
 

 

Delft University of Technology

Parallel autonomy in automated vehicles
Safe motion generation with minimal intervention
Schwarting, Wilko; Alonso-Mora, Javier; Pauli, Liam; Karaman, Sertac; Rus, Daniela

DOI
10.1109/ICRA.2017.7989224
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2017)

Citation (APA)
Schwarting, W., Alonso-Mora, J., Pauli, L., Karaman, S., & Rus, D. (2017). Parallel autonomy in automated
vehicles: Safe motion generation with minimal intervention. In I-M. Chen, & Y. Nakamura (Eds.),
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2017) (pp. 1928-
1935). IEEE . https://doi.org/10.1109/ICRA.2017.7989224
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA.2017.7989224
https://doi.org/10.1109/ICRA.2017.7989224


Parallel Autonomy in Automated Vehicles:

Safe Motion Generation with Minimal Intervention

Wilko Schwarting1, Javier Alonso-Mora1,2, Liam Paull1, Sertac Karaman3, Daniela Rus1

Abstract— Current state-of-the-art vehicle safety systems,
such as assistive braking or automatic lane following, are
still only able to help in relatively simple driving situations.
We introduce a Parallel Autonomy shared-control framework
that produces safe trajectories based on human inputs even in
much more complex driving scenarios, such as those commonly
encountered in an urban setting. We minimize the deviation
from the human inputs while ensuring safety via a set of
collision avoidance constraints. We develop a receding horizon
planner formulated as a Non-linear Model Predictive Control
(NMPC) including analytic descriptions of road boundaries,
and the configurations and future uncertainties of other traffic
participants, and directly supplying them to the optimizer
without linearization. The NMPC operates over both steering
and acceleration simultaneously. Furthermore, the proposed
receding horizon planner also applies to fully autonomous ve-
hicles. We validate the proposed approach through simulations
in a wide variety of complex driving scenarios such as left-
turns across traffic, passing on busy streets, and under dynamic
constraints in sharp turns on a race track.

I. INTRODUCTION

Globally, over 3000 people are killed every day [1] in vehicle-

related accidents and over one hundred thousand are injured or

disabled on average. Worse still is that this number is continuing

to increase [2]. In the United States, 11% of accidents are caused

by driver distraction (such as cell phone use), 31% involve an im-

paired driver due to alcohol consumption, 28% involved speeding,

and an additional 2.6% were due to fatigue [3]. This troubling

trend has resulted in the continued development of advanced

safety systems by commercial car manufacturers. For example,

systems exist to automatically brake in the case of unexpected

obstacles [4], maintain a car in a lane at a given speed, alert users

of pedestrians, signage, and other vehicles on the roadway [5].

However, the scenarios that these systems are able to deal with

are relatively simple compared to the diverse and complicated

situations that we find ourselves in as human drivers routinely.

In this work we propose a framework for advanced safety in

complex scenarios that we refer to as Parallel Autonomy, which

minimizes the deviation from the human input while ensuring

safety. The design of the system has two main objectives: (a)

minimal intervention - we only apply autonomous control when

necessary, and (b) guaranteed safety - the collision free state

of the vehicle is explicitly enforced through constraints in the

optimization. Although the focus is on cars on roads one can

easily apply the method to other domains in robotics.

1Computer Science and Artificial Intelligence Laboratory (CSAIL),
MIT, Cambridge, MA, USA {wilkos,jalonsom,lpaull,rus}
@csail.mit.edu

2Delft Center for Systems and Control, Delft University of Technology,
Delft, Netherlands j.alonsomora@tudelft.nl

3Laboratory of Information and Decision Systems (LIDS), MIT, Cam-
bridge, MA, USA sertac@mit.edu

Toyota Research Institute (”TRI”) provided funds to assist the authors
with their research but this article solely reflects the opinions and conclu-
sions of its authors and not TRI or any other Toyota entity.

Fig. 1. Parallel Autonomy in complex driving scenarios: Human driver
(red) tries to accelerate into an intersection, as shown by the red bar in the
lower left inset. However, given the future uncertainty of the other vehicles
positions the Parallel Autonomy system prevents the vehicle from continuing
and potentially inhibits a collision.

We provide a formulation and algorithmic solution to Paral-

lel Autonomy based on a non-linear Model Predictive Control

(NMPC) policy, under the assumptions of known current location

of the ego vehicle, the road boundaries, and of other vehicles

on the road. Uncertain predictions of future vehicle states in the

form of a posterior distribution are parameterized by their means

and covariances, which are assumed to be available, e.g. from an

inference framework. Specifically, we:

• Incorporate the time-varying uncertainty related to the dy-

namic obstacle predictions explicitly in the optimization,

• Follow the road by contour tracking within the shared con-

trol paradigm, introduce additional constraints for the road

boundaries and dynamic obstacles, while maintaining the

ability to plan over long time horizons (∼ 9s),

• Employ a non-linear model of the vehicle and simultane-

ously optimize over steering and acceleration.

The basic operation of the controller is shown in Fig. 1, where

the driver attempts to cut in front of oncoming traffic to make a left

turn, however the Parallel Autonomy system prevents this action

to avoid a collision with the oncoming vehicles.

This paper contributes:

• A formulation of Parallel Autonomy as a shared control

approach between humans and robots that adheres to the

minimal intervention principle and is able to handle complex

driving scenarios.

• The development of a real-time NMPC that operates over

both speed and steering, and long time-horizons.

In Sec. II we summarize the related work in the field whereas

in Sec. III we present the Parallel Autonomy control approach.

In Sec. IV we provide a concrete instantiation of the framework

and present the NMPC approach to solve it. Finally, we show

detailed simulation results and conclusions in Sec. V and Sec. VI

respectively.

II. RELATED WORKS

In this section we will provide an overview of the related work

in the areas of shared control for autonomous vehicles and Model
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Predictive Control (MPC).

A. Shared Control of Autonomous Vehicles

In theory, safety can be guaranteed if we can compute the set

of the states for which the vehicle will inevitably have a collision

and then ensure that we never enter that set. The set is referred to

by different terms in the literature, such as the capture set [6], [7],

the inevitable collision states (ICS) [8], [9], [10], and the target

set [11]. However, without some assumptions or limiting the

applicability to relatively simplistic scenarios, this set is difficult

to compute analytically. These ICS inspired methods tend to (a)

only intervene when the system is at the boundary of the capture

set, which can cause undesirable behavior and (b) toggle between

either the autonomous system input or the human input. We will

follow the idea of [6], [9], [10] and will define a set of probabilistic

constraints for collision avoidance.

In this work we directly incorporate the human inputs into

an optimization framework in a minimally invasive manner and

also add a soft nudging behavior to guide the driver. One of our

key objectives is to minimize the amount of deviation of the au-

tonomous system’s plan from the driver’s intent. This minimiza-

tion approach has also been formulated for driving applications in

various ways in the literature: Shia et al. [12] directly minimize

the difference of the steering angle necessary to achieve safe

trajectories and the human predicted input, and, similarly, Gao

et al. [13] minimize the difference in steering wheel angle only.

Erlien et al. [14] minimize the deviation from desired front wheel

lateral force with an additional discount factor with increasing

time. In contrast, our approach is capable of controlling steering

velocity and acceleration simultaneously. Alonso-Mora et al. [15]

minimize the deviation from human inputs, in this case orientation

and speed, via a convex constrained optimization to generate safe

motion of a wheelchair using velocity obstacles. We minimize

the (weighted) difference between the human and autonomous

system’s control inputs jointly in both steering and acceleration,

and are able to blend in additional trajectory-specific costs, while

strictly enforcing the safety constraints.

B. Model Predictive Control

A variety of MPC approaches applied to shared control for

vehicles exist in the literature. For example, Gray et al. [16] use

a hierarchical MPC approach for motion primitive based path

planning and path tracking that switches control to and from

the driver as a function of driver attentiveness to avoid static

obstacles. Anderson et al. [17] employ a constrained pathless

MPC approach blending human and controller inputs based on

a trajectory-criticality function controlling steering commands

only. Erlien et al. [14] define vehicle-stability and environmental

envelopes to supply safe steering commands at constant speed in a

discretized environment. Gao et al. [13] use robust NMPC to avoid

only static obstacles while tracking the roads center line over a

very short horizon of less than 1.5s. In contrast, our approach

can handle complex road scenarios with dynamic maneuvers

and obstacles, and to some extent uncertain environments with

steering and acceleration control over long horizons

For most related MPC methods in the literature [18], [17],

[19], [14] time dependent cost functions, and road constraints

need to be specified pre-optimization for specific time steps, or a

fixed path is generated and tracked [13]. The resulting divergence

from the initial conditions of the optimization can yield invalid

linearized constraints and unpredictable planning behavior. We

exploit recent advances in efficient Interior-Point solvers [20] and

directly solve the NMPC problem instead, focusing on making

all costs and constraints available to the solver without manual

linearization.

Model Predictive Contouring Control (MPCC) [21], [22] re-

laxes the timing and path constraint by parametrizing costs and

constraints by path progress instead of time inside a corridor. The

formulation is analogously applicable to vehicles following roads

[23].

III. PROBLEM FORMULATION

The Parallel Autonomy problem is based on two overarching

principles.

• Minimal intervention with respect to the human driver: the

control inputs to the vehicle should be as close as possible to

those of the human driver.

• Safety: The probability of collision with respect to the en-

vironment and other traffic participants is below a given

threshold.

A. Definitions

We use the discrete time shorthand k , tk, where tk = t0 +
Pk

i=1 ∆ti, with t0 the current time and ∆ti the i-th timestep of

the planner. Vectors are bold.
1) Ego vehicle: At time k, we denote the configuration of the

ego-vehicle, typically position pk = (xk, yk), linear velocity vk,

orientation φk and steering angle δk, by zk = [pk,φk, δk, vk] ∈
Z . Its control input, typically steering velocity δ̇k and acceleration

ak, is labeled uk = [u�k, u
a
k] ∈ U .

The evolution of the state of a vehicle is then represented by a

general discrete dynamical system

zk+1 = f(zk,uk), (1)

described in Sec. IV-B.

Let B(zk) ⊂ R
2 be the area occupied by the ego-vehicle at

state zk. In particular, we model it as a union of circles as shown

in Fig. 3.
2) Other traffic participants: Other traffic participants, such

as vehicles, pedestrians and bikes, are indexed by i = {1, . . . , n}.

Their configuration and control input are given by zik ∈ Zi

and ui
k ∈ Ui. To incorporate uncertainty, we assume a posterior

distribution that describes the future state of the vehicles for up

to m timesteps is available, e.g. from an inference framework.

The distributions are parametrized by their mean state zi1:m and

covariance σ
i
1:m. High uncertainty in prediction can therefore be

reflected in the covariance σ
i
1:m.

At a given state, each traffic participant occupies an area

Bi(zik,σ
i
k, p✏) ⊂ R

2 with probability larger than p✏. Here p✏ is

the accepted probability of collision. We model them as ellipses

that grow in size with uncertainty, as described in the forthcoming

Sec. IV-E.
3) Free space: We consider the workspace W = R

2 and an

obstacle map O ⊂ W containing the static obstacles, such as the

limits of the road. We define the environment E(k) as the state of

the world (obstacles, traffic participants) at a time instance k.

B. Parallel Autonomy

We formulate a general discrete time constrained optimization

with m timesteps, with time horizon τ =
Pm

k=1 ∆tk. We use

the following notation for a set of states z0:m = [z0, . . . , zm] ∈
Zm+1 and for a set of inputs u0:m−1 = [u0, . . . ,um−1] ∈ Um.

The objective is to compute the optimal inputs u∗0:m−1 for

the ego-vehicle that minimize a cost function Ĵh(u0:m−1,uh
0 ) +

Ĵt(z0:m,u0:m−1), where



• Ĵh(u0:m−1,uh
0 ) is a cost term that minimizes the deviation

from the currently observable human input uh
0 .

• Ĵt(z0:m,u0:m−1) is a cost term that only depends on intrin-

sic properties of the planned trajectory. It can include various

optimization objectives such as energy minimization, com-

fort, or following a lane.

The optimization is subject to a set of constraints that represent:

(1) the transition model of the ego vehicle, (2) no collisions

with the static obstacles and (3) no collisions with other traffic

participants up to probability p✏.

Given the posterior, parametrized by zi0:m and σ
i
1:m, for all

traffic participants i = 1, . . . , n and the initial state z0 of the ego

vehicle, the optimal trajectory for the ego vehicle is then given by

u
∗

0:m−1 = argmin
u0:m−1

Ĵh(u0:m−1,u
h
0 ) + Ĵt(z0:m,u0:m−1)

s.t. zk+1 = f(zk,uk)

B(zk) ∩O = ∅

B(zk) ∩
[

i∈{1,...,n}

Bi(zik,σ
i
k, p✏) = ∅

∀k ∈ {0, . . . ,m}.

(2)

IV. METHOD

In this section we describe the method to solve Eq. (2).

A. Overview

We formulate a NMPC to compute a safe trajectory for the

predefined time horizon. The constrained optimization consists of

the following costs and constraints.

1) Cost: To maintain generality of the problem formulation

while easing the understanding of the specifics of the instantiation,

the notation of Ĵh, Ĵt and Eq. (25) will be slightly altered to Jh,

Jt, cf. Eq. (24).

The cost term Jh is given by the deviation from the acceleration

and steering angle specified by the human driver. This term is

described in Sec. IV-F.

The cost term Jt is defined in Sec. IV-G and consists of

terms responsible for giving feedback to the driver if diverted

too far from the road’s center in the form of slightly nudging the

driver back into the correct direction without strong intervention.

Another term encodes making progress along a reference path—

typically the middle of the current lane, and one to improve

smoothness of the trajectory.

2) Constraints: The optimization is subject to a set of con-

straints: (1) to respect the transition model of the system, de-

scribed in Sec. IV-B, (2) to maintain the vehicle within the limits

of the road, indicated in Sec. IV-D and (3) to avoid other traffic

participants in the sense of guaranteeing a probability of collision

below p✏, as given in Sec. IV-E.

3) Constrained Optimization: Since we do not currently

have a prediction over future driver commands, we propose a

linear combination between the cost Jh for minimal intervention

and the trajectory cost Jt. At the planning time, full weight is

given to the minimal intervention cost Jh and close to zero weight

to Jt. As planning time progresses the impact of Jt increases

and the weight of Jh decreases.The resulting MPC, which solves

Eq. (2), including the specific combination of costs is described in

Sec. IV-H.

B. Motion Model

Previous approaches utilized constant longitudinal speed and

small angle assumptions [14], [19], [17] in selected static obstacle

avoidance scenarios along simple straight roads. In contrast we

will consider the impact of longitudinal speed control for higher

safety in dynamic, more general and more complex traffic envi-

ronments.

The MPC’s motion model is a simplified car model with a fixed

rear wheel and a steerable front wheel with state z and controls

u as defined in Sec. III-A.1. The rear-wheel driven vehicle with

inter-axle distance L and continuous kinematic model
2
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is described by a discrete time model by integration zk+1 = zk +
R k+∆tk
k ż dt = f(zk,uk).

We limit steering angle, ||δ|| ≤ δmax, steering speed, ||u�|| ≤
δ̇max, and longitudinal speed, v ≤ vmax, to reasonable values

conforming to vehicle performance and the rules of the road, e.g.

speed limits.

We will account for and prohibit unsafe driving modes such as

high speeds in sharp turns by limiting the yaw-rate ||φ̇|| ≤ φ̇max,

as well as extreme breaking and accelerations amin ≤ ua ≤ amax

. As a result, slip is assumed to be sufficiently limited due to

reasonably less aggressive driving behavior. The modification is

in line with our main goal: driver safety.

C. Nonlinear Model Predictive Contouring Control

In this section we build on the MPCC method of [21], [22], [23]

and apply it to our problem setting. The MPCC approach is a good

choice for our parallel autonomy formulation since we don’t need

to enforce that the vehicle exactly follows a reference trajectory

or path, but instead stays within the corridor of safety limits.

1) Progress on Reference Path: The vehicle at position (xk,

yk) at time k tracks a continuously differentiable and bounded

two-dimensional geometric reference path (xP (θ), yP (θ)) of path

parameter θ with

t =

"
@xP (✓)

@✓

@yP (✓)
@✓

#

, n =

"

−
@yP (✓)

@✓

@xP (✓)
@✓

#

(4)

being the tangential and normal vectors.

The heading of the path is described by:

φ
P (θk) = arctan

✓
∂yP (θ)

∂xP (θ)

◆

. (5)

The path is parametrized by the arc-length (∂θ/∂s = 1)

allowing us to estimate the progress of the vehicle with velocity vk
along the reference path along the vehicle’s actual path s =

R
v dt.

While parametrization of curves by the arc-length is not trivial, if

the distance between knots is small in relation to their curvature,

spline parametrization is close to the arc-length. Since our vehicle

will follow a given road with sufficiently low deviation from the

reference, enforced by the road’s boundary, we can assume that

∆θ ≈ ∆s = v∆t (6)



holds. This additional assumption yields an approximated

progress along the path parameter

θk+1 = θk + vk∆tk (7)

where vk∆tk describes the approximated progress at time step k.

Ideally, we want to compute the path parameter θP (xk, yk) of the

closest point on the reference path to (xk, yk). Finding θP (xk, yk)
analytically is infeasible in the general case, which makes the

direct projection operator unsuitable for fast optimization. There-

fore, θP (xk, yk) is approximated by Eq. (7).

Fig. 2. Approximation of actual path abscissa θP by virtual integrator θk ,
and resulting approximation of lag error el

k
by ẽl(zk, θk), and contouring

error ec
k

by ẽc(zk, θk). ẽ
c(zk, θk) is also used for an approximation of the

lateral distance of the vehicle to the reference path.

2) Longitudinal Error: The approximation of the curvilinear

abscissa θP (xk, yk) by θk introduces errors (cf. Fig. 2), if the

vehicle’s actual path deviates from the reference path. A first

order approximation of the resulting error of this approximation in

longitudinal direction of the vehicle with respect to the reference

path yields the lag error

ẽl(zk, θk) =
tTk
||tk||


xk − xP (θk)

yk − yP (θk)

�

(8)

= − cosφP (θk)
⇣

xk − xP (θk)
⌘

(9)

− sinφP (θk)
⇣

yk − yP (θk)
⌘

(10)

projecting the position error of the vehicle with respect to the

path’s abscissa θk along the path’s tangent tk, see Fig. 3.

For sufficiently small ẽl(zk, θk) the approximated path

progress is close to the actual curvilinear abscissa (Eq. (6)), and

θk ≈ θP (xk, yk). The lag error ẽl(zk, θk) needs to be strongly

penalized in the MPCC optimization to keep the error of the

approximated evolution θk along the path sufficiently small.

3) Contouring Error: The deviation of the vehicle’s actual

position from the estimated position is projected onto the path’s

normal and is called contouring error:

ẽc(zk, θk) =
nT
k

||nk||


xk − xP (θk)

yk − yP (θk)

�

(11)

= sinφP (θk)
⇣

xk − xP (θk)
⌘

(12)

− cosφP (θk)
⇣

yk − yP (θk)
⌘

(13)

It is thus a good measure of how far the vehicle deviates from a

given reference path.

The MPCC cost function

JMPCC(zk, θk) = e
T
k Qek − vk (14)

with path error vector formed from lag and contouring error

ek =



ẽl(zk, θk)
ẽc(zk, θk)

�

(15)

balances the trade-off between contouring error, lag error, and

approximated path progress vk.

D. Road Representation

All vehicles’ reference paths are parametrized by C1-

continuous clothoids following the road network through pre-

specified points. We approximate the clothoids by cubic-splines

of closely spaced knots parametrizing the spline by the arc-length

to sufficient accuracy. In contrast to computationally expen-

sive evaluation of clothoids, cubic splines provide an analytical

parametrization of the reference path, boundaries of the road, and

their derivatives needed for solving the nonlinear optimization.

The signed lateral distance d(zk, θ) of the vehicle’s position

(xk, yk) to the reference path is given by the projection along the

normal of the reference path at the actual curvilinear abscissa θP ,

again approximated by θk such that d(zk, θk) = ẽc(zk, θk).

The free and drivable space of the ego vehicle at the path

abscissa θk is limited by both the left road boundary bl(θk)
and the right road boundary br(θk) which are parametrized by

cubic splines to enable analytic evaluation and derivation. The

boundaries may also enclose other static obstacles.

The ego vehicle’s lateral offset to the path is limited by

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax (16)

where wmax is an upper bound on the vehicle’s outline projected

onto the reference path’s normal. wmax is larger than half the

vehicle’s width, since the ego vehicle’s relative orientation to the

path needs to be accounted for, e.g. when it turns. We constrain

the difference between the ego vehicle’s heading φk and the path’s

heading φP (θk)

||φk − φ
P (θk)|| ≤ ∆φmax (17)

to maintain validity of wmax as an upper bound. Simply taking

the vehicle’s radius as an upper bound turned out to be too

conservative.

Fig. 3. Ego vehicle (red) approximated by circles of radius rdisc and
other vehicle (blue) with shape- and uncertainty-ellipse corresponding to
minimum occupancy probability p✏. Road boundaries bl(θ) on the left and
right br(θ) of reference path (xP (θ), yP (θ)).



E. Representation of Other Traffic Participants

For brevity we will refer to all traffic participants, such as

vehicles, pedestrians, bicyclists, as vehicles. The shapes of other

vehicles are approximated by a footprint encompassing ellipse of

orientation φ with semi-major axes ashape and bshape in longitudinal

and lateral direction of the obstacle respectively, cf. Fig. 3. For

brevity, index i is omitted in this section. Consequently an analyt-

ical description of their occupied area is available, that will prove

useful for describing collision states in closed analytic form. The

evolution of their future trajectories are assumed to be known up

to some uncertainty in the form of a posterior distribution and

are parametrized by a mean trajectory zi0:m−1 and uncertainty

σ0:m−1. In the more general case these should be supplied by

an external inference framework. For our instantiation we supply

a model of the growth of uncertainty

σk+1 = σk + σ∆tk, (18)

of the vehicles position with uncertainty σk = [σa
k ,σ

b
k]

T at time

k, and σ = [σa,σb]T the growth of uncertainty. The variances

are approximated to be aligned with the vehicle’s heading and

thus the principle axis of the encompassing ellipse (cf. Fig. 3).

The uncertainty growth in the lateral direction is bounded to a

maximum value to take the high likelihood of vehicles staying in

their current lanes into account.

The level-set lines of the Gaussian N (0, diag(σk)) describing

the position uncertainty of the other traffic participants at the level

of p✏ form ellipses with coefficients


aσk

bσk

�

=


σa
k

σb
k

�⇣

−2 log(p✏2πσ
a
kσ

b
k)
⌘1/2

. (19)

We can now use the axis alignment to the vehicle and directly

add the coefficients to the semi-major axes to find the obstacle’s

ellipse with occupancy probability above the p✏ threshold.

The rectangular shape of the ego car is approximated by a set

of discs of radius rego, cf. Fig. 3. It is necessary to employ discs

instead of ellipses for the ego vehicle, since the ego vehicle and the

other vehicles are not necessary axis aligned and the Minkowski

sum can not be easily derived for non-axis aligned ellipses in

closed form. The Minkowski sum of the ego car’s discs and

the previously derived occupancy-ellipse form analytic collision

constraints

cobst.,i
k (zk) =

∆xj
∆yj

�T

R(φ)T


1
a2 0

0 1
b2

�

R(φ)


∆xj
∆yj

���
�
�
�
k,i

> 1,

∀j ∈ {1, . . . , 4} (20)

where ∆x, ∆y are the distance of the ego vehicle’s discs to the

center of the obstacle i at time k. R(φ) is the rotation matrix

corresponding to the obstacles heading, and


a
b

�

=


ashape + aσk

+ rdisc

bshape + bσk
+ rdisc

�

. (21)

the semi-major axes of the resulting constraint-ellipse. We now

have an analytic constraint prohibiting collisions of probability

higher than p✏ with other vehicles.

F. Minimal Intervention

It is our goal to follow the human input very closely and

intervene only when deemed necessary. The minimal intervention

cost term

Jh(zk,uk,u
h
0 ) =


uak − ah0
δ − δh0

�T

K


uak − ah0
δ − δh0

�

(22)

penalizes the deviation of the system’s state from the human

driver commanded current controls uh
0 = [δh0 , a

h
0 ]

T , the steering

angle δh and acceleration ah at time tk. In our setup we can

only observe the driver steering angle δh and acceleration ah, but

not the steering speed δ̇h. Nonetheless, the framework is general

enough to also take the steering velocity as human input into

account, if observable. The vehicle controls uk remain steering

velocity and acceleration.

G. Trajectory Cost

The trajectory cost contains the MPCC cost, Eq. (15), and

additionally penalizes control inputs and yaw rate to create a

smooth driving behavior and increase comfort. Weights R and A
allow for different prioritization.

Jt(zk,uk, θk) = JMPCC(zk, θk) + u
T
k Ruk + φ̇kAφ̇k (23)

JMPCC already encodes the penalization of the deviation from the

reference path which results in a slight nudging behavior into

a beneficial direction. It also takes the driver’s goal of making

progress along the road into account.

H. Optimization

We minimize the linear combination of the cost of intervention

Jh (22) and trajectory cost Jt (23)

J(zk,uk, θk,u
h
0 ) =

βω(tk)Jh(zk,uk,u
h
0 ) + (1− ω(tk)) Jt(zk,uk, θk) (24)

weighted by β and an exponential decay function w(tk) =
exp(−αtk) to increase the impact of the human input in the short-

term. We used a sharp drop-off, such that w(0.5s) = 0.1, and

high values of β to make the system very responsive to human

inputs but rely on Jt for steps further into the future. This strategy

enables us to plan sufficiently well, without a prediction of driver

intent or planned trajectory, since the planner’s trajectory will

snap into place shortly before the boundaries of constraints are

met and is perceived as inactive to the human driver otherwise.

We formulate the optimization problem with the aforementioned

state-, dynamics-, path- and obstacle constraints and form the

following constraint non-linear optimization problem:

u
∗

0:m−1 = argmin
u0:m−1

mX

k=0

J(zk,uk, θk,u
h
0 )∆tk (25)

s.t. zk+1 = f(zk,uk) (26)

θk+1 = θk + vk∆tk (7)

zmin < zk < zmax (27)

umin < uk < umax (28)

||φ̇k|| < φ̇max (29)

||φk − φ
P (θk)|| < ∆φmax (17)

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax (16)

cobstacle,i
k (zk) > 1, i = {1, . . . , n} (21)

∀k ∈ {0, . . . ,m}



At initialization the path (xP (θ), yP (θ) and boundaries bl(θ) and

br(θ) are given by the road and static obstacles, cf. Fig. 4. At

the beginning of each control loop the initial states z0, θ0, human

control input uh
0 , and predictions of other traffic participants zi0:m,

σ
i
0:m are provided to the NMPC. After solving Eq. (25) the

optimal control u∗

0 is executed by the system. The optimization

problem is solved by a Primal-Dual Interior Point solver generated

by FORCES Pro [20].

NMPC

Environment

Ego Vehicle
Human

Driver

Fig. 4. Control scheme of the NMPC

V. RESULTS

We evaluate the capabilities of our approach in a variety of sim-

ulated scenarios. The human driver controls a physical steering

wheel and pedals which generate the desired steering angle δh0
and acceleration ah0 . The inputs are then processed in the MPC

formulation to guarantee safe motion. The reference path and the

road boundaries bl and br are designed to fit the road network.

A. Sharp Turn

In this scenario, cf. Fig. 5(a), the vehicle enters a sharp left turn

on a race track. The current human inputs would cause the vehicle

to quickly leave the road at high speed, as shown by the red line.

The controller brakes the vehicle to a safe speed complying with

the yaw-rate constraint, then accelerates at the exit of the turn to

maximize progress, while always respecting the roads limits.

The planned trajectory shows similarities to a racing line dur-

ing high-speed cornering. This behavior shows the advantage of

longitudinal and lateral control; without deceleration the vehicle

would not have been able to complete the turn shown by the red

line in Fig. 5(a). The plan maintains a smooth acceleration profile

during the turn, cf. Fig. 5(b).

B. Left Turn Intersection and Merging Into Traffic

In this challenging left turn cross traffic scenario the initial

position and velocity profiles of all other traffic participants are

randomly generated. To increase the time horizon of the planner

without sacrificing computation, we adopt a variable step size

approach. For sufficient temporal resolution in the short term the

first 10 steps are spaced by ∆tk = 0.1s and ∆tk = 0.2s for the

remaining 40 steps, resulting in a planning horizon of nearly 9s
with all computations done in real-time, cf. Sec.V

We have evaluated the method in a set of 50 randomly gener-

ated scenarios without any resulting collisions despite deliberately

giving the system unsafe inputs which would have resulted in

crashes without the proposed Parallel Autonomy system. Further-

more, the system did not cause any collisions which would not

have happened without it.

We present two representative examples, for two different hu-

man driving styles. In the first case, cf. Fig. 6, an aggressive driver

nearly collides with the right road boundary even before entering

the intersection 1 . Then, the driver tries to accelerate into the

intersection 2 , although other vehicles are just passing. Our
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(a) MPC plan of vehicle, where vehicle poses are 0.1s apart for
a horizon of 5s. Red line shows the constant steering angle and
acceleration propagation of the human input for a horizon of 2s.
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(b) The limit of yaw rate (1rad/s) (left) causes the vehicle to
decelerate (right) and accelerate again at the end of the turn.

Fig. 5. Sharp Turn: Output of MPCC plans to decelerate into the sharp
corner to comply with a yaw-rate constraint of 1rad/s.

system brings the ego vehicle to a full stop, lets the other vehicles

pass and then proceeds by letting the driver merge into the traffic

when a large enough gap appears. At 3 the driver approaches

a preceding vehicle with high relative speed and tries to collide

by accelerating even further. Our system brakes the ego vehicle

and allows an overtaking maneuver once the oncoming traffic has

passed. At 4 the driver erratically tries to break through the right

road boundary, which is prohibited by our system. In all these

cases the system can guard the human driver from actually causing

any harm to himself and others.

The opposite spectrum of how our method reacts is shown

in Fig. 7: A fairly good and calm driver experiences the same

previous scenario. We observe that if the inputs from the human

driver are deemed safe, barely any difference between human and

system inputs occurs. The system thus minimizes intervention

if no critical situations occur. Since steering the vehicle with

steering wheel and pedals in simulation is not an easy task, due to

the lack of feedback, the human driver did not break sufficiently

at 2 and misses to counter steer during a lane change maneuver

4 . Notice how the system allows the driver to stay stationary at

the intersection longer than necessary for safety. We can see that

the trajectory cost Jt, which includes a path-progress term, does

not cause the vehicle to start driving if the human driver does not

intend to. The short term impact of the minimal intervention cost

Jh always dominates the trajectory optimization if safety can be

assured.

C. Impact of Uncertainty

Taking the uncertainty in the prediction of other vehicles into

account is important, since future states can deviate substantially

from the expectation. In the case of neglecting uncertainties the

planned behavior can be more aggressive and is given larger

leeway in the constraints. See Fig. 8-bottom, where the vehicle is
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Fig. 6. Aggressive left turn with traffic: The system’s steering angle and acceleration are displayed in blue, the human input in red. Snapshots of the
current scenes at specific time-stamps are displayed above the acceleration and steering plots: The ego vehicle in red, the MPC planned path in blue. All
other vehicles in black. An aggressive driver causes multiple critical situations where the system is forced to intervene to large amounts to keep the vehicle
in a safe state. Large deviation from the driver’s desired acceleration and steering wheel angle to the actual system output are observable. E.g. collision at
time (2) is prohibited by strong braking.
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Fig. 7. Normal left turn with traffic: System output stays close to the desired human acceleration and steering wheel angle. An exception appears at (4)
where the driver is not counter steering enough to prohibit a predicted collision with the left road boundary.

allowed to merge into the lane in front of a second vehicle. Taking

future obstacles’ uncertainty growth into account, cf. Fig. 8-top,

results in more conservative behavior and the ego vehicle is

prohibited from merging.

D. Computation Time

The NMPC solve-times collected during several runs are dis-

played in Fig. 9. Results were computed on an off-the-shelf

Intel Core i5-4200U mobile CPU @ 1.6 GHz, 2.6 Ghz Turbo

Boost, and 6 GB RAM. We observed a strong influence of the

complexity of the scenario on the computation time. In the case

of no dynamic obstacles we saw solve-times of less than 30ms

Fig. 8. Comparison of NMPC plans with uncertainty estimate (top)
and without (bottom) shown by the ellipses representing their occupancy
probability threshold. Predicted future states are shown in fading colors
0.4s apart over a horizon of 9s.
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Fig. 9. Computation times for the different human in the loop scenarios and
varying number of other traffic participants, and high uncertainty. Finally
the case of AI only, without the human in the loop.

even for a challenging race track with many tight turns, forcing the

MPC to intervene and decelerate due to turn-rate constraints. In

cases where the system needs to nudge into tight gaps while simul-

taneously deciding whether a subsequent overtaking maneuver is

feasible, computation times can reach up to 65ms in exceptional

cases. Our system was able to reach the goal replanning frequency

of 10Hz at all times.

VI. CONCLUSION

In this work we presented a receding horizon planner that

minimizes deviation from the human input while ensuring safety

according to our proposed general Parallel Autonomy control

framework. We have shown the increased functionality compared

to other approaches in complex and more realistic driving scenar-

ios.

Future work will include evaluation on a real vehicle platform

as well as a more involved system model derived via an identifica-

tion step including combined slip and load-transfers. Further tests

will also enclose an inference framework to gain more elaborate

predictions of other traffic participants. The presented framework

may be applied to more general scenarios including a larger

variety of dynamic obstacles such as pedestrians, bicycles, trucks,

as well as a larger variety of environments including stop-signs

and traffic lights by small adaption of our set of constraints.

Furthermore, the proposed receding horizon planner also ap-

plies to fully autonomous vehicles if the minimal intervention cost

is excluded and future experiments will show the functionality.

The widespread deployment of our method in vehicle systems

would help to reduce the massive number of vehicular injuries

and fatalities, as well as provide a safe pathway towards the

development of fully autonomous vehicles.
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