
 
Figure 1.  HE stained colon tissue 
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Abstract—The main aim of this work is to show, how 
GPGPUs can facilitate certain type of image processing 
methods. The software used in this paper is used to detect 
special tissue part, the nuclei on (HE – hematoxilin eosin) 
stained colon tissue sample images. Since pathologists are 
working with large number of high resolution images – thus 
require significant storage space –, one feasible way to 
achieve reasonable processing time is the usage of GPGPUs. 
The CUDA software development kit was used to develop 
processing algorithms to NVIDIA type GPUs. Our work 
focuses on how to achieve better performance with coalesced 
global memory access when working with three-channel 
RGB tissue images, and how to use the on-die shared 
memory efficiently.  

Keywords: GPGPU, CUDA, biomedical tissue image 
processing 

I. INTRODUCTION 
Nowadays, more-and-more medical institutes are 

evaluating and analyzing their digitalized high-resolution 
tissue images to provide patient diagnosis faster and more 
accurate. One of the main benefits to use digital 
microscopy to open up diagnosis through automated 
quantitative and qualitative analysis of the digital tissue 
images. 

Our work focuses on the nuclei detection on 
hematoxilin eosin (HE) stained colon tissue sample 
images. It examines how effectively the developed 
algorithms have been used during the evaluation process 
on data parallel NVIDIA type architectures, thus in this 
paper, we are using similar terminology as used by 
NVIDIA in its documentations. 

A. Motivation 
The size of high-resolution tissue images can easily 

reach the order of few 100 MBs or even GBs. Therefore, 
the image processing speed and effectiveness plays an 
important usability factor. One way of increasing the 
processing performance, is to use data parallel accelerators 
(e.g.: GPGPUs). 

II. SOFTWARE BACKGROUND 
Our developed image processing method is used as a 

core service in our in-house developed software solution, 
which supports automatic quantitative analysis and 

evaluation of HE stained colon tissue samples. The input 
of the software can be either stand-alone images, or digital 
slides received from a high-resolution tissue/slide scanner. 
The digital slide format we have used is a proprietary 
solution developed by 3DHistech Ltd.  

Figure 1 shows a digital slide example. To support 
analysis on large amount of slides, we have created a 
workflow to handle both various input/output and 
processing algorithms in a flexible manner. On the input 
side, we are using batch processing with individually 
definable algorithm parameters assigned to each slide, and 
on the output side robust database management is used. 

Figure 2.  The simplified module diagram of the system 
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Figure 2. shows a schematic illustration of the 
workflow used during the tissue analysis process. The 
detection contains three major steps: 

• cell nuclei detection 

• gland detection 

• surface epithelium detection. 

Both the gland and epithelium detection algorithms are 
using as their input data the result of the cell nuclei 
detection. Our work in this paper focuses only on the cell 
nuclei detection performance issues, and describing the 
exact procedures of the gland, so surface epithelium 
identification is not part of this paper. 

After the detection process, a large set of parameters 
(22) are measured (such as surface cell count ratio, gland 
diameter, cell per gland count and so on) and stored all the 
measured parameters in a relational database. 

III. THE NUCLEI DETECTION ALGORITHM  
In the aspect of detection, the most important feature of 

the nuclei is their purple color (Figure 3.), based on this; 
the first step of the segmentation can be done [1]. Our goal 
with this is to make a binary image, which has the same 
dimensions as the original, and contains white pixels, 
where the nuclei are supposed to be.  

We have defined a set of workflows to target and 
extract important information from the digital tissue 
images. Like all the digital images, the digital slides 
consists some level of noise as well, which should be 
eliminated (noise blurring) as first step. For this, a Gauss 
convolution was used with a 3 × 3 binomial 
approximation, because this way the kernel contains only 
the power of two weights. By using the binomial kernel, 
our goal was to increase the process speed because just 
like the CPUs, the GPUs can execute the shift operations 
faster than for example a fix point multiplication [2]. As 
the next step, an RGB-HSV conversation was performed, 
because it is easier to define the purple color of the nuclei 
by using the HSV color space. After the segmentation in 
the new color space, to separate the cohered nuclei, an 
ultimate erode and a local maximum search was 
performed on the image. The last step is a linear 
connected component algorithm executed by the CPU, 
because of its linear nature. The GPU part of the nuclei 
detection process is illustrated in Figure 4. 

 
Figure 3.  Cell nuclei 

IV. OPTIMIZATION TECHNIQUES USED 
Due to the “cache-less” operation manner, important 

part of the GPU programming is to optimize the memory 
access [3]. This is especially true for memory intensive 
computing tasks, such as the image processing procedures 
[4]. We have evaluated different type of optimization 
techniques to perform Gauss convolution. Our goal was to 
ensure fully coalesced global memory access. We have 
tested multiple architectures (different GPU 
generations/implementations). The different architecture 
generations set different conditions (restrictions) to 
achieve coalesced memory access, which needs special 
optimization techniques. As it was expected we have find 
correlation between the architecture versions and the 
available (developer friendly) optimization techniques. 
The general trend was that the newer the GPU is, the 
looser the conditions are. 

A. Naïve kernel 
Consider first the naive approach where all three RGB 

channels are loaded individually with one byte global load 
instructions. In this case, by loading the blue channel first, 
the first byte of a pixel is needed, because the channels are 
stored in BGR order. This is exactly 16 bytes data, when 
16 threads are active; however, the blue channels are not 
located near each other in memory. Therefore, at least  
16 × 3 = 48 bytes have to be moved, but since the memory 
controller is only able to load data segments, this means at 
least two 32 bytes large read transaction. The green and 
red channels work the same, so instead of the 16 pixel 
data (48 bytes), 3 × 64 = 192 bytes of data have to be 
loaded or stored. This is a waste of memory throughput.  

 

Figure 4.  The nuclei detection workflow with the process steps 
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B. Using the texture memory 
It is possible to speed up the memory access by using 

textures. Today's graphics unit, as their name suggests, 
primarily designed for 3D imaging. It is therefore not 
surprising that special hardware can be found in them, 
which are specific to accelerate imaging operations: like 
the texture memory space and the cache connected to it. 

The texture memory space only differs from the global 
logically, it takes place physically in the global memory, 
and it works as a pointer to an already defined data. 
Through this pointer, the memory controller can 
efficiently manage the memory bus traffic. The 
disadvantage is that it cannot be used to write data back to 
the global memory, thus saving has to be done the naïve 
way. 

C. Process 12 bytes per thread (12B) 
To make the writing more effective, the texture cannot 

be used, since the write operation is not allowed. It should 
be achieved, that let the loaded and saved data per 
hardware thread be equal to 4 bytes. But it is blocked by 
the RGB pixel size which is 3 bytes. One approach is to 
let only 12 threads of all the 16 to load the data in 4 bytes 
packages [5] to achieve coalesced global memory access. 
However, this leads to have 25% of the created threads to 
be idle during the load operation.  

The idea is to expand the data amount that one thread is 
working with, so it becomes possible to load and store 
data in four bytes. The solution is the lowest common 
multiple 3 × 4 12. If one thread works with four pixels, 
then the 12 bytes data can be loaded and stored in 4 bytes 
large packages.  

D. Using the shared memory 
So far we focused on the global memory, and ignored 

the on-die shared memory. Logically, the shared memory 
belongs to one block, physically to one streaming 
multiprocessor (SM). Its latency is one-two cycle, and its 
size in 16 KB in every SM in the processor we use. 

The methods represented so far, shares the same 
feature; thus every thread loads nine times more data than 
writes back, because the mask that was used for blurring 
had the size of 3 × 3, so this means nine times redundant 
data movement. The shared memory can be used to reduce 
this redundant data movement: every – except the ones at 
the block boarders – thread loads its “own” data to the 
shared memory. After this, every thread can load the 
surrounding data from the shared memory [6]. Further 
advantage is that since the reading is separate from the 
processing, it is possible to load the data in a different 
order, and achieve coalesced global memory loads. 

We have already showed that to achieve more efficient 
global memory access, the data amount that is processed 
by one thread is increased to twelve bytes, and loaded in 
three four bytes packages. So the load operations 
processed by one half-warp should move 64 bytes useful 
data. 

However if the first load command reads the first 1/3 
part of the 12 bytes data, then the 16 load operations 
means actually 16 × 12 = 192 bytes of data movement. By 
changing the loaded data order, this unnecessary data 
movement is avoidable. 

V. EVALUATION OF OPTIMIZATION TECHNIQUES 
In the comparison, we are looking the answer for two 

questions: what speed up was achieved by implementing 
the optimization techniques, and is it worth using the GPU 
for image processing or not. The main characteristics of 
the test system can be found in Table I. 

TABLE I.  TEST SYSTEM CHARACTERISTICS  

 Type Core 
number 

Core 
clock 

Memory 
clock 

Memory 
interface 

width 

CPU Core2Duo 2 1866 
MHz 

667 
MHz 128 bit 

GPU GTX295 240 1242 
MHz 

999 
MHz 448 bit 

 

The difference between the kernels shown in Table II. 
and Figure 5. shows that the biggest performance jump 
can be achieved by leaving the naïve approach behind. 

By using the texture memory, the process can be done 
around two times faster. The next step is to introduce the 
12 bytes per thread processing, which means a 20% speed 
up against the texture memory. However, by using the 
shared memory, only about 8% of speed increase was 
achieved. All the values in Table II. are from the CUDA 
Visual Profiler shipped with the SDK.  

 
Figure 5.  Blurring kernels graph 

TABLE II.  BLURRING KERNELS 

32B 64B 128B Request 32B 64B 128B Request
Naive 425 102735 0 0 7560 9888 0 0 840

Texture 202 0 0 0 0 9888 0 0 840
12B 167 912 4988 7482 1080 0 1248 1248 216

Shared 154 807 1398 0 416 0 1248 1248 216

Run-time 
(µs)

Global Load Global Store

 
 



A. CPU – GPU comparison 
In this chapter we examine the entire nucleus detection 

algorithm. 
For ease of clarity, we list the exact functions that were 

included in the measurement: 
1. Gauss convolution [7], 

2. RGB-HSV conversion, 

3. segmentation, 

4. ultimate erode, 

5. local maximum search, 

6. linear connected component search. 

The last of these is not implemented on the graphics 
unit because of its serial nature, so it runs by the central 
processor. Table III. shows the measured values for each 
architectures. All the values are in seconds, and 
logarithmic scale was used in Figure 6. All the test images 
came from true digital slides and the highest 
magnification was used, the biggest image was  
4096 × 4096. 

A 15 × 15 mask size was used in the local maximum 
search. The run-time ratio values are shown in Table IV. 
The values show that the process time on the GPU is not 
grows as much as the image size does. Therefore, while 
the process time relatively same at the smallest image size, 
the GPU has an approximately 58x advantage at the 
largest image. 

 
 

 
Figure 6.  GPU – CPU performance comparison 

TABLE III.  NUCLEUS DETECTION PROCESS TIME 

Image size 2562 5122 10242 20482 40962 
Run time 

(GPU) 0,1913s 0,2094s 0,28334s 0,5111s 1,3971s 

Run time 
(CPU) 0,3134s 1,0341s 4,5734s 17,63s 82s 

TABLE IV.  RUN-TIME RATIO 

Image size 2562 5122 10242 20482 40962 

CPU / GPU 1,638 4,938 16,141 34,494 58,693 

CONCLUSIONS 
As our test results showed, GPU usage was able to 

speed up certain type of image processing tasks 
significantly. It can be stated that, although even smaller 
(512 × 512) images can be processed faster with the 
graphics unit, the benefits of the GPU come to the front at 
higher resolution, where about 58-fold difference has been 
achieved. 
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