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Abstract: Photonic reservoir computing has been inten-
sively investigated to solve machine learning tasks effec-
tively. A simple learning procedure of output weights
is used for reservoir computing. However, the lack of
training of input-node and inter-node connection weights
limits the performance of reservoir computing. The use
of multiple reservoirs can be a solution to overcome
this limitation of reservoir computing. In this study, we
investigateparallel anddeepconfigurationsofdelay-based
all-optical reservoir computingusingsemiconductor lasers
with optical feedback by combining multiple reservoirs
to improve the performance of reservoir computing. Fur-
thermore, we propose a hybrid configuration to maximize
the benefits of parallel and deep reservoirs. We perform
the chaotic time-series prediction task, nonlinear channel
equalization task, and memory capacity measurement.
Then, we compare the performance of single, parallel,
deep, and hybrid reservoir configurations. We find that
deep reservoirs are suitable for a chaotic time-series
prediction task,whereas parallel reservoirs are suitable for
a nonlinear channel equalization task. Hybrid reservoirs
outperform other configurations for all three tasks. We
further optimize thenumberof reservoirs for each reservoir
configuration. Multiple reservoirs show great potential for
the improvement of reservoir computing,which in turn can
be applied for high-performance edge computing.
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1 Introduction

Recent photonics technologies, such as wavelength mul-
tiplexing and photonic integrated circuits, have enabled
high-speed and energy-efficient signal processing in the
field of communication and computation. These photonics
technologies can overcome the limitation in the develop-
ment of semiconductor integration technologies known as
the end of Moore’s law [1]. Photonic hardware accelerators
have been intensively investigated to improve the perfor-
mance of signal processing in machine learning tasks [1].
Several examples of photonics accelerators include pho-
tonic neural networks [2] for image recognition, coherent
Ising machine [3] for solving a max-cut problem, photonic
decision making [4] for solving a reinforcement-learning
problem, and photonic reservoir computing [5, 6] for
time-series prediction and speech recognition.

There has been a considerable rise in the demand
and subsequent interest in reservoir computing in the
past two decades [7, 8]. The conceptual idea of reservoir
computing originated from a recurrent neural network
with randomly fixed weights of the input-node and inter-
node connections. A simple learning approach, such as
the least-square method, can be applied for the connec-
tion weights between network nodes and output (i.e.,
readout) for the ease of the implementation of reservoir
computing. The introduction of reservoir computing has
led to the utilization of many physical devices such as
spintronics, nanodevices, electronics, and photonics, as
reservoirs [9]. Photonic reservoir computing is mainly
implemented in spatial optical systems (spatial reservoirs)
and time-delayed optical systems (delay-based reservoirs).
In spatial reservoirs, network nodes in a reservoir are
constructed in space using a spatial light modulator [10,
11], passive optical array components [12], and a large-area
vertical-cavity surface-emitting laser [13]. Spatialnodesare
used to calculate the weighted linear sum of the node
states for the output signal. In contrast, in time-delayed
reservoirs, a single nonlinear optical component with a
time-delayed feedback loop is used as a reservoir by
integrating a semiconductor laser [14–16], semiconductor
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optical amplifier [17], and Mach–Zehnder electro-optic
modulator [5, 18]. Network nodes are measured in time,
and virtual nodes are measured by sampling the temporal
waveformof the reservoir output. Aweighted linear sumof
the virtual node states is used to obtain the output signal.
The primary benefits of delay-based reservoirs include
easy implementationand large-scalenetworkconstruction
based on an increase in the delay time, whereas those
of spatial reservoirs include real-time implementation
without pre- and post-processing.

The ease in implementation enables the wide use
of signal processing in reservoir computing. However,
the lack of optimization of inter-node and input-node
connection weights limits the performance of signal pro-
cessing in reservoir computing because these weights are
randomlyfixed inadvance. Toovercome this issue, parallel
and deep configurations of multiple reservoirs have been
proposed to improve the overall performance of reservoir
computing [19]. An example of such a configuration is
the parallel reservoir, wherein semiconductor lasers with
short external cavities are used, and the performance
of chaotic time-series prediction tasks is improved by
increasing the number of parallel reservoirs [20]. Several
configurations of parallel reservoirs have beenproposed in
time-delayed systems [21] and mutually coupled vertical-
cavity surface-emitting lasers [22]. Parallel reservoirs have
also been used for solving multiple tasks in parallel
[23, 24]. In addition, deep (serial) reservoirs have been
proposed in time-delayed optoelectronic systems [25], and
the memory capacity has been evaluated for a different
number of layers. Moreover, various multiple reservoir
configurations have been evaluated using spatial passive
photonic circuits with interferometers [26], and the use
of multiple reservoirs may help improve the performance
of a header recognition task. However, deep configuration
usingdelay-basedall-optical reservoirs hasnot been inves-
tigatedyet, althoughadelay-basedall-optical reservoirhas

beenexperimentally implemented inaphotonic integrated
circuit using a semiconductor laser with optical feedback
for high-speedprocessing [16]. Furthermore, a quantitative
comparisonbetweenparallel anddeepconfigurationswith
delay-based all-optical reservoirs has not been performed,
and the dependence of the performance using different
reservoir configurations on the types of signal-processing
tasks has not been clearly studied.

In this study, we propose single, parallel, deep, and
hybrid reservoir configurationsusingsemiconductor lasers
with optical feedback to improve the performance of
time-delayed all-optical reservoir computing. We compare
theperformanceof these reservoir configurationsusingdif-
ferent tasks: chaotic time-series prediction task, nonlinear
channel equalization task, andmemory capacitymeasure-
ment. We also optimize the number of multiple reservoirs
using these configurations and signal-processing tasks.

2 Methods

2.1 Numerical model of a semiconductor laser with
optical feedback

Figure 1 shows the schematic of delay-based all-optical reservoir
computing using a semiconductor laser with optical feedback and
injection [15]. We define all-optical reservoirs as the reservoirs that
consist of all-optical devices without considering pre- and post-
processing for delay-based reservoir computing. A semiconductor
laser (referred to as a reservoir laser) with optical feedback is used
as a photonic reservoir. The reservoir laser comprises an optical
feedback loop with a delay time 𝜏. The light intensity from another
semiconductor laser (referred to as a drive laser) is modulated using
an input signal with a random binary mask signal. The modulated
light is injected into the reservoir laser. The temporal waveform of
the output of the reservoir laser is sampled at an interval 𝜃, and the
sampled data are considered as virtual nodes in the time-delayed
feedback loop. The number of virtual nodes is determined using the
equation N = 𝜏/𝜃. A weighted linear sum of the virtual node states
is calculated as the output signal. The output weights of the virtual

Figure 1: Reservoir computing using a semiconductor laser with optical feedback and injection.
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node states are trained using the linear least-squares method such
that they match the output signal with the original target signal.

The dynamics of the reservoir laser with optical feedback and
injection can be described using the Lang–Kobayashi equations as
[27, 28],

dEr(t)
dt

= 1+ i𝛼
2

{
GN (Nr(t)− N0)
1+ 𝜀||Er(t)||2 − 1

𝜏 p

}
Er(t)

+ 𝜅Er(t − 𝜏) exp(−i𝜔r𝜏)

+ 𝜅injEd(t) exp (i2𝜋Δ ft)+ 𝜉(t) (1)

dNr(t)
dt

= J − Nr(t)
𝜏s

−
{

GN (Nr(t)− N0

1+ 𝜀||Er(t)||2
}||Er(t)||2 (2)

where Er(t) and Nr(t) represent the complex electric-field amplitude
and the carrier density of the reservoir laser, respectively. Here, GN is
the gain coefficient, 𝜅 is the feedback strength, 𝜅 inj is the injection
strength, 𝛥f is the optical frequency detuning between the drive and
reservoir lasers, J is the injection current, 𝜀 is the gain saturation
coefficient, and 𝜉(t) is the spontaneous emission noise. The optical
intensity Ir(t) of the reservoir laser is expressed as Ir(t) = |Er(t)|2.
The electric-field amplitude of the phase-modulated drive laser is
expressed as [29],

Ed(t) =
√
Id exp(i𝜋u(t)) (3)

where Id is the constant optical intensity of the drive laser and u(t) is
the modulation signal with the input signal. The laser parameters of
all reservoirs used in our numerical simulations are summarized in
Table 1.

We do not use the ridge regression procedure for training.
Instead, we add spontaneous emission noise to the reservoir laser,
which plays a similar role to ridge regression, and the perfor-

mance of reservoir computing can be improved in the presence of
noise [30].

2.2 Configurations of parallel and deep reservoir
computing

We propose four different reservoir configurations to evaluate the
impact of parallel and deep (serial) reservoir computing. Figure 2
shows the diagrams of the four reservoir configurations. Figure 2(a)
shows a single reservoir that consists of a single semiconductor laser
with optical feedback. The input signal is injected into the reservoir
laser, and the output is calculated from a weighted linear sum of
the virtual node states in the reservoir output. The total number of
virtual nodes Ntotal matches the number of virtual nodes in the single
reservoir N (Ntotal = N).

Figure2(b) showsparallel reservoirs,whereinmultiple reservoirs
are configured in parallel. The same input signalwith a differentmask
signal is injected into each reservoir to obtain different dynamics of
each reservoir output. The virtual node states of all parallel reservoirs
are used to generate the output signal by calculating aweighted linear
sum of the virtual node states. Thus, the total number of virtual node
states is given as Ntotal = kN for k reservoirs and the number of virtual
nodes for each reservoir N.

Figure 2(c) shows deep reservoirs, wherein multiple reservoirs
are cascaded in serial. The input signal with a mask signal is injected
into the first reservoir. Aweighted linear sumof the virtual node states
of the first reservoir is calculated as the output of the first reservoir.
The output of the first reservoir is then used as an input signal for
the second reservoir. The output of the first reservoir with a different
mask signal is injected into the second reservoir. A weighted linear
sum of the virtual node states of the second reservoir is calculated to
generate the output signal, which is further used as an input signal

Table 1: Parameter values of the reservoir laser used in numerical simulations.

Symbol Parameter Value

GN Gain coefficient 8.40 × 10−13 m3 s−1
N0 Carrier density at transparency 1.40 × 1024 m−3

𝜀 Gain saturation coefficient 2.0 × 10−23
𝜏p Photon lifetime 1.927 × 10−12 s
𝜏s Carrier lifetime 2.04 × 10−9 s
𝛼 Linewidth enhancement factor 3.0
𝜏 Feedback delay time of light 8.04 × 10−8 s
r3 Reflectivity of external mirror 0.10
𝜅 Feedback strength 15.53 × 109 s−1
𝜅 inj Injection strength from drive laser 12.42 × 109 s−1
𝜔 = 2𝜋c/𝜆 Optical angular frequency 1.226 × 1015 s−1
𝜆 Optical wavelength 1.537 × 10−6 m
c Speed of light 2.998 × 108 m s−1
Jd Injection current of drive laser 1.30 Jth
Jr Injection current of reservoir laser 1.05 Jth
Jth = Nth/𝜏s Injection current at lasing threshold 9.892 × 1032 m−3 s−1
Nth = N0 + 1/GN𝜏p Carrier density at lasing threshold 2.018 × 1024 m−3

Δf Initial optical frequency detuning −3.0 × 109 Hz
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Figure 2: Configurations of parallel and deep reservoir computing. (a) Single reservoir, (b) parallel reservoirs, (c) deep reservoirs, and (d)
hybrid reservoirs.

for the third reservoir. This sequential procedure is repeated, and a
weighted linear sum of the final reservoir is considered as the output
of the entire deep reservoir. The total number of virtual node states is
given as Ntotal = kN. However, the final output is obtained only from
N virtual node states from the kth (final) reservoir.

In deep reservoirs, output weights for each reservoir are trained
suchthat thedifferencebetweeneachreservoiroutputandtheoriginal
target signal is minimized using the linear least-squares method. The
target signal used in the training of all reservoirs is the same; however,
the input signal to each reservoir is different because the output signal
of the ith reservoir (i.e., the weighted linear sum of the ith reservoir
nodes) is used as the input signal of the (i + 1)-th reservoir for the
deep configuration. If the prediction error is small at the first reservoir,
the input signal of the second reservoir already resembles the target
signal, and the prediction error at the first reservoir can be easily
compensated by the second reservoir.

Furthermore, we propose a hybrid configuration for parallel and
deep reservoirs. Figure 2(d) shows hybrid reservoirs, wherein the
structure of multiple reservoirs is the same as that of deep reservoirs
shown in Figure 2(c). The input signal with a mask signal is injected
into the first reservoir only, and the output of the first reservoir (the
weighted linear sum of the virtual node states in the first reservoir)
is used as the input signal for the second reservoir. This procedure
is repeated for the entire configuration. However, virtual node states
of all multiple reservoirs are used to generate the final output signal,
and this is similar to that of parallel reservoirs shown in Figure 2(b).
The total number of virtual node states is given asNtotal = kN, and the
final output is also obtained using Ntotal virtual node states from all
multiple reservoirs.

3 Numerical results
3.1 Chaotic time-series prediction task
We compare the performance of the four reservoir con-
figurations shown in Figure 2. We first use the Santa Fe
chaotic time-series prediction task [31] to evaluate the
performance of the four reservoir configurations. The aim
of this prediction task is to perform single-point prediction
of chaotic data that is generated from a far-infrared laser.
Here, 3000 steps are used for training and 1000 steps are
used for testing. The amplitude of the chaotic time series
for prediction is normalized, and the input signal u(t) of
the chaotic time series ranges from 0 to 1.

We introduce a quantitative measure for performance
evaluation. The normalized mean square error (NMSE) is
defined as follows:

NMSE = 1
L

L∑
n=1

(
y(n)− y(n)

)2
var(y) (4)

where n is the index of the input data, L is the total number
of datasets, y is the reservoir output that is compared with
the original value ȳ as a target, and var represents the
variance.
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In this section, we evaluate the configurations with
two reservoirs (k = 2) in parallel, deep, and hybrid
reservoirs, as shown in Figure 2. The period of the mask
signal is set as T = 80.4 ns. The feedback delay time and
sampling interval are set as 𝜏 = 80.4 ns and 𝜃 = 0.1 ns,
respectively. Therefore, the number of virtual node states
for each reservoir is set as N = 800 (the four remaining
nodes are discarded).

Figure 3 shows the results of the chaotic time-series
prediction task for single, parallel, deep, and hybrid reser-
voirs. Theblack, red, andblue curves represent theoriginal
target signal, prediction result, and error signal between
them, respectively. For all cases, the prediction result
resembles the original target signal, and the error signal

is extremely small. However, a difference in the errors
appears when NMSE values are calculated. The NMSE
values for single, parallel, deep, and hybrid reservoirs
are 0.025, 0.022, 0.014, and 0.013, respectively. Therefore,
the performance of deep and hybrid reservoirs is better
(smaller errors) than that of single and parallel reservoirs,
as shown in Figure 3.

We systematically compare the performance of the
four reservoir configurations in the chaotic time-series
prediction task when the number of nodes N for each
reservoir is changed. We change the value of N up to 800
by discarding the virtual node states without changing
the values of 𝜏 and 𝜃. We use the first N virtual nodes
in the mask period T. Figure 4(a) shows the results of
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Figure 3: Results of the chaotic time-series prediction task using (a) single, (b) parallel, (c) deep, and (d) hybrid configurations. The original
target signal (black), prediction result (red), and error between them (blue) are shown.
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Figure 4: Normalized mean-square error (NMSE) of the chaotic time-series prediction task as a function of (a) the number of nodes N for each
reservoir and (b) the total number of nodes Ntotal for all reservoirs for single (black), parallel (red), deep (brown), and hybrid (green)
configurations. (a) Ntotal is N for single configuration and 2N for parallel, deep, and hybrid configurations. (b) Ntotal is matched to N for all
configurations.
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the prediction error (NMSE) as N is changed for single,
parallel, deep, and hybrid reservoirs. The hybrid reservoir
shows the smallest NMSE values for different values of
N among the four configurations, and the deep reservoir
demonstrates the second-best performance. Although the
performance of the parallel reservoir is worse than that
of hybrid and deep reservoirs, it is better than that of the
single reservoir. From these results, we suggest that hybrid
and deep configurations with serial reservoir connections
are effective for the chaotic time-series prediction task.

In Figure 4(a), the total number of virtual nodes
Ntotal is different for each configuration, i.e., the total
number of nodes is N for the single reservoir and 2N
for parallel, deep, and hybrid configurations with two
reservoirs.Here,wematchNtotal toN to suppress the impact
of the difference in Ntotal. For instance, one-half of the
number of nodes is used for parallel, deep, and hybrid
reservoirs by discarding the remaining virtual nodes. This
ensures that the total number of nodes becomes Ntotal = N
for all four configurations without changing the values of
𝜏 and 𝜃.

Figure 4(b) shows the NMSE values for the prediction
task as Ntotal is changed for the four configurations. The
result of the performance comparison is similar to that
shown in Figure 4(a), that is, the order of the best to worst
performance is hybrid, deep, parallel, and single reser-
voirs. Therefore, the number of nodes is not sufficiently
effective for a comparison in this case. Notably, NMSE
valuesare similar to eachotherwhenNtotal is small (around
100), and the difference in NMSE values is apparent for a
large Ntotal (around 800), as shown in Figure 4(b).

In the deep configuration, the first reservoir predicts
the original target signal by learning. Some prediction
errors may be observed between the target signal and
the output of the first reservoir. These errors can be com-
pensated by the second reservoir, primarily because the
second reservoir is trained for eliminating these prediction
errors through learning. Inotherwords, theerrorcorrection
of the predicted signal from the first reservoir can be
achieved using the second reservoir. Therefore, the first
reservoir roughly predicts the target signal, and the second
reservoir corrects the prediction errors for a more accurate
prediction. The deep configuration is thus suitable for
the time-series prediction task. In addition, the hybrid
configuration has a similar reservoir structure to the deep
configuration and is also suitable for this task.

3.2 Nonlinear channel equalization task
Next, we use the nonlinear channel equalization task [18]
to compare the performance of the four configurations.

The purpose of the nonlinear channel equalization task
is to classify the four digital signals {−3, −1, 1, and
3} transmitted through a communication channel with
nonlinear distortion. The nonlinear transformation of the
communication channel is described as follows:

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1)+ d(n)+ 0.18d(n− 1)

− 0.1d(n− 2)+ 0.091d(n− 3)− 0.05d(n− 4)

+ 0.04d(n− 5)+ 0.03d(n− 6)+ 0.01d(n− 7) (5)

u(n) = q(n)+ 0.036q(n)2 − 0.011q(n)3 + 𝑣(n) (6)

where d(n) is the input signal of a random sequence with
values {−3, −1, +1, +3}, q(n) is the linear channel output,
u(n) is the noisy nonlinear channel output, and v(n) is the
white Gaussian noise with a zero mean to yield signal-to-
noise ratios (SNRs). The term u(n) is used to determine
d(n) using reservoir computing. A symbol error rate (SER)
is used to evaluate the performance of this task, and a
smaller SER value indicates better performance.

Figure 5(a) shows the results of the nonlinear channel
equalization task as the number of nodes N for each
reservoir is changed in each configuration. In this case,
the total number of nodes is Ntotal = N for the single
reservoir and Ntotal = 2N for parallel, deep, and hybrid
reservoirs. Lower SER values are obtained for hybrid and
parallel reservoirs, and, therefore, better performance is
achieved for these configurations. A minimum SER value
of 0.018 is obtained at N = 280 for parallel and hybrid
reservoirs, as shown in Figure 5(a). However, the value of
SER increases as N is increased above 400 for parallel and
hybrid reservoirs because toomany node states may result
in overtraining. In addition, the SER value for the deep
reservoir is worse than that for the single reservoir. This
indicates that the deep configuration is not suitable for the
nonlinear channel equalization task.

Figure 5(b) shows the result of SER in the nonlinear
channel equalization task when Ntotal is matched among
the four configurations and Ntotal is changed instead of
N. Parallel and hybrid reservoirs outperform single and
deep reservoirs. In addition, the SER value for the deep
reservoir is the worst among the four configurations.
Therefore,multiple reservoirs do not always provide better
performance in this task.

The nonlinear channel equalization task requires a
four-digit classification fromadistorted analog signalwith
nonlinearity and noise. The second reservoir of the deep
configuration helps correct the errors between the target
signal and the output of the first reservoir. However, the
errors may be enhanced owing to the discretization of the
output signal for the four-digit classification and cannot
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Figure 5: Symbol error rate (SER) of the nonlinear channel equalization task as a function of (a) number of nodes N for each reservoir and (b)
the total number of nodes Ntotal for all reservoirs for single (black), parallel (red), deep (brown), and hybrid (green) configurations. (a) Ntotal is
N for the single configuration and 2N for parallel, deep, and hybrid configurations. (b) Ntotal is matched to N for all four configurations.

be compensated by the second reservoir, unlike the time-
series prediction task. Therefore, the deep configuration
is not appropriate for the nonlinear channel equalization
task. In contrast, the parallel configuration providesmulti-
ple reservoirswithdifferent outputweights that are trained
using the same input signal with different mask signals.
Therefore, we consider that the generalization ability may
be enhanced using parallel reservoirs. From Figures 4 and
5, we found that suitable reservoir configurations depend
on the type of processing tasks.

3.3 Memory capacity
We also investigate the memory capacity of all four config-
urations. Memory capacity is a measure of the amount of
information of past input signals that can be reproduced
through reservoir computing [32, 33]. Memory capacity is
defined using the correlation functionm(i),

m(i) =
⟨
(y(n− i))(oi(n))

⟩2
𝜎2(y(n))𝜎2(oi(n))

(7)

where y(n) is a random input signal in the range from −1
to 1, oi(n) is the reservoir output at time nwhen the output
weights are trained with the ith past input signal y(n − i),
𝜎2 is the variance, and <> denotes the time average.
Memory capacity is described as the sum ofm(i) by,

MC =
∞∑
i=1

m(i) (8)

Ahighermemorycapacity value indicatesabetter reservoir
for the tasks that require previous information.

Figure 6(a) shows the memory capacity when N is
changed for the four configurations. The memory capacity
of parallel and hybrid reservoirs is larger than that of
single anddeep reservoirs. In addition, anoptimalmemory
capacityof 7.8 isobtainedatN= 280 forparallel andhybrid
reservoirs, as shown in Figure 6(a). However, memory
capacity is almost the same at N = 800 among the four
configurations.

Figure 6(b) shows the memory capacity when Ntotal
is matched among the four configurations and Ntotal is
changed. Parallel and hybrid reservoirs provide a larger
memory capacity compared with deep reservoirs, and the
memory capacity of deep reservoirs is better than that of
single reservoirs.However, there isnosignificantdifference
in memory capacity among the four configurations. The
memory capacity values are 6.61, 7.65, 7.38, and 7.64 for
single, parallel, deep, andhybrid reservoirs atNtotal= 800,
respectively.

Multiple reservoirs provide a larger memory capacity
than a single reservoir because we speculate that an input
signal is stored in multiple reservoirs with different mask
signals. However, the difference in the memory capacity is
not significantamongparallel,deep,andhybrid reservoirs.
Therefore, memory capacity does not strongly depend on
the type of reservoir configurations.

The best evaluation values for the three aforemen-
tioned tasks in the four reservoir configurations are shown
in Table 2. The total number of nodes is fixed at Ntotal =
800 to avoid dependence on the number of nodes shown
in Table 2. For the chaotic time-series prediction task, the
minimumNMSE value (0.016) is obtained using the hybrid
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Figure 6: Memory capacity as a function of (a) the number of nodes N for each reservoir and (b) the total number of nodes Ntotal for all
reservoirs for single (black), parallel (red), deep (brown), and hybrid (green) configurations. (a) Ntotal is N for the single configuration and 2N
for parallel, deep, and hybrid configurations. (b) Ntotal is matched to N for all four configurations.

Table 2: Comparison of the best performance among single, parallel, deep, and hybrid configurations in the chaotic time-series prediction
task, nonlinear channel equalization task, and memory capacity measurement. The total number of nodes is Ntotal = 800.

Configuration Chaotic time-series prediction task (NMSE) Nonlinear channel equalization task (SER) Memory capacity (MC)

Single 0.025 0.025 6.61
Parallel 0.022 0.020 7.65
Deep 0.017 0.072 7.38
Hybrid 0.016 0.020 7.64

reservoir, and the deep reservoir shows the second-best
performance (NMSE = 0.017). On the contrary, for the
nonlinear channel equalization task, parallel and hybrid
reservoirs provide the best evaluation value (SER= 0.020).
Regarding the memory capacity, the parallel reservoir
shows the best performance (MC = 7.65) followed by the
hybrid reservoir (MC = 7.64). However, there is a small
difference in the memory capacity of parallel, deep, and
hybrid reservoirs.

From these results,weobserve that deepconfiguration
(serial reservoir connection) is suitable for thechaotic time-
series prediction task, whereas parallel configuration (all
node states are used for the final output) is suitable for the
nonlinear channel equalization task. The hybrid reservoir,
which possesses the characteristics of both deep and
parallel configurations, shows the best performance for
all three tasks. Therefore, the hybrid reservoir outperforms
the other three reservoirs for different types of tasks. For
hybrid reservoirs, the deep configuration is beneficial for
correcting prediction errors in the time-series prediction
task, and the parallel configuration that uses all node

states for calculating the output signal is suitable for the
nonlinear channel equalization task.

4 Effect of the number of reservoirs

4.1 Chaotic time-series prediction task
In the previous section, we considered two reservoirs for
each configuration to evaluate their performance. In this
section, we investigate the impact of the number of reser-
voirs on the chaotic time-series prediction task.We change
the number of reservoirs k and find the optimal value of
k for parallel, deep, and hybrid reservoir configurations.
To increase the number of nodes, the period of the mask
signal is set as T = 260.5 ns. The feedback delay time and
sampling interval are set as 𝜏 = 260.5 ns and 𝜃 = 0.1 ns,
respectively. Therefore, the maximum number of nodes is
N = 2605, and the value of N is changed by discarding the
remaining nodes.

Figure 7(a) shows the prediction error (NMSE) of the
chaotic time-series prediction task when k is changed for
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parallel, deep, and hybrid configurations. In this case, the
number of nodes for each reservoir is fixed at N = 280,
and the total number of nodesNtotal = kN increases with k.
As shown in Figure 7(a), for parallel reservoirs, the NMSE
value slightly decreases as the k value increases, and the
minimumNMSE value is obtainedwhen k= 4. In contrast,
for deep and hybrid reservoirs, the minimum NMSE value
is obtainedwhen k= 3, which is 0.0060. Here, the value of
Ntotal increases, and the performance is improved when
k is increased up to 3; however, too many nodes may
result in overtraining. The optimal k value for the three
configurations is obtained in Figure 7(a).

To suppress the effect of the change in Ntotal, we fixed
Ntotal when k is changed. Figure 7(b) shows the prediction
error (NMSE) for the chaotic time-series prediction task
when k is changed under the condition of a fixed Ntotal
= kN = 720. For instance, N is set at 360 for k = 2, N
= 240 is used for k = 3, and so on; here, the remaining
nodes at the fixed 𝜏 and 𝜃 are discarded. In this case, for
parallel reservoirs, NMSE values are almost unchanged for
different values of k. This indicates that the value of Ntotal
has a significant impact on the performance. However, the
division into smaller reservoirs in parallel is not effective
at a constant Ntotal for parallel reservoirs, especially for
this task. On the contrary, for deep and hybrid reservoirs,
the minimum NMSE value is obtained when k = 2 (i.e.,
an NMSE value of 0.0056 for hybrid reservoirs). A larger k
value increases the NMSE value as N is decreased for each
reservoir. This indicates that two reservoirs are sufficient
for deep and hybrid reservoirs in this task. We interpret
that the first reservoir predicts the input signal, and the

second reservoir corrects the errors between the target
signal and the predicted signal in the first reservoir for
the deep configuration. The roles of the third and more
reservoirs are similar to that of the second reservoir (i.e.,
error correction of the predicted signal), and they cannot
effectively improve the performance of the time-series
prediction task.

From these results, the use of three reservoirs provides
the best performance for parallel, deep, and hybrid reser-
voirs when Ntotal is changed because the number of nodes
increases with k. In contrast, the use of two reservoirs
provides the best performance for deep and hybrid reser-
voirs when Ntotal is fixed. A larger number of reservoirs
may result in the degradation of performance owing
to the lack of the number of nodes for each reservoir when
the value of Ntotal is fixed. In addition, the two-reservoir
configuration is the best for the time-series prediction
task because the second reservoir plays an effective role
in error correction between the target signal and the
predicted output from the first reservoir in deep andhybrid
configurations.

4.2 Nonlinear channel equalization task
Next, we investigate the impact of the number of reservoirs
on the nonlinear channel equalization task. Similar to the
procedure described in Section 4.1, we change the number
of reservoirs k and find the optimal value of k for parallel,
deep, and hybrid reservoir configurations.

First, we setN = 160 and change the value of k (Ntotal=
kN is also changed). Figure 8(a) shows the SER value of the
nonlinear channel equalization task when k is changed.
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Figure 7: Normalized mean-square error (NMSE) of the chaotic time-series prediction task as the number of reservoirs k is changed for
parallel (red), deep (brown), and hybrid (green) configurations. (a) The number of nodes for each reservoir is fixed at N = 280. (b) The total
number of nodes is fixed at Ntotal = 720.
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Figure 8: Symbol error rate (SER) of the nonlinear channel equalization task as the number of reservoirs k is changed for parallel (red), deep
(brown), and hybrid (green) configurations. (a) The number of nodes for each reservoir is fixed at N = 160. (b) The total number of nodes is
fixed at Ntotal = 480.

For deep reservoirs, the SER value increases significantly
as the k value increases. Therefore, the deep configuration
is not suitable for the nonlinear channel equalization task.
Forparallel andhybrid reservoirs, theSERvaluedecreases,
and aminimumSERvalue of 0.0073 is obtainedwhen k= 3
and k = 2, respectively. Therefore, the performance can be
improved by optimizing the k value for parallel and hybrid
configurations.

We then setNtotal = 480 instead ofN, and change the k
value, as shown in Figure 7(b). Figure 8(b) shows the SER
value of the nonlinear channel equalization task when k
is changed and Ntotal is fixed. In this case, the results are
similar to those shown in Figure 8(a). The SER value for
deep reservoirs is worse when the k value is increased. For
parallel reservoirs, the minimum SER value is obtained
when k = 3. The curve shown in Figure 8(b) for parallel
reservoirs is similar to that shown in Figure 8(a), and the
performance depends on the k value but not the number
of nodes. For hybrid reservoirs, the minimum SER value is
achievedwhenk=4,althoughSERvaluesare similarwhen
k= 2, 3, and 4. Therefore, the performance of the nonlinear
channel equalization task is improved by optimizing the k
value for parallel and hybrid reservoirs.

From these results, three or four reservoirs are suffi-
cient to improve the performance of the nonlinear channel
equalization task for parallel and hybrid configurations.
We speculate that too many reservoirs may result in a lack
of the number of nodes for each reservoir. In addition,
too many nodes may lead to overtraining. Therefore, opti-
mizing the number of reservoirs is necessary for multiple
reservoir configurations.

5 Discussion
We investigated and compared the performance of single,
parallel, deep, and hybrid reservoir configurations in three
different processing tasks. For the chaotic time-series
prediction task, deep and hybrid reservoir configurations
outperform single and parallel reservoir configurations.
In deep reservoirs, the second reservoir receives the
output signal of the first reservoir, and the prediction
errors in this signal are corrected by the second reservoir.
Therefore, the deep (serial) configuration can effectively
improve the performance of the time-series prediction
task. For a configuration with three or more reservoirs,
the effect of error correction is minimal, and the use of two
reservoirs is optimal for the deep configuration to improve
the performance of the chaotic time-series prediction task.

For the nonlinear channel equalization task, parallel
and hybrid reservoirs outperform single and deep reser-
voirs. For this task, a four-digit classification is required
from analog data that are distorted by nonlinearity and
noise. The second reservoir in the deep configuration
cannot sufficiently correct the discretized data, and error
correction cannot be achieved effectively. For the parallel
configuration, classification can be achieved by using
multiple reservoirs with different inputmasks for the same
input signal. The presence of multiple reservoirs with
different readout weights may enhance the performance
of the classification task.

In terms of memory capacity, there is no significant
difference in the performance among multiple reservoirs,
although the memory capacity of multiple reservoirs is
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better than that of a single reservoir. The change in
the configuration of multiple reservoirs cannot effectively
improve the memory capacity.

Hybrid reservoirsoutperformtheother three reservoirs
because the hybrid configuration provides both deep and
parallel configurations. The use of a second reservoir in
the deep configuration can help correct prediction errors
between the target signal and the predicted signal of the
first reservoir. In addition, the use of node states from all
multiple reservoirs can effectively improve classification
performance. Therefore, hybrid reservoirs are extremely
useful in all three processing tasks.

Furthermore, one of the advantages of hybrid reser-
voirs is their wide applicability to different types of tasks.
Hybrid reservoirs outperform parallel and deep reservoirs
in thechaotic time-seriespredictionandnonlinearchannel
equalization tasks because hybrid reservoirs possess the
benefits of both parallel and deep configurations. The
difference in performance may depend on the difficulty
of the task. It would be worthy to investigate whether the
performance of hybrid reservoirs is improved when other
different tasks are applied.

We found that the use of two reservoirs provides
the best performance in deep and hybrid configurations,
and the use of multiple deep layers with more than two
reservoirs does not improve the performance of the tasks
investigated in the present study, unlike deep learning.
The use of deeper layers compared with that of two
reservoirs isachallenging issue in the further improvement
of reservoir computing. In addition, the scalability of
multiple reservoirs is crucial. To improve the scalability
of multiple reservoirs, the use of a more sophisticated
training algorithm, such as the augmented direct feedback
alignment method [34], may be required. This method can
be used to determine the connectionweights between con-
secutive reservoirswithout complicated calculations. Such
a training method can help improve the performance of
multiple reservoirs. We aim to investigate the effectiveness
of a novel training method for multiple reservoirs in the
future.

The configuration of parallel reservoirs may appear
similar to an ensemble learningmethod that usesmultiple
reservoirs (learners) such as bagging and boosting. In
ensemble learning, each reservoir is trained independently
by using different datasets, and the final decision is made
by considering the decision of a majority of multiple
reservoirs. In contrast, our parallel reservoirs are trained
using a single input with different masks, and the decision
is made by using a weighted linear sum of all multiple
reservoir nodes. Our parallel reservoirs may be simpler

than the procedure of ensemble learning. It would be
interesting to investigate whether the performance of
parallel reservoirs can be improved by using ensemble
learning techniques.

The feasibility of experimental implementation of this
proposed scheme is another important issue. We have fab-
ricated a single semiconductor laser with optical feedback
on a photonic integrated circuit and demonstrated several
tasks of reservoir computing in a previous study [16]. The
implementation of multiple reservoir lasers on a single
photonic chip is straightforward and technologically fea-
sible. We aim to perform an experimental demonstration
of compact reservoir computing on a photonic chip with
multiple reservoirs in the future.

6 Conclusions
We investigated the feasibility of parallel and deep reser-
voir computing using semiconductor lasers with optical
feedback to improve the performance of time-delayed
all-optical reservoir computing. We proposed four reser-
voir configurations: single, parallel, deep, and hybrid
reservoirs, and evaluated the quantitative performance
of these four configurations in three tasks: chaotic time-
series prediction task, nonlinear channel equalization
task, andmemory capacitymeasurement.Deepandhybrid
configurations showed the best performance in the chaotic
time-series prediction task, whereas parallel and hybrid
configurations demonstrated the best performance in the
nonlinear channel equalization task. There was minimal
difference in the memory capacity among multiple reser-
voir configurations. The hybrid configuration showed the
best performance for all three tasks. We also optimized the
number of reservoirs when the total number of nodes was
changed. The use of two reservoirs was suitable for deep
and hybrid reservoirs in the chaotic time-series prediction
task, whereas three or four reservoirs were suitable for
parallel and hybrid reservoirs in the nonlinear channel
equalization task.

The use of multiple reservoirs has great potential
in improving the performance of reservoir computing in
different processing tasks. A novel training technique can
be applied for efficient learning of multiple reservoirs.
Furthermore, the hybrid reservoir configuration can be
used for high-performance edge computing.
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