

Figure 1. HE stained colon tissue

Parallel Biomedical Image Processing with
GPGPUs in Cancer Research

Attila Reményi*, Sándor Szénási*, István Bándi *, Zoltán Vámossy*, Gábor Valcz**, Pál Bogdanov*,
Szabolcs Sergyán* and Miklos Kozlovszky***

* Óbuda University/John von Neumann Faculty of Informatics, Budapest, Hungary
** Semmelweiss University/2nd Department of Internal Medicine, Budapest, Hungary

*** MTA SZTAKI/Laboratory of Parallel and Distributed Computing, Budapest, Hungary
remenyi.attila@biotech.uni-obuda.hu; m.kozlovszky@sztaki.hu

Abstract—The main aim of this work is to show, how
GPGPUs can facilitate certain type of image processing
methods. The software used in this paper is used to detect
special tissue part, the nuclei on (HE – hematoxilin eosin)
stained colon tissue sample images. Since pathologists are
working with large number of high resolution images – thus
require significant storage space –, one feasible way to
achieve reasonable processing time is the usage of GPGPUs.
The CUDA software development kit was used to develop
processing algorithms to NVIDIA type GPUs. Our work
focuses on how to achieve better performance with coalesced
global memory access when working with three-channel
RGB tissue images, and how to use the on-die shared
memory efficiently.

Keywords: GPGPU, CUDA, biomedical tissue image
processing

I. INTRODUCTION
Nowadays, more-and-more medical institutes are

evaluating and analyzing their digitalized high-resolution
tissue images to provide patient diagnosis faster and more
accurate. One of the main benefits to use digital
microscopy to open up diagnosis through automated
quantitative and qualitative analysis of the digital tissue
images.

Our work focuses on the nuclei detection on
hematoxilin eosin (HE) stained colon tissue sample
images. It examines how effectively the developed
algorithms have been used during the evaluation process
on data parallel NVIDIA type architectures, thus in this
paper, we are using similar terminology as used by
NVIDIA in its documentations.

A. Motivation
The size of high-resolution tissue images can easily

reach the order of few 100 MBs or even GBs. Therefore,
the image processing speed and effectiveness plays an
important usability factor. One way of increasing the
processing performance, is to use data parallel accelerators
(e.g.: GPGPUs).

II. SOFTWARE BACKGROUND
Our developed image processing method is used as a

core service in our in-house developed software solution,
which supports automatic quantitative analysis and

evaluation of HE stained colon tissue samples. The input
of the software can be either stand-alone images, or digital
slides received from a high-resolution tissue/slide scanner.
The digital slide format we have used is a proprietary
solution developed by 3DHistech Ltd.

Figure 1 shows a digital slide example. To support
analysis on large amount of slides, we have created a
workflow to handle both various input/output and
processing algorithms in a flexible manner. On the input
side, we are using batch processing with individually
definable algorithm parameters assigned to each slide, and
on the output side robust database management is used.

Figure 2. The simplified module diagram of the system

Load

Save

Evaluation Detection

Measure-
ment

 GUI ROI

Sample Evaluation IN

OUT

Figure 2. shows a schematic illustration of the
workflow used during the tissue analysis process. The
detection contains three major steps:

• cell nuclei detection

• gland detection

• surface epithelium detection.

Both the gland and epithelium detection algorithms are
using as their input data the result of the cell nuclei
detection. Our work in this paper focuses only on the cell
nuclei detection performance issues, and describing the
exact procedures of the gland, so surface epithelium
identification is not part of this paper.

After the detection process, a large set of parameters
(22) are measured (such as surface cell count ratio, gland
diameter, cell per gland count and so on) and stored all the
measured parameters in a relational database.

III. THE NUCLEI DETECTION ALGORITHM
In the aspect of detection, the most important feature of

the nuclei is their purple color (Figure 3.), based on this;
the first step of the segmentation can be done [1]. Our goal
with this is to make a binary image, which has the same
dimensions as the original, and contains white pixels,
where the nuclei are supposed to be.

We have defined a set of workflows to target and
extract important information from the digital tissue
images. Like all the digital images, the digital slides
consists some level of noise as well, which should be
eliminated (noise blurring) as first step. For this, a Gauss
convolution was used with a 3 × 3 binomial
approximation, because this way the kernel contains only
the power of two weights. By using the binomial kernel,
our goal was to increase the process speed because just
like the CPUs, the GPUs can execute the shift operations
faster than for example a fix point multiplication [2]. As
the next step, an RGB-HSV conversation was performed,
because it is easier to define the purple color of the nuclei
by using the HSV color space. After the segmentation in
the new color space, to separate the cohered nuclei, an
ultimate erode and a local maximum search was
performed on the image. The last step is a linear
connected component algorithm executed by the CPU,
because of its linear nature. The GPU part of the nuclei
detection process is illustrated in Figure 4.

Figure 3. Cell nuclei

IV. OPTIMIZATION TECHNIQUES USED
Due to the “cache-less” operation manner, important

part of the GPU programming is to optimize the memory
access [3]. This is especially true for memory intensive
computing tasks, such as the image processing procedures
[4]. We have evaluated different type of optimization
techniques to perform Gauss convolution. Our goal was to
ensure fully coalesced global memory access. We have
tested multiple architectures (different GPU
generations/implementations). The different architecture
generations set different conditions (restrictions) to
achieve coalesced memory access, which needs special
optimization techniques. As it was expected we have find
correlation between the architecture versions and the
available (developer friendly) optimization techniques.
The general trend was that the newer the GPU is, the
looser the conditions are.

A. Naïve kernel
Consider first the naive approach where all three RGB

channels are loaded individually with one byte global load
instructions. In this case, by loading the blue channel first,
the first byte of a pixel is needed, because the channels are
stored in BGR order. This is exactly 16 bytes data, when
16 threads are active; however, the blue channels are not
located near each other in memory. Therefore, at least
16 × 3 = 48 bytes have to be moved, but since the memory
controller is only able to load data segments, this means at
least two 32 bytes large read transaction. The green and
red channels work the same, so instead of the 16 pixel
data (48 bytes), 3 × 64 = 192 bytes of data have to be
loaded or stored. This is a waste of memory throughput.

Figure 4. The nuclei detection workflow with the process steps

Gauss
convolution

Convert
RGB to HSV

Ultimate
erode

Local maximum
search

Binarization

Memcpy
HostToDevice

Memcpy
DeviceToHost

B. Using the texture memory
It is possible to speed up the memory access by using

textures. Today's graphics unit, as their name suggests,
primarily designed for 3D imaging. It is therefore not
surprising that special hardware can be found in them,
which are specific to accelerate imaging operations: like
the texture memory space and the cache connected to it.

The texture memory space only differs from the global
logically, it takes place physically in the global memory,
and it works as a pointer to an already defined data.
Through this pointer, the memory controller can
efficiently manage the memory bus traffic. The
disadvantage is that it cannot be used to write data back to
the global memory, thus saving has to be done the naïve
way.

C. Process 12 bytes per thread (12B)
To make the writing more effective, the texture cannot

be used, since the write operation is not allowed. It should
be achieved, that let the loaded and saved data per
hardware thread be equal to 4 bytes. But it is blocked by
the RGB pixel size which is 3 bytes. One approach is to
let only 12 threads of all the 16 to load the data in 4 bytes
packages [5] to achieve coalesced global memory access.
However, this leads to have 25% of the created threads to
be idle during the load operation.

The idea is to expand the data amount that one thread is
working with, so it becomes possible to load and store
data in four bytes. The solution is the lowest common
multiple 3 × 4 12. If one thread works with four pixels,
then the 12 bytes data can be loaded and stored in 4 bytes
large packages.

D. Using the shared memory
So far we focused on the global memory, and ignored

the on-die shared memory. Logically, the shared memory
belongs to one block, physically to one streaming
multiprocessor (SM). Its latency is one-two cycle, and its
size in 16 KB in every SM in the processor we use.

The methods represented so far, shares the same
feature; thus every thread loads nine times more data than
writes back, because the mask that was used for blurring
had the size of 3 × 3, so this means nine times redundant
data movement. The shared memory can be used to reduce
this redundant data movement: every – except the ones at
the block boarders – thread loads its “own” data to the
shared memory. After this, every thread can load the
surrounding data from the shared memory [6]. Further
advantage is that since the reading is separate from the
processing, it is possible to load the data in a different
order, and achieve coalesced global memory loads.

We have already showed that to achieve more efficient
global memory access, the data amount that is processed
by one thread is increased to twelve bytes, and loaded in
three four bytes packages. So the load operations
processed by one half-warp should move 64 bytes useful
data.

However if the first load command reads the first 1/3
part of the 12 bytes data, then the 16 load operations
means actually 16 × 12 = 192 bytes of data movement. By
changing the loaded data order, this unnecessary data
movement is avoidable.

V. EVALUATION OF OPTIMIZATION TECHNIQUES
In the comparison, we are looking the answer for two

questions: what speed up was achieved by implementing
the optimization techniques, and is it worth using the GPU
for image processing or not. The main characteristics of
the test system can be found in Table I.

TABLE I. TEST SYSTEM CHARACTERISTICS

 Type Core
number

Core
clock

Memory
clock

Memory
interface

width

CPU Core2Duo 2 1866
MHz

667
MHz 128 bit

GPU GTX295 240 1242
MHz

999
MHz 448 bit

The difference between the kernels shown in Table II.
and Figure 5. shows that the biggest performance jump
can be achieved by leaving the naïve approach behind.

By using the texture memory, the process can be done
around two times faster. The next step is to introduce the
12 bytes per thread processing, which means a 20% speed
up against the texture memory. However, by using the
shared memory, only about 8% of speed increase was
achieved. All the values in Table II. are from the CUDA
Visual Profiler shipped with the SDK.

Figure 5. Blurring kernels graph

TABLE II. BLURRING KERNELS

32B 64B 128B Request 32B 64B 128B Request
Naive 425 102735 0 0 7560 9888 0 0 840

Texture 202 0 0 0 0 9888 0 0 840
12B 167 912 4988 7482 1080 0 1248 1248 216

Shared 154 807 1398 0 416 0 1248 1248 216

Run-time
(µs)

Global Load Global Store

A. CPU – GPU comparison
In this chapter we examine the entire nucleus detection

algorithm.
For ease of clarity, we list the exact functions that were

included in the measurement:
1. Gauss convolution [7],

2. RGB-HSV conversion,

3. segmentation,

4. ultimate erode,

5. local maximum search,

6. linear connected component search.

The last of these is not implemented on the graphics
unit because of its serial nature, so it runs by the central
processor. Table III. shows the measured values for each
architectures. All the values are in seconds, and
logarithmic scale was used in Figure 6. All the test images
came from true digital slides and the highest
magnification was used, the biggest image was
4096 × 4096.

A 15 × 15 mask size was used in the local maximum
search. The run-time ratio values are shown in Table IV.
The values show that the process time on the GPU is not
grows as much as the image size does. Therefore, while
the process time relatively same at the smallest image size,
the GPU has an approximately 58x advantage at the
largest image.

Figure 6. GPU – CPU performance comparison

TABLE III. NUCLEUS DETECTION PROCESS TIME

Image size 2562 5122 10242 20482 40962
Run time

(GPU) 0,1913s 0,2094s 0,28334s 0,5111s 1,3971s

Run time
(CPU) 0,3134s 1,0341s 4,5734s 17,63s 82s

TABLE IV. RUN-TIME RATIO

Image size 2562 5122 10242 20482 40962

CPU / GPU 1,638 4,938 16,141 34,494 58,693

CONCLUSIONS
As our test results showed, GPU usage was able to

speed up certain type of image processing tasks
significantly. It can be stated that, although even smaller
(512 × 512) images can be processed faster with the
graphics unit, the benefits of the GPU come to the front at
higher resolution, where about 58-fold difference has been
achieved.

ACKNOWLEDGMENTS
This work makes use of results produced by the

Hungarian National Technology Programme, A1, Life
sciences, the “Development of integrated virtual
microscopy technologies and reagents for diagnosing,
therapeutical prediction and preventive screening of colon
cancer “Hungarian National Technology Programme, A1,
Life sciences, (3dhist08) project and the ÓE-RH 1104/2-
2011 project. Authors would like to thank for their
financial support hereby.

REFERENCES
[1] L. Ficsór, V. S. Varga, A. Tagscherer. Zs. Tulassay, B. Molnár.,

"Automated classification of inflammation in colon histological
sections based on digital microscopy and advanced image
analysis." Cytometry, 2008.

[2] NVIDIA., "CUDA Programming Guide 2.3.", 2009.
[3] NVIDIA. "CUDA Best Practises Guide 2.3.", 2009.
[4] J. Stam., CUDA@MIT. CUDA Optimization, an Image

Processing Case Study. [Online] NVIDIA, 2009. [Cited:
September 2, 2009.] http://dl.getdropbox.com/u/484203/Lectures/
Guests/JoeStam__ConvolutionSoup.pdf

[5] Luo, Yuancheng and Duraiswami, Ramani., "Canny Edge
Detection on NVIDIA CUDA." Anchorage, AK : s.n., 2008. 978-
1-4244-2339-2 .

[6] V. Podlozhnyuk, "Image Convolution with CUDA." s.l.: NVIDIA,
2007.

[7] A, Nagy, Z. Vámossy. “Super-Resolution for Traditional and
Omnidirectional Image Sequences” Acta Polytechnica Hungarica,
Vol. 6/1, Budapest Tech, 2009. pp. 117–130, ISSN 1785 8860

