1 = [12, 11, 3, 6, 9, 1] and the second subtree for α2 = [1, 4, 7, 10, 2, 5, 8].
The sizes of “halves” differ at most by one.

Theorem 30.6 Assume that the arrays SUF , LCP are given for an input string of size n. Then the algorithm
BUILD1 computes the suffix tree for x in O(log2 n) time and O(n) space with O(n log n) total work.

Proof. If |α| = 2 and we have only two suffixes suf (ij−1), suf (ij), for some j, then we can create for them
a partial suffix tree in O(1) time as follows. The tree has a root, two leaves corresponding to whole suffixes
suf (ij−1), suf (ij), and one internal node corresponding to the longest common prefix of suf (ij−1), suf (ij).
The length of this prefix is given by LCP[j].

The main operation is that of merging two branches corresponding to a same suffix. The total depth of
a node is the length of a string corresponding to this node in the suffix tree. The nodes on the branches

b   a   b   a   a   b   a   b   a   b   b   a   #    # 

b   a   b   a   a   b   a   b   a   b   b   a   #   #

a##  < aba < abb < ba# < baa < bab

B B F D

E F C A

$  <   A  <  B   <  C  <  D   <  E  <  F

FIGURE 30.10 Sorting suffixes starting at positions pointed by arrow in the text x = babaabababba# corresponds
to sorting suffixes of a “compressed” representation x ′ = BBFD$EFCA. The set Z ∩ {1, 2, . . . , n} corresponds to
positions pointed by arrows.
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FIGURE 30.11 (a) The suffix trees for two “halves” of the sorted sequence of suffixes: (12, 11, 3, 6, 9, 1) and
(1, 4, 7, 10, 2, 5, 8). The “middle” suffix (in bold) belongs to both parts. (b) The suffix tree resulting after merging
the nodes corresponding to the common suffix branch corresponding to suf (1).

are sorted in sense of their total depth. Hence to merge two branches we can do a parallel merge of two
sorted arrays of size n.

This can be done in logarithmic time with linear work, see Reference 45. The total time is O(log2 n)
since the depth of the recursion of the function BUILD1(α) is logarithmic.

The total work satisfies similar recurrence as the complexity of the merge-sort.

Work(n) = Work(n/2)+Work(n/2+ 1)+ O(n).

The solution is a function of order O(n log n). This completes the proof.
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Algorithm BUILD1(α); { Given SUF= [i1, i2, . . . in]}
{ α = (s1, s2, . . . sk) is a subsegment of [i1, i2, . . . in]}
if |α| ≤ 2 then

compute the suffix tree T sequentially in O(1) time;
{Comment: the table LCP is needed for O(1) time computation in this step}

else

in parallel do
{T 1 := BUILD1(s1, s2, . . . sk/2); T 2 := BUILD1(sk/2, sk/2+1, . . . sk)};

merge in parallel rightmost branch of T1 with leftmost branch of T 2;

return the resulting suffix tree T ;

The history of the algorithm for our example string is shown in Figure 30.1.

30.5.2 Algorithm BUILD2

We design now the algorithm BUILD2, the preprocessing phase for this algorithm consists in the compu-
tation of two tables: the Nearest Smaller Neighbor table NS and the table Leftmost [1 . . . n]. We show that
both tables can be computed in O(log n) time with O(n) processors. For all i > 1 such that LCP[i] > 0
define:

SN [i] =
{

L[i], if LCP[L[i]] ≥ LCP[R[i]],
R[i], otherwise,

where L[i] = max{j < i : LCP[j] < LCP[i]} R[i] = min{j > i : LCP[j] < LCP[i]}.
L[i] is the first position to the left of i with smaller value, symmetrically R[i] is the first smaller neighbor

on the right side. Leftmost [i] is defined for each 1 ≤ i ≤ n as:

min{1 ≤ j ≤ i : LCP[j] = LCP[i] and LCP[k] ≥ LCP[i] for each j ≤ k ≤ i }.

In other words, Leftmost [i] is the leftmost position to the left of i with the same value as in position i
and such that intermediate values are not smaller (Figure 30.12).

0 1 2 4 1 4 6 3 5 230

0 1
1 0

4 4 6 3 3 2 52

Leftmost

SN

FIGURE 30.12 The tables SN and Leftmost .
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Lemma 30.7 [Preprocessing-Lemma], The tables SN and Leftmost can be computed on a CREW PRAM
in O(log n) time with n processors.

Proof. We show how to compute the table L within claimed complexities. Assume w.l.o.g. that n is a
power of 2 and construct complete regular binary tree R of height log n over positions 1 . . . n. Using a
classical algorithm for parallel prefix computation we compute for each node v of R the minimum of LCP
over the interval corresponding to leaf-positions of the subtree rooted at v . Then for each position i we
compute L[i] by first traversing up in R from the i-th leaf until we hit a node v whose value is smaller then
LCP[i], and than we go down to the position L[i].

The second algorithm is nonrecursive. Assume that the sequence of leaves (i1, i2, . . . , in) read from left
to right corresponds to the lexicographically ordered sequence of suffixes. The leaf nodes are represented
by starting positions ik of suffixes. Denote by LCA the lowest common ancestor function.

Fact 30.7 Each internal node v equals LCA(ik−1, ik) for some k. As the representative of v we choose ik such
that in the sequence (i1, i2, . . . , in) ik is leftmost among all rir such that LCA(ik−1, ik) = v, see Figure 30.13.
The internal node ik = LCA(ik−1, ik) is the node on the branch from the root to ik , the string corresponding
to the path from root to v is of length LCP[k].
Denote by string _repr(v) the string corresponding to labels from the root to v . We have:

If ik is an internal node then string _repr(ik) = x[ik . . . ik + LCP[k] − 1];
Ifik is a leaf node then string _repr(ik) = x[ik . . . n].
The following fact follows directly from these properties.

Lemma 30.8 [Edge-Labels-Lemma], Assume is is the father of ik and r = LCP[k], then the label of the
edge from is to ik is
(a.) If ik is an internal node then x[ik + p . . . ik + r − 1], where p = LCP[s].
(b.) x[ik + r . . . n], otherwise.

If ik is an internal node then we denote its father by InFather[ik ], otherwise we denote it by
LeafFather[ik ]. information whether it is a leaf or internal node.

Lemma 30.9 [Fathers-Lemma], Assume (i1, i2, . . . , in) is the suffix array, then
(a.) InFather[ik ] = ij , where j = Leftmost (SN (k)).
(b.) If LCP[t ] ≤ LCP[t + 1] or t = n then LeafFather[it ] = ij , where j = Leftmost [t ], otherwise
LeafFather[it ] = it+1.

q i r

v

Root

i i kk–1 i

FIGURE 30.13 The node v is identified with ik , the length of the string string _repr(v) corresponding to the path
from root to v equals LCP[k]. Leftmost [r] = Leftmost [q] = Leftmost [k] = k.
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isi

v

ikk–1ri

w

FIGURE 30.14 Computation of the father w = is of v = ik . SN [k] = r , Leftmost [r] = s.

Proof. Define the height of a node v as the length of string _repr(v). For an internal node ik its
height equals LCP[k]. Assume w = is is the father of an internal node v , then all nodes between w
and v should have height larger or equal to height (v) and height (w) < height (v), see Figure 30.14.
Owing to our representation of internal nodes is is the leftmost element to the left of ik in the suf-
fix array with the same LCP as SN [k]. Hence, s = Leftmost [SN [k]]. Similar argument works for leaf
nodes.

Both leaves and internal nodes are identified with integers in the range [1 . . . n], however, to distinguish
between internal node and a leaf with a same number in the implementation we add additional one-bit
information.

Algorithm BUILD2(x);

{ The names of internal nods and leaves are integers in [1 . . . n]
{ one-bit information is kept to distinguish internal nodes from leaves}

compute in parallel the tables SN and Leftmost ;

for each k ∈ [1 . . . n]
Create leaf node ik ; Create internal node ik if Leftmost [k] = k;

for each node v do in parallel

Compute the father w of v according to the formula from Lemma 30.9;
Compute the label of w ⇒ v according to formula from Lemma 30.8;

Theorem 30.8 Assume that the arrays SUF , LCP are given for an input string of size n. The algorithm
BUILD2 computes the suffix tree for x on a CREW PRAM in O(log n) time with O(n log n) work and O(n)
space.

Proof. The algorithm BUILD2 is presented informally above. Once the table SN is computed all other
computations are computed independently locally in O(log n) time with n processors.

The main idea in the construction is to identify the internal nodes of the suffix tree with leaves ik , such
that v = LCA(ik−1, ik).
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The correctness follows from Lemmas 30.7 and 30.9.

30.6 Parallel Construction of Suffix Trees by Refining

The dictionary of basic subwords leads to an efficient alternative construction of suffix trees in log2 n)
time with O(n) processors.

To build the suffix tree of a text, a coarse approximation of it is first built. Afterward the
tree is refined step by step, see Figure 30.15. We build a series of a logarithmic number of trees
Tn , Tn/2, . . . , T1: each successive tree is an approximation of the suffix tree of the text; the key
invariant is:

inv(k): for each internal node v of Tk there are no two distinct outgoing edges for which the labels
have the same prefix of the length k; the label of the path from the root to leaf i is y[i. .i + n]; there is no
internal node of outdegree one.

Remark If inv(1) holds, then, the tree T1 is essentially the suffix tree for x . Just a trivial modification
may be needed to delete all #’s padded for technical reasons, but one. Note that the parameter k is always
a power of two. This gives the logarithmic number of iterations.

The core of the construction is the procedure REFINE(k) that transforms T2k into Tk . The
procedure maintains the invariant: if inv(2k) is satisfied for T2k , then inv(k) holds for Tk after run-
ning REFINE(k) on T2k . The correctness (preservation of invariant) of the construction is based
on the trivial fact expressed graphically in Figure 30.15. The procedure REFINE(k) consists of two
stages:

1. Insertion of new nodes, one per each nonsingleton k-equivalence class
2. Deletion of nodes of outdegree one (chain nodes)

We need the following procedure of local refining:

procedure REFINE(k);
for each internal node v of T do LocalRefine(k, v);
delete all nodes of outdegree one;

The informal description of the construction of the suffix tree is summarized by the algorithm below:

y1

x1 x 2

y 2 y 1 y 2

x 1

FIGURE 30.15 Insertion of a new node to the temporary suffix tree. We have |x1| + |y1| = |x2| + |y2| = 2k and
|x1| = |x2| = |y1| = |y2|. We have |x1| = |x2|, y1 = |y2|. After insertion of a new node, if inv(2k) is locally satisfied
on the left, inv(k) holds locally on the right.
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Algorithm Suffix-Tree-by-Refining ;
let T be the tree of height 1 which leaves are 1, 2,…,n,
the label of the i-th edge is y[i. .n] encoded as [i, ∗];
k := n;
repeat { T satisfies inv(k) }

k := k/2;
REFINE(k);
{insert in parallel new nodes,
then remove nodes of outdegree 1;}

until k = 1;

In the first stage the operation LocalRefine(k, v) is applied to all internal nodes v of the current tree.
This local operation is graphically presented in Figure 30.15. The k-equivalence classes, labels of edges

outgoing a given node, are computed. For each nonsingleton class, we insert a new (internal) node.
The algorithm is informally presented on the example text abaabbaa#, see Figures 30.16 and 30.17.
We start with the tree T8 of all subwords of length 8 starting at positions 1, 2, . . . , 8. The tree is almost

a suffix tree: the only condition that is violated is that the root has two distinct outgoing edges in which
labels have a common nonempty prefix. We attempt to satisfy the condition by successive refinements: the
prefixes violating the condition become smaller and smaller, divided by two at each stage, until the final
tree is obtained.

Bibliographic Notes
The discussion of general models and techniques related to PRAM’s can be found in References 11 and
45. The basic books on string algorithms are References 2, 3, 7, and 18.

The first optimal parallel algorithm for string matching was presented by Galil in Reference 41 for
constant size alphabets. Vishkin improved on the notion of the duels of Galil, and described the more
powerful concept of (fast) duels that leads to an optimal algorithm independently of the size of the
alphabet [60]. The idea of witnesses and duels is used also by Vishkin in Reference 61 in the string
matching by sampling. The concept of deterministic sampling is very powerful. It has been used by Galil
to design a constant-time optimal parallel searching algorithm (the preprocessing is not included). This
result was an improvement upon the O(log∗ n) result of Vishkin, though O(log∗ n) time can also be

[4, 4]

[3, 3]
[5, 5]

[9, 15]

[5, 5]

[3, 8]

[6, 11]
[9, 11]

[5, 10]

[8, 8]

[9, 13]

[7, 7]

v5

v3

v4

[4, 9]

[6, 12]

5

26
147

8

v6

v1
v2

3

FIGURE 30.16 Tree T1 after the first stage of REFINE(1): insertion of new nodes v4, v5, v6.
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FIGURE 30.17 Tree T1 after the second stage of REFINE(1): deletion of chain nodes.

treated practically as a constant time. There are other parallel-string matching algorithms on different
models of computation (CRCW) or randomized ones [30, 31, 40, 42].

Two-dimensional string matching was considered in References 21, 22, 34, and 38.
Approximate string matching has been considered in References 24, 52, 55, and ?.

AQ: Please
provide the
Reference
Number.

The Karp–Miller–Rosenberg naming technique is from Reference 48. It has been extended in Refer-
ence 59. The dictionary of basic subwords and application of Karp–Miller–Rosenberg naming technique
in parallel setting is from References 37 and 48.

Suffix arrays were considered in sequential setting in References 4,5,12–14, and 16. The parallel sorting
algorithms on CREW PRAM working in logarithmic time and O(n log n) work is from Reference 33.

The fundamental algorithms for suffix trees are in References 1, 8, 17, 19, and 20. The construction
of suffix tree by refining was presented in Reference 29. Other parallel algorithms for suffix trees are in
References 9, 10, 15, 35, and 46.

The parallel algorithm computing the edit distance is from Reference 24. It was also observed inde-
pendently in Reference 55. There are other problems for strings considered in parallel settings, see
References 23, 25, 36, 42, 54, 56, 57, and 58.
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