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Joint profiling of transcriptome and chromatin accessibility within single cells allows for the deconstruction of the complex
relationship between transcriptional states and upstream regulatory programs determining different cell fates. Here, we de-
veloped an automated method with high sensitivity, assay for single-cell transcriptome and accessibility regions (ASTAR-
seq), for simultaneous measurement of whole-cell transcriptome and chromatin accessibility within the same single cell. To
show the utility of ASTAR-seq, we profiled 384 mESCs under naive and primed pluripotent states as well as a two-cell like
state, 424 human cells of various lineage origins (B], K562, JKI, and Jurkat), and 480 primary cord blood cells undergoing
erythroblast differentiation. With the joint profiles, we configured the transcriptional and chromatin accessibility land-
scapes of discrete cell states, uncovered linked sets of cis-regulatory elements and target genes unique to each state, and con-
structed interactome and transcription factor (TF)-centered upstream regulatory networks for various cell states.

[Supplemental material is available for this article.]

With the growing interest in understanding cellular heterogeneity,
development of single-cell technologies has exploded in recent
years. There are a multitude of single-cell techniques measuring ge-
nome (Navin et al. 2011; Wang et al. 2012; Gawad et al. 2014),
transcriptome (Tang et al. 2009, 2010; Klein et al. 2015; Macosko
et al. 2015), protein abundance (Huang et al. 2007; Hughes et al.
2014), cell surface protein (Stoeckius et al. 2017), copy number var-
iation (Zong et al. 2012), DNA methylation (Guo et al. 2013;
Lorthongpanich et al. 2013; Smallwood et al. 2014), chromatin ac-
cessibility (Buenrostro et al. 2015; Cusanovich et al. 2015; Jin et al.
2015; Pott 2017), immunoprecipitated chromatin (Rotem et al.
2015; Grosselin et al. 2019; Wang et al. 2019), chromatin architec-
ture (Nagano et al. 2013; Flyamer et al. 2017; Ramani et al. 2017),
and lineage tracing (Raj et al. 2018) at a single-cell resolution.
These single-cell approaches allow for the deconstruction of cell
types and cell states from mixed populations and the identifica-
tion of cell state-specific genomic, transcriptomic, proteomic,
and epigenomic programs.

However, unimodal single-cell techniques present limited
values in uncovering intricate relationships across modalities,
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which is of utmost importance to gain comprehensive under-
standing of cell states. To tackle this, multimodal single-cell meth-
ods have been developed for concurrent measurement of genome
and transcriptome (Dey et al. 2015; Macaulay et al. 2015) and
of transcriptome and DNA methylome within a single-cell
(Angermueller et al. 2016; Cheow et al. 2016; Hu et al. 2016).
With the technical advancement in the multi-omic fields, single-
cell toolkits for joint profiling of transcriptome and chromatin ac-
cessibility are being developed to unravel the epigenetic mecha-
nisms regulating gene transcription (Cao et al. 2018; Clark et al.
2018; Chen et al. 2019; Liu et al. 2019; Zhu et al. 2019; Xing
et al. 2020). Among them, sci-CAR, SNARE-seq, and Paired-seq
show high cell throughputs (tens of thousands), rendering them
suitable for organism-scale measurements, such as cell atlas (Cao
et al. 2018; Chen et al. 2019; Zhu et al. 2019). However, their
high-throughput nature results in rare sequencing reads for each
profiled cell and extensive loss of information (Xing et al. 2020).
In comparison, scNMT-seq and scCAT-seq are applicable for stud-
ies with the intention of mining in-depth molecular distinctions
between subpopulations (Clark et al. 2018; Liu et al. 2019).
However, chromatin accessibility libraries prepared by scNMT-
seq suffer from extremely low mapping percentage and DNA
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mutations, which most likely resulted from the bisulfite treatment
(Xing et al. 2020). Additionally, both methods involve separation
of rare gDNA and RNA before any amplifications, which may result
in significant loss of the lowly abundant genes and diploid geno-
mic regions (Xing et al. 2020). Apart from this, this step also makes
them less compatible with the automated platforms, thereby re-
quiring remarkable manpower per experiment (Xing et al. 2020).

Here, we describe an automated technique with greater sensi-
tivity, assay for single-cell transcriptome and accessibility regions
(ASTAR-seq), which concurrently measures whole-cell tran-
scriptome and epigenome accessibility within a single cell. To
benchmark the technique, we applied it to deconstruct the hetero-
geneity of metastable mESCs under various cell states, human cell
types of distinct lineage origins, and primary cells undergoing dy-
namic differentiation. We unraveled the cell state-specific tran-
scriptomic and epigenetic programs, discovered unique pairs of
cis-regulatory elements and putative target genes, and uncovered
interactome pathways and upstream TFs associated with the het-
erogeneity observed.

Results

Simultaneous measurement of transcriptome and chromatin
accessibility within a single cell

In the ASTAR-seq protocol, individual cells are first isolated at dis-
tinct cell capture sites linked with a series of reaction compart-
ments on a Fluidigm C1 microfluidic chip (Fig. 1A). Open
chromatin regions of each cell are then tagmented with TnS trans-
posase, during which accessible DNA regions (ATAC-DNA) are in-
tegrated with sequencing adaptors. Next, mRNA is reverse
transcribed to double-stranded cDNA, which is then labeled with
biotin during PCR amplification process. Biotinylation of cDNA
enables its separation from ATAC-DNA using streptavidin beads.
Lastly, the separated ATAC-DNA and cDNA fractions are further
processed for library preparation and sequenced in parallel. The
earlier prototype, in which reverse transcription was performed be-
fore transposition, was not successful (Supplemental Fig. S1A).
This could be attributed to TnS transposase digesting single-
stranded cDNA, which resulted in failure to separate cDNA from
ATAC-DNA (Supplemental Fig. S1B-D). ASTAR-seq protocol was
first optimized and tested on 1000 BJ cells on benchtop. The opti-
mal condition yielded abundant cDNA and achieved clear separa-
tion of ATAC-DNA and cDNA (Supplemental Fig. STE-G).

As a proof of concept, we first applied ASTAR-seq to an
ENCODE cell line, K562. Of 96 ASTAR ATAC-seq libraries se-
quenced, 92 libraries (95.8%) passed the chromVAR QC thresholds
(Fig. 1B; Supplemental Table 1). A median library size of 142,886
was detected, and 27.9% of fragments were in peaks, indicating
high signal-to-noise of the ASTAR ATAC-seq libraries (Fig. 1B).
Insert-size distribution of the ASTAR ATAC-seq libraries showed
clear nucleosomal periodicity, a characteristic pattern of an
ATAC-seq library (Fig. 1C; Buenrostro et al. 2015). In addition,
ASTAR ATAC-seq libraries showed a Pearson’s correlation of
0.946 with the published scATAC-seq libraries (Buenrostro et al.
2015), indicative of its high similarity to the unimodal libraries
(Fig. 1D). On the other hand, 83 out of 96 ASTAR RNA-seq libraries
(86.5%) passed the QC thresholds set for gene detection rate
(>15%) and exon mapping rate (>75%) (Fig. 1E; Supplemental
Table 1). A median of 4182 genes was detected (Supplemental
Fig. S2A). In addition, scRNA-seq reads spread across the entire
gene bodies, without biasing toward either ends of the mRNA

(Fig. 1F). Moreover, ASTAR RNA-seq showed a high Pearson’s cor-
relation (R=0.87) with the published unimodal K562 scRNA-seq
(Fig. 1G; Pollen et al. 2014).

To make a fair comparison with a similar bimodal technique
scCAT-seq, we sequenced the K562 ASTAR-seq libraries at a compa-
rable sequencing depth (40 single-cell libraries per lane of HiSeq
4000) (Supplemental Table 1). scCAT-seq libraries showed a signif-
icantly lower alignment rate to the human genome in comparison
with ASTAR-seq (scATAC-seq: 67.6% vs. 85.8%; scRNA-seq: 54.9%
vs. 73.8%) (Supplemental Fig. S2B). Additionally, a significantly
higher percentage of ASTAR-seq libraries passed the QC thresholds
for both the scATAC-seq and scRNA-seq than the scCAT-seq librar-
ies (ASTAR-seq: 75.4%; scCAT-seq: 43.2%) (Supplemental Fig.
S2C). For scATAC-seq libraries that passed QC, scCAT-seq and
ASTAR-seq displayed comparable performance in terms of library
complexity and signal-to-noise ratio (Fig. 1H). On the other
hand, comparable numbers of de-duplicated reads were detected
for scRNA-seq libraries (scCAT-seq: 4,507,504; ASTAR-seq:
4,047,857), in line with their comparable sequencing depths
(Fig. 1I), whereas ASTAR-seq detected 1014 more genes than
scCAT-seq (ASTAR-seq: 9739; scCAT-seq: 8725) (Fig. 1I).

To comprehensively review other bimodal single-cell tech-
niques, we systematically compared ASTAR-seq with scCAT-seq,
sci-CAR, SNARE-seq, and Paired-seq in terms of profiled cells, QC
rate, estimated cost per paired good-quality libraries, and QC matri-
ces (Supplemental Fig. S2D-F). Among them, ASTAR-seq and
scCAT-seq were of lower throughput, and ASTAR-seq showed the
highest QC rate (Supplemental Fig. S2D). Correspondingly, owing
to their high sequencing depth, ASTAR-seq and scCAT-seq dis-
played a higher cost per cell than the high-throughput methods
(Supplemental Fig. S2E). Despite the comparable overall cost per ex-
periment, the estimated cost per paired good-quality ASTAR-seq li-
braries is 2.1 times lower than that of scCAT-seq (Supplemental Fig.
S2E). On the other hand, ASTAR-seq and scCAT-seq showed a sig-
nificantly higher number of detected genes (approximately 10-
fold) and accessible sites (approximately 100-fold) than the high-
throughput bimodal techniques (Supplemental Fig. S2F), whereas
the compared techniques did not show specific trends in terms of
signal-to-noise ratio (Supplemental Fig. S2F). Taken together, these
data indicate the reliability of ASTAR-seq technique and show its
superior performance in various aspects.

Deconstruction of heterogeneity in mESCs under distinct
cellular states

We next applied ASTAR-seq to 192 E14 mESCs cultured in serum +
LIF and 2i + LIF medium, which were named as mESCs and 2i cells
throughout the study. All the sequenced scATAC-seq libraries
passed the QC thresholds (Fig. 2A; Supplemental Table 2).
scATAC-seq reads displayed an insert-size distribution with nucle-
osomal pattern and high enrichment at transcription start sites
(TSSs) (Supplemental Fig. S3A,B). Moreover, these libraries showed
a significantly higher signal-to-noise ratio than the unimodal
mESC scATAC-seq libraries (Supplemental Fig. S3C; Buenrostro
etal. 2015). Additionally, mESCs and 2i cells can be accurately dis-
tinguished by confusion matrix analysis based on their highly ac-
cessible regions (HARs) (Supplemental Fig. S3D). We then
clustered mESCs and 2i ASTAR ATAC-seq libraries based on the
overall accessibility profiles and accessibility of mouse JASPAR mo-
tifs (Fig. 2B; Supplemental Fig. S3E,F). mESCs and 2i cells were
mostly clustered separately, but a certain degree of overlapping
was observed (Fig. 2B; Supplemental Fig. S3F). Of note, chromatins
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Figure 1. Assay for single-cell transcriptome and accessibility regions (ASTAR-seq). (A) Overview of ASTAR-seq protocol. (B) Dotplot revealing the per-
centage of fragments in peaks (y-axis) against the number of fragments (x-axis) of each K562 ASTAR ATAC-seq library. Red dotted lines represent the thresh-
old values set for each criterion. (C) Histogram showing the frequency (y-axis) of fragments with the indicated insert size (x-axis). (D) Dotplot showing
Pearson’s correlation between K562 ASTAR ATAC-seq and the published K562 scATAC-seq libraries. (E) Dotplot revealing detected gene rate (y-axis) of
each K562 ASTAR RNA-seq library plotted against its exon mapping rate (x-axis). Blue dots represent the libraries that pass QC, whereas gray dots represent
the libraries of low quality. (F) Line plot representing the coverage ratio (y-axis) of K562 ASTAR RNA-seq reads over the gene bodies of housekeeping genes
(x-axis). (G) Dotplot showing Pearson’s correlation between K562 ASTAR RNA-seq and the published K562 scRNA-seq libraries. (H) Boxplots showing the
number of fragments (feft) and percentage of fragments in peaks (right) of sScCATAC-seq libraries prepared by the scCAT-seq and ASTAR-seq protocol. Two-
tailed Student’s t-test is used to calculate P-values. (/) Boxplots showing the number of de-duplicated reads (left) and genes (right) detected in scRNA-seq
libraries prepared by the scCAT-seq and ASTAR-seq protocol. Two-tailed Student’s t-test is used to calculate P-values.

containing motif sequences of KLF4, RARG, ZFX, KLF12, and pression failed to efficiently generate teratoma and chimera,
MLXIP showed significant variability in terms of accessibility (P- which is in line with naive ESCs with low ZFX activity presenting
value <0.05) (Supplemental Fig. S3E; Supplemental Table 2). For high chimera formation rate (Galan-Caridad et al. 2007).

instance, KLF4 motif was highly accessible in 2i cells, whereas Likewise, the majority of mouse ASTAR RNA-seq libraries
ZFX showed the opposite trend (Supplemental Fig. S3G). In the (80.7%) passed the QC thresholds, in which a median of 2645
previous studies, not only was Kif4 reported to be up-regulated and 2429 genes were detected for mESCs and 2i libraries, respec-

in mESCs under naive state compared with the primed state but tively (Fig. 2C; Supplemental Fig. S3H; Supplemental Table 2). In
also its overexpression facilitated cellular reprogramming of addition, ASTAR RNA-seq libraries also showed full gene body cov-
primed EpiSCs to naive ESCs (Guo et al. 2009; Jeon et al. 2016). erage for the detected transcripts (Supplemental Fig. S3I).
Conversely, despite favoring self-renewal, mESCs with ZFX overex- Moreover, mESC ASTAR-seq libraries highly correlated (R=0.86)
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Figure 2. Transcriptomic and epigenetic heterogeneity within primed and naive mESCs. (A) Dotplot revealing the percentage of fragments in peaks
(y-axis) and number of fragments (x-axis) of each mouse ASTAR ATAC-seq library. Red dotted lines represent the thresholds set for each criterion.
(B) Heatmap showing the correlation among mESCs and 2i cells based on their ASTAR ATAC-seq libraries. (C) Dotplot revealing the detected gene rate
(y-axis) of each mouse ASTAR RNA-seq library plotted against its exon mapping rate (x-axis). Blue dots represent the libraries that pass QC, whereas
gray dots indicate the low-quality libraries. (D) Heatmap revealing the correlation of each mESC ASTAR RNA-seq library (x-axis) to various lineages of
MCA panel (y-axis). Color indicates the correlation level, ranging from gray (low) to red (high). Two-cell-like (2C-like) mESCs are boxed with a dotted
line. (E) NMF clustering of mESCs and 2i cells based on the correlative signals of their ASTAR ATAC-seq and ASTAR RNA-seq libraries. (F) Heatmaps revealing
pairs of accessible regulatory regions (feft) and the corresponding target genes (right) that are differentially enriched between the NMF clusters. Each col-
umn represents a library, whereas each row represents a chromatin region (left) or a gene (right). Color indicates the accessibility (feft) and expression (right)
levels, ranging from blue (low) to red (high). Representative genes are indicated on the right. (G) Line plots showing the differential coaccessibility links
between the highlighted regions and its surrounding regions, identified using Cicero. Top plots are constructed from ASTAR ATAC-seq libraries of cluster
1 cells, whereas bottom plots are constructed from that of cluster 2 cells. Peak heights (y-axis) denote the coaccessibility scores. (H) Interactome analysis
revealing the top pathways enriched by cluster 2—specific genes. (/,/) Heatmaps showing the enrichment (left columns) of TF motifs on cluster 1-specific
(1) and cluster 2-specific (/) accessible regions and their relative expressions (right columns).
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with the published unimodal scRNA-seq libraries (Supplemental
Fig. S3]; Svensson et al. 2017). Similarly, the confusion matrix il-
lustrated that transcriptomic profiles detected by ASTAR-seq can
accurately distinguish mESC and 2i cells (Supplemental Fig.
S3K). To study the heterogeneity within mESCs, we correlated
mESC ASTAR RNA-seq libraries to a mouse cell atlas (MCA) panel
(Han et al. 2018). Analysis revealed three types of cells, including
mESCs, ICM-like mESCs, and two-cell like (2C-like) mESCs, in
agreement with a previous report (Fig. 2D; Macfarlan et al.
2012), whereas MCA analysis of 2i ASTAR RNA-seq libraries
showed absence of a 2C-like population (Supplemental Fig. S3L).
PCA also revealed a separate cluster of the minority 2C-like cells
(Supplemental Fig. S3M). To confirm the presence of 2C-like cells
in our mESCs culture, we used the 2C::tdTomato reporter construct-
ed in the previous study (Macfarlan et al. 2012). Indeed, ~1%-2%
of mESCs consistently showed activation of the 2C reporter, which
was significantly increased upon depletion of Ehmt2, a H3K9me3
methyltransferase, as previously described (Supplemental Fig.
S3N; Macfarlan et al. 2012).

Integrative analysis of ASTAR-seq uncovered cluster-specific
cis-regulatory elements and their target genes

To show the advantage of joint profiling, we then clustered mESCs
and 2i ASTAR-seq libraries on the basis of bimodal data sets using
coupled nonnegative matrix factorization (NMF) (Duren et al.
2018). Of note, two distinct clusters were always observed when
clustering was based on either the differentially expressed genes
or the differentially accessible regions that were identified by cou-
pled NMF analysis (Supplemental Fig. S4A). Cluster 1 was mostly
composed of mESCs, whereas cluster 2 was majorly composed of
2i cells. In comparison, joint clustering based on the NMF clus-
ter-specific genes and accessible regions together showed superior
performance in distinguishing the subpopulations, as seen from
the clear and accurate separation of mESCs and 2i cells (Fig. 2E).
In addition, correlation between accessibility and gene expression
enabled us to identify regulatory networks specific to each NMF
cluster (Fig. 2F; Supplemental Table 2). For instance, Dnmt3l, lefty1,
Utfl, and Zscan10 were highly accessible and expressed in cells of
cluster 1, whereas Scdl, Gdf3, Dppa3, DppaSa, Sp5, and Tfcp2i1
were highly expressed in cluster 2 cells with greater accessibility
(Fig. 2F; Supplemental Fig. S4B). These genes were previously re-
ported to be important for naive and primed pluripotency, respec-
tively. For example, higher expressions of Dnmt3l, lefty1, and Utf1
were observed for mESCs under naive state than primed state,
whereas the opposite was observed for DppaSa and Tfcp2l1
(Chen and Lai 2015; Choi et al. 2017; Ghimire et al. 2018).
ZSCANI1O0 regulates epiblast-like cells through interaction with
POUSF1, whereas SP5 facilitates the conversion of epiblast to naive
ESCs (Buecker et al. 2014; Ye et al. 2016).

In addition to this, Cicero coaccessibility analysis (Pliner et al.
2018) showed that the Dnmt3l gene and its surrounding loci dis-
played open chromatin architecture with high interaction frequen-
cy in cluster 1; on the contrary, more 3D genomic interactions were
observed for Scd1, Gdf3, and Dppa3 in cluster 2 (Fig. 2G). The ex-
pression of Dnmt3I was reported to be reduced in naive ESCs, result-
ing in a global DNA demethylation (Leitch et al. 2013). On the
contrary, SCD1 is alipid metabolic enzyme involved in lipogenesis,
and proteins associated with fatty acid metabolism were reported to
be highly expressed in naive mESCs (Taleahmad et al. 2015, 2018).
Similarly, Dppa3 and Gdf3 were known to be important for naive
pluripotency (Chen et al. 2015; Sang et al. 2019). Altogether, this

highlights the differential interactive networks in which the clus-
ter-specific putative regulatory elements result in differential ex-
pression of the respective target genes.

Identification of cluster-specific interactome pathways
and TF-centered regulatory networks associated with naive
and primed pluripotency

NMEF cluster-specific genes showed extensive interaction among
themselves by involving in similar biological processes (Fig. 2H;
Supplemental Fig. S4C; Supplemental Table 2). Specifically, cluster
2 genes were majorly associated with metabolic pathways, includ-
ing oxidative phosphorylation, glutathione metabolism, and fatty
acids metabolism, which were reported to be key characteristics of
naive pluripotency (Fig. 2H). For example, in terms of catabolism,
naive ESCs show wide energy substrate usage through glycolysis,
oxidative phosphorylation, and fatty acid oxidation, whereas
primed ESCs mainly use glucose as energy source (Mathieu and
Ruohola-Baker 2017). Glutathione is an antioxidant preventing
cellular damage from the toxic molecules produced under oxida-
tive stress during oxidative phosphorylation, which were found
to be highly active in 2i cells compared with mESCs (Taleahmad
etal. 2015, 2018). Similarly, anabolism processes, including amino
acids and nucleotides synthesis, were reported to be highly active
in the naive ESCs, which were also enriched in cluster 2—specific
genes, such as tyrosine phosphorylation pathway and purine me-
tabolism (Taleahmad et al. 2015, 2018).

Apart from the metabolic process, mTOR and Hippo signaling
pathways were also enriched by the 2i cluster-specific genes (Fig.
2H). Attenuation of Hippo signaling was observed along the devel-
opmental axis from early blastocyst to epiblast, whereas depletion
of YAP/TAZ, whose nuclear localization and regulatory function
are repressed by Hippo signaling, caused differentiation specifi-
cally in mESCs but not in 2i cells (Lian et al. 2010; Azzolin et al.
2014; Weinberger et al. 2016; Hashimoto and Sasaki 2019).
Likewise, proteins involved in the mTOR signaling pathway were
highly expressed in naive ESCs, whereas disruption of Mtor led to
early postimplantation lethality and prohibited ESCs develop-
ment (Gangloff et al. 2004; Taleahmad et al. 2015).
Mechanistically, mTOR positively regulated mitochondrial func-
tion and oxidative metabolism, which were highly active in naive
ESCs (Yu and Cui 2016). On the other hand, cluster 1 genes
showed specific association with glucose metabolism and TGFB
signaling (Supplemental Fig. S4C). TGFB/activin signaling was
shown to be required for epiblast induction, whereas its inhibition
resulted in conversion of epiblast to naive state (Han et al. 2011;
Taleahmad et al. 2018).

There are also pathways commonly enriched for 2i and mESC
clusters, such as ribosome complex, RNA splicing, and cell cycle
(Fig. 2H; Supplemental Fig. S4C; Supplemental Table 2). However,
the component genes of those complexes are distinct. For in-
stance, genes related to the G1/S phase, such as Cdca3 and
Mad2l11, were enriched in the 2i cluster (Supplemental Table 2),
whereas genes associated with the G2M phase, including Cep76,
Csnkle, and Tubb3, were enriched in the cluster-specific genes of
mESCs (Supplemental Table 2). They are in line with the pro-
longed G1/S phase and abbreviated G2M phases of naive mESCs
compared with primed mESCs (Ter Huurne et al. 2017; Taleahmad
et al. 2018).

To further examine the TFs responsible for the differential
regulatory networks, we performed motif enrichment analysis
for the cluster-specific accessible sites. KLF3, CTCF, SP1 and MAZ
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motifs were enriched on cluster 1-specific accessible regions,
which were also highly expressed in cluster 1 cells (Fig. 2I;
Supplemental Table 2). An earlier study reported lower genomic
looping frequencies in 2i cells compared with mESCs (Krijger
et al. 2016), supporting the higher CTCF regulon activity detected
in cluster 1. On the contrary, motifs of TFCP2L1, NFE2L2, KLF6,
TCF7, and SP5 were enriched on cluster 2—specific accessible re-
gions, majority of which displayed higher expression in the cells
of cluster 2 (Fig. 2J; Supplemental Table 2).

ASTAR-seq recapitulates 2C-like population in mESCs

To further examine the capability of ASTAR-seq recapitulating
known biology, we prepared ASTAR-seq libraries for mESCs in
which DUX was overexpressed for 24 h in two batches
(Supplemental Fig. S5). DUX overexpression was known to induce
2C-like fate in mESCs (Hendrickson et al. 2017). One hundred
eighty-six out of 192 ASTAR ATAC-seq libraries passed QC, and a
median of 2353 genes were detected in ASTAR RNA-seq libraries
(Supplemental Fig. S5A,B). Of note, replicates of ASTAR-seq librar-
ies showed distinctively high correlation between themselves in
terms of both transcriptomic profile and chromatin accessibility
(R=0.987;0.99) (Supplemental Fig. SSC). ASTAR RNA-seq libraries
showed two clusters that were free of technical bias (Supplemental
Fig. SSD). Cluster 2 showed a higher expression of genes associated
with 2C-like fate, including Zscan4a, Zscan4c, Zscandd, Zscan4f,
Usp17la, Usp17Ib, Usp17Ic, and Eif4a311 (Supplemental Fig. SSE;
Macfarlan et al. 2012; Hendrickson et al. 2017). Likewise, ASTAR
ATAC-seq libraries distinguished different populations with no
technical bias (Supplemental Fig. SS5F). One population showed
higher accessibility for DUX binding sites and MERVL loci
(Supplemental Fig. S5G). This goes in agreement with the earlier
studies reporting the reactivation of MERVL in 2C-like mESCs
and the crucial role of DUX in maintaining 2C-like fate
(Macfarlan et al. 2012; Hendrickson et al. 2017). Indeed, mESCs
with a 2C-like transcriptomic signature showed a higher accessibil-
ity for MERVL loci and DUX binding sites (Supplemental Fig. SSH).
Taken together, these data indicate the reproducibility and reliabil-
ity of ASTAR-seq in recapitulating known biological phenomenon.

Cell type-specific programs revealed by ASTAR-seq

To expand the applicability, we also prepared ASTAR-seq libraries
for various human cell lines, including BJ cells in adherent culture,
and JK1 and Jurkat cells in suspension culture (Fig. 3). To character-
ize the molecular distinction among the hematopoietic cells, 96
K562 ASTAR-seq libraries sequenced at a similar depth were also in-
cluded for the following analysis. Out of 384 libraries profiled, 375
ASTAR ATAC-seq libraries passed the QC thresholds for chromVAR
(Supplemental Fig. S6A; Supplemental Table 3). In median, a li-
brary size of 55,193 was captured, and 35% of fragments was in
peaks (Supplemental Fig. S6A,B). Insert-size distribution of ASTAR
ATAC-seq libraries also showed characteristic nucleosomal pattern
of ATAC-seq libraries (Supplemental Fig. S6C; Buenrostro et al.
2015). In addition, ASTAR ATAC-seq libraries also showed a high
similarity to the published scATAC-seq libraries (R=0.897) (Sup-
plemental Fig. S6D; Buenrostro et al. 2015). Confusion matrix
analysis showed that the HARs detected by ASTAR-seq libraries
can distinguish these cell lines with high accuracy (96.5%) (Sup-
plemental Fig. S6E). These indicate that the prepared ASTAR
ATAC-seq libraries are of good quality.

Next, we clustered ASTAR ATAC-seq libraries based on enrich-
ment of human JASPAR motifs and observed four clusters, among

which BJ cells displayed distinct accessibility profiles and clustered
away from the cells of blood lineage (Fig. 3A). Variability analysis
identified TF motifs determining the cell type identities and their
distinctions (Fig. 3B; Supplemental Table 3). Consistent with its
distinct cluster, 16 TF motifs were specifically accessible in BJ cells,
such as FOS-JUN and NFE2, which were reported to display tissue-
specific activities, especially in fibroblasts (Fig. 3B-D; Supplemen-
tal Fig. S6F; Wilkinson et al. 1989). On the other hand, BJ cells
also extensively shared motifs with cells of myeloid lineage: K562
(79 motifs), including ETS1 and ZBTB33, and JK1 (28 motifs), in-
cluding families of NFY, MEF2, and SP factors, compared with cells
of lymphoid lineage—]Jurkat (six motifs), including the TEAD fam-
ily (Fig. 3B-D; Supplemental Fig. S6F). In addition, extensive over-
lap (46 motifs) was seen between cells of myeloid lineage (JK1 and
K562), including TFs of GATA-TAL family (Fig. 3B-D). These en-
riched factors were reported to play important roles in the respec-
tive lineages. For instance, ZBTB33 is specifically important for
K562 by binding to methylated DNA, whereas its depletion causes
differentiation defects (Cofreetal. 2012; Lin et al. 2019). GATAlisa
master TF of erythropoiesis with specific expression in myeloid lin-
eage but not in the lymphoblastic leukemia cells (Lee et al. 2017;
Gutiérrez et al. 2020). On the contrary, inactivation of Hippo ki-
nase modules, such as MST1/2, causes lymphopenia in human
and results in translocation of YAP/TAZ to nucleus, which activates
regulatory activity of TEAD TFs (Cheng et al. 2018; Yamauchi and
Moroishi 2019). The gathered literature reports suggest inactive
Hippo pathway in lymphoblast Jurkat cells and the resultant activa-
tion of TEAD activity.

Meanwhile, of 384 ASTAR RNA-seq libraries, 296 libraries
(77.1%) passed QC and showed full coverage for the expressed
transcripts (Supplemental Fig. S6G-I; Supplemental Table 3). A to-
tal of 291 ASTAR-seq libraries (75.8%) passed the QC filtration for
both the scATAC-seq and scRNA-seq libraries (Supplemental Table
3). In addition, ASTAR-seq libraries showed high similarity (R=
0.82) to the unimodal scRNA-seq libraries (Supplemental Fig.
S6J; Pollen et al. 2014). Besides, transcriptomic profiles detected
by ASTAR RNA-seq can distinguish among distinct cell lines with
high accuracy (99.63%) (Supplemental Fig. S6K). Furthermore, ref-
erence component analysis (RCA) analysis (Li et al. 2017) showed
distinct correlation of BJ cells to foreskin fibroblasts and muscle
lineage, JK1 cells to erythroblasts, K562 cells to leukemia K562,
and Jurkat cells to leukemia lymphoblast (Fig. 3E). Consistent
with their differential regulatory activities, GATAI was uniquely
accessible and expressed in myeloid JK1 and K562 cells, whereas
SP1 was accessible and expressed in BJ, JK1, and K562 cells (Fig.
3F). Taken together, ASTAR-seq enables the identification of TFs re-
sponsible for the distinctions among distinct cell types.

ASTAR-seq reveals dynamics in transcriptome and epigenome
along the pseudotemporal axis of erythroblast differentiation

To measure its capability in capturing the dynamic changes, we ap-
plied ASTAR-seq to the primary cells undergoing erythroblast dif-
ferentiation. We harvested a total of 480 cells at day 6 (D6), day 8
(D8), day 10 (D10), and day12 (D12) of erythroblast differentiation,
which was induced from mononuclear cells isolated from umbilical
cord blood, for ASTAR-seq library preparation (Fig. 4A). Of the 480
ASTAR-seq libraries, 273 cells (56.9%) presented good-quality li-
braries for both scATAC-seq and scRNA-seq (Supplemental Table 4).
Comparatively, the QC rate is lower than that of the cell lines pro-
filed earlier, which is likely associated with the inherent difficulty
in culturing the primary cells. We next investigated the trajectories
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Figure 3. Application of ASTAR-seq on human cell lines. (A) Clustering of BJ, JK1, K562, and Jurkat
ASTAR ATAC-seq libraries based on the human JASPAR motif deviation scores calculated over the
HARs. Color indicates the correlation level among the libraries, ranging from blue (no) to red (high).
Side color bar (y-axis) indicates the identity of each cell. (B) Variability plot indicating the variable TF mo-
tifs across the ASTAR ATAC-seq libraries of four human cell lines. The y-axis represents the variability score
assigned to each JASPAR motif, whereas the x-axis represents the motif rank. Top variable motifs are clas-
sified based on their enrichment scores across the cell lines and colored accordingly. (C) Multi-Venn di-
agram showing the shared and unique TFs across the cell lines. (D, top feft) t-SNE clustering of B, JK1,
K562, and Jurkat ASTAR ATAC-seq libraries based on the deviation scores of human JASPAR motifs.
Colors represent the cell lines. (Top right and bottom) Superimposition of motif enrichment scores for
FOSL1, GATA1, ZBTB33, and TEAD3 on the t-SNE plot. Colors represent the motif enrichment levels,
ranging from blue (no) to red (high). (E, left) PCA clustering of ASTAR RNA-seq libraries based on their
correlation to the RCA panel. (Right) Heatmap showing the lineages that each cell correlates to. (F)
UCSC screenshots indicating the chromatin accessibility (top) and expression (bottom) levels of GATAT

(left) and SPT (right) across the cell lines.

of erythroblast differentiation using
pseudotemporal analysis (Trapnell et al.
2014; Qiu et al. 2017). The resultant tra-
jectories consisted of two branching
events and five pseudotemporal states
(Fig. 4B,C). Pseudotime highly correlated
with the actual differentiation time
points. For instance, cells of earlier time
points, such as D6 and D8, were mostly
at states 1-3, whereas D10 cells were
mostly at states 4 and 5 (Fig. 4B,C). On
the other hand, the majority of D12 cells
belonged to state 5 and located at the end-
point of pseudotime (Fig. 4B,C). Consis-
tently, HBA2, a hemoglobin gene,
showed elevated expression in cells of
state 5 compared with the others
(Fig. 4B).

We then performed RCA analysis to
examine the differentiation status of var-
ious pseudotemporal states. Generally,
the majority of cells showed strong
correlation to the myeloid or erythroid
lineages (Fig. 4D). As the differentiation
time point increased, transitions in the
order of common myeloid progenitors
(CMPs), myeloid erythroid progenitors
(MEPs), erythroblast progenitors (Eryth
pro), early erythroblasts, and late erythro-
blasts were observed (Fig. 4D). Specifi-
cally, the majority of states 1-3 cells
showed a strong correlation to Eryth pro
cells and certain degrees of correlation
to MEPs and early erythroid (Fig. 4D).
Cells of state 5 can be broadly classified
into three groups, including groups with
correlation to early erythroid but not to
MEPs, with strong early erythroid identi-
ties, and with significant late erythroid
fate (Fig. 4D). On the other hand, cells
of state 4 bifurcated from the differentia-
tion trajectory and acquired alternative
fate resembling granulocyte monocyte
progenitor (GMP) (Fig. 4D). In addition
to this, GO analysis also showed that
genes abundantly expressed in cells of
state S were associated with oxygen trans-
port, hydrogen peroxide catabolic pro-
cess, and erythrocyte differentiation
process, whereas state 4 cells highly ex-
pressed genes related to innate immune
response and antigen processing and pre-
sentation (Supplemental Fig. S7A). On
the contrary, compared with state 1,
genes that were repressed in state 5 were
associated with stem cell population
maintenance, positive regulation of H3-
K4 methylation, and chromatin organi-
zation, whereas genes related to erythro-
cyte maturation, oxygen transport, and
NF-kB signaling were repressed in state 4
cells (Supplemental Fig. S7B). Altogether,
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state 5 represents cells attaining erythroid fate, whereas state 4 cells
deviate from erythroblast differentiation path, instead acquiring
GMP identities.

To identify the genes and regulatory regions responsible for
the progression of erythroblast differentiation, we used coupled
NMF analysis, which uncovered three clusters (Fig. 4E).
Superimposition of NMF clusters on the erythroblast differentia-
tion trajectory showed that the majority of cluster 1 cells belonged
to states 1-2, whereas cells of cluster 3 were the major constituent
of state 5 (Fig. 4E). Cluster 2 cells scattered across the various states
(Fig. 4E). Consistent with the cell fate of pseudotemporal states,
cluster 1 cells showed characteristics of proerythroblasts and early
erythroid cells and clustered closer to K562 cells, whereas cluster 2
cells showed stronger early erythroid identities and started to
develop late erythroid characteristics (Fig. 4F). In addition, cluster
2 cells showed a higher similarity to JK1 than to K562 cells, reflect-
ing their advanced differentiation compared with cluster 1 cells
(Fig. 4F; Koeffler and Golde 1980), whereas cluster 3 cells displayed
the strongest late erythroid identities and were clustered intimate-
ly with JK1 cells (Fig. 4F). Supporting this notion, differentially ex-
pressed genes of NMF cluster 1 were highly represented in K562
cells, whereas cluster 3 genes were specifically expressed in JK1
cells (Fig. 4G; Supplemental Table 4). This was further substantiat-
ed by CTen analysis (Supplemental Fig. S7C,D; Shoemaker et al.
2012). On the other hand, the accessibility of chromatins contain-
ing motif sequences of GATA1:TAL1 and MEF2D was highly vari-
able across the NMF clusters (Supplemental Fig. S7EF;
Supplemental Table 4). In addition, cluster 1 accessible regions
were highly enriched with HOXB4 and FOXA3 motifs, cluster 2
with ONECUT1 motif, and cluster 3 with POU2F2 and RUNX2 mo-
tifs, implicating the importance of these TFs in regulating the
genes crucial for progression of erythroblast differentiation
(Supplemental Fig. S7G; Supplemental Table 4). Moreover, the
cluster-specific genes showed differential coaccessibility with its
surrounding regulatory regions. For example, NOP16 was highly
expressed and accessible in cluster 1 with multiple genomic inter-
actions with the nearby genes, whereas the cluster 3—specific gene
GYPB showed a high interaction frequency with GYPE only in clus-
ter 3 (Fig. 4H).

Discussion

In this study, we presented an automated bimodal single-cell tech-
nology, ASTAR-seq, which allows for parallel profiling of whole-
cell transcriptome and chromatin accessibility within the same
single cell, with a greater sensitivity. Among the multimodal sin-
gle-cell techniques for transcriptome and chromatin accessibility,
sci-CAR, SNARE-seq, and Paired-seq are more suitable for organ-
ism-scale measurements, owing to their high-throughput profiling
and low cost (Cao et al. 2018; Chen et al. 2019; Zhu et al. 2019).
However, high-throughput profiling meanwhile results in a major
drawback, massive loss of information, owing to the low sequenc-
ing depth. Apart from this, scRNA-seq libraries prepared by these
high-throughput techniques specifically capture transcriptome
within nucleus and are biased toward the 3’ end of mRNA. In
sum, because of these drawbacks, high-throughput multimodal
techniques are not suitable for studying lowly abundant tran-
scripts, isoforms, and transcriptional maturation.

However, these could be achieved by using high-depth multi-
modal single-cell assays, such as scCAT-seq (Liu et al. 2019) and
ASTAR-seq. scCAT-seq and ASTAR-seq display much greater detec-
tion sensitivity than the high-throughput multimodal techniques.

Comparatively, ASTAR-seq presents the following advantages
compared with scCAT-seq. ASTAR-seq shows better performance
in terms of genome alignment, gene detection sensitivity, and
QC rate than scCAT-seq. In addition, ASTAR-seq measures tran-
scriptomic profile within a whole cell, whereas scCAT-seq captures
cytoplasmic transcriptome. Furthermore, owing to the integration
with automated devices, ASTAR-seq displays higher consistency
and requires less manual handling time and manpower.
Therefore, the pros and cons of these multimodal assays should
be carefully considered to better suit your application (Xing et al.
2020). Altogether, ASTAR-seq is a powerful integrated approach
to understand the connectivity between transcription and epige-
netic regulation.

Methods

Cell culture

mkES-E14TG2a and 2i cells were cultured with the routinely used
medium. DUX overexpressed mESCs was obtained following the
previously described procedures (Hendrickson et al. 2017).
mESCs were routinely propagated, passaged using trypsin, and re-
plated onto 0.1% gelatin-coated plates every 3—4 d. BJ, K562, JK-1,
and Jurkat were cultured with standard medium. Detailed medium
recipes and induction methods can be found in the Supplemental
Methods.

ASTAR-seq

Single-cell suspension was loaded onto Fluidigm C1 Open App
microfluidic chips, and single-cell capture efficiency was assessed
using a Nikon automated microscope. ASTAR-seq on-IFC steps
were automatically performed on C1 machine using the custom
built “ASTAR- ASTAR (1861x/1862x/1863x)” scripts. ASTAR-seq
on-IFC reactions include lysis and transposition, EDTA (inactivate
TnS), MgCl, (quench excess EDTA) and RT, and cDNA-PCR (bioti-
nylation and amplification). Off-IFC steps are composed of strepta-
vidin bead separation of cDNA and open chromatins (ATAC-DNA),
PCR amplification of cDNA, and ATAC-seq and mRNA-seq library
preparation. Detailed ASTAR-seq protocol can be found in the
Supplemental Methods. ASTAR-seq scripts can be found in
Supplemental Codes, ASTAR script.

ASTAR-seq library sequencing

One hundred ninety-two ASTAR RNA-seq libraries were sequenced
in a lane of HiSeq 4000 sequencer using a 101-bp pair-end se-
quencing parameter. One hundred ninety-two ASTAR ATAC-seq li-
braries were sequenced in a lane of HiSeq 4000 sequencer using 50-
bp pair-end sequencing parameter.

Mapping of ASTAR-seq libraries

ASTAR-seq libraries were mapped to mm?9 (for mouse libraries) and
hg19 (for human libraries) using STAR aligner (Dobin et al. 2013;
see Supplemental Methods). For scRNA-seq libraries, we allowed
up to two mismatches and removed reads that map to more than
one locus. The option “-outSAMstrandFiled intronMotif” was
used to make BAM outputs of STAR compatible with subsequent
analyses. For scATAC-seq libraries, options --alignIntronMax 1
and --alignEndsType EndToEnd were used. Detailed scripts can
be found in Supplemental Code. ASTAR-seq library filtration crite-
ria can be found in the Supplemental Methods.
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Quantification and normalization of scRNA-seq libraries

GTF files were generated using the “genePredToGtf” tool designed
by UCSC. BAM files and generated GTF files were used as inputs for
Cuffquant (Trapnell et al. 2010). Options -u and -m were included
in the Cuffquant script. The abundances files were then used as in-
puts for Cuffnorm (Trapnell et al. 2010). The classic-fpkm normal-
ization style was used. The detailed scripts can be found in
Supplemental Code.

Clustering of scRNA-seq libraries

FPKM table was uploaded to Seurat (Butler et al. 2018) as input for
t-SNE clustering. For UMAP generation, the raw counts generated
by featureCounts were uploaded to Seurat v3. Data were then
scaled, and variable genes were detected using default parameters.
PCA was performed using the variable genes, and then UMAP or
t-SNE were generated. The FeaturePlots function of Seurat was
used to superimpose gene expression over UMAP plot. VInPlot
function was used to determine the number of genes detected
per cell for all samples. The detailed script can be found in
Supplemental Code.

scRNA-seq analysis

MCA (Han et al. 2018) and RCA (Li et al. 2017) analyses were per-
formed as previously described. Details can be found in the
Supplemental Methods, and the detailed script for RCA can be
found in Supplemental Code.

Pseudotime analysis

FPKM table generated by Cuffnorm was used as an input for
Monocle (Trapnell et al. 2014). FPKM values were converted to
mRNA counts using the “relative2abs” function (Qiu et al.
2017). The expression family was set to negbinomial while creat-
ing the CellDataSet. Then, size factors and dispersions were esti-
mated with default parameters. ReduceDimension function was
used with method “DDRTree”. This was followed by cell ordering
(orderCells) and trajectory plotting. The detailed script can be
found in Supplemental Code.

Determination of HARs

Human and mouse ASTAR ATAC-seq libraries were merged inde-
pendently using SAMtools merge (Li et al. 2009). Duplicates were
removed using the MarkDuplicates module of Picard (https
://broadinstitute.github.io/picard/). Peak calling was performed
using MACS2 (Zhang et al. 2008), and the --nomodel --nolambda
--keep-dup all --call-summits options were used. The
narrowPeaks output of MACS2 was considered as the HARs. The
detailed script can be found in Supplemental Code.

chromVAR analysis

sCATAC-seq libraries were subjected to chromVAR analysis as pre-
viously described (Schep et al. 2017). Details can be found in the
Supplemental Methods, and the detailed script can be found in
Supplemental Code.

Motif analysis

The findMotifsGenome.pl script of HOMER (Heinz et al. 2010) was
executed in order to identify the known motifs enriched in the dif-
ferentially accessible regions.

Integrative analysis

Coupled NMF (Duren et al. 2018) was used to cluster the cells based
on the integration of both scATAC-seq and scRNA-seq libraries, as
previously described. Details and downstream analysis can be
found in the Supplemental Methods. The detailed script can be
found in Supplemental Code.

Prediction of cis-regulatory interactions

ASTAR ATAC-seq libraries belonging to each NMF cluster were
merged using SAMtools merge to determine the HARs of each clus-
ter as described above. Then coverage of each library belonging to a
particular cluster over the HARs of its corresponding cluster was
measured using DepthOfCoverage as described above. The raw
coverage table was used as an input for Cicero (Pliner et al.
2018). Cicero CDS were created using make_cicero_cds, and “run_
cicero” was then performed (with default settings). The plot_con-
nections function was used to visualize the predicted regulatory el-
ements of NMF-identified genes. Coordinates used were 10x
zoomed-out from the precise coordinates of the genes of interest.
The detailed script can be found in Supplemental Code.

Interactome analysis

Genes specific to each NMF cluster were uploaded to STRING
(Szklarczyk et al. 2019). The text-mining option was disabled.
The network formed was downloaded in tabular format, and
then the tables were uploaded to Cytoscape (Shannon et al.
2003) for visual formatting.

Confusion matrix generation

The confusion matrixes were generated using MLSeq (Zararsiz et al.
2017). Details can be found in the Supplemental Methods, and the
detailed script can be found in Supplemental Code.

External data

External data sets used in this study were downloaded from the
following database under the specified accession numbers: BJ
scRNA-seq (NCBI Sequence Read Archive [SRA]: SRP041736),
K562 scRNA-seq (NCBI SRA: SRP041736), mESCs scRNA-seq
(ArrayExpress database: E-MTAB-5484, E-MTAB-5485), BJ scAT
AC-seq (NCBI Gene Expression Omnibus [GEO]: GSE65360),
K562 scATAC-seq (GEO: GSE65360), mESCs scATAC-seq (GEO:
GSE65360), scCAT-seq (CNGB Nucleotide Sequence Archive
[CNSA]: CNP0000213).

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE113418.
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