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Abstract. Numerous ecological studies use Principal Compo-
nents Analysis (PCA) for exploratory analysis and data reduc-
tion. Determination of the number of components to retain is
the most crucial problem confronting the researcher when
using PCA. An incorrect choice may lead to the underextraction
of components, but commonly results in overextraction. Of
several methods proposed to determine the significance of
principal components, Parallel Analysis (PA) has proven con-
sistently accurate in determining the threshold for significant
components, variable loadings, and analytical statistics when
decomposing a correlation matrix. In this procedure, eigen-
values from a data set prior to rotation are compared with those
from a matrix of random values of the same dimensionality (p
variables and n samples). PCA eigenvalues from the data
greater than PA eigenvalues from the corresponding random
data can be retained. All components with eigenvalues below
this threshold value should be considered spurious. We illus-
trate Parallel Analysis on an environmental data set.

We reviewed all articles utilizing PCA or Factor Analysis
(FA) from 1987 to 1993 from Ecology, Ecological Mono-
graphs, Journal of Vegetation Science and Journal of Ecol-
ogy. Analyses were first separated into those PCA which
decomposed a correlation matrix and those PCA which de-
composed a covariance matrix. Parallel Analysis (PA) was
applied for each PCA/FA found in the literature. Of 39 analy-
ses (in 22 articles), 29 (74.4%) considered no threshold rule,
presumably retaining interpretable components. According to
the PA results, 26 (66.7%) overextracted components. This
overextraction may have resulted in potentially misleading
interpretation of spurious components. It is suggested that the
routine use of PA in multivariate ordination will increase
confidence in the results and reduce the subjective interpreta-
tion of supposedly objective methods.

Keywords: Literature research; Overextraction; Principal
Components Analysis; Spurious component.

Introduction

Numerous ecological studies have used some vari-
ant of Principal Components Analysis (PCA) since its
introduction as an analytical method of classification
and ordination by Goodall in 1954. Factor Analysis
(FA) is a variant of PCA when communality estimates
are incorporated into the matrix. These techniques are
used mainly for reduction of data in the exploratory
analysis of data sets. PCA may be used to decompose a
correlation matrix or a covariance matrix (Noy-Meir et
al. 1975; Ludwig & Reynolds 1988). While transforma-
tions may have little effect on correlation matrices, they
will strongly affect covariance matrices (Noy-Meir et
al. 1975).

Principal Components Analysis, which includes FA
for the following discussion, assumes the data to be
linear and normally distributed. Ecological data are
notoriously non-normal, most notably species data
(Pielou 1984; Austin 1987; Palmer 1993). However,
environmental variables often have linear relationships
and are normally distributed, especially when small
ranges are sampled. These data must be tested for linear-
ity and normality before continuing with PCA. If the
data do not substantially violate linear relationships and
normal distributions, use of PCA on a correlation matrix
is an appropriate and valuable data reduction or explora-
tory technique. When analyzing species abundance data,
another method (e.g. Canonical Correspondence Analy-
sis; Palmer 1993), PCA of a covariance matrix, or
properly transformed data (KaradÏiã & Popoviã 1994)
is recommended over PCA of a correlation matrix.

The problem of the ‘number of components’

The problem of the ‘number of components (fac-
tors)’ (Howard & Gordon 1963) is the most critical one
the researcher faces when using PCA (Frane & Hill
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1976; Zwick & Velicer 1986; Fava & Velicer 1992;
Greig-Smith 1980). Although methods are available for
testing component significance, the general practice has
been to rely on intuition (Frane & Hill 1976) or ‘rules of
thumb’ (Singh & West 1971). Using the number of
components the researcher wants to display or interpret
has often been the ‘rule’ used (Gauch 1982; Pielou 1984;
Kershaw & Looney 1985). An incorrect choice may lead
to the underextraction of components (i.e. loss of infor-
mation), but usually results in overextraction (i.e. inclu-
sion of spurious components). Overextraction of com-
ponents attaches meaning to noise and results in the
interpretation of random variation in the data, thus af-
fecting subsequent analyses or component rotations
(Zwick & Velicer 1986). Several methods for determin-
ing the number of retained components are used in other
disciplines, however there is little consensus in ecology
(Legendre & Legendre 1983; Jackson 1993).

Our objective is to present Parallel Analysis (PA) as
a technique for determining the number of retained
components when using PCA on a correlation matrix.
We summarize current methods for determining compo-
nent significance, describe PA, apply PA to a research
data set as an example, and apply PA to published
analyses to illustrate the overinterpretation of PCA com-
ponents in ecological literature.

Parallel Analysis, a Monte-Carlo test for determin-
ing significant Eigenvalues

Horn (1965) developed PA as a modification of
Cattell’s scree diagram to alleviate the component inde-
terminacy problem. Parallel Analysis is a “sample-based
adaptation of the population-based [Kaiser’s] rule”
(Zwick & Velicer 1986), and allows the researcher to
determine the significance of components, variable
loadings, and analytical statistics. The rationale is that
sampling variability will produce eigenvalues > 1 even
if all eigenvalues of a correlation matrix are exactly one
and no large components exist (as with independent
variates) (Zwick & Velicer 1986; Buja & Eyuboglu
1992). The eigenvalues (EV) from research data prior to
rotation are compared with those from a random matrix
(actually normal pseudorandom deviates) of identical
dimensionality to the research data set (i.e. same number
of p variables and n samples). Component PCA
eigenvalues which are greater than their respective com-
ponent PA eigenvalues from the random data would be
retained. All components with eigenvalues below their
respective PA eigenvalue threshold probably are spuri-
ous. Frane & Hill (1976) suggested that research data be
subsequently reanalyzed (run through PCA/FA again)
using only the ‘correct’ number of components.

Parallel Analysis can be performed by running
simulations  (App. 1), referencing published work which
presents regression models or tables of threshold values
to test the significance of components, or readily avail-
able programs (Allen & Hubbard 1986; Lautenschlager
1989; Buja & Eyuboglu 1992; Pohlmann unpubl. -
available from the author upon request). Longman et al.
(1989) provided models that generate mean and 95th
percentile eigenvalues. With these models, p and n sizes
of the research data can be incorporated to calculate PA
threshold eigenvalues. To date, the published works are
entirely for PCA decomposing a correlation matrix.
When decomposing a covariance matrix with PCA, the
PA must restrict random matrices to have variable means
and standard deviations identical to collected data, and
include transformations performed on the variables.

Determining significant loadings

Parallel Analysis determines which variable loadings
are significant for each component (Buja & Eyuboglu
1992; Pohlmann unpubl.), thus parsimoniously simpli-
fying structure and reducing the analysis of noise. The
PA procedure would replace subjectively determined
thresholds (e.g. common thresholds are 0.5 and 0.8),
and the inappropriate interpretation of correlation sig-
nificance between variables and components. PCA ex-
tracts as much variance as possible out of the data. Even
when the variables are uncorrelated, PCA will produce
non-zero component correlations. If a matrix of zero
correlations, with values of one along the diagonal, is
subjected to PCA, all eigenvalues (sum of the squared
variable-component correlations) will equal one. Hence,
the average squared variable-component correlation is
the reciprocal of the number of variables. Any inferen-
tial analysis of variable-component correlations must
consider this bias. Correlation tables fail to provide
guidance in the distribution of variable loadings.

A PA procedure applying the same methodology
(e.g. rotations) as PCA can be used to derive random
variable loadings. Multiplying the total number of vari-
able loadings (number of variables × number of ex-
tracted components) by the significance level (i.e. 0.05
= 95th percentile) results in an empirical estimate of the
95th percentile. This empirical estimate is an objec-
tively determined threshold for significant loadings and
is appropriate for either correlation or covariance matrix
PCA loadings. Buja & Eyuboglu (1992) also report a
series of loadings tables (median, 90th, 95th, and 99th
quantiles) for determining the significant variable
loadings prior to rotation for a correlation matrix. The
determination of significant loadings may seem cum-
bersome, but it is necessary when using a technique
without objective stopping rules.
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Material and Methods

Example use of Parallel Analysis with ecological data

Environmental data were collected from Land Be-
tween The Lakes, a National Recreation Area in western
Kentucky and Tennessee, USA. (Franklin et al. 1993).
Data were visually tested for linearity with scattergrams.
Factor Analysis was performed on 15 environmental
variables (p) in 133 stands (n) (Anon. 1990). Parallel
Analysis was employed using the models derived by
Longman et al. (1989) (App. 1). Factor Analysis was
executed again using the correct number of compo-
nents. Loadings were tested for significance using the
Parallel Analysis program (App. 2).

Application of Parallel Analysis to published analyses

From 1987 to 1993, 61 articles utilizing PCA or FA
were published in the Journal of Vegetation Science,
Journal of Ecology, Ecology and Ecological Mono-
graphs. However, only 50 of the articles contained the
necessary information (i.e. sample size, number of vari-
ables used in the analysis, and either the percent vari-
ance accounted for or eigenvalues for each factor) to run
Parallel Analysis (PA). Of these, only 30 articles docu-
mented the use of a correlation matrix (22 articles,
73.3 %) or covariance matrix (8 articles, 26.7 %). Paral-
lel Analysis (equations given by Longman et al. 1989;
App. 1) was applied for each PCA/FA found in the
literature that used a correlation matrix. The PA results
were then compared with the published eigenvalues to
determine the number of significant components (i.e.
those components that should have been retained for
subsequent analysis and interpretation).

Results

Example use of Parallel Analysis with ecological data

The EVs for the 4th and subsequent components
[factors] were greater in the PA than in the FA analysis,
indicating EVs of this magnitude could have been de-
rived from sample noise (Table 1). The same conclusion
resulted from using the tables of Buja & Eyuboglu
(1992). Therefore, only three components were retained
for further analysis. Cattell’s scree test (Fig. 1) matched
the above results while Kaiser’s rule would have re-
tained five components.

Parallel Analysis (App. 2) was performed using three
components and the same rotation methods as FA to
generate a random set of variable loadings (Table 2). As
described above, the total number of loadings (3 factors

Table 1. Comparison of Factor Analysis and Parallel Analysis
eigenvalues for data from Land Between The Lakes. The
eigenvalues for the first three FA components are larger than
the corresponding PA eigenvalues and are thus significant at ρ
= 0.05. Retaining these components for interpretation and
subsequent analysis is appropriate.

Component FA eigenvalue PA eigenvalue

1 4.360 1.832
2 2.630 1.627
3 2.208 1.488
4 1.300 1.357
5 1.131 1.260
6 0.884 1.175

× 15 variables = 45) was multiplied by the selected sig-
nificance level (0.05 × 45 = 2.25, or 2) providing an
empirical estimate of the 95th percentile loading, be-
cause two of the total number of loadings (i.e. 5 %) are
expected to fall outside two standard deviations of the
normal distribution. Thus, the second highest random
structure loading is an estimate of the 95th percentile
value. The absolute value of the second highest loading
was |0.545| and thus all loadings below this value were
considered insignificant in our analysis (Table 2).

Fig. 1.  Scree diagram comparing methods for determining the
number of components to retain. The scree test uses the
eigenvalues from Principal Components Analysis or Factor
Analysis, drawing a straight line through the lowest eigenvalues.
The threshold is where this line separates from the eigenvalue
line, which can be a subjective decision (decision = retain
three components). The Parallel Analysis threshold is when
the eigenvalues from PA are greater than those from PCA/FA
(decision: retain three components). Kaiser’s rule retains all
components with eigenvalues > 1, and would retain five com-
ponents in this example. Analyses are of environmental data
taken at Land Between The Lakes  (Franklin et al. 1993).
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Table 3. A comparison of retained Principal Components in
the literature with Parallel Analysis. Ret. Comp. are the number
of components retained by the author(s). PA Ret. is the number
of components that should be retained based on spurious
eigenvalues.

Ret. PA
Comp. Ret. Rule Data Method Reference

3 1 I E PCA Abdel-Razik & Ismail 1990
3 2 I E PCA Blinn 1993
4 3 I E PCA Bornette & Amoros 1991
5 4 K E PCA Finch 1989
3 3 PA E FA Franklin et al. 1993
4 4 K/ % S PCA Ganter & Starmer 1992
9 1 I M PCA Gascon 1991
5 3 I E PCA Gascon 1991
5 4 I E FA Hayati & Proctor 1990
3 3 K M FA Herrera 1987
4 2 I M FA Herrera 1987
8 2 I E FA Herrera 1987
2 1 I M PCA Losos 1990
2 1 I M PCA Losos 1990
3 1 I M PCA Losos 1990
3 3 I M PCA Losos 1990
2 1 I M PCA Losos 1990
4 4 I M FA McPeek 1990
4 2 I E PCA Meffe & Sheldon 1990
3 2 I E PCA Nakashizuka 1989
3 2 I M PCA Sallabanks 1993
2 2 I M PCA Sallabanks 1993
2 2 I M PCA Sallabanks 1993
7 2 I E FA Scheibe 1987
3 2 I M FA Scheibe 1987
2 2 I E PCA Schieck & Hannon 1993
3 1 I M PCA Schwaegerle & Bazzaz 1987
3 1 I E PCA Schwaegerle & Bazzaz 1987
4 1 I E PCA Schwaegerle & Bazzaz 1987
3 3 I M PCA Smith 1987
3 2 % E PCA Sun & Feoli 1992
3 2 K E PCA Wiens 1991
2 2 K E FA Wikramanayake 1990
2 2 K M FA Wikramanayake 1990
2 1 K/I M FA Wikramanayake 1990
2 2 K M FA Wikramanayake 1990
3 2 I E PCA Wilson & Hebert 1992
3 2 I E PCA Wilson & Hebert 1992
3 3 I E PCA Wilson & Hebert 1992

* Rule: K = Kaiser’s, PA = Parallel Analysis, % = percent variance
accounted for, I = interpretability; Data: E = environmental, S = species, M
= measurements on object of study; Method: PCA = Principal Components
Analysis, FA = Factor Analysis (using communality estimates).

Table 2. Random structure loadings (* = top two variable
loadings) and variable structure correlations on three compo-
nents from Parallel Analysis of 15 variables and 133 stands
from Land Between The Lakes. CEC = cation exchange capac-
ity; AWC = available water capacity; ESD = effective soil
depth (Franklin et al. 1993). Variable structure loadings >
|0.545| (in bold) are considered significant at ρ = 0.05.

Variable Comp. 1 Comp. 2 Comp. 3

Random structure loadings
1 – 0.089 – 0.482 – 0.254
2 0.525 0.028 0.147
3 0.115 – 0.146 – 0.189
4 0.032 – 0.178 0.637 *
5 0.313 – 0.039 – 0.260
6 – 0.023 0.228 0.348
7 – 0.005 – 0.177 0.255
8 – 0.044 0.008 0.229
9 0.190 – 0.043 – 0.402

10 0.185 – 0.451 0.105
11 – 0.424 0.055 0.213
12 0.518 – 0.093 – 0.039
13 0.329 0.167 – 0.226
14 – 0.180 0.327 – 0.070
15 0.158 0.545 * 0.037

Environmental variable structure loadings
Calcium 0.851 0.301 – 0.208
Magnesium 0.816 0.380 – 0.074
pH 0.738 0.554 – 0.274
Potassium 0.786 0.182 – 0.058
CEC 0.720 0.016 – 0.038
Phosphorus 0.470 – 0.004 0.347
% Organic matter 0.546 – 0.401 0.386
% sand A-horizon – 0.086 – 0.013 0.804
% clay A-horizon – 0.085 – 0.188 – 0.709
% rock – 0.018 – 0.126 0.759
AWC (cm) 0.307 – 0.548 – 0.577
Slope position 0.094 0.846 0.005
Distance to opposing slope – 0.127 – 0.740 – 0.059
Elevation – 0.142 – 0.654 0.122
ESD 0.373 0.490 0.170

Application of PA to published analyses

Of the analyses reviewed (39 analyses in 22 articles),
8 (20.5 %) used Kaiser’s Rule, 2 (5.1 %) used a percent
variance explained threshold, 1 (2.6 %) used Parallel
Analysis, and 29 (74.4 %) retained components based on
interpretability (Table 3). Parallel Analysis of the 39
PCAs that decomposed a correlation matrix indicated
that 26 (66.7 %) overextracted components (Table 3).
We could not determine if components had been
underextracted. It appears that better criteria are needed
for determining the number of retained components
when applying PCA to ecological data.

A few additional observations warrant discussion.
Several authors were vague concerning one or more of
the necessary criteria for applying PA. Only 60 % of the
articles distinguished between the use of a correlation
matrix or a covariance matrix, an important difference
when using PCA. The size of the matrix was often
difficult to discern. More importantly, in some cases
(~20 %) neither eigenvalues nor percent variance val-
ues were given for each extracted component. This

information is necessary to determine the robustness of
results. In several articles, correlations of variables with
the extracted components were inappropriately used to
determine the significance of each variable loading.

As noted earlier, known non-normal distributions of
abundance data exclude the application of PCA decom-
posing a correlation matrix. Almost all articles using
PCA of a correlation matrix analyzed environmental
data or measurement data which likely conform more
closely to PCA assumptions than species abundance
data. Nevertheless, few authors mention whether they
tested the linearity of their data. Except for a few rare
cases, PCA was only applied to species data when
decomposing a covariance matrix.
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Discussion

Parallel Analysis is an efficient and robust means for
determining the number of principal components to
retain for further analysis and interpretation when de-
composing a correlation matrix. The example analysis
of environmental data from Land Between The Lakes
shows the capability of PCA to extract meaningful
information from a data matrix when the data have a
linear relationship and are normally distributed. The
example PA demonstrates that significant eigenvalues
and variable loadings may be objectively determined.
This simple technique leads to parsimonious results, the
purpose for analyzing data with PCA.

Our review of the ecological literature indicated that
objective criteria to determine retained components of-
ten are not used with PCA or FA. This has resulted in
potentially misleading interpretation of spurious com-
ponents. We strongly recommend PA for determining
component significance when using PCA to decompose
a correlation matrix.

Reliability of PA and other stopping rules

Several methods available for determining the
number of components to extract from PCA were tested
by Zwick & Velicer (1986) and Jackson (1993). One
common rule is Kaiser’s ‘eigenvalue greater than 1’
method (Kaiser 1960). A component eigenvalue of one
accounts for as much significance as a single variable. If
data reduction is one objective of the analysis, retaining
components with eigenvalues less than one is inappro-
priate and not parsimonious (i.e. retained components
have less summarizing power than the original variable
alone). This popular rule often overextracts components
(Zwick & Velicer 1986). The Maximum Likelihood test
(Lawley 1940, 1941), Bartlett’s chi-square test (Bartlett
1950, 1951), and the Asymptotic Theory (Anderson
1963) are similar in that they test the equality of
eigenvalues. Zwick & Velicer (1986) found Bartlett’s
test to be highly variable because of its sensitivity to a
number of influences (e.g. sample size), and proposed
the same limitation for the Maximum Likelihood test.
Cattell’s scree diagram (Cattell 1966) also may be used
as a stopping rule, but is known to overestimate the
number of components and is prone to subjective bias
(Zwick & Velicer 1986; Jackson 1993). However, the
scree test was found to be more accurate than Kaiser’s
rule or Bartlett’s test. Zwick & Velicer (1986) argued
against the use of Kaiser’s rule, Bartlett’s test, or the
scree test as methods of choice for determining the
number of components. Jackson (1993) similarly found
Kaiser’s rule, the scree test, Bartlett’s test and the Maxi-
mum Likelihood test to be inaccurate measures for

determining the number of retained components. How-
ever, these are the most commonly available threshold
techniques in popular statistical packages - scree test
and Maximum Likelihood in SAS/STAT (Anon. 1990);
scree, Bartlett’s, Anderson-Rubin (asymptotic), and
Maximum Likelihood in SPSS-X (Anon. 1988).

The Minimum Average Partial, MAP (Velicer 1976;
Reddon 1985 provides FORTRAN program subrou-
tines) based on partial correlations was more accurate
than the above methods but it tended to underextract
components (Zwick & Velicer 1986). The final method
tested by Zwick & Velicer (1986), Parallel Analysis
(Horn 1965), proved consistently accurate with only a
slight tendency to overextract components. The MAP
and PA techniques were found to be the most accurate
methods for determining the number of components
(Zwick & Velicer 1986). Another form of PA involves
adding one random variable into a research data set
(Ibanez 1973 in Legendre & Legendre 1983). Interpre-
tation ends when the random variable has the most
important loading on a component. This PA technique
also was considered more appropriate than Bartlett’s
test for ecological data (Legendre & Legendre 1983).

Jackson (1993) concluded that the broken stick
method (Frontier 1976) and the bootstrapped eigen-
vector-eigenvalue method (Lambert et al. 1990) appear
more promising than the above methods, excluding
MAP which was not tested. The broken stick method is
similar to the PA described and tested in this article, but
does not consider sample size and, thus, cannot really
model sampling distributions of eigenvalues (Horn 1965).
Fisher’s proportion test (Fisher 1958) has the same
limitation; it does not consider sample size.

Jackson (1993) found the bootstrap eigenvalue-
eigenvector method to be a reliable assessment of ‘mean-
ingful’ components. Monte Carlo permutation tests are
available in the commonly used CANOCO (ter Braak
1988) and MRPP programs (Biondini et al. 1988). Nev-
ertheless, permutation methods are based on repeated
samplings of randomizations of collected data and thus
are restricted to the range of values in the data set. There
are two arguments here. First, it can be argued that
because ecological data are notoriously skewed, use of
anything besides the collected data would render a use-
less comparison. The alternative view rests on known
properties of sample distributions. An entire population
is rarely sampled. For this reason, sample data are
biased to what was collected. Bootstrapping is a good
method for estimating expected values, but often the
parameter of interest is not an expected value (i.e. biased
estimators will yield biased bootstrapped inferences).

There may be concern when using normally distrib-
uted data (i.e. normal pseudorandom deviates) in com-
parison to ecological data, which may be nonlinear and
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skewed (Lambert et al. 1990; Jackson 1993). However,
Buja & Eyuboglu (1992) state that permutations offer
little advantage over normal assumption techniques ex-
cept in more complex situations where tabulations are
impossible. Skinner (1979) found little difference be-
tween his parallel analysis and permutation results. In
addition, PA is a much simpler approach to the ‘number
of components’ problem than permutation calculations.

Some authors interpret only components with at
least 2 or 3 significant loadings (Zwick & Velicer 1986;
Jackson 1993). In the final analysis, the retained compo-
nents must make good scientific sense (Frane & Hill
1976; Legendre & Legendre 1983; Pielou 1984; Zwick
& Velicer 1986; Ludwig & Reynolds 1988; Palmer
1993).

Use of PA for other multivariate procedures

Parallel Analysis also may be used for PCA decom-
posing a covariance matrix by restricting the random
matrix to variable means and standard deviations identi-
cal to collected data, as well as any transformations.
Means and standard deviations were not given in the
articles where a covariance matrix was decomposed,
thus we could not test their results. However, it is likely
that overextraction of components and hence
overinterpretation exists in these studies as in the major-
ity of studies that used PCA. Indeed, 64 % of the analy-
ses which used PCA to decompose a covariance matrix
did not use an objective method for determining the
number of retained components. Although not explored
in this report, we suggest that PA could be adapted for
many other eigenanalysis techniques used in ecological
ordination (i.e. DCA, RA, CCA). All are essentially
similar, matrix based procedures.

Generally, we recommend using more than one rule,
e.g. Parallel Analysis (randomization) and a permuta-
tion test) for determining the number of components to
retain for use in any PCA analysis. Use of two rules
would add robustness to the ‘number of components’
decision and subsequent interpretation (Frane & Hill
1976; Zwick & Velicer 1986). Ultimately, the routine
use of PA and other stopping rules for users of multivariate
techniques will allow greater confidence in the results
and lessen the subjective interpretation of supposedly
objective methods.
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App. 2.  Parallel Analysis, PA. SAS program for determining
variable loading significance.

  1 Data loadings; options LS = 73;
  2 ** this program will generate parallel analysis significant loadings**
  3 ** generalized parallel analysis procedure:
  4 1. Number of variables is set with the www index value,
  5 2. Number of observations is set with the yyy index for j in the
  6 First do statement and in the var statement,
  7 3. Number of analyses is set with the zzz index,
  8 4. Lastly, perform the same factor analysis on the simulated
  9 Data matrix that you performed on the actual data matrix.
10 ****** Warning - this program generates a big listing ****** ;
11 Array x (i) x1 – xwww; * set the number of variables (www);
12 Do k = 1 to zzz; * set the number of analyses (zzz);
13 Do j = 1 to yyy; * set the sample size (yyy);
14 Do over x; ** x1 = normal(0) * std + mean;
15 X = normal (0); ** x2 = normal(0) * std + mean;
16 End; ** .      .          .     .  ;
17 Output; ** .      .          .     .  ;
18 End; ** xwww = normal(0) * std + mean;
19 End; ** only for use with covariance matrices;
20 Data two; set one;
21 ** set the number of factors with the n = parameter;
22 ** use the same methods (i.e. PCA or FA, rotations, etc.) As with real
23 data analysis;
24 Proc factor method = p rotate = promax prerotate = varimax nfact = 3
25 score outstat = new plot nplot = 2; var x1-xwww;
26 Proc print;
27 Run;
28 Endsas;

Note: For analyses decomposing a covariance matrix, lines 14-16 must be
replaced with the given equations for X1-XWWW (as shown). This will
perform a PA (randomization technique) using known parameters of each
variable. If the variables are transformed when analyzing the actual data,
they must also be transformed for PA.

App. 1. Parallel Analysis, PA. SAS program giving the 95th
percentile eigenvalue loading utilizing equations derived by
Longman et al. (1989).

  1 Data Longman;  options LS=73;
  2 *****************************
  3 This program produces estimates of the 95th percentile eigenvalues

  4 From a parallel analysis, using the work of Longman et al. (1989).
  5 Change the values of n and p to those of your data matrix.
  6 *****************************;
  7 N=Xx;  P=Xx;  * N = Sample Size, P = No. Of Variables;
  8 Ln = Log (N);  Lp = Log(P);
  9 Leig1 = 0.0316*Ln +0.7611*Lp -0.0979 *(Ln*Lp) -0.3138; Lam1 =Exp(Leig1);
10 Leig2 = 0.1162*Ln +0.8613*Lp -0.1122 *(Ln*Lp) -0.9281; Lam2 =Exp(Leig2);
11 Leig3 = 0.1835*Ln +0.9436*Lp -0.1237 *(Ln*Lp) -1.4173; Lam3 =Exp(Leig3);
12 Leig4 = 0.2578*Ln +1.0636*Lp -0.1388 *(Ln*Lp) -1.9976; Lam4 =Exp(Leig4);
13 Leig5 = 0.3171*Ln +1.1370*Lp -0.1494 *(Ln*Lp) -2.4200; Lam5 =Exp(Leig5);
14 Leig6 = 0.3809*Ln +1.2213*Lp -0.1619 *(Ln*Lp) -2.8644; Lam6 =Exp(Leig6);
15 Leig7 = 0.4492*Ln +1.3111*Lp -0.1751 *(Ln*Lp) -3.3392; Lam7 =Exp(Leig7);
16 Leig8 = 0.5309*Ln +1.4265*Lp -0.1925 *(Ln*Lp) -3.8950; Lam8 =Exp(Leig8);
17 Leig9 = 0.5734*Ln +1.4818*Lp -0.1986 *(Ln*Lp) -4.2420; Lam9 =Exp(Leig9);
18 Leig10= 0.6460*Ln +1.5802*Lp -0.2134 *(Ln*Lp) -4.7384; Lam10=Exp(Leig10);
19 Proc Print; Var N P Lam1-Lam10;
20 Run;
21 Endsas;

*Note: Exp raises e (2.71828) to a specified power.
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