
*Corresponding author: E-mail: sieb@inf uni-konstanz de

All Rights Reserved No part of this work may be reproduced, stored in retrieval

system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, scanning or otherwise - except for personal and internal

use to the extent permitted by national copyright law - without the permission

and/or a fee of the Publisher

43

 PARALLEL AND DISTRIBUTED DATA PIPELINING

WITH KNIME

 C. Sieb *, T. Meinl, M. R. Berthold

 ALTANA Chair for Bioinformatics and Information Mining, Department of Computer and Information Science,

University of Konstanz, Germany

ABSTRACT

In recent years a new category of data analysis applications have

evolved, known as data pipelining tools, which enable even non-

experts to perform complex analysis tasks on potentially huge

amounts of data. Due to the complex and computing intensive

analysis processes and methods used, it is often neither sufficient

nor possible to simply rely on the increase of performance of

single processors. Promising solutions to this problem are parallel

and distributed approaches that can accelerate the analysis process.

In this paper we discuss the parallel and distribution potential of

pipelining tools by demonstrating several parallel and distributed

implementations in the open source pipelining platform KNIME.

We verify the practical applicability in a number of real world

experiments.

Keywords

Parallel, Distributed, Data Analysis, Pipelining, KNIME.

1. INTRODUCTION

In recent years the amount of data generated on a daily basis is
growing at a mind boggling rate. The information and
knowledge hidden in this data can only be discovered by
sophisticated and high performance analysis methods [10, 9,
23]. It has become increasingly clear that visual exploration
techniques and interactive methods can help analysts better
understand the extracted information and guide the mining
process by their domain knowledge [22, 20]. However, for this
to be successful it is crucial to enable easy and intuitive access
to the vast variety of analysis tools available nowadays. A
recently emerging category of tools for such types of data
analysis are the so-called data pipelining tools that enable
analysts to dynamically create interactive data analysis
workflows. Some of today’s popular data pipelining tools are
Pipeline Pilot [17], Insightful Miner[12], InforSense KDE
[11], D2K [21], DataRush [19] and the recently released, open
source data mining platform KNIME (“Konstanz Information
Miner”, [6, 2]).

In these tools, the pipeline is formed from consecutively
connected processing units called nodes. The raw input data
can be read from various data sources, such as text files and
databases. Usually the data is transformed into table-like
internal representations. These tables are then passed along the
pipeline to other nodes, which handle pre-processing such as
normalizing numerical values, filtering rows based on specific
criteria or joining tables from different branches of the
workflow. Subsequent nodes then apply machine learning or
data mining algorithms to build models based on the input
data. Popular methods include decision trees, rule sets or
support vector machines for labeled data or clustering
algorithms and pattern mining for unlabeled data [23]. Finally,
nodes providing tools for interactive visualization help to
explore the results.

These steps can of course also be applied by a handwritten
script or program. However, by using a graphical
representation of the pipeline and the nodes that process the
data, the purpose of the workflow becomes much more obvious
and the transfer of knowledge among a group of analysts is
improved significantly. The flow is intuitive and self-
documenting due to its visual representation and even users
who do not know much about programming can analyze data
quite easily and are able to quickly modify existing pipelines
to their own liking. An example of a simple data analysis
workflow using KNIME is shown in Fig. 1.

Figure 1. A simple workflow in KNIME

The File Reader node in the upper left area reads pre-classified
training data from a file followed by a node, which
subsequently filters out rows containing missing attribute
values. The upper branch follows by creating a neural network
model. Model flows are distinguished by the differently
shaped ports. In the lower branch another file reader reads in a
new, previously unclassified data set that is to be classified by
the model created in the upper branch. After filtering the
missing values, the predictor node takes the trained neural
network model as well as the new data and classifies it. The
following table view visualizes the predicted values.

Contrasting the appealing properties of visual workflow
layouting, there are also some minor drawbacks to this
concept. First, due to the fact that the workflows must be able

First publ. in: Mediterranean Journal of Computers and Networks 3 (2007), 2, pp. 43-51

Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6485/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64858

http://www.medjcn.com/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64858
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6485/

 44

to deal with all kinds of input data, the used data structures
must be generic and usually end up offering a rather high
abstraction level. Therefore, the used data structures are
usually not optimized for specific tasks. Second, usability
features like progress indication require additional system
resources. This becomes a problem especially if huge amounts
of data (hundreds or thousands of megabytes) are analyzed.
Because the speed of single processor machines does not catch
up with the growing amount of data, parallel and distributed
approaches are promising techniques to speed up the data
analysis process.

Data pipelining tools provide a lot of parallel potential to
accelerate the workflow execution. Even though the general
ideas in the field of parallel and distributed computing are not
new as such, it is important to analyze the capabilities that
arise from the nature of those pipelining tools. In this paper,
we present an analysis of these capabilities and map them to
potential parallelization and distribution techniques,
respectively.

The rest of this paper is organized as follows. In Section 2, we
provide a short overview of the field of parallel and distributed
computing with respect to data pipelining and data mining. In
Section 3, we introduce the used data analysis platform
KNIME. The main part of this article in Section 4 describes
various ways to parallelize and distribute processing data and
tasks in KNIME, and in Section 5 details are provided
regarding some experimental results. Finally, we briefly
contrast this work to other tools’ approaches.

2. PARALLEL AND DISTRIBUTED

COMPUTING
In the last decades a lot of research and development work has
been done in the area of parallel and distributed computing.
The two principal concepts we focus on are Symmetric Multi
Processing (SMP), in which global memory is shared among
several CPUs or cores, and distributed computing, where
independent processing units do not share anything but are
connected by ordinary or high speed networks [13]. Depending
on the specific manner and speed of the communication,
different approaches are applied to parallelize computing
tasks.

In general, SMP approaches are easier to implement as the
communication and synchronization of parallel processes can
be performed via global memory (shared memory, pipes,
semaphores, monitors, and others), which avoids the necessity
of explicitly transferring information to other computers. In
special cases parallelization can even be performed by a
compiler, which distributes independent runtime code (e.g.
loop-cycles) to the available CPUs. Furthermore,
communication between processors is much faster. One
disadvantage is that the scalability potential is limited due to
the central bottleneck represented by the global memory. For
this reason, today’s SMP architectures employ hierarchical
memory/CPU structures, which however increase the
complexity and communication time among processors.

Communication and synchronization in distributed systems is
performed via messages. In these systems, messages must be
sent and received explicitly in either a synchronous or
asynchronous way. For standardization purposes a general
interface has been defined, known as the Message Passing
Interface (MPI) [15].

Major consequences arise from these two architectures and the
application that should be parallelized. First, it is important to

define what should be parallelized. Either the data to be
processed can be distributed, the task itself, or both. One
special issue in data mining applications is the distribution of
the search space in cases where it is much bigger than the data
itself [18, 14].

In data pipelining tools it is possible to exploit “Pipeline
Parallelism”. Tools that support stream processing of data [19]
can execute a data item in one processing unit and immediately
forward the result to the next unit. While the next unit
processes the result, the previous unit can continue to process
another data item [8].

The second aspect in parallel and distributed computing is the
granularity of the data subsets or subtasks to be distributed. In
the case of fast communication (i.e. SMP or fast connected
clusters) it is possible to distribute small portions of data. This
potentially enables optimal balancing of the load among the
available processors. In distributed systems with slow
networks the communication overhead would neutralize the
benefit of such fine-grained parallel execution.

One last aspect is the already mentioned workload balancing
among the participating computers or CPUs. If the complexity
of the task and its parts can be determined in advance, static
load balancing can be performed. However, in many data
mining tasks the size of the problem and the structure of the
search space are not known in advance. A famous example is
frequent itemset mining or pattern mining in general [1, 3, 25].
In this case the work load must be distributed dynamically
during application runtime. Therefore, a dynamic load
balancing system is needed to detect which computers have a
high work load and which are underloaded. Work packages are
then subsequently reassigned from one computer to another
[24].

Following this brief overview of parallel and distributed
computing, the next section describes the KNIME data
pipelining platform. We will see that several aspects
mentioned in this section play an important role for later
parallelization and distribution.

3. KNIME - A DATA PIPELINING

PLATFORM

The Konstanz Information Miner (KNIME) is a Java-based
data mining platform with a graphical user interface that is
based on Eclipse [5]. A workflow in KNIME consists of
several nodes belonging to various categories (readers,
manipulators, learners, predictors, writers), which are
connected via ports. A connection can either transfer data or
generated models, which describe extracted information from
the input data such as learned predictors or models. A node
may have several input and/or output ports and several
successor nodes, but only one predecessor node per input port.
In general, a node has a configuration dialog in which the user
can set various parameters, e.g. which file to read, how many
cross validation runs should be performed or how large the
constructed decision trees can grow. A node can be in any one
of three states:

� not executable: not all of the input ports are connected to
predecessors or the node is not configured correctly,

� ready for execution: all of the input ports are connected
and the node is configured correctly, or

� executed: the input data/models have been processed and
the results are available at its output port(s).

 45

After a workflow has been built and its nodes have been

configured properly, the user can either execute the whole

workflow or only selected nodes. All necessary predecessors

are executed automatically. For further details on KNIME’s

features see [6]. Internally, data is stored in a table-based

format, built up of rows and columns. Each column has a

specific type, e.g. strings, integers, doubles or more

sophisticated types such as bit vectors, molecules or images.

The data is not processed in a stream like way, i.e. the data is

not forwarded in a constant flow. Rather, each node processes

the whole data and afterwards forwards the entire results. This

is much better suited to data mining tasks, as many algorithms

need the whole data in advance.

In order to process huge amounts of data, the tables are not

completely kept in memory but buffered on disk. As this slows

down data transfer, the user may change this default behavior

separately for each node provided sufficient memory is

available. KNIME also includes the concept of metanodes.

These nodes can be used to encapsulate sub-workflows to be

reused at other locations inside the main workflow. Metanodes

can encapsulate specific subtasks and thus hide complexity

from the main flow. Metanodes can also be nested inside other

metanodes. Besides these basic advantages, metanodes can

also be used to represent loops in a workflow, e.g. for cross

validation or feature selection (see Fig. 3 for an example). The

metanode itself then deals with (repeatedly) executing the

inner workflow and aggregating its results. This concept not

only makes the workflow easier to understand than direct loops

but is also more straightforward in terms of implementation.

The framework simply executes a normal node while

implementation of the particular node itself takes care of

splitting the input data into partitions, running the small sub-

workflow several times and aggregating the results at the end

of the run (e.g. the cross validation sub-flow).

In this section we introduced general aspects of KNIME and

described specific concepts representing potential capabilities

for parallelization. The next section illustrates the parallel and

distributed implementation of these concepts in more detail.

4. PARALLEL DATA PROCESSING IN

KNIME

There are several ways to parallelize a typical workflow. The

most simple and obvious one is the parallel execution of

different branches in the workflow. Each node that is ready for

execution can run in its own thread. The next, more advanced

approach, is to process the data rows of the input table in

parallel. The most sophisticated way of parallelization is to

execute whole sub-workflows in parallel, e.g. the different

iterations of a cross validation. Some algorithms allow for

parallelization themselves, however this aspect is usually quite

independent of the workflow. In the next subsections we will

explain the different approaches in more detail and also take a

brief look at what a programmer must do if (s)he wants to write

a node that is capable of processing data in parallel.

Figure 2. Two small workflows with threaded nodes

4.1 Parallel execution of independent nodes
As already mentioned, the most obvious method of parallel
data processing is to execute several independent nodes at the
same time. In Fig. 1 the two “File Readers” as well as the
“Missing Value” nodes can be executed concurrently. The
“Multilayer Perceptron Predictor”, however, has to wait until
its two predeccessors are finished.

In order to avoid overloading if too many nodes are ready for
execution, KNIME uses a thread pool that is limited in size and
reuses threads. The user can specify how many threads should
be used at the same time. From the programmer’s point of
view, nothing needs to be done to allow parallel node
executions. They are automatically handled by KNIME’s
workflow manager: it keeps track of queuing and executing the
nodes in a workflow.

4.2 Parallel processing of data inside a single

node
A considerable number of nodes (especially pre-processing
nodes) perform computations based on single rows
independently from the other rows. Examples of this type of
node are shown in Fig. 2, which parse molecular
representations and convert them into internal ones (e.g. the
“SDF parser”), or nodes that manipulate image data (e.g. “Low
Pass Filter” or “Voronoi Segmentation”). In KNIME these
nodes are called “Threaded Nodes” and implementing them is
not very different from implementing normal nodes. The
framework takes care of splitting the input table into chunks;
each chunk is processed in a separate thread, which is taken
from the thread pool already mentioned in the previous section.

In order to achieve an equally distributed load among all
threads on the one hand and a low overhead on the other, a
suitable balance between the size and the number of chunks is
important. Currently four times as many chunks as available
threads in the pool are created. The abstract model provided by
the framework calls a method in the concrete subclass for each
row of the input table, which then returns the new cells that are
appended to the row. In the final phase the results are merged
and the complete output table is built. The programmer needs
only be aware that the code is called by several threads
concurrently. Therefore, synchronized blocks should be
avoided and write-access to common data must be used
carefully. Apart from that, the implementation resembles the
normal node’s API. Almost the same usage model applies in
cases where the number of output rows differs from the
number of input rows or when the structure of the output table
is completely different from the input table structure. Again,
the framework invokes the special implementation for each

 46

row of the input data. This time however, a (possibly empty)
set of complete rows must be returned. Again, the framework

takes care of merging the final results. The threaded nodes
have a slight overhead that comes from splitting the input

tables and merging the results. This depends largely on the size

of a row (the number of columns and the size of the objects in
the cells) and on I/O speed. Generally, however, this overhead
does not significantly impair performance as we will
demonstrate later.

Figure 3. A workflow with a cross validation node and its internal sub-workflow

4.3 Parallel processing of sub-workflows

In Section 3 we explained the concept of metanodes, which
encapsulate sub-workflows. Metanodes such as the looper or
cross validation node implement additional functionality.
Whereas the first node simply executes the inner flow a
predefined number of times and merges the results, the latter
also splits the input data into different partitions and
aggregates the results at the end. Fig. 3 shows an example of
how a cross validation node can be used. In the outer flow data
is read, pre-processed and then fed into the cross validation
node. Its internal flow contains four predefined nodes: the
input node, which simply transports the data from the outer
flow; two output nodes, which collect the results at the end; the
X-Partitioner, which is responsible for splitting the data into
training and tests sets. The user has to insert at least two nodes
that build a model based on the training data and classify the
test data using the model. The classification results must then
be transferred to the output nodes. There are two output nodes,
as the Cross Validation node has two outports, one for a short
table with the errors of each iteration and one with the
complete prediction results of all iterations In the example we
use the SVM Learner node, which trains a support vector
machine.

Using support vector machines is relatively time-consuming,
even for small datasets, and becomes increasingly so if there
are 10 or more iterations in a cross validation node. In such a
case, all iterations are independent of each other, besides the
fact that partitioning into training and test data must be
identical, i.e. in each iteration another 9 of 10 partitions are
used for training and the remaining partition is used for testing.
Therefore, it is quite natural to parallelize execution of the
single iterations. This time, however, the programmer of such a
parallel metanode has a small amount of extra work to do.

The nodes inside the sub-workflow are not aware of the fact
that they may be executed by several threads at the same time,

i.e. they are not thread safe. For this reason it is necessary for

our approach to create one copy of the sub-workflow for each

iteration. This is accomplished inside the cross validation

node, which also pre-executes each copy of the flow so that all

nodes up to the partitioner node are executed and retain their

individual state.

If an iteration is fully prepared and saved, it is put into a queue.

Because the order of the results may play an important role,
each single job has an index. As soon as a thread becomes

available, execution is started. To assist this process, a thread

pool is created: a sub-pool of the global pool. In the dialog of

the particular metanode the user can specify how many threads

the node should use to execute the internal workflow. Such a

sub-pool shares the threads with its parent pool and thus may

not use more threads than are already configured for the

parent. After 9 of the 10 iterations (in our example) have been

submitted to the queue, the cross validation node executes the

10th iteration by itself. This is necessary to ensure that the GUI

representations show an executed state and the nodes have data

tables at their output ports after the cross validation has

finished. If this did not happen, the user’s view would be

inconsistent showing an outer cross validation node in its

executed state but its inner nodes in an unexecuted state.

Finally, the cross validation node takes the results of the queue

and merges them into the final output tables. As the cross

validation thread does not use its reserved processing time

while waiting for the results, it signals its “waiting state” to the

thread pool which responds by creating an additional thread.

To sum up, the following steps are necessary to implement a

parallel metanode:

 47

1. Create a submission queue into which the prepared sub-
workflows are inserted and executed. A default
implementation that works with threads taken from a sub-
pool is provided by the framework.

2. Prepare the internal workflows, save them in a temporary
directory and insert them into the queue. Methods for
saving are also provided by the framework. The queue
handles loading and executing the flow and returns the
results of the execution.

3. Execute one (the last) iteration in the same thread in order
to update the GUI components.

4. Collect the results from the queue, merge and return them.

Figure 4. Registered distributed computers

Figure 5. Selected computers from the list of computers that

are accessible

Figure 6. The master/worker approach

4.4 Distributed processing of sub-workflows
In addition to the previously described threaded
parallelization, KNIME also enables the distributed execution
of sub-workflows. Similar to the threaded version an
implementor of a metanode can use the distributed
functionality in a transparent manner, and does not need to pay
attention to the details on distribution.

In the following, we describe the way KNIME distributes
several iterations of the cross validation sub-workflow across
distributed computers. The general idea is to set up a KNIME
server component on each participating computer. The server
has the full functionality of KNIME but runs without the user
interface. Instead the server component accepts remote
workflow jobs for execution. All computers intended to be
used for distributed runs have to be registered to the KNIME
global preferences as illustrated in Fig. 4.

Once a workflow has been created that includes a parallel
executable metanode (in our case the cross validation node) it
can be configured for distributed computing by selecting the
appropriate option. Once this option is selected the user can
choose the participating computers from a list of accessible
registered computers (see Fig. 5).

After the run has been started, a single iteration of the cross
validation procedure is assigned to each computer (similar to
the threaded approach). This assignment contains the XML
description of the sub-workflow and all the necessary data. For
this reason, big data files can massively slow down
communication between the computers. Therefore, the
complexity of the computation inside the sub-workflow must
be proportional to the data size.

The distribution scheme follows the classical master/worker
approach where the master is represented by the computer on
which the GUI is installed. Each worker supports the full
KNIME functionality and exploits the threaded parallelism
described in the previous sections. For this reason, each worker
maintains a job queue from which jobs are assigned to the
processors. Fig. 6 demonstrates this approach.

The master assigns to each worker as many jobs as the worker
has available processors. Once a worker reports a result to the
master node a new job (if available) is sent to the worker. This
procedure is repeated until all iterations of the cross validation
node have been executed and sent back by the workers. The
master node then merges the partial results (as in the threaded
approach).

5. EXPERIMENTS
In this section we present some experimental results on the
parallel and distributed approaches presented above. The first
approach in section 4.1 discussed the parallel execution of
independent nodes. As this inherent parallelism is quite
obvious and realized in nearly all pipelining tools we focus on
the threaded processing of data inside a node (see Section 4.2)
and the threaded and distributed approach of processing
metanodes (see Sections 4.3 and 4.4).

The threaded tests have been run on a Tyan Transport VX50
(B4881) with 8 Dual Core AMD Opteron 870 CPUs running at
2.00 GHz. The system has 32GB of memory organized in a
Non-Uniform Memory Architecture (NUMA) and runs the Red
Hat Linux operating system and Sun’s Java 1.5.

The first test measures a flow of nodes that process their data
in parallel chunks as described in Section 4.2. The used flow
(shown in Fig. 2) was taken from a research project in the field

 48

of cell-assay image classification[4]. The flow is the pre-
processing part of a bigger flow. It reads 384 cell-assay images
(Plate Reader), performs low pass filtering, then image
thresholding to remove the background from the images (Otsu
thresholding), and finally segments the cell-assays into single
cell images by Voronoi segmentation. All these steps (except
the image reader) process the images (each image represents a
data row) independently and thus, have been implemented as
threaded nodes. The graphs in Fig. 7 show the runtime for 1 to
10 parallel threads (40 chunks have been created for 10 parallel
threads).

Figure 7. Runtime and speedup of the threaded node scenario

Unfortunately, taking more than 5 parallel threads does not
reduce runtime. At first glance this might be considered
surprising, as the other experiments described below show a
much better speedup, however there are two main reasons for
this effect. First, the used workflow analyzes image data.
During its execution more than 5GB of data are read and

written to disk. Despite the very fast disk array of the used
system these I/O pauses cause degradation in speedup.

The values in table 1 support this conjecture: the number of
threads used for executing nodes, the time the whole KNIME
process spent inside the kernel (system time - mostly because
of I/O), the total runtime and the total CPU usage are shown.
As can be seen, the system time takes about 10% of the
runtime with 1 thread and increases the more threads are used
(the CPU usage is above 100% for 1 workflow thread, because
there are other threads like the UI thread or the garbage
collector that now and then occupy an additional free CPU). At
the same time, the CPU usage does not rise at the same rate as
the number of used threads, because the time a process/thread
spends waiting for I/O is not directly attributed to the process.
Another reason is the architecture of the Java runtime system.
In Java there is one global heap to which all objects are
allocated. Unfortunately, write access to the heap is internally
synchronized by the virtual machine. Therefore, if a parallel
algorithm allocates a lot of memory, its threads will very likely
block each other while trying to access the heap. This effect
has already been described in more detail in [14].

The second test describes the performance measurement of
parallel executing metanodes. This test is executed with
parallel threads and distributed computers. We use two flows
with different characteristics for our tests. The first flow is the
same as shown in Fig. 3. The outer flow reads in the data,
samples a subset of data rows and then performs a 10-fold
cross validation. The cross validation sub-workflow tests a
Support Vector Machine (SVM) with a quadratic kernel. For
this first test we used the shuttle data set from the UCI
repository [16]. The shuttle data has 58,000 rows and 10
columns; its size is about 1.8 MByte and after sampling 40% of
the data, we applied 23,200 rows with about 0.8 MByte to the
cross validation node. Due to the quadratic kernel sub
sampling is necessary to attain reasonable runtime for our
experiments.

In the following we compare the threaded approach to the
distributed approach. The distributed environment comprises
10 ordinary desktop PCs. Each machine has a 3.4 GHz Intel
Pentium 4 (32 Bit architecture) processor with 1 GB of RAM.
The PCs are connected via an ordinary LAN with a 100 MBit
transfer rate.

Table 1. System time and CPU usage for the “threaded node”

workflow

Workflow

threads

System time Total Runtime Total CPU

usage

1 420.30s 3689.00s 109%

2 466.05s 2024.65s 202%

3 501.08s 1530.71s 284%

4 543.10s 1298.00s 366%

5 594.61s 1219.42s 449%

6 645.51s 1168.89s 513%

7 715.38s 1180.89s 573%

8 794.10s 1155.83s 648%

9 860.21s 1169.61s 703%

10 933.29s 1180.71s 758%

 49

Figure 8. Runtime and speedup of the cross validation scenario

(SVM) applied to the shuttle data

Fig. 8 shows the runtime and speedup analysis for both the
threaded and the distributed approach. As shown in the
speedup graph, both approaches perform well compared to the
optimal linear speedup. Both graphs show a strong step
characteristic. This is due to the coarse job granularity (one
iteration represents one job). This is especially true if all
computers perform equally. In this case the master
simultaneously assigns one job to each machine and receives
the results at almost exactly the same time followed by the next
assignment round. In the event that the jobs cannot be equally
distributed among the processors, some computers may remain
idle in the last assignment round. If p is the number of
processors and j is the number of jobs, (p-j mod p) processors
will remain idle. In the distributed case the number of
processors and the number of jobs must be reduced by 1, as the
master performs just one job. The higher the number of idle

computers for p processors the lower the speedup value
compared to the speedup value for p-1 processors.

In the distributed approach it is also notable that the runtime
improvement from 1 to 2 computers is not significant. Also the
step characteristic is shifted compared to the threaded
approach. The reason is that the central master node only
performs one iteration of the metanode (see Section 4.4); i.e.
almost all work is performed by the second computer. This
impact is reduced the more computers are involved in the
execution. Ultimately, for 10 computers, each one performs
exactly one run. This yields the strong speedup improvement
from 9 to 10 machines.

Figure 9. Runtime and speedup of the cross validation scenario

(kNN) applied to the Océ data

The scenario described here employs a relatively small data set
and the computationally expensive SVM (quadratic kernel).
The second batch of tests changes this setup. Instead of the
SVM a much faster k-Nearest-Neighbor (kNN) classifier is
used inside the cross validation node (again 10-fold). As data

 50

input we applied a real-world data set [7] which consists of
177,655 feature vectors extracted from handwritten numerical
characters. Each vector consists of 116 features (columns). The
data set is about 106 MByte in size and is used to test character
recognition engines. To reduce the data set to a reasonable
size, we created a subsample of 30%, i.e. 53,297 feature
vectors (about 32 MByte). Fig. 9 shows the runtime and
speedup behavior of the described experiment.

Compared to the first test speedup has decreased. The
distributed approach suffers particularly from the considerably
higher communication costs due to the required transfer of
large datasets. The overall communication time for a complete
run of all 10 cross validation iterations is about 522 seconds.
The assignment of one job (master to worker), which includes
the input data, takes about 51 seconds; return of results
(worker to master) takes about 7 seconds (about 4 MBytes).

This impact is illustrated by the graph and does not include the
transfer time.

Similar to the scenario with the small data set, the speedup
graphs show a slight step characteristic and the strong speedup
jump from 9 to 10 threads/computers.

The longer runtime from 1 to 2 computers in the distributed
case is a result of the bigger parallel overhead of the second
scenario. Even after removing the data transfer time the
runtime is greater than the runtime for simply one machine.
This is due to the effort required to create an explicit
description of the sub-workflow at the master node (saving it
into a single file) and to restore it at the worker node. The same
also holds for the result data that is sent back.

6. RELATED APPROACHES IN OTHER

TOOLS

Looking at how other data analysis tools deal with parallel and
distributed processing is not easy. Besides D2K all other
popular programs are commercial and their owners do not
provide much information about internal functionality. D2K
has the ability to create sub-workflows, which can be executed
on other computers by using a client-server concept similar to
the one described here. There are no remarks on using several
threads on one computer or executing iterations of sub-
workflows in a parallel or distributed manner. Scitegic’s
Pipeline Pilot offers the possibility to execute nodes remotely
but in the publicly available documentation there are no
references to parallel or distributed execution that really speed
up the workflow for the end user. Insightful Miner exploits
pipeline parallelism whereby several nodes work on the data
stream at the same time. This however comes to an end as soon
as one of the nodes requires all the data in order to compute –
which is especially important for data mining algorithms that
need all the data for the learning process. KNIME exploits this
parallelism, which requires independent data rows with the
concept of threaded nodes as presented in section 4.2. The
threaded node model also keeps the available processors busy
but ensures that a predecessor node finishes its execution
before forwarding the results. Pervasive’s DataRush also
exploits pipeline parallelism, however the visual tools are only
for visualization of the flow, not for construction purposes; the
flow must be assembled and configured via an XML file.
InforSense KDE is able to execute independent branches in
parallel on the same computer. As far as can be judged from
the released information about the commercial products none
offers the entire variety of alternatives to speed up a workflow
by using parallel or distributed processing as discussed here.

7. CONCLUSIONS
We have presented several ways of speeding up data analysis
in pipelining tools by using the power of multiple CPUs (or
cores) in one system on the one hand, and distributed
computers on the other. Such approaches are necessary
because in future the speed of a single processor will not
increase as fast as it has done in the last decades, instead we
will see a rise in multi-core environments. However, the
amount of data requiring analysis will continue to grow at the
same speed or even faster.

Unfortunately, most of today’s programmers are not specially
trained in writing parallelized code, making some kind of
framework necessary. The data analysis platform KNIME
already offers a simple API to develop new nodes for a
workflow. With the extensions we described above, it is not
substantially more difficult to add parallel processing to a node
than programming a sequential one. Of course, additional
overheads must normally be taken into account with such ease
of use. In our experiments we showed that it is still possible to
achieve good speedups by applying the provided framework.
When using multiple threads, however, the I/O and Java
runtime system become bottlenecks. Nevertheless, speedups of
up to 7.5 on 10 CPUs are possible.

When executing sub-workflows on other computers this effect
is not a problem. In this case, however, sending data between
the computers introduces considerable overhead which impairs
performance. On one hand, this impacts the speedup of sub-
workflows that contain a lot of data but are not very
computing-intensive; on the other hand, with the right
proportion it is possible to achieve speedups of almost 8 with
10 computers.

There are still some areas of the framework that can be further
optimized. For instance, transfer of sub-workflows to other
computers can be made more efficient. A saved workflow may
contain more data than is actually necessary for executing
remaining nodes. If this data is left out, the communication
overhead will decrease. After these issues have been solved,
the described approaches will be evaluated with much bigger
datasets and on many more processing units. Another area for
further improvement involves extending the “threaded nodes”
so that those chunks are executed on other computers.

REFERENCES

[1] R. Agrawal, T. Imielinski, A. N. Swami, “Mining association

rules between sets of items in large databases”, Proceedings

of the 1993 ACM SIGMOD Intl. Conf. on Management of

Data, Washington, D.C., USA, 1993. ACM Press, pp. 207-

216.

[2] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Giuseppe

Di Fatta, Thomas R. Gabriel, Florian Georg, Thorsten Meinl,

Peter Ohl, Christoph Sieb, Bernd Wiswedel, “KNIME: the

Konstanz Information Miner”, Proceedings 4th Annual

Industrial Simulation Conference, Workshop on Multi-Agent

Systems and Simulation (ISC 2006), 2006.

[3] Christian Borgelt, Michael R. Berthold, “Mining molecular

fragments: Finding relevant substructures of molecules”,

Proceedings of the IEEE Intl. Conf. on Data Mining ICDM,

Piscataway, NJ, USA, 2002, IEEE Press, pp. 51-58.

[4] Nicolas Cebron, Michael R. Berthold, “Adaptive active

classification of cell assay images”, in Knowledge Discovery

 51

in Databases: PKDD 2006 (PKDD/ECML), Vol. 4213,

Springer Berlin / Heidelberg, 2006, pp. 79-90.

[5] The Eclipse Foundation, “The Eclipse Project”, available at

[http://www.eclipse.org/], last accessed date: 3/2/2007.

[6] ALTANA Chair for Bioinformatics & Information Mining at

the University of Konstanz, “KNIME - Konstanz Information

Miner”, available at [http://www knime.org/], last accessed

date: 3/2/2007.

[7] Océ Document Technologies GmbH. Dataset of 177,655

feature vectors extracted from handwritten numerical

characters, 2006.

[8] Michael I. Gordon, William Thies, Saman Amarasinghe,

“Exploiting coarse-grained task, data, and pipeline

parallelism in stream programs”, in ASPLOS-XII:

Proceedings of the 12th international conference on

Architectural support for programming languages and

operating systems, New York, NY, USA, 2006. ACM Press,

pp. 151-162.

[9] Jiawei Han, Micheline Kamber, “Data Mining - Concepts and

Techniques”, 2nd edition, Morgan Kaufmann, 2006, ISBN:1-

55860-901-6.

[10] David Hand, Heikki Mannila, Padhraic Smyth, “Principles of

Data Mining”, The MIT Press, 2001, ISBN-13: 978-

0262082907.

[11] InforSense, “InforSense KDE”, available at

[http://www.inforsense.com/kde.html], last accessed date:

3/2/2007.

[12] Insightful, “Insightful Miner”, available at

[http://www.insightful.com/products/iminer/default.asp], last

accessed date: 3/2/2007.

[13] Claudia Leopold. Parallel and Distributed Computing: A

Survey of Models, Paradigms and Approaches. Wiley, 2000,

ISBN-13: 978-0471358312.

[14] Thorsten Meinl, Marc Wörlein, Ingrid Fischer, Michael

Philippsen, “Mining molecular datasets on symmetric

multiprocessor systems”, Proceedings of the 2006 IEEE

International Conference on Systems, Man and Cybernetics,

2006, IEEE Press, pp. 1269-1274.

[15] MPI Forum, “MPI specifications”, available at

[http://www mpi-forum.org/docs], last accessed date:

3/2/2007.

[16] David J. Newman, Seth Hettich, C. L. Blake, C. J. Merz,

“UCI repository of machine learning databases”,

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[17] Scitegic, “Pipeline Pilot”, available at

[http://www.scitegic.com/products/overview/], last accessed

date: 3/2/2007.

[18] Christoph Sieb, Giuseppe Di Fatta, Michael R. Berthold, “A

hierarchical distributed approach for mining molecular

fragments”, Proceedings of the International Workshop on

Parallel Data Mining (PKDD/ECML 2006), 2006, pp. 25-37.

[19] Pervasive Software, “Pervasive DataRush”, available at

[http://www.datarush.org], last accessed date: 3/2/2007.

[20] James J. Thomas and Kristin A. Cook, editors. Illuminating

The Path: Research and Development Agenda for Visual

Analytics. IEEE Press, 2005, ISBN 0-7695-2323-4.

[21] Automated Learning Group University of Illinois, “D2K”,

available at [http://alg ncsa.uiuc.edu/do/tools/d2k], last

accessed date: 3/2/2007.

[22] Jack van Wijk, “The value of visualization”, Proc. IEEE

Visualization 2005, 2005, pp. 79-86.

[23] Ian H. Witten and Eibe Frank. Data Mining - Practical

Machine Learning Tools and Techniques. Elsevier, 2nd

edition, 2005, ISBN-13: 978-0120884070.

[24] Cheng-Zhong Xu, Francis C.M. Lau, “Iterative dynamic load

balancing in multicomputers”, Journal of the Operational

Research Society, Vol. 43, No.7, July 1994, pp. 786-796.

[25] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, Wei Li, “New algorithms for fast discovery of

association rules”, in Proceedings of 3rd Intl. Conf. on

Knowledge Discovery and Data Mining, AAAI Press, 1997,

pp. 283-296.

Biographies

Christoph Sieb received his first diploma in Business
Informatics from the University of Cooperative Education in
Stuttgart, Germany in 2001. While writing his Diploma Thesis
at the IBM Research and Development Labs Boeblingen,
Germany he worked on parallel clustering algorithms.
Subsequently, he joined IBM for 2 years as a software engineer
in the field of commercial information systems. He received
his M.Sc. in Computer Science from the University of
Konstanz in 2005. In November 2005 he joined the ALTANA-
Chair for Bioinformatics and Information Mining at Konstanz
University as a PhD student doing research in the field of
parallel and distributed Data Mining and Machine Learning.

Thorsten Meinl received his diploma in Computer Science
from the University Erlangen-Nuremberg in July 2004. He
then spent two years with the Programming Systems group in
Erlangen where he worked on parallel fragment search in
molecular databases. Since March 2006 he has been at the
ALTANA Chair in Konstanz as a PhD student and is doing
research in the field of virtual high throughput screening.

Michael R. Berthold received his PhD from Karlsruhe
University. He then spent over seven years in the US, among
others at Carnegie Mellon University, Intel Corporation, the
University of California at Berkeley and - most recently - as
director of an industrial think tank in South San Francisco.
Since August 2003 he holds the ALTANA-Chair for
Bioinformatics and Information Mining at Konstanz
University, Germany where his research focuses on using
machine learning methods for the interactive analysis of large
information repositories in the Life Sciences. M. Berthold is
Past President of the North American Fuzzy Information
Processing Society, Associate Editor of several journals and a
Vice President of the IEEE System, Man, and Cybernetics
Society. He has been involved in the organization of various
conferences, most notably the IDA-series of symposia on
Intelligent Data Analysis and the conference series on
Computational Life Science. Together with David Hand he co-
edited the successful textbook, ”Intelligent Data Analysis: An
Introduction”, which has recently appeared in a completely
revised second edition.

	Parallel and Distributed Data Pipelining with KNIME
	C. Sieb *, T. Meinl, M. R. Berthold
	ALTANA Chair for Bioinformatics and Information Mining, Department of Computer and Information Science, University of Konstanz, Germany

	ABSTRACT
	Keywords
	1. INTRODUCTION
	Figure 1. A simple workflow in KNIME

	2. Parallel and distributed computing
	3. KNIME - a data pipelining platform
	4. Parallel data processing in KNIME
	Figure 2. Two small workflows with threaded nodes
	4.1 Parallel execution of independent nodes
	4.2 Parallel processing of data inside a single node
	Figure 3. A workflow with a cross validation node and its internal sub-workflow

	4.3 Parallel processing of sub-workflows
	Figure 4. Registered distributed computers
	Figure 5. Selected computers from the list of computers that are accessible
	Figure 6. The master/worker approach

	4.4 Distributed processing of sub-workflows

	5. Experiments
	Figure 7. Runtime and speedup of the threaded node scenario

	Table 1. System time and CPU usage for the “threaded node” workflow
	Figure 8. Runtime and speedup of the cross validation scenario (SVM) applied to the shuttle data
	Figure 9. Runtime and speedup of the cross validation scenario (kNN) applied to the Océ data
	6. Related approaches in other tools
	7. Conclusions
	[1] R. Agrawal, T. Imielinski, A. N. Swami, “Mining association rules between sets of items in large databases”, Proceedings of the 1993 ACM SIGMOD Intl. Conf. on Management of Data, Washington, D.C., USA, 1993. ACM Press, pp. 207- 216.
	[2] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Giuseppe Di Fatta, Thomas R. Gabriel, Florian Georg, Thorsten Meinl, Peter Ohl, Christoph Sieb, Bernd Wiswedel, “KNIME: the Konstanz Information Miner”, Proceedings 4th Annual Industrial S...
	[3] Christian Borgelt, Michael R. Berthold, “Mining molecular fragments: Finding relevant substructures of molecules”, Proceedings of the IEEE Intl. Conf. on Data Mining ICDM, Piscataway, NJ, USA, 2002, IEEE Press, pp. 51-58.
	[4] Nicolas Cebron, Michael R. Berthold, “Adaptive active classification of cell assay images”, in Knowledge Discovery in Databases: PKDD 2006 (PKDD/ECML), Vol. 4213, Springer Berlin / Heidelberg, 2006, pp. 79-90.
	[5] The Eclipse Foundation, “The Eclipse Project”, available at [http://www.eclipse.org/], last accessed date: 3/2/2007.
	[6] ALTANA Chair for Bioinformatics & Information Mining at the University of Konstanz, “KNIME - Konstanz Information Miner”, available at [http://www.knime.org/], last accessed date: 3/2/2007.
	[7] Océ Document Technologies GmbH. Dataset of 177,655 feature vectors extracted from handwritten numerical characters, 2006.
	[8] Michael I. Gordon, William Thies, Saman Amarasinghe, “Exploiting coarse-grained task, data, and pipeline parallelism in stream programs”, in ASPLOS-XII: Proceedings of the 12th international conference on Architectural support for program...
	[9] Jiawei Han, Micheline Kamber, “Data Mining - Concepts and Techniques”, 2nd edition, Morgan Kaufmann, 2006, ISBN:1- 55860-901-6.
	[10] David Hand, Heikki Mannila, Padhraic Smyth, “Principles of Data Mining”, The MIT Press, 2001, ISBN-13: 978- 0262082907.
	[11] InforSense, “InforSense KDE”, available at [http://www.inforsense.com/kde.html], last accessed date: 3/2/2007.
	[12] Insightful, “Insightful Miner”, available at [http://www.insightful.com/products/iminer/default.asp], last accessed date: 3/2/2007.
	[13] Claudia Leopold. Parallel and Distributed Computing: A Survey of Models, Paradigms and Approaches. Wiley, 2000, ISBN-13: 978-0471358312.
	[14] Thorsten Meinl, Marc Wörlein, Ingrid Fischer, Michael Philippsen, “Mining molecular datasets on symmetric multiprocessor systems”, Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, 2006, IEEE Press, p...
	[15] MPI Forum, “MPI specifications”, available at [http://www.mpi-forum.org/docs], last accessed date: 3/2/2007.
	[16] David J. Newman, Seth Hettich, C. L. Blake, C. J. Merz, “UCI repository of machine learning databases”, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
	[17] Scitegic, “Pipeline Pilot”, available at [http://www.scitegic.com/products/overview/], last accessed date: 3/2/2007.
	[18] Christoph Sieb, Giuseppe Di Fatta, Michael R. Berthold, “A hierarchical distributed approach for mining molecular fragments”, Proceedings of the International Workshop on Parallel Data Mining (PKDD/ECML 2006), 2006, pp. 25-37.
	[19] Pervasive Software, “Pervasive DataRush”, available at [http://www.datarush.org], last accessed date: 3/2/2007.
	[20] James J. Thomas and Kristin A. Cook, editors. Illuminating The Path: Research and Development Agenda for Visual Analytics. IEEE Press, 2005, ISBN 0-7695-2323-4.
	[21] Automated Learning Group University of Illinois, “D2K”, available at [http://alg.ncsa.uiuc.edu/do/tools/d2k], last accessed date: 3/2/2007.
	[22] Jack van Wijk, “The value of visualization”, Proc. IEEE Visualization 2005, 2005, pp. 79-86.
	[23] Ian H. Witten and Eibe Frank. Data Mining - Practical Machine Learning Tools and Techniques. Elsevier, 2nd edition, 2005, ISBN-13: 978-0120884070.
	[24] Cheng-Zhong Xu, Francis C.M. Lau, “Iterative dynamic load balancing in multicomputers”, Journal of the Operational Research Society, Vol. 43, No.7, July 1994, pp. 786-796.
	[25] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li, “New algorithms for fast discovery of association rules”, in Proceedings of 3rd Intl. Conf. on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 283-296.
	Biographies

