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Abstract—This paper proposes parallel and distributed algo-
rithms for solving very large-scale sparse optimization problems
on computer clusters and clouds. Modern datasets usually have a
large number of features or training samples, and they are usually
stored in a distributed manner. Motivated by the need of solving
sparse optimization problems with large datasets, we propose
two approaches including (i) distributed implementations of prox-
linear algorithms and (ii) GRock, a parallel greedy coordinate-
block descent method. Different separability properties of the
objective terms in the problem enable different data-distributed
schemes along with their corresponding algorithm implementa-
tions. We also establish the convergence of GRock and explain
why it often performs exceptionally well for sparse optimization.
Numerical results on a computer cluster and Amazon EC2
demonstrate the efficiency and elasticity of our algorithms.

Keywords—sparse optimization, `1 minimization, LASSO, par-
allel and distributed computing, GRock

I. INTRODUCTION

Technological advances in data gathering have led to a
rapid proliferation of big data in diverse areas such as the In-
ternet, engineering, climate studies, cosmology, and medicine.
In order for this massive amount of data to make sense, new
computational approaches are being introduced to let scientists
and engineers analyze their data in a parallel and distributed
manner. Among these approaches, structured solutions, and in
particular sparse solutions, have grown enormously important.
They have been involved in statistics (LASSO [1] and sparse
logistic regression), machine learning (sparse SVM and PCA
[2], [3]), image processing (total variation [4]), seismic data
processing, and more recently in compressive sensing [5], [6],
speech and text processing, bioinformatics and many others.
Many modern applications of sparse optimization involve very
large-scale data, so large that they can no longer be processed
on single workstations running single-threaded computing
approaches. Moving to parallel/distributed/cloud computing
becomes a viable option. This paper introduces two novel
approaches for large-scale sparse optimization problems that
leverage the vast amounts of computing resources available.

Our two approaches are motivated by two structures present
in sparse optimization: separable objective functions, and data
”near-orthogonality”, which we shall describe in the next
section. In the first approach, we parallelize the existing prox-
linear algorithms such as ISTA, FPC [7], and FISTA [8]
by taking advantages of the separability of the terms in the
objective. The second approach, GRock, is developed based
on greedy block-coordinate update. At each iteration, it selects
a few blocks of variables and then a few variables in each
selected block, both by greedy means, and update the latter in
parallel. Although greedy selections are seemingly awkward

for parallel and distributed computation, we argue the exact
opposite for a broad subclass of sparse optimization.

The proposed approaches have significant advantages over
the existing ones. A well-known approach is based on the
alternating direction method of multipliers (ADMM) [9], also
known as an operator splitting scheme. For many convex
problems including those in sparse optimization, it gives rise
to their parallel and distributed algorithms [10]. However,
distributed ADMM does not scale well; given a fixed amount
of data, distributing the data and ADMM computation to more
nodes do not reduce its running time, because its number of
iterations increases with the number of distributed data blocks,
the time saved due to a smaller block size being offset by
the increased number of iterations. In contrast, the introduced
approaches do not increase the iterations so will run faster as
the data are distributed to more nodes.

Another existing approach is parallel coordinate descent.
For instance, Bradley et al. [11] developed the Shotgun al-
gorithm; Scherrer et al. [12] proposed a generic framework
for expressing parallel coordinate descent algorithms; recent
works [13] iteratively and randomly select multiple blocks
of variables to update in parallel. Under certain orthogonality
conditions, our proposed greedy approach needs much fewer
iterations while having nearly the same per-iteration cost.

The source codes of the parallel and distributed implemen-
tations of our approaches are accessible from our personal
websites. In this paper, we compare the scalability of differ-
ent approaches and present results of solving problems with
170GB of data on Amazon EC2 in merely 1.7 minutes to reach
a relative error of 10−5.

II. PROBLEM FORMULATION AND DATA DISTRIBUTION

We study a convex optimization formulation underlying
many sparse optimization problems

min
x∈Rn

F(x) = λ · R(x) + L(Ax,b), (1)

whereR(x) is a (possibly nonsmooth) regularizer that imposes
a certain structure to the solution and L(Ax,b) is a (typically
smooth) data fidelity or loss function.

A function f(x) is (block)-separable if it can be written
as f(x) =

∑S
s=1 fs(xs), where xs is the sth block of x. It

is partially (block)-separable if it can be written as f(x) =∑S
s=1 fs(x).

For the commonly used regularizersR such as the `1 norm,
`1,2 norm, Huber function, and elastic net function, we can
write R(x) =

∑B
b=1R(xb). Many of the common examples

of loss functions such as the square, logistic, and hinge loss
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Fig. 1: data distribution scenarios.

functions satisfy L(Ax,b) =
∑B
b=1 L(A(b)x,bb). Between

R and L, we will need one of them to be separable as such.

Matrix A must be stored in a distributed manner when
it is too large to store centrally, or when it is collected in a
distributed manner. Hence, solving (1) will involve computing
Ax and ATy (multiple times with different x and y) in a
distributed manner. We discuss three scenarios (shown in Fig.
1):

a. row block distribution: A is partitioned into row-
blocks A(1),A(2), . . . ,A(M). Stacking them forms A.

b. column block distribution: A = [A1 A2 · · · AN ].

c. general block distribution: A is partitioned into MN
sub-blocks. The (i, j)th block is Ai,j .

Computing

Ax =

A(1)x
A(2)x
. . .

A(M)x

 and ATy =

A
T
1 y

AT
2 y
. . .

AT
Ny

 ,
in scenarios a and b, respectively, require x and y to be
broadcasted to (or synchronized across) all the nodes. Then,
independent of one another, every node computes A(i)x and
AT
j y.

On the other hand, computing

ATy =

M∑
i=1

AT
(i)yi and Ax =

N∑
i=1

Ajxj ,

in scenarios a and b, respectively, take two steps each: assum-
ing every node keeps its corresponding xi and yj , each AT

(i)yi
and Ajxj are computed independently in parallel; then the
summation is put together through a reduce operation across
all the nodes.

In summary, in scenario a, computing Ax is divided into
the parallel jobs of computing A(i)x, which are preceded by
broadcasting x whereas computing ATy is done by parallelly
computing AT

(i)yi. followed by a reduce operation. Scenario
b has the exact opposite.

In scenario c, computing either Ax or ATy requires a
mixed use of both broadcasting and reduce operations. For
example, it takes three steps to compute

Ax =

A(1)x
A(2)x
. . .

A(M)x

 =

N∑
j=1

A1,jxj
A2,jxj
. . .

AM,jxj



In step 1, for every j = 1, 2, . . . , N in parallel, xj is broad-
casted to nodes (1, j), (2, j), . . . , (M, j); in step 2, Ai,jxj
for all i, j are computed in parallel; finally, for every i =
1, 2, . . . ,M in parallel, a reduce operation is applied to nodes
(i, 1), (i, 2), . . . , (i,N) to return A(i)x =

∑N
j=1 Ai,jxj to all

these nodes for further use. A similar process can compute
ATy.

In all scenarios, the blocks of A can have different
sizes (although, in scenario c, the blocks should be aligned;
otherwise, extra broadcasting and reduce operations will be
incurred). In fact, assigning larger blocks to faster (or less
busy) nodes will improve the overall efficiency.

III. APPROACH I: DISTRIBUTED IMPLEMENTATIONS OF
PROX-LINEAR ALGORITHMS

When R(x) and L(Ax,b) are (block)-separable, it is s-
traightforward to develop distributed implementations of prox-
linear algorithms such as ISTA, FPC, and FISTA. In short,
prox-linear algorithms are the iterations of gradient descent
and proximal operations. The former requires∇xL(Axk,b) =
AT∇L(Axk,b), which can be obtained based on the dis-
tributed computing of Ax and ATy together with the sepa-
rability of L. The latter is often straightforward and can take
advantage of the separability of R.

Specifically, the basic prox-linear iteration applied to (1) is

xk+1 ← arg min
x

λ·R(x)+〈x,AT∇L(Axk,b)〉+ 1

2δk
‖x−xk‖22,

which is given by

xk+1 = proxλR(xk − δkAT∇L(Axk,b)), (2)

where δk is the step size and the proximal operator proxλR
is given by proxλR(t) = arg minx λ · R(x) + 1

2‖x− t‖22.

In scenario a, every node i keeps A(i), bi, and current xk

entirely. It computes A(i)x
k and then ∇Li(A(i)x

k,bi). Once
such computation is finished on all nodes, a reduce operation
computes AT∇L(Axk,b) =

∑M
i=1 A

T
(i)∇Li(A(i)x

k;bi) and
returns the sum to every node. Every node then independently
finishes (2), and all obtain the identical xk+1.

In scenario b, every node i keeps Aj , entire b, but just xkj
out of current xk. Every node computes Ajx

k
j and awaits the

reduce operation to return Axk =
∑N
j=1 Ajx

k
j . Then, every

node j independently computes AT
j ∇L(Axk,b) and further,

based on the separability ofR, obtains xk+1
j = proxλRj (x

k
j−

δkA
T
j ∇L(Axk,b)).



Algorithm 1 P-FISTA: scenario-b distributed LASSO

1: node j keeps Aj , b, initializes x0
j = x1

j = 0;
2: for k = 1, 2, . . . ,K do
3: x̄j ← xkj + k−2

k+1

(
xkj − xk−1j

)
;

4: w←∑N
j=1 Ajx̄j by MPI Allreduce;

5: y← ∇L(w;b);
6: gj ← AT

j y;
7: xk+1

j ← proxλ‖·‖1(x̄j − δkgj);
8: end for

Scenarios a and b require the separability of L and R,
respectively, not both at the same time. Scenario c will require
both at the same time, and we leave the details to the reader.

If δk is fixed, it is often set inversely proportional to the
Lipschitz constant of ∇xL(Ax,b), which can be estimated
by a distributed implementation of the power method based on
operations Ax and ATy. Some algorithms determine δk by the
Barzilai-Borwein method followed by back-track line search,
both of which require extra computation but nonetheless boil
down to inner products involving ∇L(Axk,b).

A. Example: distributed LASSO

The LASSO model is

minimize
x

λ‖x‖1 +
1

2
‖Ax− b‖22.

The `1-proximal operator proxλ‖·‖1 is known as shrink-
age or soft-thresholding, which is component-wise separable
and can be computed in closed form as shrink(xj , λ) =
sign(xj) max(|xj |, 0). Algorithm 1 presents our distributed
implementation for scenario b, which is based on FISTA [8],
a Nesterov-type acceleration of (2), and the SPMD (single
program, multiple data) technique. When Algorithm 1 runs
on distributed nodes, steps 3, 5, 6 and 7 are executed inde-
pendently on every node, and the MPI Allreduce operation in
step 4 forms the sum and sends it to all the nodes.

B. Example: distributed sparse logistic regression

Sparse logistic regression solves

minimize
w,c

λ‖w‖1 +
1

m

m∑
i=1

log
(
1 + exp(−bi(wTai + c))

)
(3)

for given data ai and bi. Form matrix

[C b] =

 b1a
T
1 b1

b2a
T
2 b2
· · ·

bmaTm bm

 =

C(1) b(1)

C(2) b(2)

· · ·
C(M) b(M)

 ,
where each C(i) and b(i) are blocks of rows of C and b,
respectively, and L(t) = 1

m

∑m
i log(1 + exp(−ti)). Then, (3)

can be rewritten as

minimize
w,c

λ‖w‖1 + L(Cw + bc), (4)

whose prox-linear iteration is

wk+1 = proxλ‖·‖1(wk − δkCT∇L(Cwk + bck)),

ck+1 = ck − δkbT∇L(Cwk + bck).

Algorithm 2 diSLR: scenario-a distributed sparse logistic reg.

1: node i keeps C(i), b(i), sets w0 = w1 = 0, c0 = c1 = 0;
2: for k = 1, 2, . . . ,K do
3: w̄← wk + k−2

k+1

(
wk −wk−1);

4: c̄← ck + k−2
k+1

(
ck − ck−1

)
;

5: y(i) ← ∇Li(C(i)w̄ + b(i)c̄);
6: gw ←

∑M
i=1 C

T
(i)y(i) by MPI Allreduce;

7: gc ←
∑M
i=1 b

T
(i)y(i) by MPI Allreduce;

8: wk+1 ← proxλ‖·‖1(w̄ − δkgw);
9: ck+1 ← c̄− δkgc;

10: end for

Algorithm 2 describes our implementation for scenario a. Steps
3–5, 8, and 9 run independently on every node, and steps 6
and 7 call MPI Allreduce to form the sums and send them to
all the nodes.

IV. APPROACH II: PARALLEL GREEDY COORDINATE
DESCENT METHOD

The coordinate descent method (CD) is one of the first
schemes applied to nonlinear optimization. At each iteration
of this method, the objective F(x) is minimized with respect to
a chosen coordinate (or block of coordinates) while the others
are fixed. Its main advantage is the simplicity of each update.

It is important to decide which coordinate(s) to update at
each iteration. The most common rule cycles through all of the
coordinates in a Gauss-Seidel fashion; we call it Cyclic CD.
In Random CD, the coordinate(s) are selected at random, and
its analysis is based on the expected objective value. Greedy
CD, on the other hand, chooses the coordinate(s) with the best
merit value(s), for example, a coordinate of the gradient vector
with the maximal absolute value. There are also rules that mix
the above three, which we call Mixed CD. For example, [13]
partitions the coordinates into B blocks and randomly selects
P blocks, within each of which a coordinate is selected for
update in a greedy manner.

We argue that an often-have property of sparse optimization
favors Greedy CD than other rules. In fact, under certain
orthogonality conditions (such as the RIP and incoherence
conditions), certain greedy rules are guaranteed to select the
coordinates corresponding to nonzero entries in the final so-
lution. Below we present GRock, a greedy coordinate-block
descent method for solving (1) that is friendly with parallel
computing. To this end, we assume R(x) is separable and
R(x) =

∑n
i=1 r(xi), L(Ax,b) is convex, and A has columns

with unit 2-norm (to simplify our analysis). We let β > 0 be
such that

L(A(x + d),b) ≤ L(Ax,b) + gTd +
β

2
dTATAd, (5)

where g = AT∇L(Ax,b). We have β = 1 for the square
loss function and β = 1

4 for the logistic loss. We define the
potential of each coordinate i by

di = arg min
d

λ · r(xi + d) + gid+
β

2
d2, (6)

which is given in closed form as di = proxλ
β r

(xi− 1
β gi)−xi,

where gi is the ith entry of g. Let d = [d1; d2; . . . ; dn].



As we will later consider scenario b and use multiple
computing nodes, we divide the coordinates into N blocks.
For each block j, let

mj = max{|d| : d is an element of dj} (7)

and sj be such that mj = dsj , i.e., coordinate sj achieves
the maximum. At each iteration, out of the N blocks, the set
P of the P blocks with largest mj are selected, and their
maximizing entries sj , for j ∈ P , are updated. In short, the
best coordinate of each of the best P blocks are updated. The
algorithm GRock is summarized in Algorithm 3.

Algorithm 3 GRock(P ) for scenario b

1: Initialize x = 0 ∈ Rn
2: while not converged do
3: dj ← (6) for each block j;
4: mj , sj ← (7) for each block j;
5: P ← the indices of the P blocks with largest mj ;
6: xsj ← xsj + dsj , for each j ∈ P .
7: end while
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Fig. 2: demonstration for GRock

Without additional conditions, GRock is guaranteed to
converge only for P = 1. In Figure 2, the left plot demonstrates
P = 1, in which case the objective descents at each iteration
and convergence is ensured. The right plot demonstrates P = 3
(we project the contour to the first two coordinates), in which
case the objective increases and the points diverge over the
iterations. Due to the slanted shape of the contour, if two
components are updated together, the updates must work
together in order to decrease the objective, whereas each
update (6) ignores the other and does not have the big picture.
If the contours are (nearly) aligned with the coordinates, then
P = 3 would work fine and take few iterations than P = 1.

To ensure convergence, similar to the analysis in [13], we
define a block spectral radius as

ρP = max
M∈M

ρ(M), (8)

whereM is the set of all P×P submatrices that we can obtain
from ATA corresponding to selecting exactly one column
from each of the P blocks and ρ(M) is spectral radius of
M. Apparently, ρP is monotonically increasing with respect
to P , thus 1 ≤ ρP ≤ ρ(ATA). The intuition for ρP is that if
the columns of A from different blocks are nearly orthogonal
to one another then M ∈ M will be close to identity matrix
and hence ρP is small. In fact, Lemma IV.1 shows that ρP < 2
induces monotonically decreasing of the objective function
values.

Lemma IV.1. Assume R(x) is convex, L(Ax,b) satisfies
assumption (5), and xk be the sequence generated by Alg.
3. If ρP < 2, then

F(xk+1)−F(xk) ≤ ρP − 2

2
β‖xk+1 − xk‖2.

The proof of this lemma and the theorem below is included
in the supplementary material. Based on Lemma IV.1, we can
show the following convergence result.

Theorem IV.2. Let R(x) = ‖x‖1, and x∗ be a solution to (1),
and xk be the sequence generated by Alg. 3. Assume ‖xk −
x∗‖2 ≤ C, F(x) satisfies the assumptions in Lemma IV.1, and
the gradient of L(Ax,b) satisfies the Lipschitz condition with
Lipschitz constant L. Then, we have

F(xk)−F(x∗) ≤
2
(

2CL+ βC
√

N
P + 2λN−P√

P

)2
(2− ρP )β

· 1

k
.

Note that as long as any two columns from two different
blocks are linearly independent, we automatically have ρ2 <
2. In another word, we can at least let P = 2 and ensure
convergence.

A. Greed rocks for sparse optimization

In general optimization, CD methods update only a few
coordinates each iteration and thus take more iterations than
gradient or prox-linear methods. However, in sparse optimiza-
tion, it is the opposite with Greedy CD since its coordinate
selections often occur on those corresponding to nonzero
entries in the solution. As such selection will keep most entries
in x as zero throughout the iterations, the problem dimension
is effectively reduced. On the other hand, prox-linear iterations
typically have dense intermediate solutions at the beginning,
and they can take fairly many iterations before the intermediate
solutions become finally sparse.

To illustrate this, we compare GRock to the other three
selection schemes such as Cyclic CD, Greedy CD [14] and
Mixed CD (see [13] for details) applied to the LASSO
problem. The convergence results of the different coordinate
descent methods are shown in Fig. 3. For Mixed CD and
GRock, we partition the matrix A ∈ R512×1024 by column into
64 blocks, and we select 8 blocks to update in each iteration.
Fig. 3 shows that greedy selection is effective for the LASSO
problem. In particular, Fig. 3 highlights the fastest convergence
of our GRock algorithm for this example.
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Fig. 3: a comparison of different coordinate descent methods



In addition, we test the GRock algorithm on the
mug025 12 12.mat dataset which is created by the authors
in [11]. This data matrix A has the dimension of [6205, 24820]
with about 0.4% nonzero entries. Convergence results are
shown in Fig. 4. The “optimal” solution x∗ is calculated by
FISTA with 400 iterations. The algorithm is terminated after
100 iterations or ‖x

k−x∗‖
‖x∗‖ ≤ 10−11.
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Fig. 4: a comparison of different coordinate descent methods
and FISTA

B. Parallel GRock

GRock in Algorithm 3 can be easily distributed as its
steps 3 and 4 can be done in parallel over all the N blocks,
step 5 realized by MPI, and step 6 parallelized over the P
selected blocks. One of the major computation in GRock is
g = AT∇L(Ax,b), which is needed by (6) and thus step
2. Note that as only P coordinates of x are updated each
iteration, Ax can be cheaply updated instead of recomputed.
Furthermore, in scenario b, similar to Approach I, the com-
putation involving AT is distributed to N computing nodes.
Hence, the per-iteration complexity of GRock is lower than
that of Approach I though still at the same order.

When P is not given a priori, one can start with an ag-
gressive (i.e., large) value and dynamically reduce it whenever
the objective increases. Note that computing the objective in
Approaches I and II involves rather minor extra computation
and communication.

V. COMPLEXITY ANALYSIS

We will compare the three algorithms in terms of wall clock
time. The time includes the CPU part and communication part.
The total time depends on the number of iterations taken.

Each iteration of distributed prox-linear algorithms takes
O(mn/N), dominated by the two matrix-vector multi-
plications, and O(n logN) on communication for calling
MPI Allreduce (assume butterfly communication algorithm
[15]) to get

∑N
i=1 Aixi.

Each iteration of GRock takes O(mn/N+Pm) on comput-
ing, breaking down to O(mn/N) for one matrix-vector multi-
plication and O(Pm) for updating the residual Ax−b as only
P coordinates of x are updated, and O(n logN+N logN) on
communication for calling MPI Allreduce to get

∑N
i=1 Aixi

and the best P blocks.

Each iteration of distributed ADMM, which we will
numerically compare below, takes O(mn/N + 2m2) on
computing and O(mN logN) on communication for calling

MPI Allreduce. In addition, there is a computational cost of
O(nm2/N +m3) or O(mn2/N2 +n3/N3) for certain matrix
factorization during initialization (see section 4 of [9] for
details).

The per-iteration costs of all algorithms are comparable.

VI. NUMERICAL RESULTS

Our tests use both a cluster at Rice University and Amazon
EC2. The cluster at Rice consists of 170 Appro Greenblade
E5530 nodes each with two quad-core 2.4GHz Xeon (Na-
halem) CPUs. Each node has 12GB of memory shared by all
cores on the node. The number of processes used is equal to
that of the cores.

A. Which algorithm is more scalable?

We compare three distributed algorithms on LASSO. They
include parallel ADMM applied to the Lagrange dual of
LASSO (PD-ADMM), P-FISTA, and GRock. Two instances of
LASSO in the test are described in table I. Observation vector

TABLE I: datasets tested on Rice cluster

A type A size λ sparsity of x∗

dataset I Gaussian 1024× 2048 0.1 100
dataset II Gaussian 2048× 4096 0.01 200

b is obtained by the method proposed in [8] such that the given
sparse vector x∗ is the optimal solution to the LASSO problem.
The stopping criterion is set to ‖x

k−x∗‖
‖x∗‖ ≤ 10−11. In P-FISTA,

stepsize δk is set to 1
‖A‖22

. In GRock, we set P = N , the num-
ber of data blocks. The test tries N = 1, 2, 4, 8, 16, 32, 64, 128.

Fig. 5(a) and 5(b) show total number of iterations vs
number of cores. As expected, the numbers of iterations
of P-FISTA remain constant. PD-ADMM has its number of
iterations linearly increasing with the number of processes,
which is caused by the variable duplications in the ADMM
formulation (see section 8 in [9]). On the other hand, GRock
takes fewer iterations as increasing N = P means more
coordinates being updated at each iteration.

Fig. 5(c) and 5(d) show total time vs number of cores. PD-
ADMM has its total computation time staying roughly constant
due to a combined effect of more iterations and cheaper per-
iteration cost. P-FISTA has its total time reducing linearly until
the communication time begins to signify. GRock reduces its
total time faster than P-FISTA, as a result of both cheaper
per-iteration cost and fewer iterations. The results match the
percentages of the communication part of total time, both of
which are measured on a specific core, given in Fig. 5(e) and
5(f). The percentage is overall linearly correlated to the number
of cores. Note that the matrix-factorization time during the
initialization of PD-ADMM is counted in the total time.

Note that we do not have to choose P = N for GRock
as in this experiment. For some problems, we may need to
choose P < N to ensure the convergence of GRock.
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(c) Dataset I: cores vs time
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(d) Dataset II: cores vs time
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(e) Dataset I: cores vs comm. per-
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Fig. 5: LASSO on two datasets.

B. Large datasets

In this LASSO test, A is generated by
randn(100000, 200000) in Matlab with 20 billion nonzero
entries and having a size of 170GB. The solution x∗ has 4000
nonzero entries, each sampled from N (0, 1) independently.
We set the maximum number of iterations to 2500 and the
stopping criterion as ‖x

k−x∗‖
‖x∗‖ ≤ 10−5. On Amazon EC2, we

requested 20 high-memory quadruple extra-large instances
giving us a total of 160 cores and 1.2TB of memory in
total. Table II compares the performance of PD-ADMM and
GRock. Note that the performance of PD-ADMM depends on
a penalty parameter. We pick it as the best out of only a few
trials as we cannot afford more trials.

TABLE II: large dataset time results

PD-ADMM GRock

matrix factorization (min) 51 n/a
iteration time (min) 105 1.7
number of iterations 2500 104
communication time 30.7 0.5
stopping relative error 1E-1 1E-5
total time (min) 156 1.7
cost $85 $0.93

VII. CONCLUSION

In this paper, we have proposed two approaches includ-
ing distributed implementation of prox-linear algorithms and
GRock for solving large-scale sparse optimization problems.
Our approaches are motivated by the two typical structures
of sparse optimization problems, namely, separable objective
functions and rough orthogonality in the data. Numerical
results show that both approaches are more scalable than the
popular distributed ADMM method, which is nonetheless more
general and has applications beyond sparse optimization.
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VIII. SUPPLEMENTARY MATERIALS

A. Proof of Lemma IV.1

For simplicity we use L(x) to represent L(Ax,b), and
L(x) satisfies the following condition:

L(x + d) ≤ L(x) +∇L(x)Td +
β

2
dTATAd. (9)

Let g = ∇L(xk) and d̄ = xk+1 − xk. We have

F(xk+1)−F(xk)

= L(xk+1) + λR(xk+1)− L(xk)− λR(xk)

≤ gT d̄ +
β

2
d̄TATAd̄ + λ(R(xk+1)−R(xk))

≤ gT d̄ +
β

2
d̄TATAd̄ + λpT d̄,

for any p ∈ ∂R(xk+1). Define J as the index set containing
the P selected indexes {j1, j2, ..., jP } from P blocks. From
the optimality condition we have

0 ∈ βd̄J + gJ + λ∂RJ(xk+1),

which is equivalent to

−βd̄J − gJ ∈ λ∂RJ(xk+1)

Correspondingly, we define the P × P submatrix M with
entries Ms,t = AT

js
Ajt , then

F(xk+1)−F(xk)

≤ gTJ d̄J +
β

2
(d̄J)TMd̄J + (−gJ − βd̄J)T d̄J

≤ gTJ d̄J +
βρP

2
(d̄J)T d̄J + (−gJ − βd̄J)T d̄J

=
ρP − 2

2
β(d̄J)T d̄J

=
ρP − 2

2
β‖d̄‖2.

B. Proof of Theorem VIII.1

Before proving our main convergence result, we will prove
the following Lemma.

Lemma VIII.1. Assume the gradient of L(x) satisfies the
Lipschitz condition with Lipschitz constant L, x∗ is the optimal
solution, and ‖xk − x∗‖ ≤ C, ∀k, then the iterates of Alg. 3
with R(x) = ‖x‖1 satisfy

F(xk+1)−F(x∗)

≤
(

2CL+ βC

√
N

P
+ 2λ

N − P√
P

)
‖xk+1 − xk‖.

Proof: Let d̄ = xk+1 − xk and dk be the vector of
potentials for all the coordinates defined in (6). Since L(x)
is a differentiable convex function, on one hand, we have

L(xk+1)− L(xk) ≤ 〈gk+1, d̄〉
= 〈gk+1 − gk, d̄〉+ 〈gk, d̄〉
≤ L‖d̄‖2 + 〈gk,xk+1 − xk〉,

(10)

where gk and gk+1 are the gradients of L(x) at xk and xk+1

respectively. The second inequality is derived by using the
Lipschitz condition of the gradient of L(x).

On the other hand, L(x) being convex also gives the
following inequality:

L(xk)− L(x∗) ≤ 〈gk,xk − x∗〉. (11)

Combining (10) and (11), we can derive

L(xk+1)− L(x∗) ≤ L‖d̄‖2 + 〈gk,xk+1 − x∗〉. (12)

If R(x) = ‖x‖1, we have

R(xk+1)−R(x∗)

=R(xk+1)−R(xk + dk) +R(xk + dk)−R(x∗)

≤N − P√
N
‖dk‖+ pT (xk + dk − x∗)

≤2
N − P√

N
‖dk‖+ pT (xk + d̄− x∗)

=2
N − P√

N
‖dk‖+ pT (xk+1 − x∗)

(13)

for any p ∈ ∂R(xk + dk).

Inequalities (12) and (13) together give us

F(xk+1)−F(x∗)

= L(xk+1)− L(x∗) + λ(R(xk+1)−R(x∗))

≤ L‖d̄‖2 + (λp + gk)T (xk+1 − x∗) + 2λ
N − P√

N
‖dk‖,

for any p ∈ ∂R(xk + dk). Therefore, we can choose p such
that λp + gk = −βdk, and we have

F(xk+1)−F(x∗)

= L‖d̄‖2 − β(dk)T (xk+1 − x∗)

≤ L‖d̄‖2 + βC‖dk‖+ 2λ
N − P√

N
‖dk‖

≤ 2CL‖d̄‖+ βC

√
N

P
‖d̄‖+ 2λ

N − P√
P
‖d̄‖

=

(
2CL+ βC

√
N

P
+ 2λ

N − P√
P

)
︸ ︷︷ ︸

D

‖d̄‖

Combine the result from Lemma IV.1 and Lemma VIII.1,
we have

F(xk+1)−F(xk)

≤ (ρP − 2)β

2D2
(F(xk)−F(x∗))2,

from which we can conclude that

F(xk)−F(x∗) ≤ 2D2

(2− ρP )β
· 1

k
.


