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Abstract

We consider parallel global optimization of derivative-free expensive-to-evaluate functions, and
proposes an efficient method based on stochastic approximation for implementing a conceptual
Bayesian optimization algorithm proposed by [10]. To accomplish this, we use infinitessimal per-
turbation analysis (IPA) to construct a stochastic gradient estimator and show that this estimator
is unbiased.

1 Introduction

We consider derivative-free global optimization of expensive functions, in which (1) our objective
function is time-consuming to evaluate, limiting the number of function evaluations we can perform;
(2) evaluating the objective function provides only the value of the objective, and not the gradient
or Hessian; (3) we seek a global, rather than a local, optimum. Such problems typically arise when
the objective function is evaluated by running a complex computer code, but also arises when
the objective function can only be evaluated by performing a laboratory experiment, or building a
prototype system to be evaluated in the real world. In this paper we assume our function evaluations
are deterministic, i.e., free from noise.

Bayesian Global Optimization (BGO) methods constitute one class of methods attempting to
solve such problems. These methods were initially proposed in [19], with early work being pursued
in [26, 25], and more recent work including improved algorithms (give a bunch of cites), convergence
analysis [1, 2, 35], and allowing noisy function evaluations [3, 37, 8, 15].

The most well-known BGO method is Efficient Global Optimization (EGO) [32, 17], which
uses the notion of expected improvement. Expected improvement quantifies the benefit gained
through one additional evaluation of the objective function, given the set of previously evaluated
points. It can be viewed as the value of information [14] obtained from a single function evaluation.
To decide where to evaluate next, EGO searches over the set of possible evaluation points, to
find the point for which the expected improvement is largest. If the implementation decision (the
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solution that will be implemented in practice after the optimization is complete) is restricted to
be a previously evaluated point and evaluations are free from noise, then EGO is a one-step Bayes
optimal algorithm.

A number of other BGO methods perform similar value of information calculations. These
include probability of improvement [20], upper confidence bounds [27], Thompson sampling [34],
knowledge-gradient [6], etc.

Almost all BGO methods, including EGO, are sequential, in that they perform one function
evaluation at a time, requiring the results from all previously suggested function evaluations be-
fore deciding on the next point to evaluate. This prevents them from taking full advantage of
parallel computing architectures, which in principle would allow an algorithm to perform multi-
ple simultaneous function evaluations, reducing the elapsed time required to find an approximate
optimium.

An exception is [10], which proposed a generalization of expected improvement appropriate for
optimization in parallel settings, called the q-EI. This generalization is consistent with the decision-
theoretic motivation for expected improvement, and quantifies the expected utility that will result
from the evaluation of a set of points. Finding the set of points to evaluate next that jointly
maximize the q-EI results in a one-step optimal algorithm for global optimization, which can take
advantage of the ability to evaluate points in parallel.

However, actually finding the set of points that maximizes the q-EI is itself a very challenging
optimization problem. Stymied by this difficulty, [10], as well as the later works [9, 4, 11, 4, 16],
propose heuristic methods that are motivated by the one-step optimal algorithm of evaluating the
set of points that jointly maximize the q-EI, but that do not actually achieve this gold standard.

In addition to these parallel BGO algorithms motivated by maximization of the q-EI, [7, 38]
proposed a BGO algorithm that could evaluate two points in parallel. This algorithm, however, is
limited to evaluating pairs, and does not extend to a higher level of parallelism.

In this work, we provide a method that makes this gold-standard one-step optimal algorithm im-
plementable. To accomplish this we use infinitessimal perturbation analysis (IPA) [13] to construct
a stochastic gradient estimator of the gradient of the q-EI surface, and show that this estimator
is unbiased. Our method uses this estimator within a stochastic gradient ascent algorithm, which
converges to a stationary point of the q-EI surface [21]. We use multiple restarts to identify multiple
stationary points, and then use ranking and selection to identify the best stationary point found.
As the number of restarts and the number of iterations of stochastic gradient ascent within each
start both grow large, the one-step optimal set of points to evaluate is recovered.

In our numerical experiments, we compare this implementation of the one-step optimal method
to previously proposed heuristics, and show that there is substantial benefit to a full implementation
of the one-step optimal algorithm. While it is more expensive to compute the set of points to
evaluate next, it results in a substantial savings in the number of evaluations required to find a
point with a desired quality. When function evaluations are expensive, this results in a substantial
reduction in overall time to reach an approximately optimal solution.

We also compare the one-step optimal parallel method to the fully sequentially algorithm EGO
algorithm, which is one-step optimal when parallel resources are unavailable, and show that using
a one-step optimal parallel method results in a substantial speedup in a wide range of problems.

Finally, we compare our implementation of the maximization of the q-EI using stochastic gra-
dient descent, to an implementation using exact evaluations of the q-EI with a method recently
proposed in [4], combined with a standard derivative-free solver. We find that for small values of
q (q < 4), using exact function evaluations results in faster solve times, but the time required by
this alternate method increases rapidly with q, causing it to underperform our proposed stochastic
gradient method when q is large (q > 4). This is because exact evaluation of the q-EI requires q2
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evaluation of the q−1 dimensional multivariate normal cdf, which is computationally expensive for
q large, in contrast with our unbiased estimator of the gradient, which can be computed quickly
even for large values of q.

Our method can be implemented in both synchronous environments, in which function eval-
uations are performed in batches and finish at the same time, and asynchronous ones, in which
a function evaluation may finish before others are done. High performance computing environ-
ments are typically asynchronous, but synchronous environments also occur. We show that our
proposed method provides an advantage over previously proposed heuristics in both asynchronous
and synchronous settings, but that this advantage is particularly large in synchronous settings.

We begin in Section 2 by precisely describing the mathematical setting in which Bayesian
global optimization is performed, and then defining the q-EI and the one-step optimal algorithm.
In Section 3 we construct our stochastic gradient, and show that it is an unbiased estimator of the
gradient of the q-EI surface under certain mild regularity conditions. In Section 4.2 we combine this
estimator together with stochastic gradient ascent to define a one-step optimal method for parallel
Bayesian global optimization. Finally, in Section 5 we present numerical experiments: we compare
our proposed method against previously proposed heuristics from the literature; we demonstrate
that our proposed method provides a speedup over single-threaded EGO; and we show that our
proposed method is more efficient than optimizing exact evaluations of the q-EI when q is large.

2 Problem Formulation

In this section, we describe a decision-theoretic approach to Bayesian global optimization in parallel
computing environments, previously proposed by [10]. This approach was considered to be purely
conceptual in [10], as it contains a difficult-to-solve optimization sub-problem. In this section, we
present this optimization sub-problem, and in later sections we show it can be solved efficiently.

2.1 Bayesian Global Optimization

In Bayesian global optimization, one considers optimization of a function f with domain A ⊆ Rd.
Our overarching goal is to find an approximate solution to

min
x∈A

f(x).

We suppose that evaluating f is expensive or time-consuming, and that these evaluations provide
only the value of f at the evaluated point, and not its gradient or Hessian. Such situations occur
most typically when f is the output of a complex deterministic simulator. We assume that the
function definining the domain A is easy-to-evaluate, and that projections from Rd into the nearest
point in A can be performed quickly.

Rather than focusing on asymptotic performance as the number of function evaluations grows
large, we wish to find an algorithm that performs well, on average, given a limited budget of function
evaluations. To formalize this, we model our prior beliefs on the function f with a Bayesian prior
distribution, and we suppose that f was drawn at random by nature from this prior distribution,
before any evaluations were performed. We then seek to develop an optimization algorithm that
will perform well, on average, when applied to a function drawn at random from this prior.
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2.2 Gaussian process priors

For our Bayesian prior distribution on f , we adopt a Gaussian process prior [29], with mean function
m(x) : A → R and covariance kernal k(x,x′) : A× A → R, and write the Gaussian process as

f(x) ∼ GP(m(x), k(x,x′)).

For any specified collection of points X = (x1, . . . ,xq), prior distribution of f on X is

f(X) = [f(x1), . . . , f(xq)]
T ∼ N (µ(0),Σ(0)), (1)

where µ
(0)
i = m(Xi) and Σ

(0)
ij = k(Xi,Xj), i, j ∈ {1, . . . , q}.

Our proposed method for choosing the points to evaluate next additionally require that µ(0) and
Σ(0) satisfy some mild regularity assumptions discussed below (beyond just the requirement that
Σ(0) be positive semi-definite), but otherwise adds no additional requirements on µ(0) and Σ(0).
When Bayesian global optimization is used in practice, µ(0) and Σ(0) are typically chosen using an
empirical Bayes approach, in which (1) a parameterized functional form for µ(0) andΣ(0) is assumed;
(2) a first stage of data is collected in which f is evaluated at points chosen according to a Latin
hypercube or uniform design; and (3) maximum likelihood estimates for the parameters specifying
µ(0) and Σ(0) are obtained. In some implementations, these estimates are updated iteratively as
more evaluations of f are obtained. We adopt this method in our numerical experiments below in
section 5, and describe it in more detail there. However, the specific contribution of this paper, a
new method for solving an optimization sub-problem arising in the choice of design points, works
with any choice of mean function µ(0) and covariance matrix Σ(0), as long as they satisfy mild
regularity conditions discussed below.

In addition to the prior distribution (1), we may also have some previously observed function
values, say y(i) = f(x(i)), for i = 1, . . . , n. These might have been obtained through the previously
mentioned first stage of sampling, or running the second stage sampling method we are about to
describe, or from some additional runs of the expensive objective function f performed by another
party outside of the control of our algorithm. If no additional function values are available, we
set n = 0. We use boldface in our notation x(i) to indicate that x(i) ∈ Rd is a vector. We define
notation x(1:n) = (x(1), . . . ,x(n)) and y(1:n) = (y(1), . . . , y(n)).

We then combine these previously observed function values with our prior to obtain a posterior
distribution on f . This posterior distribution is still a multivariate normal

f | X,x(1:n), y(1:n) ∼ N (K(X,x(1:n))K(x(1:n),x(1:n))−1y(1:n),

K(X,X)−K(X,x(1:n))K(x(1:n),x(1:n))−1K(x(1:n),X)),
(2)

where K(·, ·) is covariance matrix which is typically determined by a specified kernel function [29,
Section 2.2].

2.3 Multi-points expected improvement

In a parallel computing environment, we wish to use this posterior distribution to choose the next
set of points to evaluate next. [10] previously proposed making this choice using a decision-theoretic
approach, in which we consider the utility that evaluating a particular candidate set of points would
provide, in terms of their ability to reveal points with better objective function values than were
previously known.

Let q be the number of function evaluations that we may perform in parallel, and let X =
(x1, . . . ,xq) be a candidate set of points that we are considering evaluating next. Let f⋆

n =
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minm≤n f(x
(m)) indicate the value of the best point evaluated, before begininning these q new

function evaluations. The value of the best point evaluated after all q function evaluations are
complete will be min (f⋆

n,mini=1,...,q f(xi)). The difference between these two values (the values of
the best point evaluated, before and after these q new function evaluations) is called the improve-
ment, and is equal to (f⋆

n −mini=1,...,q f(xi))
+, where a+ = max(a, 0) for a ∈ R.

We then value a joint set of evaluations at these candidate points (x1, . . . ,xq) as the expected
value of this improvement, and we refer to this quantity as the multi-points expected improvement
[10]. This multi-points expected improvement can be written as,

q-EI(x1, . . . ,xq) = En

[(
f⋆
n − min

i=1,...,q
f(xi)

)+
]
, (3)

where En [·] := E
[
·|x(1:n), y(1:n)

]
is the expectation taken with respect to the posterior distribution,

and given the proposed set of points to evaluate next.
[10] then proposes that we should choose to next evaluate the set of points that maximizes the

multi-points expected improvement,

argmax
(x1,...,xq)⊂A

q-EI(x1, . . . ,xq). (4)

In the special case q = 1, which occurs when we are operating without parallelism, the multi-
points expected improvement reduces to the expected improvement, as considered by [25, 17], and
can be evaluated in closed-form, in terms of the normal pdf and cdf. The algorithm that chooses
the next point to evaluate according to (4) is the EGO algorithm of [17]. [10] offered analytical
calculation of EI when q = 2, but in the same paper Ginsbourger commented that the general
case of q-EI has complex expressions depending on q-dimensional gaussian cumulative distribution
functions, and computation of q-EI when q is large would have to reply on numerical multivariate
integral approximation techniques, which is generally intractable and makes solving (4) difficult.
[9] writes “directly optimizing the q-EI becomes extremely expensive as q and d(the dimension of
inputs) grow”.

In this paper, our main contribution is to present a more efficient method for solving (4). We
proceed as follows. First, in Section 3, we construct an unbiased estimator of the gradient of the
multi-points expected improvement with respect to (x1, . . . ,xq). Then, in Section 4.2, we show how
this stochastic estimator of the gradient can be used in a multistart stochastic gradient algorithm
to solve (4). Then, in Section 5, we demonstrate in numerical experiments that (1) the resulting
algorithm for parallel Bayesian global optimization provides a significant speedup over the single-
threaded expected improvement method EGO; (2) and is faster than both previously proposed
heuristic schemes based on multi-points expected improvement, and faster than directly optimizing
exact evaluations of (3) as computed via numerical integration.

3 Gradient Estimator

We use stochastic gradient ascent to solve (4), and a natural question is how we obtain the gradient,
which is discussed in this section.

Consider random vector Y = (f(x1), . . . , f(xq)) ∈ Rq, generated from the multivariate normal
given by (2). Fix x(1:n), y(1:n), given X = (x1, . . . ,xq), its posterior distribution is

Y |X,x(1:n), y(1:n) ∼ N (µ(X),Σ(X)) (5)
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where µ(X) and Σ(X) can be obtained from (2).
Let L(X) be the Cholesky decomposition of Σ(X) and Z be q-dimensional standard normal

random vector, then (5) becomes

Y = µ(X) +L(X)Z

= µ (x1, . . . ,xq) +L (x1, . . . ,xq)Z
(6)

Substitute (6) into (3), and we have

q-EI (x1, . . . ,xq) = E

[(
f∗
n − min

i=1,...,q
ei [µ (x1, . . . ,xq) +L (x1, . . . ,xq)Z]

)+
]

(7)

To make (7) more compact, let

mi (x1, . . . ,xq) =

{
f∗
n − µi (x1, . . . ,xq) if i > 0 ,

0 if i = 0 ,

Cij (x1, . . . ,xq) =

{
−Lij if i > 0 ,

0 if i = 0 ,

and (7) becomes

q-EI (x1, . . . ,xq) = E
[
max

i=0,...,q
ei [m (x1, . . . ,xq) +C (x1, . . . ,xq)Z]

]
. (8)

3.1 Constructing the Gradient Estimator

We construct the gradient estimator of ∇q-EI (x1, . . . ,xq). Let

f (x1, . . . ,xq,Z) = max
i=0,...,q

ei [m(x1, . . . ,xq) +C(x1, . . . ,xq)Z] , (9)

then under certain conditions, specified in theorem 1,

∇q-EI (x1, . . . ,xq) = ∇Ef (x1, . . . ,xq,Z) = Eg (x1, . . . ,xq,Z) ,

where

g (x1, . . . ,xq,Z) =

{
∇f (x1, . . . ,xq,Z) if ∇f (x1, . . . ,xq,Z) exists,

0 if does not exist,

is the gradient estimator and exists almost surely if theorem 1 holds, and can be computed using
results from [33] on differentiation of the Cholesky decomposition. A sufficient condition for almost
sure existence of the gradient is differentiability of mean vector and Cholesky factor of the covariance
matrix (see Lemma 2). In practice, we often know that the covariance matrix differentiable, and
by following the results of [33], we know that mth-order of differentiability of the covariance matrix
implies mth-order differentiability of its Cholesky factor.

3.2 Unbiasedness of the Estimator

The following theorem shows unbiasedness of the estimator constructed in section 3.1, which is
typically required in proofs of convergence for stochastic approximation algorithms [22].
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Theorem 1. Under the definition of (9), if m(x1, . . . ,xq) and C(x1, . . . ,xq) are three times
continuously differentiable in a neighborhood of x1, . . . ,xq and C(x1, . . . ,xq) has no duplicate
rows, then ∇f (x1, . . . ,xq,Z) exists almost surely and

∇Ef (x1, . . . ,xq,Z) = E∇f (x1, . . . ,xq,Z) .

Before we prove Theorem 1, we first show the following two lemmas:

Lemma 1. If h(x) is twice continuously differentiable over [−ϵ, ϵ], then for a sequence (δℓ) ⊆ [−ϵ, ϵ],

sup
ℓ

|h(δℓ)− h(0)

δℓ
| < ∞.

Proof. By Taylor’s theorem,

h(δℓ) = h(0) + h′(0)δℓ +
h′′(rℓ)

2
δ2ℓ ,

where |rℓ| ∈ [0, |δℓ|]. Then

sup
ℓ

|h(δℓ)− h(0)

δℓ
| = sup

ℓ
|h′(0) + h′′(rℓ)

2
δℓ|,

≤ |h′(0)|+ sup
ℓ

|h
′′(rℓ)

2
δℓ| (by triangular inequality).

Because δℓ ∈ [−ϵ, ϵ], rℓ ∈ [−ϵ, ϵ], and h′′(·) is continuous over [−ϵ, ϵ],

sup
ℓ

|h
′′(rℓ)

2
δℓ| ≤ sup

ℓ
ϵ|h

′′(rℓ)

2
|,

< ∞.

Lemma 2. If m(x1, . . . ,xq) and C(x1, . . . ,xq) are differentiable in a neighborhood of x1, . . . ,xq,
and there are no duplicated rows in C(x1, . . . ,xq), then ∇f (x1, . . . ,xq,Z) exists almost surely.

Proof. Let
f (x1, . . . ,xq,Z) = eI∗ [m(x1, . . . ,xq) +C(x1, . . . ,xq)Z] ,

where I∗ ∈ argmaxi=0,...,q ei [m(x1, . . . ,xq) +C(x1, . . . ,xq)Z] := S and ei is the unit vector. To
simplify notations, let

m := m(x1, . . . ,xq),

C := C(x1, . . . ,xq),

∇f := ∇f (x1, . . . ,xq,Z) .

We claim that if eI(
∂m
∂xik

+ ∂C
∂xik

Z) are equal ∀I ∈ S, and ∀i, k (k iterate over dimension), then
∇f exists.

P(∇f does not exist) ≤ P(|S| ≥ 2),

≤
∑
i̸=j

P(ei[m+CZ] = ej [m+CZ]),

=
∑
i̸=j

P((Ci −Cj)
TZ = mj −mi).
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Since Ci ̸= Cj , {Z : (Ci − Cj)
TZ = mj −mi} is subspace of Rq with dimension smaller than q,

thus
P((Ci −Cj)

TZ = mj −mi) = 0 ∀i ̸= j.

Hence
P(∇f does not exist) ≤ 0 = 0.

Now we proceed to proving Theorem 1.

Proof. First we define some notation for ease. Fix (x1,x2, . . . ,xq), and let

f(δ,Z) := f(x1, . . . ,xj + δek, . . . ,xq,Z),

m(δ) := m(x1, . . . ,xj + δek, . . . ,xq),

C(δ) := C(x1, . . . ,xj + δek, . . . ,xq),

I∗(δ,Z) := min

(
argmax
i=0,...,q

ei [m(δ) +C(δ)Z]

)
.

Then
f(δ,Z) = max

i=0,...,q
ei [m(δ) +C(δ)Z] = eI∗

(δ,Z)
[m(δ) +C(δ)Z] ,

where ei is the unit vector in direction i. Define

△(δ,Z) : = f(δ,Z)− f(0,Z)

= eI∗
(δ,Z)

[m(δ) +C(δ)Z]− eI∗
(0,Z)

[m(0) +C(0)Z] .

Let ϵ > 0. Consider a sequence (δℓ) ⊆ [−ϵ, ϵ] and δℓ ↘ 0 as ℓ → ∞. We want to show limℓ→∞
△(δℓ,Z)

δℓ
exists almost surely, and

lim
ℓ→∞

E
[
△(δℓ,Z)

δℓ

]
= E

[
lim
ℓ→∞

△(δℓ,Z)

δℓ

]
.

As a first step we show that supℓ

∣∣∣△(δℓ,Z)
δℓ

∣∣∣ is bounded. For any δ in the sequence (δℓ), we consider

2 cases,

• Case 1: If eI∗
(δ,Z)

[m(δ) +C(δ)Z] ≥ eI∗
(0,Z)

[m(0) +C(0)Z], then

|△(δ,Z)| = eI∗
(δ,Z)

[m(δ) +C(δ)Z]− eI∗
(0,Z)

[m(0) +C(0)Z] ,

≤ eI∗
(δ,Z)

[m(δ) +C(δ)Z]− eI∗
(δ,Z)

[m(0) +C(0)Z] ,

= eI∗
(δ,Z)

[m(δ)−m(0) +C(δ)Z − C(0)Z] ,

≤
∣∣∣eI∗

(δ,Z)
[m(δ)−m(0) +C(δ)Z − C(0)Z]

∣∣∣ .
• Case 2: If eI∗

(δ,Z)
[m(δ) +C(δ)Z] ≤ eI∗

(0,Z)
[m(0) +C(0)Z], then

|△(δ,Z)| ≤
∣∣∣eI∗

(0,Z)
[m(δ)−m(0) +C(δ)Z − C(0)Z]

∣∣∣
by a similar argument.
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In general, we have shown that,

|△(δ,Z)| ≤
q∑

i=1

|ei [m(δ)−m(0) +C(δ)Z − C(0)Z]| ,

so

sup
ℓ

∣∣∣∣△(δℓ,Z)

δℓ

∣∣∣∣ ≤ q∑
i=1

sup
ℓ

∣∣∣∣ei [m(δℓ)−m(0)]

δℓ
+

ei [(C(δℓ)−C(0))Z]

δℓ

∣∣∣∣ ,
≤

q∑
i=1

sup
ℓ

∣∣∣∣ [mi(δℓ)−mi(0)]

δℓ

∣∣∣∣+ sup
ℓ

∣∣∣∣Ci(δℓ)− Ci(0)

δℓ
Z

∣∣∣∣ ,
where mi(δ) = eim(δ) is a scalar and Ci(δ) = eiC(δ) is a row vector.

We knowmi(·) and Ci(·) are three times continuously differentiable over [inf l δl, supl δl] ⊆ [−ϵ, ϵ].
Let

vi = sup
ℓ

∣∣∣∣∣∂mi

∂δ

∣∣∣∣
δ=δℓ

∣∣∣∣∣ ,
Vij = sup

ℓ

∣∣∣∣∣∂Cij

∂δ

∣∣∣∣
δ=δℓ

∣∣∣∣∣ .
Since (δl) ⊆ [−ϵ, ϵ] and ∂mi

∂δ ,
∂Cij

∂δ are twice continuously differentiable over [−ϵ, ϵ], by Lemma 1 we
have vi < ∞, Vij < ∞ ∀i, j .

Then

sup
ℓ

∣∣∣∣△(δℓ,Z)

δℓ

∣∣∣∣ ≤ q∑
i=1

vi +

d∑
j=1

Vij |Zj |

 =: M(Z),

and

E [M(Z)] =

q∑
i=1

vi +

q∑
i=1

d∑
i=1

VijE |Zj | < ∞.

Thus, M(Z) is integrable. Also limℓ→∞
△(δℓ,Z)

δℓ
=

∂f(x1,...,xq ,Z)
∂xik

exists almost surely by Lemma 2.
Then by the Dominated Convergence Theorem [[30]],

lim
ℓ→∞

E
[
△(δℓ,Z)

δℓ

]
= E

[
lim
ℓ→∞

△(δℓ,Z)

δℓ

]
. (10)

Since δℓ ↘ 0 as ℓ → ∞, (10) becomes

∂Ef(x1, . . . ,xq,Z)

∂xik
= E

∂f(x1, . . . ,xq,Z)

∂xik
, (11)

where xik = ekxi, and (11) applies to any i, k. Thus ∇f (x1, . . . ,xq,Z) exists almost surely, and

∇Ef (x1, . . . ,xq,Z) = E∇f (x1, . . . ,xq,Z) .

The proof used Infinitesimal Perturbation Analysis (IPA), and is similar to the proof of a
theorem of unbiased stochastic derivatives (see [12, p.14] or [23] ). However, the result shown in
both Glasserman and L’Ecuyer required countability of the set of non-differentiability. In our case,
this coutability requirement is not met. Instead, the set of non-differentiability is uncountable, but
with measure zero. Our proof adapts to this novel situation.
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4 Optimization of q-EI

If theorem 1 holds, we can simply use sample average to estimate gradient of q-EI. Let Gn be the
estimate of gradient of q-EI at Xn = (xn1, . . . ,xnq), then

Gn =
1

M

M∑
m=1

g(Xn,Zm), (12)

where M is the number of samples to generate for the estimation and the expression of g(Xn,Zm)
is provided in section 3.1. The stochastic gradient ascent algorithm is to begin with some X0, and
use a predetermined sequence {ϵn : n = 0, 1, . . .} to generate a sequence {Xn : n = 1, 2, . . .} using

Xn+1 = Xn + ϵnGn, (13)

and hope the sequence converges to some stationary point X∗. In 4.1 we show that under certain
conditions, the algorithm converges to a stationary point almost surely. In 4.2 we propose an
algorithm that starts from multiple points in the search space and runs stochastic gradient ascent
for each starting point, and we also provide the pseudo code.

4.1 Convergence Analysis

Let’s consider (13) operating on a compact space H = {X : ai(X) ≤ 0, i = 1, . . . , p} ⊆ Rd×q, where
ai(·) can be any real-valued constraint function. Then (13) becomes

Xn+1 =
∏
H

[Xn + ϵnGn] , (14)

where
∏

H(X) denotes the closest point in H to X, and if the closest point is not unique, select a
closest point such that the function

∏
H(·) is measurable. In the following theorem, we show that

under certain condition, (14) converges to a stationary point almost surely.

Theorem 2. If the following assumptions hold,

1. ai(·), i = 1, . . . , p are twice continuously differentiable.

2. ϵn → 0 for n ≥ 0 and ϵn = 0 for n < 0;
∑∞

n=1 ϵn = ∞ and
∑∞

n=0 ϵ
2
n < ∞.

3. ∀X ∈ H, under the definiton of (9), m(X) and C(X) are three times continuously differ-
entiable and C(X) does not have duplicate rows.

Then the sequence {Xn : n = 0, 1, . . .} generated by algorithm (14) converges to a stationary point
almost surely.

Proof. We use convergence analysis result from [22, theorem 5.2.3] to prove our theorem. First let
me state [22, theorem 5.2.3] using our notation and setting: if the following assumptions hold for
algorithm (14),

1. ϵn → 0 for n ≥ 0 and ϵn = 0 for n < 0;
∑∞

n=1 ϵn = ∞

2. supn E|Gn|2 < ∞

10



3. There are functions hn(·) of X, which are continuous uniformly in n, a continuous function
h(·) and random variables βn such that

EnGn = hn(Xn) + βn,

and for each X ∈ H,

lim
n

|
m(t+n+t)∑

i=n

ϵi[hi(X)− h(X)]| → 0

for each t > 0, and βn → 0 with probability one.

4.
∑

i ϵ
2
i < ∞.

5. There exists a twice continuously differentiable real-valued f(·), and h(·) = −fX(·).

Then {Xn} converges to a stationary point almost surely. We show these conditions are all satisfied
one by one and therefore this convergence analysis applies.

1. Condition 1 is statisfied by the assumption in theorem 2, and in section 4.2, construction of
this sequence will be discussed.

2. Without loss of generality, let M = 1, then Gn = g(Xn,Z).

E|Gn|2 = E
dq∑
k=1

G2
nk

=

dq∑
k=1

E
(
∂f(Xn,Z)

∂Xnk

)2

=

dq∑
k=1

E
[(

∂m(Xn)

∂Xnk
+

∂C(Xn)

∂Xnk
Z

)
eI∗Z

]2

≤
dq∑
k=1

E
q∑

i=1

[(
∂m(Xn)

∂Xnk
+

∂C(Xn)

∂Xnk
Z

)
ei

]2

=

dq∑
k=1

q∑
i=1

E
[(

∂m(Xn)

∂Xnk
+

∂C(Xn)

∂Xnk
Z

)
ei

]2
where I∗Z = argmax

i=1,...,q
(m(Xn) +C(Xn)Z) ei. Since m(X) and C(X) are continously dif-

ferentiable for ∀X ∈ H, then supn
∂m(Xn)
∂Xnk

< ∞ and ∂C(Xn)
∂Xnk

< ∞. It is easy to see that

supn E
[(

∂m(Xn)
∂Xnk

+ ∂C(Xn)
∂Xnk

Z
)
ei

]2
< ∞, thus supn E|Gn|2 < ∞. Therefore, condtion 2 is

satisfied.

3. Since evaluation of Gn in (12) does not depend on previous points in the sequence {Xn},
EnGn = EGn = Eg(Xn,Z). From the assumptions, we know Theorem 1 holds, then define
a function g(·) on H, such that g(X) = Eg(X,Z) = ∇Ef(X,Z). We want to show g(X) is
continuous on H.

11



Without loss of generality, we only look at purturbation on kth dimension of X. Fix X, let
purturbation be δ, and only look at jth component of g(·). Let’s first define some notations,
let

∂m(δ)

∂Xj
:=

∂m(X + δek)

∂Xj
,

∂C(δ)

∂Xj
:=

∂C(X + δek)

∂Xj
,

I∗(δ,Z) := min

(
argmax
i=0,...,q

ei [m(δ) +C(δ)Z]

)
.

then

∆(δ) = [g(X + δek)− g(X)] ej

= E [∇f(X + δek,Z)−∇f(X,Z)] ej

= E
[[

∂m(δ)

∂Xj
+

∂C(δ)

∂Xj
Z

]
eI∗

(δ,Z)
−
[
∂m(0)

∂Xj
+

∂C(0)

∂Xj
Z

]
eI∗

(0,Z)

] (15)

Using similar argument as in the proof of Theorem 1, we can show∣∣∣∣[∂m(δ)

∂Xj
+

∂C(δ)

∂Xj
Z

]
eI∗

(δ,Z)
−
[
∂m(0)

∂Xj
+

∂C(0)

∂Xj
Z

]
eI∗

(0,Z)

∣∣∣∣
≤
∣∣∣∣[∂m(δ)

∂Xj
− ∂m(0)

∂Xj
+

∂C(δ)

∂Xj
Z − ∂C(0)

∂Xj
Z

]
eI∗(0,Z)

∣∣∣∣
≤

q∑
i=1

∣∣[δm + δCZ
]
ei
∣∣

(16)

where δm = ∂m(δ)
∂Xj

− ∂m(0)
∂Xj

and δC = ∂C(δ)
∂Xj

− ∂C(0)
∂Xj

. Then

∆(δ) ≤
q∑

i=1

E |δmei|+ E
∣∣δCZei

∣∣ . (17)

Because ∂m(·)
∂Xj

and ∂C(·)
∂Xj

are continuous, then ∀|δ| < ξ, |δm| < ϵm, and
∣∣δC∣∣ < ϵC .

E
∣∣δCZei

∣∣ = E

∣∣∣∣∣∣
q∑

j=1

δCijZj

∣∣∣∣∣∣
≤

q∑
j=1

E
∣∣δCijZj

∣∣
≤

q∑
j=1

E
∣∣δCij ∣∣ |Zj |

<

q∑
j=1

ϵCE |Zj |

(18)
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Thus

∆(δ) <

q∑
i=1

ϵmi +

q∑
i=1

q∑
j=1

ϵCijE|Zj |

=

q∑
i=1

ϵmi +

√
2

π

q∑
i=1

q∑
j=1

ϵCij

(19)

Thus g(X) is continuous on H. Let hn(·) ≡ h(·) ≡ g(·), and βn = 0, then condition 3 is
satisfied.

4. Condition 4 is satisfied by the assumption in Theorem 2.

5. From the proof of condition 3, we know h(·) is g(·), and thus f(·) is just −q-EI. Since g(·)
is continuously differentialble, f(·) is twice continuously differentiable. Therefore, condition
5 is satisfied.

In conclusion, all conditions are satisfied and therefore {Xn} converges to a stationary point almost
surely.

4.2 Multistart Stochastic Gradient Ascent

We use multistart stochastic gradient ascent to find solution to (4). For each start within this
multistart framework, we draw an initial point from a Latin hypercube design, and then iteratively
update this point using the stochastic gradient and a Polyak-Ruppert stepsize [31, 28], until a
convergence criterion is met. We then select the best among the points found by each start.

This algorithm is summarized below.

Algorithm 1 Multistart Stochastic Gradient Ascent

Require: number of initial solutions R; Polyak-Ruppert stepsize constants a and γ; maximum
number of steps for gradient ascent T ; thresholds ϵ > 0; number of Monte Carlo samples used
for estimating the gradient M ; number of Monte Carlo samples used for estimating q-EI N .

1: Draw R initial solutions from a Latin hypercube design in Aq, Xi = (xi1, . . . ,xiq) for i =
1, . . . , R .

2: for r = 1 to R do
3: for t = 1 to T do
4: Calculate g(t) = 1

M

∑M
m=1 g(xr1, . . . ,xrq,Z

(m)) where Z(m) are iid standard normal ran-
dom vectors.

5: Update solution using stochastic gradient ascent X
(t+1)
r = X

(t)
r + a

tγ g
(t).

6: if |X(t+1)
r −X

(t)
r |< ϵ then

7: Go to Step 10
8: end if
9: end for

10: Average the solutions of Xr to obtain Xr =
1
T

∑t
i=1Xr.

11: Estimate q-EI(Xr) using Monte Carlo with N iid samples. Store the estimate as q̂-EIr.
12: end for
13: return XI where I = argmaxi=1,...,r q̂-EIr.

Additionally, in our implementation of this algorithm, we supply optional fallback logic. This
fallback logic takes two additional parameters: a strictly positive real number ϵ′, and an integer
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L. If maxi=1,...,r q̂-EIr ≤ ϵ′, so that multistart stochastic gradient ascent failed to find a point with
estimated expected improvement better than ϵ′, then we generate L additional solutions from a
Latin Hypercube on Aq, estimate the expected improvement at each of these using the same Monte
Carlo approach as in Step 11, and select the one with the largest estimated expected improvement.

4.3 Asynchronous Parallel Optimization

(4) is synchronous parallel optimization, i.e., generating a new batch of q points until all previous
points to sample have been evaluated. However, there is situation when we need to generate a new
batch while there are p points still sampling and we do not have their values yet. This is very
common in scientific experiments (biology for example) or expensive computer simulations, where
parallel experiments or simulations do not necessarily finish at the same time, and people want the
resources freed up from finished experiments to take new jobs. We can extend (4) to asynchronous
parallel optimization: suppose x′

1, . . . ,x
′
p are the points still under evaluation, to generate a new

batch x1, . . . ,xq, we want to maximize q-EI(x1, . . . ,xq,x
′
1, . . . ,x

′
p) while holding x′

1, . . . ,x
′
p fixed:

argmax
(x1,...,xq)⊂A

q-EI(x1, . . . ,xq,x
′
1, . . . ,x

′
p). (20)

To solve (20), we still estimate ∇q-EI(x1, . . . ,xq,x
′
1, . . . ,x

′
p), but set its components corresponding

to x′
1, . . . ,x

′
p to zero, then proceed the same way as stated in Algorithm 1.

5 Numerical results

In this section, we present a number of numerical experiments demonstrating the usefulness of our
proposed method.

In Section 5.1 we show that our proposed method provides a nearly linear speedup over single-
threaded EGO. In Section 5.2 we compare our proposed method against previously proposed heuris-
tics from the literature. In Section 5.3 we show that our proposed method is more efficient than
optimizing exact evaluations of the q-EI when q is large.

Although (3) is defined by assuming function evaluation is noise free, in numerical experi-
ments, the covariance matrix K(·, ·) in (2) could be ill conditioned. To resolve this problem, we
manually impose a small noise ∼ N (0, σ2) where σ2 = 10−4 and use the noisy version of Gaus-
sian Process model, which is almost indentical to (2), except that K(x(1:n),x(1:n)) is replaced by
K(x(1:n),x(1:n)) + σ2In where In is identity matrix [29, Section 2.2]. [36] performed numerical
experiments on random functions generated from sample paths of a Gaussian Process to compare
noisy version of Expected Improvement (EIm [36], AEI [15]), noise free version of EI [17] and their
own proposed algorithm LAGO [36], which is different from the class of EI algorithms, and their
results showed that noise free EI did not lose much performance against noisy version of EI. Thus
we think despite that adding a small noise in our numerical experiments violates the noise free
assumption in our algorithm, the performance will not be afffected much.

5.1 Parallel Speedup vs. EGO

We show the effect of parallel speedup versus sequential EGO by running numerical experiments
on two standard test functions, Branin and Hartmann H6,4. Branin has domain in 2-dimensional
space and global minimum 0.397887; Hartmann H6,4 has domain in 6-dimensional space and global
minimum −3.32237. Before running EI algorithm, we randomly sample n = 10d points in the
domain, where d is dimension of domain, and estimate hyperparameters for the metamodel. Then
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we run q-EI algorithm with q = 1, 2, 4, where q = 1 is simply EGO. During the experiment we
estimate hyperparameters every 10 function evaluations, to keep our metamodel close to the actual
function form. We run the numerical experiments 100 times repeatly, and obtain the average
performance of q-EI algorithm for different q.
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Figure 1: Average performance of q-EI algorithm for q = 1, 2, 4 on two test functions with 95%
Confidence Interval (left is on Branin function, and right is on Hartmann H6,4 function)

From the plots in figure 1, q-EI algorithm converges to global minimum of Brainin function very
fast, and as q increases, convergence is faster in terms of wall clock time, which shows speedup of
our parallel algorithm; q-EI did not find global minimum within 100 function evaluations, because
Hartmann H6,4 has 6 dimensions and is a harder problem to solve, but the algorithms have a clear
trend of finding the minimum, and the parallel speedup also exists.

5.2 Comparison vs. previously proposed parallel methods

Constant Liar is an approximation parallel EI algorithm proposed by [4], and CL-MIX was con-
sidered the best variate among the group of methods in that paper (also available in R package
‘DiceOptim’). We compare our method with CL-MIX on two standard test functions, Branin and
Hartmann H6,4. The experiment setup is similar to 5.1: we start the algorithms with n = 10d initial
randomly sampled points, and stop until certain number of function evaluations were reached. We
repeat 100 times to obtain average performance. We choose to show the plot with q = 4, but the
behavior is similar for other q s.

Figure 2 shows that q-EI and CL-MIX have almost identical performance on Branin function,
this is because Brainin is a fairly easy problem and both algorithm converges to global optimum
quickly. When dimensionality goes up and objective function is more complicated, for example, on
Hartmann H6,4 function, q-EI performance significantly better than CL-MIX. Since the approach
of our algorithm is to estimate gradient of q-EI and solve (4) directly instead of using heuristic
like CL-MIX did, we are confident that our method is superior over CL-MIX on average case.
However, CL-MIX is generally much faster, since it only needs to evaluate 1-EI analytically within
its algorithm, while our algorithm has to use Monte Carlo simulation to estimate gradient of q-EI
when q > 1.
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Figure 2: Average performance of q-EI vs. CL-MIX for q = 4 on two test functions with 95%
Confidence Interval(left is on Branin function, and right is on Hartmann H6,4 function)

5.3 Comparison vs. exact evaluations of q-EI

As Chevalier and Ginsbourger proposed a method to evaluate q-EI exactly [5], the method suffers
from quickly slowing down as q increases. We use the Monte-Carlo approach to estimate q-EI and
its stochastic gradient, with the help of GPU parallel programming, thanks to the parallelizable
nature of Monte-Carlo method. We show CPU time vs. q to evaluate the q-EI using both methods,
and demonstrate that exact q-EI method slows down quickly with q, while our method stays fast
and remains accurate. We used 108 Monte-Carlo iterations for each evaluation of q-EI on GPU,
to maintain average relative difference vs. exact evaluation of q-EI below 10−5, and repeat the
experiments 100 times using different starting points to obtain average performance.
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Figure 3: Average time to compute q-EI vs. q with 95% Confidence Interval

Although [5] did not attempt to solve (4) using their exact evaluation of q-EI, we are inter-
ested to see how Derivative Free Optimization solver along with exact evaluation of q-EI performs
compare against stochastic gradient ascent with estimation of gradient of q-EI in our algorithm.
We implemented exact evaluation of q-EI, and used L-BFGS [24] solver available in SciPy [18] to
solve (4). To show the result, we first compare the best EI found by either optimization algorithm
vs. number of iterations used in the algorithm. We fixed q = 4 (q is arbitrarily chosen and can
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be other values), randomly sampled 10d points on either Branin or Hartmann H6,4, where d is
dimension of the domain, and fit the Gaussian Process model, then let both stochastic gradient
ascent and L-BFGS start from the same random chosen point in the domain, and find the best EI
given specified number of iterations. We repeated it 100 times and show the averaged performance
on both Branin and Hartmann H6,4 figure 4.
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Figure 4: Average performance of stochastic gradient ascent vs. L-BFGS with 95% Confidence
Interval (left is on Branin function, right is on Hartmann H6,4 function

Stochastic gradient ascent and L-BFGS have similar performance on Branin function, but on
Hartmann H6,4, stochastic gradient ascent is better, because the additional informatin of the gra-
dient helps it converges faster.

Using a similar experiment setup, we fixed number of iteration = 100 and compared best EI
found vs. q, and show the result in figure 5. From the result we can infer that as dimension of the
search space increases and q increases, stochastic gradient ascent wins.
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Figure 5: Average performance of stochastic gradient ascent vs. L-BFGS with 95% Confidence
Interval (left is on Branin function, right is on Hartmann H6,4 function
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6 Conclusion

We proposed an efficient method based on stochastic approximation for implementing a conceptual
parallel Bayesian global optimization algorithm proposed by [10]. To accomplish this, we used
infinitessimal perturbation analysis (IPA) to construct a stochastic gradient estimator and showed
that this estimator is unbiased. Through numerical experiments, our method performs better than
the best available approximation method, and is much faster than other potential solution proposed
so far.
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