
Parallel Benefit on Different Programming Paradigms

Chau-Yi Chou, Sheng-Hsiu Kuo, Chih-Wei Hsieh, Tsung-Che Tsai and Hsi-Ya Chang

 National Center for High-Performance Computing, Taiwan

Abstract - Multi-core platforms become ubiquitous nowadays.

Even laptops contain multi-core processors now. There are

multiple cores in a chip or socket or die. A computing node

contains multiple chips. Multi-core platforms are rapidly

increasing and the number of cores on these platforms is

increasing rapidly too. How to enjoy the benefits of parallel

computing on the multi-core platforms plays a key role in

High Performance Computing. With the increasing complexity

of modern multi-core processors, the problem of distributing a

software application across different cores to maximize the

utilization of the computing power becomes more and more

difficult. Different programming patterns great influence the

program performance. We implement different parallel

programming paradigms on Himeno Benchmark via hybrid

MPI/OpenMP in this paper. Moreover, we will evaluate the

performance of those on NCHC GPU Cluster and NCHC

ALPS. We establish a Roofline Model for NVIDIA GT200, too.

We hope the results can give some useful information to the

user of HPC.

Keywords: Performance Evaluation, Parallel Programming,

MPI, OpenMP

1 Introduction

 Multi-core platforms become ubiquitous nowadays.

Even laptops contain multi-core processors now. There are

multiple cores in a chip or socket or die. A computing node

contains multiple chips. For example, Intel X5472 consists of

dual die quad-core CPUs manufactured on a 45 nm process.

Multi-core platforms are rapidly increasing and the number of

cores on these platforms. Moreover, many users of High

Performance Computing, HPC, adopt the multi-core

platforms. How to enjoy the benefits of parallel computing on

the multi-core platforms plays a key role in HPC.

 With the increasing complexity of modern multi-core

processors, the problem of distributing a software application

across different cores to maximize the utilization of the

computing power becomes more and more difficult. Different

programming patterns big influence the program performance.

Two common programming patterns of parallel program are

Message Passing Interface [1], MPI, and OpenMP [2]. MPI

had widely used to parallel program on traditional parallel

platforms and PC Cluster since 1994. Scientists have obtained

a great help on MPI programming pattern in the last few

decades. Even it enters multi-core platforms ear. Naturally it

is in the wake of overheads, such as message passing inside a

node and duplicate memory location.

 OpenMP programming pattern is implemented for high

efficient computing on Symmetrical multiprocessor system,

especially on a multi-core platform. It adopts a fork-and-join

execution model, that is, it is thread level parallelism. The

behavior of compute is in system bus level and threads are

able to share a memory space, but it is limited by scale. The

version 2.5 of standard was released in 2005. Most of the

compilers (Fortran or C or C++) support the functions of

“directive”, runtime libraries, and environment variables.

Moreover, the version 3.0 of standard, which contains “task”

parallelism implementations, was released in May 2008.

 We intuitively think the hybrid MPI/OpenMP

computing that MPI mainly handles inter message passing,

while OpenMP focus on intra computing. But it inherits

diverse hardware characteristics, such as the number of multi

cores in a die, the number of die in a node, the bandwidth of

memory and system bus, how many cores shared resources,

and so on. In general, there are two hybrid programming

paradigms on multi-core platforms. One is like this model,

while the other model is that one adopts a “Parallel Region”

directive of OpenMP and master thread to handle the message

passing.

 We adopt Himeno Benchmark [3], which performs

computations of 19-points stencil, to evaluate the

performance on different programming patterns of parallel

program on NCHC (National Center for High-Performance

Computing) platforms, “GPU Cluster”, which contains 16 of

Intel X5472, and NCHC ALPS hereafter. [4] depicts that the

“Stencil” computation, such as Himeno Benchmark, is limited

by the bandwidth of memory based on Roofline Model. It is

conceivably improved the performance of parallel programs

based on Thread Level Parallelization only.

 Firstly, we evaluate the performance of Himeno

Benchmark on 8 cores in a node on GPU Cluster on different

compilers. We implement the hybrid MPI/OpenMP

programming patterns on Himeno Benchmark and come out

these results on hybrid mode and pure MPI mode on different

mapping patterns of 8 nodes (64 Cores) of GPU Cluster. We

will present the results of Himeno Benchmark and High

Performance Linpack, HPL[5], for CPU binding on NCHC

ALPS. We also illustrate the Roofline model on NVIDIA

GT200. We hope the results can give some useful information

to the user of HPC.

2 Test beds and software

 We adopt two test beds, NCHC GPU cluster built in

2010 and upgraded in 2011 and NCHC ALPS built in 2011.

We implement MPI/OpenMP hybrid for Himeno Benchmark

and evaluate the performance on both platforms. HPL is

employed for CPU binding on NCHC ALPS.

2.1 NCHC GPU Cluster

 GPU Cluster contains 16 of Intel X5472, which consists

of dual die quad-core CPUs manufactured on a 45 nm process.

The motherboard adopts Tempest i5400XT (S5396) and Intel

5400 Chipset as shown in Figure 1. Figure 2 shows the logic

picture, system bus and bandwidth of memory.

Figure 1. Motherboard of GPU Cluster

Figure 2. Intel 5400 Chipset

 A computing node contains 32 GB RAM and a DDR

Infiniband connected together. We adopt OpenSuSE 11.0 as

Operation System, OS, different compilers, its version and its

compiler option as Intel 11.0 (ifort -openmp –O3 -

fast), PGI 9.0 (pgfortran –mp –O3 -fast), and

GNU 4.3.2 (gfortran –fopenmp –O3), and MPI

middleware as OpenMPI 1.2.8.

2.2 NCHC ALPS

 The hardware of computing nodes on NCHC ALPS

consists of 600 of Acer AR585 as shown in Figure 3. They

are connected together with Qlogic InfiniBand in 4x QDR

(40Gb) and the bandwidth throughput of this system achieves

51.8 Tbps. In logic point of view, the system comprises 8

computing clusters, which consists of 4 of AMD Opteron

6174 inside 12 cores running at 2.2 GHz, that is, 48 cores a

node sharing 128 GB RAM in 4-memory-controller non-

uniform memory access architecture, and 1 large memory

cluster that includes 4 of AMD 6136, which comprises 8 core

running at 2.2 GHz, that is, 32 cores a node sharing 256GB

RAM. There are 25,600 computing cores of AMD Opteron

6100 in this system and the maximal Linpack achieves at 177

TFlops and at 42th place in Top500 list in June 2011 [6].

Figure 3. The architecture of Acer AR585

 This system adopts the Novell SuSe Linux Enterprise 11

SP 1 for its operation system. The parallel file system is

Lustre. Platform LSF is for job scheduler and queuing system.

Message passing interface libraries are installed such as

Platform MPI, OpenMPI, mvapich, and so on. The debug tool

is Allinea DDT, Distribut Debugging Tool. There are four

compilers in this system: Intel, PGI, Open64, and GNU. Intel

MKL and AMD ACML, AMD Core Math Library, inherit

this system for math libraries.

2.3 Himeno Benchmark

 To solve the pressure commonly adopts Poisson

equation solver in computational fluid dynamic, such as

incompressible Navier-Stokes equations solver. The Poisson

equation is shown as Figure 4 and the kernel computing of

Himeno Benchmark. Use central finite difference and Jacobi

iteration. To calculate the value of a point requires reading 18

points of neighbors, named it as “19-Points Stencil”. It

performs 34 of floating-point operations and uses 14 of three-

dimensional matrices per iteration. The computational

intensity achieves 0.6 Flop/Byte on a problem size of

1024×512×512 in single precision compute (required around

14GB) sequentially.

Poisson Equation:

Figure 4. Himeno Benchmark

2.4 The High Performance Linpack, HPL

 The High Performance Linpack[5], HPL, employs the

LU decomposition to solve a dense N×N system of linear

equation in a floating point workload of 2/3 N
3
+2N

2
. HPL

utilizes LU factorization with row partial pivoting to solve a

dense linear system while using a two-dimensional block-

cyclic data distribution for load balance and scalability.

3 Methodology

 We implement two hybrid models, which both models

will be described in detail in next Section, for Himeno

benchmark in Fortran 90 and evaluate the performance on

NCHC GPU Cluster first. The results are performed for GPU

version on NCHC GPU Cluster, too. Moreover, we establish

a Roofline model for GT200.

 Since NCHC ALPS inherits the non-uniform memory

access, NUMA, and consists of 48 cores and 8 of NUMA

servers as shown in Figure 5, we expect the limit of system

bus and memory bandwidth. In order to get the best

performance, we adopt the CPU binding for memory use

efficiently. First we find the rank pattern via HPL and

evaluate the performance. Next, we compare the performance

of CPU binding with those for other models via Himeno

benchmark. The performances of Himeno benchmark via

different compilers are shown, too.

Figure 5. Distance of NUMA server

4 Results

 We follow 95% confidence to evaluate the results and

employ the ganglia and “top” command to monitor the status

of the system for dedicated usage.

4.1 NCHC GPU Cluster

 We show that the performance of this program at 3.35

GFlops, 2.85 GFlops, and 2.57 GFlops on 8 cores a node via

Intel, PGI, and GNU, respectively. It is expectable. Intel

compiler gets more benefit of intrinsic computation involving

Streaming SIMD Extensions than the others. The

performance score of Intel compiler slightly surmounts the

peak performance of 3.20 GFlops. Commercial PGI compiler

shows the performance based on standard computational

pattern. The score is lower than the peak performance. The

public GNU compiler obtains the worst performance in three

compilers.

 We implement two hybrid MPI/OpenMP parallel

programming patterns: First Model (Hybrid Model 1) is that

MPI handles inter message passing between nodes, while

OpenMP handles intra computation between 8 cores a node.

Its advantage is that the data and program flow are clear. That

is, the program is able to be divided into some sub-program

blocks, which many sub-program blocks perform heavy

operation, while few sub-program blocks perform message

passing between nodes. The downside is that all threads are

idle on message passing. Amdahl’s law points that it big

decreases the parallel performance!

 The other model (Hybrid Model 2) is that one use a

parallel region involves all operations and message passing,

which master thread performs message passing between

nodes. The race conditions become more and more. The

program structure and data flow becomes complicated, too.

That is, a programmer requires more human time to better

performance. It is opportunity to get parallel efficiency in

hidden overhead of message passing carefully. The first

model shows 15.0 GFlops on 8 nodes with Intel compiler and

OpenMPI 1.2.8, while the second model shows 22.50 GFlops.

It is expectable that the last model presents better

performance than those on the first model. We very surprise

that different programming patterns can improve 7.5 Gflops!

 Though MPI 2 has new features of communicator

management and OpenMP 3.0 increases the task parallelism,

we don’t unfortunately perform our overlap version between

computation and massage passing

(MPI_THREAD_MULTIPLE) on our test beds. We adopt

MPI 1.2 standard and OpenMP 2.5 to implement our hybrid

MPI/OpenMP parallel programming pattern as end-users. The

second model of hybrid MPI/OpenMP parallel programming

patterns with Intel compiler and OpenMPI 1.2.8 are evaluated

on GPU Cluster. Therefore, MPI can perform diverse MPI

task mapping, for example a node has 1×1×8, 1×8×1, 8×1×1,

1×2×2, and so on. That is, the data decomposition is 1-

dimension in z- or y- or x-direction or 2-dimension in y- and

z-direction.

 Like MPI mapping, hybrid MPI/OpenMP parallel

programming pattern contains large amount of combination

of MPI and thread. We evaluate all mapping on combinations

of MPI Processes and threads to get interest results. First of

all, we define “1×2×4×8” as x-, y-, and z-directions of MPI

Processes and the number of threads a MPI Process, that is, x-,

y-, and z-directions use 1, 2, 4 MPI Process, respectively, and

a MPI Process uses 8 threads. The special case “4×4×4×1”

means pure MPI programming paradigm, because of a thread

used a MPI process. Table 1 shows the partial (better) results

in GFlops on 8 nodes (64 cores in total) on different

programming paradigms. To our surprise, the pure MPI

programming paradigm (4×4×4×1) outperforms!

 This is because that the Intel compiler abundantly enjoys

the benefit of the hardware, such as SSE intrinsic. Hybrid

programming paradigm doesn’t have enough room for thread

level parallel. Our experience via PGI compiler, pure MPI

obtains 19.18 GFlops vs. Hybrid model achieves 20.99

GFlops. Our opinion is confirmed. The other reason is

hardware limitation, such as, obstruction of memory

bandwidth. We adopt the Phillips’s results presented in

Cluster 2009 conference to establish a Roofline Model for

GT200 as shown in Fig. 5. The performance of CUDA

version of Himeno Benchmark achieves at 767 GFlops!

Figure 5. Roofline model on GT200

4.2 NCHC ALPS

 For our clear description, we define the notations, Intel,

Op64, GNU, and PGI, in Table 1. The compiler option is

“Ofast” for Op64 and GNU, while it is “fast” for Intel and

PGI.

Table 1. Notations

Notation Compiler MPI

Intel Intel 12.0 openMPI 1.4.3

Op64 Open64 4.2.5 openMPI 1.4.4

GNU gcc 4.6.2 openMPI 1.4.4

PGI PGI 11.10 openMPI 1.4.4

 We adopt N=1000 for HPL using two cores to obtain the

best CPU bind mapping 0-3. We adopt the mapping for CPU

bind model hereafter and use GNU compiler with AMD

acml5.1.0 single thread. Table 2 shows the maximal Linpack

in GFLOPS for different N=80000 vs. N=100000 with/out

CPU bind on 48 core a node. CPU bind model outperforms.

Table 2. Maximal Linpack in GFLOPS for different N

with/out CPU bind

N CPU bind Not CPU bind

80000 286.7 278.0

100000 287.9 274.7

 Table 3 depicts the performance of Himeno benchmark

in GFLOPS for different compilers for 1024 × 512 × 512

problem size in 3 × 4 × 4 partition pattern with/out CPU bind

on 48 cores a node. As we expected, CPU bind model

outperforms. It is very interesting for CPU bind that PGI

outperforms on NCHC ALPS, instead of Intel! It is different

from those performed on NCHC GPU Cluster. When we do

not use bind processor, Intel outperforms like those on NCHC

GPU Cluster. It is because that PGI shows slightly better than

Intel for memory affinity on NCHC ALPS.

Table 3. Performance of Himeno benchmark in GFLOPS for

different compilers for 1024×512×512 problem size in 3×4×4

partition pattern with/out CPU bind

Compiler CPU bind Not CPU bind

PGI 36.69 17.02

Intel 35.93 20.12

Op64 31.77 16.22

GNU 20.44 12.12

 Table 4 depicts the performance of Himeno benchmark

in GFLOPS for different partition patterns for 1024×512×512

problem size with/out CPU bind on 48 cores a node. As we

expected, CPU bind model outperforms, again. It is very

interesting for CPU bind that the three-dimensional partition

pattern, 4 × 4 × 3, cannot enjoy the benefits of parallel

computing, while the two-dimensional partition pattern, 8×6×

1, outperforms. It is different from those on NCHC GPU

cluster again.

Table 4. Performance of Himeno benchmark in GFLOPS for

different partition patterns for 1024×512×512 problem size in

with/out CPU bind

partition patterns CPU bind Not CPU bind

48×1×1 26.08 9.25

1×48×1 29.25 14.20

1×1×48 27.82 11.53

8×6×1 40.85 26.12

6×8×1 40.24 26.15

6×1×8 36.67 19.54

3×4×4 36.69 17.02

4×3×4 34.79 27.57

4×4×3 40.09 22.30

 Table 5 shows the performance of Himeno benchmark

in GFLOPS for different processor binds for 1024×512×512

problem size in 8×6×1 partition pattern on 48 cores a node.

Rank model, which we define the processor mapping by

myself, outperforms. The model that binds each MPI process

to a core show comparable results to those on Rank model.

The other model, which it binds each MPI process to a

processor socket, performs worse results. Every core

performs around 60% of workload based on “top”.

Table 5. Performance of Himeno benchmark in GFLOPS for

different processor binds for 1024×512×512 problem size in 8

×6×1 partition pattern on 48 core a node

partition patterns GFLOPS

Rank model 40.85

Bind each MPI process to a core 40.07

Bind each MPI process to a processor

socket
14.75

Not bind processes 26.12

5 Conclusion

 We implement two hybrid MPI/OpenMP models for

Himeno Benchmark and evaluate the performance on NCHC

GPU Cluster and NCHC ALPS. Intel compiler outperforms

on NCHC GPU Cluster, while PGI compiler outperforms on

NCHC ALPS for CPU bind! It is because that Intel compiler

gets more benefit of intrinsic computation involving

Streaming SIMD Extensions on Intel platform than PGI and

GNU. Moreover, it does not have enough room for thread

level parallel via hybrid MPI/OpenMP. Consequently, The

pure MPI parallel programming paradigm on 4×4×4 partition

pattern outperforms on NCHC GPU Cluster!

 Himeno Benchmark and High performance linpack can

enjoy the benefits of parallel computing for CPU binding on

NCHC ALPS from our various evaluations. The two-

dimensional partition pattern, 8×6×1, with PGI compiler

outperforms for Himeno Benchmark on NCHC ALPS. Our

defined rank model outperforms for Himeno Benchmark and

High performance linpack on NCHC ALPS. We establish a

Roofline Model for GT200, too.

Acknowledgment

We would like to thank NVIDIA Co. for supporting CUDA

version of Himon Benchmark. We are grateful to the National

Center for High-Performance Computing for computer time

and facilities.

References

[1] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and

Dongarra, J. MPI: The Complete Reference, MIT Press,

Cambridge, MA, 1996

[2] Ayguade, Eduard, Copty, Nawal, Duran, Alejandro,

Hoeflinger, Jay, Lin, Yuan, et al. The Design Of OpenMP

Tasks. IEEE Transactions on Parallel and Distributed

Systems, 404-418, 2009

[3] Himeno Benchmark

http://accc.riken.jp/HPC_e/HimenoBMT_e.html
[4] Williams, S., Waterman, A., and Patterson, D. Roofline:

an insightful visual performance model for multicore

architectures. Communications of the ACM , volume (52), 65-

76, 2009

[5] HPL Web site, http://www.netlib.org/benchmark/hpl/.

[6] Top 500 Web site, http://top500.org

