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Abstract - Multi-core platforms become ubiquitous nowadays. 

Even laptops contain multi-core processors now. There are 

multiple cores in a chip or socket or die. A computing node 

contains multiple chips. Multi-core platforms are rapidly 

increasing and the number of cores on these platforms is 

increasing rapidly too. How to enjoy the benefits of parallel 

computing on the multi-core platforms plays a key role in 

High Performance Computing. With the increasing complexity 

of modern multi-core processors, the problem of distributing a 

software application across different cores to maximize the 

utilization of the computing power becomes more and more 

difficult. Different programming patterns great influence the 

program performance. We implement different parallel 

programming paradigms on Himeno Benchmark via hybrid 

MPI/OpenMP in this paper. Moreover, we will evaluate the 

performance of those on NCHC GPU Cluster and NCHC 

ALPS. We establish a Roofline Model for NVIDIA GT200, too. 

We hope the results can give some useful information to the 

user of HPC. 

Keywords: Performance Evaluation, Parallel Programming, 

MPI, OpenMP 

 

1 Introduction 

  Multi-core platforms become ubiquitous nowadays. 

Even laptops contain multi-core processors now. There are 

multiple cores in a chip or socket or die. A computing node 

contains multiple chips. For example, Intel X5472 consists of 

dual die quad-core CPUs manufactured on a 45 nm process. 

Multi-core platforms are rapidly increasing and the number of 

cores on these platforms. Moreover, many users of High 

Performance Computing, HPC, adopt the multi-core 

platforms. How to enjoy the benefits of parallel computing on 

the multi-core platforms plays a key role in HPC. 

 With the increasing complexity of modern multi-core 

processors, the problem of distributing a software application 

across different cores to maximize the utilization of the 

computing power becomes more and more difficult. Different 

programming patterns big influence the program performance. 

Two common programming patterns of parallel program are 

Message Passing Interface [1], MPI, and OpenMP [2]. MPI 

had widely used to parallel program on traditional parallel 

platforms and PC Cluster since 1994. Scientists have obtained 

a great help on MPI programming pattern in the last few 

decades. Even it enters multi-core platforms ear. Naturally it 

is in the wake of overheads, such as message passing inside a 

node and duplicate memory location. 

 OpenMP programming pattern is implemented for high 

efficient computing on Symmetrical multiprocessor system, 

especially on a multi-core platform. It adopts a fork-and-join 

execution model, that is, it is thread level parallelism. The 

behavior of compute is in system bus level and threads are 

able to share a memory space, but it is limited by scale. The 

version 2.5 of standard was released in 2005. Most of the 

compilers (Fortran or C or C++) support the functions of 

“directive”, runtime libraries, and environment variables. 

Moreover, the version 3.0 of standard, which contains “task” 

parallelism implementations, was released in May 2008. 

 We intuitively think the hybrid MPI/OpenMP 

computing that MPI mainly handles inter message passing, 

while OpenMP focus on intra computing. But it inherits 

diverse hardware characteristics, such as the number of multi 

cores in a die, the number of die in a node, the bandwidth of 

memory and system bus, how many cores shared resources, 

and so on. In general, there are two hybrid programming 

paradigms on multi-core platforms. One is like this model, 

while the other model is that one adopts a “Parallel Region” 

directive of OpenMP and master thread to handle the message 

passing. 

 We adopt Himeno Benchmark [3], which performs 

computations of 19-points stencil, to evaluate the 

performance on different programming patterns of parallel 

program on NCHC (National Center for High-Performance 

Computing) platforms, “GPU Cluster”, which contains 16 of 

Intel X5472, and NCHC ALPS hereafter. [4] depicts that the 

“Stencil” computation, such as Himeno Benchmark, is limited 

by the bandwidth of memory based on Roofline Model. It is 

conceivably improved the performance of parallel programs 

based on Thread Level Parallelization only. 

 Firstly, we evaluate the performance of Himeno 

Benchmark on 8 cores in a node on GPU Cluster on different 

compilers. We implement the hybrid MPI/OpenMP 

programming patterns on Himeno Benchmark and come out 

these results on hybrid mode and pure MPI mode on different 

mapping patterns of 8 nodes (64 Cores) of GPU Cluster. We 

will present the results of Himeno Benchmark and High 

Performance Linpack, HPL[5], for CPU binding on NCHC 

ALPS. We also illustrate the Roofline model on NVIDIA 

GT200. We hope the results can give some useful information 

to the user of HPC. 

 



2 Test beds and software 

 We adopt two test beds, NCHC GPU cluster built in 

2010 and upgraded in 2011 and NCHC ALPS built in 2011. 

We implement MPI/OpenMP hybrid for Himeno Benchmark 

and evaluate the performance on both platforms. HPL is 

employed for CPU binding on NCHC ALPS. 

2.1 NCHC GPU Cluster 

 GPU Cluster contains 16 of Intel X5472, which consists 

of dual die quad-core CPUs manufactured on a 45 nm process. 

The motherboard adopts Tempest i5400XT (S5396) and Intel 

5400 Chipset as shown in Figure 1. Figure 2 shows the logic 

picture, system bus and bandwidth of memory. 

 

 
Figure 1. Motherboard of GPU Cluster 

 

 
Figure 2. Intel 5400 Chipset 

 

 A computing node contains 32 GB RAM and a DDR 

Infiniband connected together. We adopt OpenSuSE 11.0 as 

Operation System, OS, different compilers, its version and its 

compiler option as Intel 11.0 (ifort -openmp –O3 -

fast), PGI 9.0 (pgfortran –mp –O3 -fast), and 

GNU 4.3.2 (gfortran –fopenmp –O3), and MPI 

middleware as OpenMPI 1.2.8. 

2.2 NCHC ALPS 

 The hardware of computing nodes on NCHC ALPS 

consists of 600 of Acer AR585 as shown in Figure 3. They 

are connected together with Qlogic InfiniBand in 4x QDR 

(40Gb) and the bandwidth throughput of this system achieves 

51.8 Tbps. In logic point of view, the system comprises 8 

computing clusters, which consists of 4 of AMD Opteron 

6174 inside 12 cores running at 2.2 GHz, that is, 48 cores a 

node sharing 128 GB RAM in 4-memory-controller non-

uniform memory access architecture, and 1 large memory 

cluster that includes 4 of AMD 6136, which comprises 8 core 

running at 2.2 GHz, that is, 32 cores a node sharing 256GB 

RAM. There are 25,600 computing cores of AMD Opteron 

6100 in this system and the maximal Linpack achieves at 177 

TFlops and at 42th place in Top500 list in June 2011 [6]. 

 

 
Figure 3. The architecture of Acer AR585 

 

 This system adopts the Novell SuSe Linux Enterprise 11 

SP 1 for its operation system. The parallel file system is 

Lustre. Platform LSF is for job scheduler and queuing system. 

Message passing interface libraries are installed such as 

Platform MPI, OpenMPI, mvapich, and so on. The debug tool 

is Allinea DDT, Distribut Debugging Tool. There are four 

compilers in this system: Intel, PGI, Open64, and GNU. Intel 

MKL and AMD ACML, AMD Core Math Library, inherit 

this system for math libraries. 

 

2.3 Himeno Benchmark 

 To solve the pressure commonly adopts Poisson 

equation solver in computational fluid dynamic, such as 

incompressible Navier-Stokes equations solver. The Poisson 

equation is shown as Figure 4 and the kernel computing of 

Himeno Benchmark. Use central finite difference and Jacobi 

iteration. To calculate the value of a point requires reading 18 

points of neighbors, named it as “19-Points Stencil”. It 

performs 34 of floating-point operations and uses 14 of three-

dimensional matrices per iteration. The computational 

intensity achieves 0.6 Flop/Byte on a problem size of 

1024×512×512 in single precision compute (required around 

14GB) sequentially. 

 



Poisson Equation:      

   

   
 
   

   
 
   

   
  

   

    
  

   

    
  

   

    
   

                         

   
 
                         

   

 
                         

   

  
                                           

     

  
                                           

     

  
                                           

     
        

Figure 4. Himeno Benchmark 

 

2.4 The High Performance Linpack, HPL 

 The High Performance Linpack[5], HPL, employs the 

LU decomposition to solve a dense N×N system of linear 

equation in a floating point workload of 2/3 N
3
+2N

2
. HPL 

utilizes LU factorization with row partial pivoting to solve a 

dense linear system while using a two-dimensional block-

cyclic data distribution for load balance and scalability. 

  

3 Methodology  
 

 We implement two hybrid models, which both models 

will be described in detail in next Section, for Himeno 

benchmark in Fortran 90 and evaluate the performance on 

NCHC GPU Cluster first. The results are performed for GPU 

version on NCHC GPU Cluster, too. Moreover, we establish 

a Roofline model for GT200. 

 Since NCHC ALPS inherits the non-uniform memory 

access, NUMA, and consists of 48 cores and 8 of NUMA 

servers as shown in Figure 5, we expect the limit of system 

bus and memory bandwidth. In order to get the best 

performance, we adopt the CPU binding for memory use 

efficiently. First we find the rank pattern via HPL and 

evaluate the performance. Next, we compare the performance 

of CPU binding with those for other models via Himeno 

benchmark. The performances of Himeno benchmark via 

different compilers are shown, too. 

 

 
Figure 5. Distance of NUMA server 

4 Results 

 We follow 95% confidence to evaluate the results and 

employ the ganglia and “top” command to monitor the status 

of the system for dedicated usage. 

4.1 NCHC GPU Cluster 
 

 We show that the performance of this program at 3.35 

GFlops, 2.85 GFlops, and 2.57 GFlops on 8 cores a node via 

Intel, PGI, and GNU, respectively. It is expectable. Intel 

compiler gets more benefit of intrinsic computation involving 

Streaming SIMD Extensions than the others. The 

performance score of Intel compiler slightly surmounts the 

peak performance of 3.20 GFlops. Commercial PGI compiler 

shows the performance based on standard computational 

pattern. The score is lower than the peak performance. The 

public GNU compiler obtains the worst performance in three 

compilers. 

 We implement two hybrid MPI/OpenMP parallel 

programming patterns: First Model (Hybrid Model 1) is that 

MPI handles inter message passing between nodes, while 

OpenMP handles intra computation between 8 cores a node. 

Its advantage is that the data and program flow are clear. That 

is, the program is able to be divided into some sub-program 

blocks, which many sub-program blocks perform heavy 

operation, while few sub-program blocks perform message 

passing between nodes. The downside is that all threads are 

idle on message passing. Amdahl’s law points that it big 

decreases the parallel performance! 

 The other model (Hybrid Model 2) is that one use a 

parallel region involves all operations and message passing, 

which master thread performs message passing between 

nodes. The race conditions become more and more. The 

program structure and data flow becomes complicated, too. 

That is, a programmer requires more human time to better 

performance. It is opportunity to get parallel efficiency in 

hidden overhead of message passing carefully. The first 

model shows 15.0 GFlops on 8 nodes with Intel compiler and 

OpenMPI 1.2.8, while the second model shows 22.50 GFlops. 

It is expectable that the last model presents better 

performance than those on the first model. We very surprise 

that different programming patterns can improve 7.5 Gflops! 

 Though MPI 2 has new features of communicator 

management and OpenMP 3.0 increases the task parallelism, 

we don’t unfortunately perform our overlap version between 

computation and massage passing 

(MPI_THREAD_MULTIPLE) on our test beds. We adopt 

MPI 1.2 standard and OpenMP 2.5 to implement our hybrid 

MPI/OpenMP parallel programming pattern as end-users. The 

second model of hybrid MPI/OpenMP parallel programming 

patterns with Intel compiler and OpenMPI 1.2.8 are evaluated 

on GPU Cluster. Therefore, MPI can perform diverse MPI 

task mapping, for example a node has 1×1×8, 1×8×1, 8×1×1, 

1×2×2, and so on. That is, the data decomposition is 1-

dimension in z- or y- or x-direction or 2-dimension in y- and 

z-direction. 



 Like MPI mapping, hybrid MPI/OpenMP parallel 

programming pattern contains large amount of combination 

of MPI and thread. We evaluate all mapping on combinations 

of MPI Processes and threads to get interest results. First of 

all, we define “1×2×4×8” as x-, y-, and z-directions of MPI 

Processes and the number of threads a MPI Process, that is, x-, 

y-, and z-directions use 1, 2, 4 MPI Process, respectively, and 

a MPI Process uses 8 threads. The special case “4×4×4×1” 

means pure MPI programming paradigm, because of a thread 

used a MPI process. Table 1 shows the partial (better) results 

in GFlops on 8 nodes (64 cores in total) on different 

programming paradigms. To our surprise, the pure MPI 

programming paradigm (4×4×4×1) outperforms! 

 This is because that the Intel compiler abundantly enjoys 

the benefit of the hardware, such as SSE intrinsic. Hybrid 

programming paradigm doesn’t have enough room for thread 

level parallel. Our experience via PGI compiler, pure MPI 

obtains 19.18 GFlops vs. Hybrid model achieves 20.99 

GFlops. Our opinion is confirmed. The other reason is 

hardware limitation, such as, obstruction of memory 

bandwidth. We adopt the Phillips’s results presented in 

Cluster 2009 conference to establish a Roofline Model for 

GT200 as shown in Fig. 5. The performance of CUDA 

version of Himeno Benchmark achieves at 767 GFlops! 

 

 
Figure 5. Roofline model on GT200 

 

4.2 NCHC ALPS 
 

 For our clear description, we define the notations, Intel, 

Op64, GNU, and PGI, in Table 1. The compiler option is 

“Ofast” for Op64 and GNU, while it is “fast” for Intel and 

PGI. 

 

Table 1. Notations 

Notation Compiler MPI 

Intel Intel 12.0 openMPI 1.4.3 

Op64 Open64 4.2.5 openMPI 1.4.4 

GNU gcc 4.6.2  openMPI 1.4.4 

PGI PGI 11.10 openMPI 1.4.4 

 

 We adopt N=1000 for HPL using two cores to obtain the 

best CPU bind mapping 0-3. We adopt the mapping for CPU 

bind model hereafter and use GNU compiler with AMD 

acml5.1.0 single thread. Table 2 shows the maximal Linpack 

in GFLOPS for different N=80000 vs. N=100000 with/out 

CPU bind on 48 core a node. CPU bind model outperforms. 

 

Table 2. Maximal Linpack in GFLOPS for different N 

with/out CPU bind 

N CPU bind Not CPU bind 

80000 286.7 278.0 

100000 287.9 274.7 

 

 Table 3 depicts the performance of Himeno benchmark 

in GFLOPS for different compilers for 1024 × 512 × 512 

problem size in 3 × 4 × 4 partition pattern with/out CPU bind 

on 48 cores a node. As we expected, CPU bind model 

outperforms. It is very interesting for CPU bind that PGI 

outperforms on NCHC ALPS, instead of Intel! It is different 

from those performed on NCHC GPU Cluster. When we do 

not use bind processor, Intel outperforms like those on NCHC 

GPU Cluster. It is because that PGI shows slightly better than 

Intel for memory affinity on NCHC ALPS. 

  

Table 3. Performance of Himeno benchmark in GFLOPS for 

different compilers for 1024×512×512 problem size in 3×4×4 

partition pattern with/out CPU bind 

Compiler CPU bind Not CPU bind 

PGI 36.69 17.02 

Intel 35.93 20.12 

Op64 31.77 16.22 

GNU 20.44 12.12 

  

 Table 4 depicts the performance of Himeno benchmark 

in GFLOPS for different partition patterns for 1024×512×512 

problem size with/out CPU bind on 48 cores a node. As we 

expected, CPU bind model outperforms, again. It is very 

interesting for CPU bind that the three-dimensional partition 

pattern, 4 × 4 × 3, cannot enjoy the benefits of parallel 

computing, while the two-dimensional partition pattern, 8×6×

1, outperforms. It is different from those on NCHC GPU 

cluster again. 

 

Table 4. Performance of Himeno benchmark in GFLOPS for 

different partition patterns for 1024×512×512 problem size in 

with/out CPU bind 

partition patterns CPU bind Not CPU bind 

48×1×1 26.08 9.25 

1×48×1 29.25 14.20 

1×1×48 27.82 11.53 

8×6×1 40.85 26.12 

6×8×1 40.24 26.15 

6×1×8 36.67 19.54 

3×4×4 36.69 17.02 

4×3×4 34.79 27.57 

4×4×3 40.09 22.30 

 

 Table 5 shows the performance of Himeno benchmark 

in GFLOPS for different processor binds for 1024×512×512 

problem size in 8×6×1 partition pattern on 48 cores a node. 



Rank model, which we define the processor mapping by 

myself, outperforms. The model that binds each MPI process 

to a core show comparable results to those on Rank model. 

The other model, which it binds each MPI process to a 

processor socket, performs worse results. Every core 

performs around 60% of workload based on “top”. 

  

Table 5. Performance of Himeno benchmark in GFLOPS for 

different processor binds for 1024×512×512 problem size in 8

×6×1 partition pattern on 48 core a node 

partition patterns GFLOPS 

Rank model 40.85 

Bind each MPI process to a core 40.07 

Bind each MPI process to a processor 

socket 
14.75 

Not bind processes 26.12 

 

  

5 Conclusion 

 We implement two hybrid MPI/OpenMP models for 

Himeno Benchmark and evaluate the performance on NCHC 

GPU Cluster and NCHC ALPS. Intel compiler outperforms 

on NCHC GPU Cluster, while PGI compiler outperforms on 

NCHC ALPS for CPU bind! It is because that Intel compiler 

gets more benefit of intrinsic computation involving 

Streaming SIMD Extensions on Intel platform than PGI and 

GNU. Moreover, it does not have enough room for thread 

level parallel via hybrid MPI/OpenMP. Consequently, The 

pure MPI parallel programming paradigm on 4×4×4 partition 

pattern outperforms on NCHC GPU Cluster! 

 Himeno Benchmark and High performance linpack can 

enjoy the benefits of parallel computing for CPU binding on 

NCHC ALPS from our various evaluations. The two-

dimensional partition pattern, 8×6×1, with PGI compiler 

outperforms for Himeno Benchmark on NCHC ALPS. Our 

defined rank model outperforms for Himeno Benchmark and 

High performance linpack on NCHC ALPS. We establish a 

Roofline Model for GT200, too.  
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