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Abstract—This paper presents a kernel-based adaptive filter
that is applied for the digital domain self-interference cancellation
(SIC) in a transceiver operating in full-duplex (FD) mode. In FD,
the benefit of simultaneous transmission and receiving of signals
comes at the price of strong self-interference (SI). In this work, we
are primarily interested in suppressing the SI using an adaptive
filter namely adaptive projected subgradient method (APSM) in
a reproducing kernel Hilbert space (RKHS) of functions. Using
the projection concept as a powerful tool, APSM is used to
model and consequently remove the SI. A low-complexity and
fast-tracking algorithm is provided taking advantage of parallel
projections as well as the kernel trick in RKHS. The performance
of the proposed method is evaluated on real measurement data.
The method illustrates the good performance of the proposed
adaptive filter, compared to the known popular benchmarks.
They demonstrate that the kernel-based algorithm achieves a
favorable level of digital SIC while enabling parallel computation-
based implementation within a rich and nonlinear function space,
thanks to the employed adaptive filtering method.

Index Terms—full-duplex, self-interference, nonlinear adaptive
filter, reproducing kernel, system identification

I. INTRODUCTION

Full-duplex (FD) communications is a promising technology
for future wireless communications with the potential of
improved spectral efficiency, reduced end-to-end latency, and
higher information secrecy [1]–[4]. In FD radios, information
is transmitted and received simultaneously in the same fre-
quency band, offering a much higher capacity to cope with
the increasing demand for data transmission. However, these
benefits come at the expense of introducing a strong self-
interference (SI) signal at the receiver generated by its own
transmitter [1], [2], [5].

The SI signal could be canceled in various stages, including
propagation domain (passive), relying on the passive isolation
among the transmit and receiver front ends, e.g., [6], analog
domain (active), e.g., employing auxiliary RF SIC circuitry
[7], and digital domain (baseband signal processing) [2]. The
residual SI signal in the digital domain consists of linear
and nonlinear parts. The nonlinearity comes from hardware
impairments of active components in the RF chain such as
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power amplifiers and mixers. The issue of digital SI cancel-
lation (DSIC) and its importance have been investigated in
recent studies [8]–[12]. DSIC can be classified as a regression
problem where the existing residual SI is to be estimated
utilizing the knowledge of transmitted signal history and
previous instances of the received SI samples.

One of the main challenges in the concept of estimation or
regression is the computation of received signal statistics, in-
cluding spatial and temporal correlation matrices. One solution
is to use the law of large numbers, stating that the average of
a large number of samples tends toward the expected value
as more samples are used. Applying this theorem restricts
us to offline techniques. In offline techniques, we require
enough time to collect sufficient samples of signals, which
is also called batch learning in some contexts. However, it
is not desirable in real-time applications where continuous
analysis and processing of data is required as data samples
arrive sequentially. For example in [12], it is shown that
neural networks are highly capable of learning the hardware
nonlinearity. Nonetheless, they are not suitable for dynamic
wireless communication systems where a mismatch between
the assumed signal statistics for training and the actual sce-
nario leads to significant performance degradation.

As a desirable solution, benefiting both real-time and low
computational complexity and tracking the system changes,
adaptive processing has been introduced and received a great
deal of attention [13]. In adaptive filtering, the filter coef-
ficients are updated recursively to decrease predefined error
criteria in each iteration. Adaptive filters play a major role in
nonstationary environments such as wireless channels, where
the filter coefficients update in an online fashion to track
alterations. Thus far, several contributions have been made to
the DSIC problem in a time-adaptive setting [8]–[11].

The new communication links with wide bandwidth, such as
millimeter wave wireless channels, operate at high data rates.
As a result, DSIC results in high computational complexity as
well as high latency. Furthermore, wireless channels are highly
dynamic and change rapidly. Hence, we require an adaptive
and low-complexity filtering method capable of tracking the
changes. Moreover, the key to a successful DSIC is to cope
with various forms of transceiver nonlinearity.

Although several adaptive methods have been presented
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in this context, to the best of our knowledge, there is no
detailed investigation on kernel-based methods in reproducing
kernel Hilbert spaces (RKHSs). Thanks to the kernel trick
[13], they provide us with low complexity computations while
solving the regression problem in a higher dimensional space.
This property enables us to model the linear and nonlinear
components of our system using an appropriate kernel.

In this work, we form a kernel by a linear combination
of linear and Gaussian kernels. We also adopt the adaptive
projected subgradient method (APSM) [14], as a nonlinear
adaptive filter using the new kernel. One of the most appealing
features of APSM is the concept of concurrent processing.
It enables us to take full advantage of parallel processing to
reduce latency. We demonstrate that the proposed method not
only could suppress linear and nonlinear parts of residual SI,
but it could also be parallelized.

II. SYSTEM MODEL

Fig. 1 illustrates the block diagram of a typical FD system
comprising of active analog and digital SI cancellation mod-
ules. The transmitted complex signal at time instant n is de-
noted by x[n], while y[n] represents the digital received signal
corrupted by additive white Gaussian noise z[n]. Hence, the
nonlinear residual SI signal in the complex digital baseband
domain can be written as

y[n] =f(x[n+Mpre], · · · , x[n], · · · , x[n−Mpost]) + z[n]

=f(x[n]) + z[n], (1)

where M := Mpre + Mpost + 1 is the mem-
ory length of the effective SI channel and x[n] =
[x[n+Mpre], · · · , x[n], · · · , x[n−Mpost]]

T , where (.)T rep-
resents matrix transpose. It should be noted that we have
deployed a short time lag of Mpre samples as in [8] to model
the SI channel accurately. Using linear and nonlinear basis
functions, the function f(·) in (1) may be written as

f(x[n]) '
K∑
k=1

hkψk(x[n]), (2)

where K represents the cardinality of the set of basis functions,
and hk’s denote their corresponding coefficients. In (2), ψk(·)
is the k-th basis function such as a linear, polynomial, or any
other nonlinear function. Our goal is to find the best estimate
of f(·) such that it minimizes the difference

e[n] = y[n]− f̂(x[n]) ' z[n].

The main objective of digital SI cancellation is to find a
model that provides the best approximation of the system.
Indeed, this is a system identification problem. To our end,
for each pair of training data points (x[n], y[n]) ∈ CM × C,
we need to find a function f̂ : CM → C such that

|e[n]| = |y[n]− f̂(x[n])| ≤ ε, n = 1, 2, · · · , N, (3)

where ε ≥ 0 is a small predefined error tolerance, and N
denotes the total number of observations. We would like to
solve this problem using projection-based methods. These are
powerful methods in machine learning.
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Fig. 1. General schematic of self-interference cancellation.

III. KERNEL-BASED APSM
Without loss of generality, we restrict ourselves to real

Hilbert spaces. A Hilbert space is a linear vector space like
the Euclidean space but with the possibility of having infinite
dimensions. The function we estimate can be considered as a
point in this Hilbert space. Every Hilbert space H is equipped
with an inner product operation 〈·, ·〉H and its induced norm.
The inner product is a function that assigns a real value to
every pair of elements in the space (H×H → R). Accordingly,
the induced norm is defined as ‖ · ‖1/2H = 〈·, ·〉H.

A Hilbert space is called an RKHS if there exists a so-called
kernel function κ(·, ·) : RL × RL −→ R, which is symmetric
κ(u,v) = κ(v,u), ∀u,v ∈ RL, and positive definite,
i.e.,

∑N
n=1

∑N
m=1 anamκ(un,um) ≥ 0, ∀u1, · · · ,uN ∈

RL and ∀a1, · · · , aN ∈ R. It also has the following properties:
• Representation property: κ(·,u) ∈ H, ∀u ∈ RL,
• Reproducing property: f(u) = 〈f, κ(·,u)〉H, ∀f ∈
H, ∀u ∈ RL.

Adopting a kernel enables us to define a mapping from the
low-dimensional input space (of size L) to a high-dimensional
(possibly infinite) feature space where our problem can be
solved linearly, i.e., u ∈ RL −→ Q(u) := κ(·,u) ∈ H.
To obtain a solution, it is required to compute the inner
products between mapped points efficiently. The well-known
reproducing property enables us to replace the inner prod-
uct operation 〈κ(u, ·), κ(·,v)〉H with the value of function
κ(u, ·) ∈ H at point v ∈ RL. This leads us to the kernel trick
as 〈κ(u, ·), κ(v, ·)〉H = κ(u,v), decreasing the computational
complexity. The kernel trick means that we do not require to
compute the inner product in the high-dimensional RKHS, but
replace it with the kernel function value in the original input
space with much lower complexity. Now, the initial nonlinear
problem is cast as a linear one in the RKHS.

A. SI Cancellation using APSM

Here our goal is to find a function fn : RL → R ∈ H in a
time adaptive setting such that fn ∈

⋂
j∈Jn

Sj , where

Sj := {f ∈ H : |f(xj)− yj | ≤ ε} , (4)

and xj =
[
Re{xT [j]}, Im{xT [j]}

]T
. It should be noted that

we estimate two distinct functions for real and imaginary parts



of y[j] to deal with I/Q imbalances more effectively. Therefore,
yj = Re{y[j]} to estimate the real part of the interference
signal and accordingly for the imaginary part yj = Im{y[j]},
i.e., y[j] = freal(xj) + jfimag(xj). The desired functions lie
in the intersection of subset Jn of nonempty convex sets Sj’s
defined by training data points.

Using the reproducing property of RKHSs, we can rewrite
(4) as Sj = {f ∈ H : |〈f, κ(xj , ·)〉H − yj | ≤ ε} , which rep-
resents hyperslabs. A hyperslab with width ε as illustrated in
[14, Fig. 12] is a convex set. To reach the desired function,
we require to project our current estimate to the convex sets
described by triple (xj , yj , ε). The metric projection of point
f onto a nonempty closed convex set C is expressed as
PC(f) = argmin

g∈C
‖f − g‖H. The metric projection of our

current estimate fn onto hyperslab Sj defined by (xj , yj , ε)
is given by

PSj
(fn) = fn + βnj κ(xj , ·), (5)

where

βnj =


yj−〈fn,κ(xj ,·)〉H−ε

κ(xj ,xj)
, yj − 〈fn, κ(xj , ·)〉H > ε,

0, |yj − 〈fn, κ(xj , ·)〉H| ≤ ε,
yj−〈fn,κ(xj ,·)〉H+ε

k(xj ,xj)
, yj − 〈fn, κ(xj , ·)〉H < −ε.

In our problem, every training data point (xn, yn) arrives
sequentially defining a new hyperslab. We look for a function
that resides in their intersections. However, it is not possible to
consider all hyperslabs due to computational restrictions and
the dynamic nature of wireless communication systems where
the intersection might become empty. Therefore, we restrict
ourselves to a subset Jn ⊂ {1, 2, · · · , n} of indices with
cardinality q = |Jn|. A typical choice for Jn in a dynamic
system could be q most recent samples. To our goal, we
apply the APSM algorithm capable of concurrent processing
to reduce latency.

The APSM algorithm operates as follows:

• The algorithm starts with time index n = 0, a predefined
positive value q, and a positive ε.

• Choose an arbitrary initial point f0 ∈ H.
• Compute the projections and the parameter Mn as

Mn :=


∑

j∈Jn ω
n
j ‖PSj

(fn)−fn‖2H
‖
∑

j∈Jn ω
n
j PSj

(fn)−fn‖2H
, if fn 6=

∑
j∈Jn

ωnj PSj (fn)

1, otherwise.

• For each training point (xn, yn), compute the next esti-
mate as fn+1 = fn+ µMn

(∑
j∈Jn

ωnj PSj
(fn)− fn

)
,

where
∑
j∈Jn

ωnj = 1 and ωnj ≥ 0.

It can easily be verified by induction [14] that starting from
an initial point f0, the adaptive filter fn is of the general form

fn(·) =
n−1∑
j=0

γ
(n)
j κ(xj , ·), (6)

where γ(n)j ’s are the coefficients to be updated at each time.

B. Various Kernels for APSM

As discussed earlier, a kernel implicitly maps the elements
in the input space to a possibly higher dimensional feature
space. Given the structure of our data, choosing the right kernel
plays a vital role in the performance of DSIC. An informed
choice is the linear kernel κL(u,v) = uTv, ∀u,v ∈ RL,
inasmuch as the SI signal is comprised of strong linear
part. However, we know that nonlinearity is also a signif-
icant part of the SI signal. A celebrated nonlinear kernel
forming a RKHS is the Gaussian function, κG(u,v) =
exp

(
−ξ(u− v)T (u− v)

)
, ∀u,v ∈ RL, where ξ represents

the kernel width and takes a positive real value. For the
Gaussian kernel, the induced RKHS is of infinite dimension.

It is important to choose a proper kernel and its asso-
ciate RKHS representing the signal characteristics. Hence,
we search for a function in a bigger Hilbert space including
both linear and nonlinear functions. We apply a weighted sum
of linear and Gaussian kernels as a new kernel, κ(u,v) =
wLκL(u,v) + wGκG(u,v), ∀wL, wG > 0. The sum space
of RKHSs associated with the linear and Gaussian kernels
is defined as H+ = {f = fL + fG|fL ∈ HL, fG ∈ HG} ,
where the inner product in this Hilbert space is presented by
〈f, g〉H+,w = w−1L 〈fL, gL〉HL

+ w−1G 〈fG, gG〉HG
[15].

C. Sparsification (Dictionary Learning)

Working in an RKHS provides us with a typically higher
dimensional space in which we can solve our problem linearly.
The chosen kernel function determines the dimensionality of
the induced RKHS. For example, the linear kernel κL(u,v)
gives us an RKHS of constant dimension. However, it is known
that the RKHS associated with the Gaussian kernel κG(u,v)
is of infinite dimension [14]. This property causes practical
issues when applying the APSM algorithm.

Considering (5) and (6), it can be seen that the adaptive
function grows constantly in that the number of coefficients
and bases κ(xj , ·) increases as a new training point arrives.
Not only do we require to keep them in the memory, they
could also prove the computations prohibitively expensive as
iterations evolve. It should be emphasized that at each time
instant, we search for a solution in a subspace of H spanned
by bases κ(xj , ·), j = 0, 1, · · · , n.

To comply with memory and computation requirements,
we adopt a mechanism called sparsification, which builds a
dictionary. The so-called dictionary at time instant n, denoted
by Dn, is a set of basis functions by which the solution space
is spanned, i.e., Dn := {κ(xb, ·)}Bb=1. Indeed, the solution
in the space H is a linear combination of elements, also
called atoms, in the dictionary. Its cardinality B specifies the
size of the linear subspace, Vn := span{Dn}. To construct a
rich dictionary, it is sensible to learn Dn based on novelty
criteria. One popular novelty criterion is the approximate
linear dependency (ALD) [16], [17]. According to ALD, only
those elements that are approximately linearly independent of
the existing ones enter the dictionary. When a new element
κ(xn+1, ·) arrives, its orthogonal projection to the subspace Vn
is calculated. If the distance of the element from its projection



Fig. 2. Hardware-in-the-loop experimental setup – the setup comprises a USRP X310, two CBX-120 transceiver front-end daughterboards and a host PC.

is larger than a positive threshold α, it implies that it contains
novel information and enters the dictionary. Mathematically,
the above can be formulated as

‖κ(xn+1, ·)− PVn
(κ(xn+1, ·)) ‖H ≥ α. (7)

It should be noted that we employ only one dictionary for both
real and imaginary functions being estimated.

IV. HARDWARE-IN-THE-LOOP EXPERIMENT

In this section, we report the hardware-in-the-loop experi-
ment in which we evaluated the performance of the proposed
kernel-based APSM for DSIC in a FD communication sce-
nario with offline digital samples. The performance of the
considered methods is compared in terms of mean squared
error (MSE), MSEdB = 10 log10

(∑N−1
n=0 |y[n]−f̂(x[n])|

2

N

)
, as

well as the rate of convergence. We conducted a number of
100 independent experiments. Then, performance values and
curves were calculated by taking uniform averages.

The experimental setup was an FD transceiver prototype
built from off-the-shelf components. We utilized a USRP X310
software-defined radio (SDR) platform with two CBX-120
front-end daughterboards. A diagram of the experimental setup
is shown in Fig. 2. A host PC was used to transmit and capture
digital samples – connected to the USRP via a 1-Gbps Ethernet
link. The transmission signal was a sequence of complex
Gaussian i.i.d. (random) samples. Table I summarizes the
experiment parameters, including several USRP configuration
parameters. To emulate a static single-tap self-interference
channel with sufficient RF SI cancellation, we connected the
receiver’s LNA input directly to the transmitter PA output via
a 60-dB RF attenuator. Although a static single-tap channel
does not represent a realistic SI channel [18], we considered
it to perform a preliminary algorithm assessment.

Fig. 3 compares the performance of APSM using the linear
kernel with various values for q and µ by plotting the MSE
with respect to iteration number, which corresponds to filter

TABLE I
THE MEASUREMENT PARAMETERS

Parameter Value
Carrier frequency 2.4 GHz

Signal (analog) bandwidth 5 MHz
Transmitter and receiver sampling rate 200/800 MS/s

Number of training realizations 100
Number of test samples 500,000
Mpre and Mpost 10

update. The step size µ regulates the convergence rate of the
algorithm. The good performance of choosing a small value,
say µ = 0.02, comes at the price of slow convergence for
q = 1. As expected, we reach the steady state faster by
increasing µ while losing some performance, i.e., µ = 1.0
with q = 1. However, we could increase the speed by means
of concurrent processing (moving forward to the intersection
of q hyperslabs). Indeed by taking advantage of concurrent
processing, e.g. q = 20, we reach convergence fast while
choosing a smaller value for µ = 0.02 and an apt value for
ε representing the width of hyperslabs. It should be noted
that big values for q corresponding to high computational
complexity is of no use in case of big step sizes, for instance
µ = 1.0, as illustrated in Fig. 3.

Fig. 4 depicts the performance of the considered APSM
filters including linear, Gaussian, and the sum space kernel,
referred to as hybrid, along with that of normalized least mean
squares (NLMS) filter with respect to iteration number. The
hyperparameters of every filter are chosen by cross-validation
such that they deliver their best performance in terms of MSE.
The width for the Gaussian and hybrid kernels are ξ = 0.0715
and ξ = 0.225, respectively. We set wL = 0.1 and wG = 0.9
for the hybrid kernel. It is seen that the linear kernel provides a
better convergence rate rather than the Gaussian. Furthermore,
we observe that the Gaussian kernel delivers a slightly less
MSE (around 1 dB) than the linear one at the price of being
slow. However, by unifying these two kernels and forming a
weighted one, we are able to benefit considerably from their
advantages. Therefore, we achieve much better performance
by the hybrid kernel, which considers both linear and nonlinear
components. Not only it converges faster than the Gaussian
kernel, but it also delivers the least MSE. We also include the
learning curve for NLMS as a reference in Fig. 4. As expected,

Fig. 3. Impact of µ and q on the performance and speed of the APSM filter
using a linear kernel when ε = 0.001.



Fig. 4. Performance comparison of APSM employing various kernels when
ε = 0.001, µ = 0.1, and q = 1 along with NLMS using the step size of 0.1.

TABLE II
COMPLEXITY ANALYSIS OF ALGORITHMS IN TERMS OF DICTIONARY SIZES

Kernel Average dictionary size
Linear 42

Gaussian 1188.2
Hybrid 42 + 35.8

it gives a performance comparable to the linear kernel.
The complexity analysis of the proposed methods in terms

of dictionary size for each kernel is listed in Table II. As men-
tioned in Section III-C, the dictionary size when employing
the linear kernel is constant, equal to the size of input space
L. However, utilizing the Gaussian kernel leads to an RKHS
of infinite dimension justifying the importance of dictionary
learning. To achieve the best performance, we store all the
elements satisfying the condition in (7), where α = 0.1.
As a result, the constructed dictionary becomes considerably
large. By contrast, we require a perfectly reasonable number
of atoms in the dictionary for the hybrid kernel.

Lastly, note once again that concurrent processing is one
of the most appealing features of APSM. It enables us to
take full advantage of parallel processing to reduce latency
(converging faster) by increasing hyperparameter q. Fig. 5
illustrates the impact of this key feature in case of hybrid
kernel. As mentioned earlier, we can adopt smaller values for
step size µ while increasing q.

V. CONCLUSIONS

In this work, we integrated the concept of reproducing ker-
nel Hilbert spaces into the context of digital self-interference
cancellation in full-duplex communications. The residual self-
interference in the digital domain consists of both linear and
nonlinear components. By the combination of linear and Gaus-
sian kernels, we formed a new kernel by which our nonlinear
problem turns into a linear one in an RKHS of functions.
We adopted the adaptive projection subgradient method as a
nonlinear adaptive filter to cope with the dynamic changes in
a wireless environment. The simulation results demonstrated
that the proposed adaptive filter can effectively predict the
residual self-interference. It is also capable of performing
parallel processing to reduce latency. We also investigated the
impact of hyperparameters on the performance.
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