
Parallel Banding Algorithm to Compute Exact Distance Transform with the GPU ∗

Thanh-Tung Cao Ke Tang Anis Mohamed Tiow-Seng Tan

School of Computing, National University of Singapore

Abstract

We propose a Parallel Banding Algorithm (PBA) on the GPU to
compute the exact Euclidean Distance Transform (EDT) for a bi-
nary image in 2D and higher dimensions. Partitioning the image
into small bands to process and then merging them concurrently,
PBA computes the exact EDT with optimal linear total work, high
level of parallelism and a good memory access pattern. This work is
the first attempt to exploit the enormous power of the GPU in com-
puting the exact EDT, while prior works are only on approximation.
Compared to these other algorithms in our experiments, our exact
algorithm is still a few times faster in 2D and 3D for most input
sizes. We illustrate the use of our algorithm in applications such
as computing the Euclidean skeleton using the integer medial axis
transform, performing morphological operations of 3D volumetric
data, and constructing 2D weighted centroidal Voronoi diagrams.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms; I.3.1 [Com-
puter Graphics]: Hardware Architecture—Graphics processors

Keywords: Computational geometry, Voronoi diagram, graphics
hardware, stipple drawing, morphological operation.

1 Introduction

Euclidean Distance Transform (EDT) is an important problem with
a wide range of applications in image processing, computer vision,
graphics and computational geometry [Cuisenaire 1999]. For a d-
dimensional grid with N = nd grid points where some S grid
points are colored, or termed sites, and some (N−S) grid points are
not colored (white), the EDT problem is to compute for each grid
point the Euclidean distance from itself to the closest colored grid
point, forming a so-called distance map. This problem is closely re-
lated to the Voronoi diagram computation where for each grid point
we are interested in the actual closest colored grid point or site.

Trivially, one can compute such a distance map sequentially in time
O(S(N − S)). The two recent survey papers [Fabbri et al. 2008;
Jones et al. 2006] compare and contrast many state-of-the-art se-
quential approaches to solving the problems in 2D and 3D, target-
ing mainly the exact EDT computation. One highlight there is that
the exact EDT can be computed in linear time using a dimension-
ality reduction approach (see [Maurer et al. 2003]). For certain ap-

∗Project webpage: http://www.comp.nus.edu.sg/∼tants/pba.html.

Emails: {caothanh | tangke | mohameda | tants}@comp.nus.edu.sg. The

research is supported by the National University of Singapore under grant

R-252-000-337-112.

Figure 1: The original grayscale image (left) to produce the stipple
drawing (right) by using weighted centroidal Voronoi diagram.

plications such as constructing the Delaunay Triangulation from a
discrete Voronoi diagram [Rong et al. 2008], the accuracy of the
diagram is crucial to guarantee the correctness of the constructed
triangulation. In another development, for some graphics appli-
cations, it is useful to quickly compute a good approximation of
the EDT. This is the approximate EDT problem where the distance
values computed at some grid points need not be 100% accurate.
The recent development in the computational power of the graph-
ics hardware has made such approximation possible at a very high
speed; see, for example, [Rong and Tan 2006; Rong and Tan 2007;
Schneider et al. 2009].

In a related problem, EDT is used in computing (weighted) cen-
troidal Voronoi diagram (CVD), a special Voronoi diagram in
which each site lies exactly at the centroid of its Voronoi region;
see Figure 1 for an application of CVD. The CVD can be generated
from any set of input sites using Lloyd’s iterative algorithm [1982].
In each iteration, the algorithm computes the Voronoi diagram, lo-
cating the centroid of each Voronoi region, and then moving each
site to the centroid of its Voronoi region. There were several at-
tempts in computing the centroids of all Voronoi regions using the
GPU [Vasconcelos et al. 2008; Bollig 2009]; however, they all re-
strict the processing of each Voronoi region to a preset area around
the corresponding Voronoi site. They thus do not work for non-
uniform distribution of sites where each Voronoi region can possi-
bly spread across the whole grid.

There are two contributions in this paper:

(1) An efficient parallel algorithm, termed Parallel Banding Al-
gorithm (PBA), to compute the exact EDT using the GPU.
Our algorithm is work optimal, while able to utilize effec-
tively the power of the modern GPUs. The novelty comes
from a careful partitioning of the input image into bands to
allow concurrent computation, and an efficient merging of the
sub-results through clever manipulation of doubly linked lists
embedded on a 2D texture. The algorithm implemented in
CUDA [NVIDIA 2009] outperforms all GPU-based approxi-
mate EDT algorithms in 2D and 3D.

(2) A novel approach to compute a CVD efficiently and accu-
rately, overcoming the deficiency of prior works that limit the
area of each Voronoi region. Our novelty here is through ex-
ploiting important properties of the exact Voronoi diagram to
store and sum the intermediate results when processing the
Voronoi regions.

The rest of the paper is organized as follows. Section 2 outlines
related works on computing EDT. Section 3 reviews some impor-
tant properties for computing the exact EDT, which are utilized in
our algorithm discussed in Section 4. Section 5 presents the perfor-
mance comparison of PBA with other state-of-the-art algorithms
in 2D and 3D. Section 6 illustrates applications such as CVD that
can benefit from our fast and accurate algorithm. Finally, Section 7
concludes the paper with some limitations of our approach.

2 Related work

Exact and Approximation. Both the exact and approximate EDT
can be sequentially computed in time linear to the number of grid
points N = nd in d-dimension. Maurer et al. [2003] use di-
mensionality reduction and partial Voronoi diagram construction
to compute the exact EDT for a binary image of arbitrary dimen-
sion. For each dimension, the EDT can be computed by using the
EDT in the next lower dimension to construct the intersection of
the Voronoi regions of the sites with each “row” of the image. On
the other hand, most approximate EDT algorithms are based on
Danielsson’s vector propagation method [Danielsson 1980]. This
method stores a vector pointed to the candidate site for each grid
point in the image. These vectors are then propagated using a
structuring element called vector template. Multiple templates are
swept in some certain fashions across the image. These algorithms
can produce highly accurate EDT with just a small number of grid
points with inaccurate distance values, and the absolute distance
error is bounded.

PRAM Solutions. To cater to the need of applications that require a
throughput of millions of pixels per second, several parallel EDT
algorithms have been proposed. Lee et al. [2003] use dimension-
ality reduction together with the theorem proven by Kolountzakis
and Kutulakos [1992] to compute the exact EDT in O(log2 N) time
using O(N) processors. Redefining the problem of finding the in-
tersection of the Voronoi diagram with each row of the image as the
problem of finding proximate sites (which can be optimally com-
puted in O(log n) time using O(n

logn
) processors [Hayashi et al.

1998]), one can compute the exact EDT in O(log n) time [Wang
et al. 2001]. All the algorithms above are developed in the EREW
PRAM model. Better time complexity algorithms for the more
powerful CRCW PRAM model are known; see [Wang et al. 2001].
Our algorithm is inspired by Hayashi et al. [1998], but is much sim-
pler and more practical to implement on modern graphics hardware.

Graphics Hardware Solutions. The early attempts to compute the
approximate distance transform using the graphics hardware in-
clude the work of Hoff et al. [1999]. They render a right-angle cone
for each site in the image to approximate the distance function, and
use the depth-testing graphics hardware to obtain the distance map.
Their method suffers from overdrawing and tessellation error. Sud
et al. [2006] use a bilinear interpolation equation to compute the
distance vector at any point on a polygon using the distance vectors
of the polygon vertices. Their method can compute highly accurate
distance maps for complex models, but its complexity is dependent
on the number of sites in the image. As such, it is not suitable for
problems with many sites.

Recent methods use the vector propagation approach to compute
the approximate distance transform in the GPU. Rong and Tan
[2006; 2007] present the Jump Flooding Algorithm (JFA) to com-
pute the EDT in O(log n) time using O(N) processors. Although
JFA can easily exploit the tremendous computing power and mem-
ory bandwidth of the GPU, it has a suboptimal total work complex-
ity of O(N log n), and thus sometimes incurs long actual running
time. Though the work provides some insight into the (expected)
low error rate, it does not provide a bound on the absolute distance

error. Cuntz and Kolb [2007] propose an improvement to JFA by
using a hierarchical approach to reduce the total work to O(N).
However, their method has a high error rate as it relies on down-
sampling the input image to reduce the total work, while a Voronoi
diagram is usually very sensitive to any slight change in the posi-
tions of sites that are nearby. This limits its uses in practice.

Schneider et al. [2009] modify Danielsson’s vector templates
slightly to allow concurrent propagation for pixels in the same row
or column. Their line sweeping algorithm, termed SKW, can be
implemented on the GPU with linear total work complexity and the
resulting distance map is close to exact. However, SKW has a high
time complexity of O(n), and usually does not run faster than JFA.
This is because it can only perform parallel propagation of pixels in
one row at a time (in 2D problem). With a limited texture size due
to the limited memory of the GPU (hardware and 32 bits architec-
ture) and the need to have 104 threads or more in order to optimally
utilize the processing power of the GPU [NVIDIA 2009], SKW
under-utilizes the GPU.

On the other hand, there has been no report in computing the ex-
act EDT in the GPU using either the exact sequential algorithm or
the above-mentioned exact PRAM algorithms. This is possibly be-
cause, in order to tap the superior memory bandwidth and comput-
ing power of the GPU, a special SIMD-like programming paradigm
has to be employed. Those mentioned algorithms are much too
complex to fit into such a paradigm effectively. In the next two
sections, we discuss our proposed Parallel Banding Algorithm that
is exact, work optimal and faster than all existing works. It is de-
signed following the dimensionality reduction principle, with the
idea of banding to increase the level of parallelism and the idea of
using doubly linked lists embedded on a texture to facilitate the fast
merging operation.

3 Exact Euclidean Distance Transform

This section reviews the general approach to compute the exact
EDT in a dimensionality reduction manner. The initial idea is pro-
posed by Kolountzakis and Kutulakos [1992], and further extended
by [Hayashi et al. 1998], [Lee et al. 2003], and [Maurer et al. 2003].
Our discussion is in the 2D case, i.e. we discuss the computation
done in one dimension (for each row) and then in the second di-
mension (for each column). The same idea can easily be extended
to higher dimensions by repeating the computation for each addi-
tional dimension.

Consider a 2D binary image of size N = n× n. We want to deter-
mine the intersection of each column i in the image and the Voronoi
diagram of the sites. Let Si,j be the nearest site, among all sites in
row j, of the pixel (i, j), and let Si = {Si,j | Si,j ̸= NULL, j =
0, 1, 2, . . . , n−1} be the collection of such closest sites for all pix-
els in column i. Note that Si,j is NULL when there is no site in
row j. Let Pi be the set of sites whose Voronoi regions intersect
the pixels in column i. These sites are termed the proximate sites
of column i. Among them, each pixel in column i needs to deter-
mine which is its closest site. To help improve the efficiency of this
computation, the following three straightforward facts are utilized;
refer to Figure 2.

Following the convention in graphics, the upper left corner of the
image has coordinate (0, 0) and lower right corner (n− 1, n− 1).
We assume that the distances from any two sites to a grid point
are different. In case of a tie, the distance from the site with the
smaller coordinate is considered smaller.

Fact 1. Consider column i and let b(i1, j) and b′(i2, j) be two sites
in row j. If |i1 − i| < |i2 − i|, then the Voronoi region of b′ cannot
intersect column i. �

Figure 2: Illustration of the three facts of the exact EDT.

This fact means that for each column i, there can be at most
one site along a row that can potentially be a proximate site, or
basically, Pi ⊆ Si. As a result, |Pi| ≤ n.

Fact 2. Consider column i and let a(i1, j1), b(i2, j2), c(i3, j3) be
any three sites with j1 < j2 < j3. Let the intersection of the
perpendicular bisector of a and b and column i be p(i, u), and that
of b and c be q(i, v). If u > v then the Voronoi region of b cannot
intersect column i. �

When the mentioned situation happens, we say that a and c
dominate b on column i. In this case, b /∈ Pi.

Fact 3. Let q(i, v) and p(i, u) be two pixels in column i such that
u > v, and let a(i1, j1) and c(i3, j3) be the closest sites to q and p
respectively. Then we have j1 ≤ j3. �

This fact means that the proximate sites of column i have their
Voronoi regions appear in exactly the same order as when they are
sorted by their y-coordinates.

With the above facts, the exact EDT computation is done by the
following three phases:

Phase 1: For each pixel (i, j), compute Si,j .

Phase 2: Compute the set Pi for each column i using Si.

Phase 3: Compute the closest site for each pixel (i, j) using Pi.

4 Parallel Banding Algorithm

In this section, we present our Parallel Banding Algorithm to per-
form the above-mentioned three phases on the GPU.

4.1 Phase 1 - Band Sweeping

In this phase, for each row, we want to compute the 1D Voronoi
diagram using only those sites in the same row. A trivial approach
would be to use a two-pass sweeping (left to right and then right to
left sweeping), similar to SKW [Schneider et al. 2009]. This, how-
ever, restricts the parallelism to only one thread per row, potentially
under-utilizing the GPU. One could also use a 1D JFA [Rong and
Tan 2007] with better utilization of the GPU at the cost of higher
total work. Another possibility would be to use a method similar
to the work efficient parallel prefix sum [Harris et al. 2007]. This
approach is too complicated as compared to our following simple,
yet work and time efficient approach.

Our approach extends the naı̈ve two-pass sweeping approach, with
the introduction of bands to effectively increase the level of par-
allelism. First, we divide the input image into m1 vertical bands
of equal size, and use one thread to handle one row in each band,
performing the left-right sweeps. Next, for one site to propagate
its information to a different band (on the same row), it has to be
the closest site to the first or the last pixel of its band. As such, to
combine the result of different bands into the needed answer, we

first propagate the information among the first and the last pixels
of all bands using a parallel prefix approach on these 2m1 pixels.
With this, the first and the last pixel of each band have the correct
information, whereas other pixels inside a band can then obtain the
correct closest sites by updating (if needed) their current informa-
tion with that of the first and the last pixel of their band. This can
be done in parallel in constant time using N threads.

4.2 Phase 2 - Hierarchical Merging

This phase computes the proximate sites Pi for each column i,
given Si. The sequential implementation to determine Pi is to
sweep sites in Si from topmost to bottommost, while maintaining a
stack of sites that are potentially proximate sites. When a new site
c in Si is reached, we examine (using Fact 2) whether the site b at
the top of the stack is dominated by c and the site a at the second
top position in the stack. If so, b is popped out of the stack, and the
process of examination repeats with a taking the place of b. Once
this is done, c is pushed onto the stack, and the sweeping continue.
At the end of the process, the stack contains Pi. However, this
approach restricts the level of parallelism to one thread per column.

To increase parallelism, we employ again the idea of banding. First,
we divide the input image into m2 horizontal bands of equal size.
Let B = {B1, B2, . . . , Bm2

} be the set of horizontal bands. For
each column in each band Bk, we employ one thread to run the
above algorithm to compute its proximate sites. Let PB

i be the
set of proximate sites of column i considering only the sites inside
the band B. Then, the challenge is to merge the m2 resulting sets

P
Bk

i from different bands of column i into Pi. To do this, for
each column i, we perform a bottom up merging where two sets
of results PU

i and PV
i of two consecutive bands U and V (with

U above V) are merged into one at each level, forming the result
of a bigger band U ∪ V , till there is only one band left. To do
this, we treat PU

i as a stack with sites sorted, having the largest
y-coordinate at the top of the stack, and consider each site in PV

i

in increasing y-coordinate. For each site c in PV
i , we repeat the

above-mentioned algorithm by removing each site at the top of the
stack that is dominated by the site right below it in the stack and c;
see Algorithm 1 for details.

Algorithm 1 Merging PU
i and PV

i

1: Stack ← PU
i

2: for c ∈ PV
i in increasing y-coordinate do

3: while Stack.size() ≥ 2 do
4: Let b and a be the top and second top items in Stack
5: if a and c dominate b then
6: Stack.pop()
7: else
8: Break the while-loop
9: end if

10: end while
11: Stack.push(c)
12: if the two sites at the top of Stack are from PV

i then
13: Break the for-loop
14: end if
15: end for
16: Join those sites not yet processed in PV

i to those in Stack
17: return Stack

This algorithm uses two important points to achieve linear total
work (proven in Section 4.4). First, refer to Line 12. When there
are two sites of PV

i in the Stack, no subsequent popping is possi-
ble and we thus can break the for-loop at Line 13. This is because
sites inPV

i cannot dominate each other. Second, we can implement

Figure 3: The doubly linked lists embedded on a 2D texture.

the Stack, PU
i and PV

i as doubly linked lists so that Line 16 can
be done in constant time without going through each site in PV

i .
The doubly linked lists are embedded onto a 2D texture, termed
proximate texture; Figure 3 shows the upper part of the proximate
texture where the red pixels store potential proximate sites when the
processing reaches the green row during the proximate sites com-
putation for each band. For each site Si,j being considered as a
proximate site of column i, we store two pointers on the proximate
texture at position (i, j): one pointing to the previous proximate
site Si,j1 and the other to the next proximate site Si,j2 of column
i. These pointers can simply be the indices j1 and j2 of the rows
correspond to these proximate sites. The first and the last pixel of
each resulting band are used to store the positions of the head and
the tail of its doubly linked list.

4.3 Phase 3 - Block Coloring

This phase uses the set Pi, whose sites are linked as a list in in-
creasing y-coordinate, of each column i to compute the closest site
for each pixel (i, j) in the order of j = 0, 1, . . . , n − 1. At each
pixel p, we check the distance of p to the two sites a and b where a
is at the front and b is just after a in the list. If a is closer, then a
is the closest site to p, and the process is repeated for the pixel after
p. If not, we can remove a from the list since it can no longer affect
any other pixel from p onward (by Fact 3), and use b in place of a
as the front of the list to compute the closest site to p.

One might attempt a parallel approach by using a thread to handle a
segment of pixels in column i having the same closest site in order
to increase the level of parallelism. Such an approach, however,
yields a completely random pattern of write operations, and does
not have good performance in practice for the current GPU.

Instead, we propose to color a block of m3 consecutive pixels in
column i at a time, using m3 threads. Each thread looks at two
sites a and b in the front of the list. In the first case, when its pixel
already has a site nearer to a and b, it does nothing. In the second
case, when its pixel is nearer to a than to b, then that thread sets
the closest site to its pixel as a. Otherwise, in the third case, the
thread advances the front of the list to b. The process is repeated
until the thread handling the last pixel in the block does not advance
the front of the list. After finishing a block of m3 pixels, we move
on to the next block of m3 pixels.

4.4 Complexity Analysis

We now analyze the complexity of our algorithm. We show that
Phase 1 and Phase 2 are work efficient, while Phase 3 is also
efficient in most situations.

Fact 4. Phase 1 takes O(N) total work and O(log n) time.

Proof. Choose m1 to be n
logn

. Then, the left-right sweep takes

O(N) total work and O(log n) time. The propagation across bands
using parallel prefix can be done in O(nm1 logm1) = O(N) total
work in O(logm1) = O(log n) time. The last update for each pixel
within a band can trivially be done in O(N) total work and O(1)
time, yielding the total work and time complexity as claimed. �

In practice, there is a limit on the number of threads that can run
concurrently on the GPU. Thus, an m1 smaller than that in the proof
(as is used in our experiments) already can fully utilize the GPU
without penalty in the actual running time. The added advantage
of a smaller m1 is that the work in the propagation across bands is
reduced.

Fact 5. Phase 2 takes O(N) total work.

Proof. The total work to compute the proximate set for each col-
umn of each band is obviously O(N). The number of merging op-
erations performed for each column is (m2 − 1), leading to a total
number of n(m2 − 1) merging with the Algorithm 1. Consider
the ℓ-th merging, and suppose Kℓ sites are popped in the merging.
Then, the while-loop in Line 3 to Line 10 is executed exactly Kℓ

times. Due to the breaking condition in Line 12, the for-loop in
Line 2 to Line 15 can be executed no more than Kℓ + 2 times.
Line 16 can be done in O(1) work since we use doubly linked lists.
As such, the total work of the merging process is no more than:

∑

ℓ

Kℓ +
∑

ℓ

(Kℓ + 2) =

(

2
∑

ℓ

Kℓ

)

+ 2 n (m2 − 1)

Since we can remove at most a total of N sites in all the merging,
∑

ℓ
Kℓ is O(N). Thus, the total work of Phase 2 is O(N). �

The above fact means that the total work of Phase 2 is not much
affected by the choice of m2. By taking m2 all the way up to n,
we can have the highest level of parallelism. However, the merging
operation still has some overhead, while there is a limit in the level
of parallelism of a GPU in practice. By allowing flexible choice
of the number of bands, we can tune the algorithm to work best on
different GPUs.

Fact 6. Phase 3 takes O(m3N) total work in the worst case.

Proof. The number of attempts needed for each block to confirm
its closest sites is the number of Voronoi regions that intersect that
block. In the worst case, this number can be m3, causing the com-
plexity to be O(m3N). �

Although the presence of m3 means a super-linear total work for
our algorithm, we can maintain optimal total work if we set m3 to
be a small number. In practice as we experience in our extensive
experiments, a small m3 value is sufficient to achieve good perfor-
mance for the algorithm.

4.5 3D and Higher Dimensions

Our algorithm can be easily extended to 3D and higher dimensions.
For example, in the 3D case with N = n3 pixels, having done
the computation as in the 2D case for each plane where z = k for
k = 0, 1, 2, . . . , n− 1, we need to finalize the closest sites for each
“row” of pixels (a, b, k) where a and b are fixed and k ranges from
0 to (n− 1). This is achieved by applying Phase 2 and Phase 3 on
each such “row”.

The current graphics hardware limits a 3D image to 5123. In order
to compute the EDT for a bigger volume of n3 grid points, instead
of computing the result for the whole image, we can perform the
computation slice by slice as follows. Let Lk : z = k be a slice
where k is an integer between 0 and n − 1. We first compute for

each of the n × n pixels (i, j, k) its closest site among all sites
with the same i and j as their x- and y-coordinate. This is done by
simply projecting all the sites onto Lk. Then, we can use Phase 2
and Phase 3 of our algorithm once to compute the result along the
x-axis on Lk and then again along the y-axis on Lk, to obtain the
EDT for Lk. This approach is useful for 3D applications that need
the result for just one or several slices at any moment.

In general, consider the d dimensional problem where the input size
is N = nd. To simplify our discussion, we assume that in dimen-
sion d, the effort to compute distance from one voxel to another is
constant, although in fact it is O(d). For such a high dimensional
problem, our algorithm performs one pass of Phase 1 and (d − 1)
passes of Phase 2 and Phase 3, each of which takes linear time, thus
the total work is only O(dN).

In contrast, the approach of JFA needs to perform log n passes; in
each, one voxel propagates its information to 3d other voxels, thus
the total work of JFA is O(3dN log n). And, the approach of SKW
needs to perform 2d sweepings; in each, one voxel propagates its
information to 3d−1 other voxels. As such, the total work of SKW
is O(d 3d−1N). Therefore, when we increase d, the running time
of JFA and SKW grows much faster than that of our algorithm.

5 Experiments

All tests are run on an Intel Core2 Quad Q6600 2.4GHz CPU run-
ning Windows XP Professional SP3. The machine is equipped with
4GB DDR2 RAM. To be able to compare PBA implemented in
CUDA with other state-of-the-art approaches, we implement JFA
and SKW using CUDA as well. JFA is a simple algorithm and
there is no issue for our implementation to achieve the same per-
formance as that in [Rong and Tan 2006]. On the other hand, there
are many implementation choices for SKW. [Schneider et al. 2009]
uses nVidia 8800GTX graphics card in its performance studies; we
verify that our implementation of SKW has a better performance
than that of [Schneider et al. 2009] on the same graphics card be-
fore doing our comparison. In 2D cases, we run the experiments
with nVidia GeForce GTX280 graphics card with 1GB of video
RAM, whereas for 3D cases, we need nVidia Tesla C1060 graphics
card (lower in performance than GTX280) for its large 4GB video
RAM to run large enough experiments.

5.1 Parameters m1,m2 and m3

The three parameters m1, m2 and m3 are independent from each
other, we can thus tune them independently to achieve the best per-

Figure 4: Percentage of running time of the different phases of PBA
in 2D with optimized and unoptimized parameters.

Figure 5: Speedup of PBA using different number of bands for
Phase 2.

formance on different GPUs. For our nVidia GTX280 graphics
card, the best values to use are m1 = 16, m2 = 16 for all tex-
ture sizes, and m3 = 16, 8, 4, 2, 1 for texture sizes from 512× 512
till 8192 × 8192. Using smaller m3 for bigger texture is better
since the overhead is high when we use bigger m3, while the bene-
fit of having higher parallelism is lesser when the texture gets big-
ger. Figure 4 shows the improvement in running time with the best
choice of our parameters, where the unoptimized case refers to hav-
ing m1 = m2 = m3 = 1. The running time of the optimized case
is normalized to the corresponding running time of the unoptimized
case. This is to highlight the effect of the choices of parameters in
the three phases of the algorithm. Notice that Phase 2 is the most
time-consuming phase and the improvement with the idea of band-
ing is very significant; Figure 5 shows the running time improve-
ment to Phase 2 for different value of m2. Notice that the larger
the value of m2, the better the performance of our algorithm until
it encounters the overhead of merging.

5.2 Density of Sites

The theoretical complexity of all the implemented algorithms are
independent of the number of sites in the texture. However, the ac-
tual running time can be slightly affected, as shown in Figure 6 on
a 1024×1024 texture. Our algorithm is slightly faster when there
are very few sites, slower when 10% to 90% of the pixels are sites,
and faster again when the number of sites increases further. This is
probably because when the number of sites is so small, Phase 2
(which dominates the computational time) of our algorithm has
very few sites to process, and the algorithm thus runs faster. On the
other hand, when the percentage of sites is larger than 90%, many
Voronoi regions intersect each column, thus fewer sites are removed
during merging in Phase 2, and the algorithm is again faster. With
this understanding, to have a fair comparison to other algorithms,
we report results based on test cases with the density of sites set at
slightly above 10% and locations of sites chosen randomly.

Figure 6: Performance of PBA on different densities of sites.

5.3 2D Running Time

(a) (b)

Figure 7: (a) 2D running time, and (b) normalized frame rates of
different algorithms.

Figure 7(a) presents the running time of different algorithms on dif-
ferent texture sizes ranging from 512× 512 to 8192× 8192. PBA
performs significantly faster than all other algorithms, as it has a
good balance of total work and level of parallelism to utilize the
GPU. To appreciate the speedup of PBA better, Figure 7(b) shows
the frame rates of different algorithms normalized to that of SKW.
We use SKW as the baseline because it also has linear total work
complexity. Our PBA performs up to 9 times faster than SKW on
small texture sizes, but this ratio drops when the texture size in-
creases. This is due to the limited number of processors of the
GPU, when the texture is very big, SKW can also have enough level
of parallelism to fully utilize the GPU. On the other hand, JFA is
reasonably efficient for small size textures but performs the worst
when texture size increases. For the largest texture, PBA outper-
forms JFA by a factor of 6 times.

The above alludes to the fact that the advantage of PBA hav-
ing a high level of parallelism diminishes for large texture sizes
when compared to SKW. However, having a higher level of paral-
lelism means that PBA scales better when the number of proces-
sors increases. To verify this claim, we use the NVStrap driver in
the RivaTuner software to disable processing units in the nVidia
8800GTX card to generate Figure 8. It shows the speedup of PBA
running on different numbers of stream processors (SPs), rang-
ing from 16 to 128 (on the 8800GTX) and 240 (on the GTX280).
Clearly, by choosing appropriate values for the parameters, PBA
scales very well with the increase in the number of processors. The
speedup is sub-linear because the memory bandwidth is unchanged
(except from 128 SPs to 240 SPs). Note that historical evidence al-
ludes to the fact that the increase in the number of stream processors
is much faster than the increase in the support of larger textures. As
such, we expect the performance of our new algorithm to continue
to outperform all previous algorithms in the foreseeable future.

5.4 3D and Higher Dimensions

Figure 9(a) presents the running time of each algorithm. Clearly,
our new algorithm outperforms all approximate EDT algorithms for
most input sizes by a few times; see Figure 9(b). Figure 10 shows
the breakdown on time for each phase of our algorithm, where the
optimized cases use m1 = m3 = 1 and m2 = 2 or 4. The idea
of banding plays a smaller role here in improving the performance
of the algorithm as there is already enough level of parallelism (for
current GPU) since we now have n2 rows of computation to be
done concurrently in each of the three phases. Looking forward to
the hardware that can support many more threads in the near future,
our banding idea would remain advantageous. Also, as mentioned
before, in case we need to compute EDT slice by slice for bigger
volumes, the banding idea would be beneficial as the situation is
similar to the 2D case.

Figure 8: Speedup of PBA using optimal m1, m2 and m3, on dif-
ferent number of processors.

(a) (b)

Figure 9: (a) 3D running time, and (b) normalized frame rates of
different algorithms.

Figure 10: Percentage of running time of the different phases of
PBA in 3D with optimized and unoptimized parameters.

For the case of d > 4, due to the limitation on N , the size n of one
dimension becomes very small (assuming a hypercube). One can
trivially use Fact 1 to compute the exact EDT in O(nN) total work.
Since n is small, this algorithm achieves performance comparable
to, if not better than, that of any above-mentioned algorithms due
to its simplicity.

6 EDT Applications

We illustrate the use of our fast exact EDT algorithm on a few ap-
plications in 2D and 3D.

6.1 Weighted Centroidal Voronoi Diagram

Recall that the weighted centroid of a discrete Voronoi region is
defined as:

Cs =

∑

p∈Vs
p w(p)

∑

p∈Vs
w(p)

Figure 11: Illustration of the weighted CVD computation.

where Vs is the Voronoi region of site s and w(p) is the weight
of pixel p. We show how to compute the numerator, while the de-
nominator can be computed in a similar way. Figure 11 shows one
Voronoi region with the site at position (i, j) and notice that the
region is not necessarily simply connected. A simple strategy is to
sum up all the pixels horizontally first, and then add up these partial
sums to obtain the final result. Note that Fact 3 states that pixels in
one row belonging to the same site is connected, forming a chunk.
Thus, if we can pre-compute the prefix sum for each pixel (i, j)
along a row as:

Prefix(i, j) =

i−1
∑

k=0

pk,j w(pk,j)

where pk,j is the pixel at (k, j). Then, knowing the starting and
ending of a chunk, we can compute the sum of the chunk. The
challenge lies in where to store the sum of each chunk for subse-
quent summing up as the sum of a Voronoi region. This is discussed
in the next two paragraphs.

Fact 1 states that if there is a chunk of pixels in row k belonging to
the Voronoi region of site S at (i, j), then S must be the closest site
to (i, k) among all sites in column i. As such, we can store the sum
of this chunk at position (i, k) in a texture, termed sum texture, as
no other sites (in particular those in column i) would possibly need
this same storage space. So, all the partial sums that belong to site S
are stored in column i as in the red region shown in Figure 11. Once
we have set up the sum texture (as discussed in the next paragraph),
a segmented scan [Sengupta et al. 2007] of each column of the sum
texture gives the sum for each Voronoi region.

To arrive at the partial sums in the sum texture using CUDA, we
have the following implementation. Each block of threads is used
to process a row. For block k processing row k, we use a shared
array Arrayk of n elements. Each thread processing a pixel (ℓ, k)
in the row k decides whether it is the leftmost pixel of a chunk
belonging to a site (i, j). If yes, it stores Prefix(ℓ, k) in Arrayk[i].
Next, after synchronizing all threads, each thread processing a pixel
(ℓ, k) in a row k decides whether it is the rightmost pixel of a chunk
belonging to a site (i, j). If yes, it gets Prefix(ℓ + 1, k), subtracts
the prefix sum stored in Arrayk[i], and stores the resulting sum of
that chunk back to Arrayk[i]. Next, again after synchronizing all
threads in the block, we write Arrayk into row k of the sum texture
to complete the setup of the sum texture.

The running time of the algorithm is almost independent of the den-
sity of the sites, with the exception that when the number of sites is
very small the algorithm runs faster; see Figure 12(a). Figure 12(b)
shows that our centroid computation algorithm scales linearly for
different texture sizes. A direct application of our CVD algorithm
is to create an artistic stipple drawing [Secord 2002]; see Figure 1.
For such an application, there can be a large blank area without
any sites, thus the Voronoi regions of sites on the boundary of this
blank area can be elongated and become challenging cases to other
existing works of CVD computation using the GPU.

(a) (b)

Figure 12: Performance of our weighted CVD computation on (a)
different densities of sites and (b) different texture sizes.

6.2 Integer Medial Axis

Given an exact EDT, Hesselink and Roerdink [2008] compute the
Euclidean skeletons in linear time using the integer medial axis
transform. Figure 13 shows some examples of such a skeleton on
a 1024×1024 image, being generated at more than 300 frames per
second. This allows real-time adjustment of various pruning pa-
rameters (such as γ) in the algorithm.

(a) γ = 5 (b) γ = 10 (c) γ = 20

Figure 13: Euclidean skeletons of a binary image generated using
integer medial axis transform.

6.3 Mathematical Morphology

Morphological operators are very important in the processing of 3D
volumetric data. The closing operation, which is a dilation followed
by an erosion, can help removing cracks on a scanned model. The
closing operation can be computed by performing EDT computa-
tion twice on the data set, one for computing the dilation, and one
for the erosion. Figure 14 shows the closing operation applied on
the UNC CThead 3D dataset of size 2563. Using our exact EDT
algorithm on the GPU, these images can be computed accurately
and rendered at 5 to 6 frames per second, allowing interactive mod-
ification of the ball radius used by the operation. Note that other
approximate EDT algorithms can achieve at most 2 to 3 frames per
second.

Figure 14: The UNC CThead data set (leftmost) and its 3D dis-
tance closure of 5 voxels (middle) and 10 voxels (rightmost).

7 Conclusion

This paper presents the first efficient parallel algorithm on the GPU
to compute the exact Euclidean distance transform (EDT) for bi-
nary images in 2D and higher dimensions. The algorithm is work
efficient with linear total work, and with very high level of paral-
lelism, allowing it to better utilize the enormous power of the GPU.
Experiment results show that our exact algorithm still performs sig-
nificantly faster than all known approximate EDT computation on
the GPU. Importantly, our new algorithm scales well with the num-
ber of processors in the GPU, so it should work even better in the
forthcoming generations of graphics cards with even larger num-
ber of processors. In addition to PBA, we present a weighted CVD
algorithm that can accurately compute the centroids of all Voronoi
regions in the GPU, independent of the number of regions and the
size of each region.

On the other hand, our Parallel Banding Algorithm still has some
limitations. First, the merging workload for different threads in
Phase 2 may not necessarily be balanced. It is possible that the
merging pass of two sets of proximate sites can take up to O(n)
time. In practice, this scenario hardly happens as it is almost impos-
sible to produce a test case where the work loads on many columns
of the image are unbalanced. Second, Phase 3 in the worst case
(with large m3) is of non-optimal total work. One possible thinking
is to break the set of proximate sites for each column into several
subsets to be processed independently. Still, balancing the work-
load in such an approach remains challenging.

References

BOLLIG, E. F. 2009. Centroidal Voronoi tesselation of manifolds
using the GPU. Master’s thesis, Department of Scientific Com-
puting, Florida State University.

CUISENAIRE, O. 1999. Distance transformations: fast algorithms
and applications to medical image processing. PhD thesis, Uni-
versite catholique de Louvain (UCL), Louvain-la-Neuve, Bel-
gium.

CUNTZ, N., AND KOLB, A. 2007. Fast hierarchical 3D distance
transforms on the GPU. In Eurographics 2007, 93–96.

DANIELSSON, P.-E. 1980. Euclidean distance mapping. Computer
Graphics and Image Processing 14, 227–248.

FABBRI, R., COSTA, L. D. F., TORELLI, J. C., AND BRUNO,
O. M. 2008. 2D Euclidean distance transform algorithms: A
comparative survey. ACM Computing Survey 40, 1, 1–44.

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. GPU
Gems 3. Addison Wesley, ch. Parallel Prefix Sum (Scan) with
CUDA, 815–876.

HAYASHI, T., NAKANO, K., AND OLARIU, S. 1998. Optimal
parallel algorithms for finding proximate points, with applica-
tions. IEEE Transaction on Parallel and Distributed Systems 9,
12, 1153–1166.

HESSELINK, W., AND ROERDINK, J. 2008. Euclidean skeletons
of digital image and volume data in linear time by the integer
medial axis transform. IEEE Transactions on Pattern Analysis
and Machine Intelligence 30, 12 (Dec.), 2204–2217.

HOFF, III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND

CULVER, T. 1999. Fast computation of generalized Voronoi
diagrams using graphics hardware. In SIGGRAPH ’99: Pro-
ceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, 277–286.

JONES, M. W., BAERENTZEN, J. A., AND SRAMEK, M. 2006.
3D distance fields: A survey of techniques and applications.
IEEE Transaction on Visualization and Computer Graphics 12,
4, 581–599.

KOLOUNTZAKIS, M., AND KUTULAKOS, K. 1992. Fast compu-
tation of the Euclidean distance maps for binary images. Infor-
mation Processing Letters 43, 181–184.

LEE, Y.-H., HORNG, S.-J., AND SEITZER, J. 2003. Paral-
lel computation of the Euclidean distance transform on a three-
dimensional image array. IEEE Transaction on Parallel and Dis-
tributed Systems 14, 3, 203–212.

LLOYD, S. W. 1982. Least square quantization in PCM. IEEE
Transactions on Information Theory 28, 2, 129–137.

MAURER, JR., C. R., QI, R., AND RAGHAVAN, V. 2003. A lin-
ear time algorithm for computing exact Euclidean distance trans-
forms of binary images in arbitrary dimensions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25, 2, 265–
270.

NVIDIA. 2009. CUDA programming guide 2.0.

RONG, G., AND TAN, T.-S. 2006. Jump flooding in GPU with
applications to Voronoi diagram and distance transform. In
I3D ’06: Proceedings of the 2006 symposium on Interactive 3D
graphics and games, ACM, New York, NY, USA, 109–116.

RONG, G., AND TAN, T.-S. 2007. Variants of jump flooding
algorithm for computing discrete Voronoi diagrams. In ISVD
’07: Proceedings of the 4th International Symposium on Voronoi
Diagrams in Science and Engineering, IEEE Computer Society,
Washington, DC, USA, 176–181.

RONG, G., TAN, T.-S., CAO, T.-T., AND STEPHANUS.
2008. Computing two-dimensional Delaunay triangulation us-
ing graphics hardware. In I3D ’08: Proceedings of the 2008
Symposium on Interactive 3D Graphics and Games, ACM, New
York, NY, USA, 89–97.

SCHNEIDER, J., KRAUS, M., AND WESTERMANN, R. 2009.
GPU-based real-time discrete Euclidean distance transforms
with precise error bounds. In International Conference on Com-
puter Vision Theory and Applications (VISAPP), 435–442.

SECORD, A. 2002. Weighted Voronoi stippling. In NPAR
’02: Proceedings of the 2nd International Symposium on Non-
photorealistic Animation and Rendering, ACM, New York, NY,
USA, 37–43.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Graphics Hard-
ware 2007, ACM, 97–106.

SUD, A., GOVINDARAJU, N., GAYLE, R., AND MANOCHA, D.
2006. Interactive 3D distance field computation using linear fac-
torization. In I3D ’06: Proceedings of the 2006 Symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, 117–124.

VASCONCELOS, C. N., SÁ, A., CARVALHO, P. C., AND GAT-
TASS, M. 2008. Lloyd’s algorithm on GPU. In ISVC ’08: Pro-
ceedings of the 4th International Symposium on Advances in Vi-
sual Computing, Springer-Verlag, Berlin, Heidelberg, 953–964.

WANG, Y.-R., HORNG, S.-J., LEE, Y.-H., AND LEE, P.-Z. 2001.
Optimal parallel algorithms for the 3D Euclidean distance trans-
form on the CRCW and EREW PRAM models. Proc. of the 19th
Workshop on Comb. Math. and Comp. Theory.

