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This thesis presents research into parallel linear solvers for block-diagonal-bordered sparse ma-

trices. The block-diagonal-bordered form identi�es parallelism that can be exploited for both direct

and iterative linear solvers. We have developed e�cient parallel block-diagonal-bordered sparse di-

rect methods based on both LU factorization and Choleski factorization algorithms, and we have

also developed a parallel block-diagonal-bordered sparse iterative method based on the Gauss-Seidel

method. Parallel factorization algorithms for block-diagonal-bordered form matrices require a spe-

cialized ordering step coupled to an explicit load balancing step in order to generate this matrix

form and to distribute the computational workload uniformly for an irregular matrix throughout a

distributed-memory multi-processor. Matrix orderings are performed using a diakoptic technique

based on node-tearing-nodal analysis. Parallel Gauss-Seidel algorithms for block-diagonal-bordered

form matrices require a two-part matrix ordering technique | �rst to partition the matrix into

block-diagonal-bordered form, again, using the node-tearing diakoptic techniques and then to multi-

color the data in the last diagonal block using graph coloring techniques. The ordered matrices

have extensive parallelism, while maintaining the strict precedence relationships in the Gauss-Seidel

algorithm.

Empirical performance measurements for real power system networks are presented for imple-

mentations of a parallel block-diagonal-bordered LU algorithm, a similar Choleski algorithm, and

a parallel block-diagonal-bordered Gauss-Seidel algorithm run on a distributed memory Thinking

Machines CM-5 multi-processor. We have compared the performance of the direct and iterative par-

allel implementations on the CM-5, and show that signi�cant algorithmic speedup may be possible

for the Gauss-Seidel algorithm versus Choleski factorization for positive de�nite matrices. We have

developed a simple technique that uses empirical data to predict the performance of these algorithms

on future architectures. We apply these techniques to develop algorithm performance predictions

for future Scalable Parallel Processing (SPP) architectures.
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Chapter 1

Introduction

This thesis presents research into parallel linear solvers for block-diagonal-bordered sparse matrices.

The block-diagonal-bordered form identi�es parallelism that can be exploited for both direct and

iterative linear solvers. Direct methods obtain the exact solution for Ax = b in a �nite number

of operations, whereas iterative methods calculate sequences of approximations that may or may

not converge to the solution. In order to compare performance for parallel sparse direct and it-

erative linear solvers for power systems network applications, we have developed e�cient parallel

block-diagonal-bordered sparse direct methods based on LU factorization and Choleski factoriza-

tion algorithms, and we have developed an e�cient parallel block-diagonal-bordered sparse iterative

method based on the Gauss-Seidel method. We are examining parallel sparse linear solvers for em-

bedded power systems applications, so the direct solvers we implement also require parallel forward

reduction and backward substitution algorithms.

Solving sparse linear systems practically dominates scienti�c computing, but the performance of

direct sparse matrix solvers has tended to trail behind its dense matrix counterparts [29]. Parallel

sparse matrix solver performance generally is less than similar dense matrix solvers even though

there is more inherent parallelism in sparse matrix algorithms than dense matrix algorithms. This

additional parallelism is often described by elimination trees, graphs that illustrate the dependencies

in the calculations [19, 20, 21, 29, 55, 56, 57, 58, 64]. Parallel sparse linear solvers can simultaneously

factor entire groups of mutually independent contiguous blocks of columns or rows without com-

munications; meanwhile, dense linear solvers can only update blocks of contiguous columns or rows

during each pipelined communication cycle. The limited success with e�cient sparse matrix solvers

is not unexpected, because general sparse linear solvers require more complicated data structures

and algorithms that must contend with irregular memory reference patterns. The irregular nature

of many real-world sparse matrices has aggravated the task of implementing sparse matrix solvers on

1



CHAPTER 1. INTRODUCTION 2

vector or parallel architectures: e�cient algorithms for these classes of machines require regularity

in available data vector lengths and in interprocessor communications patterns [11, 25, 47].

We have focused on developing parallel linear solvers optimized for sparse matrices from the

power systems community | in particular, we have examined linear solvers for matrices resulting

from power distribution system networks. These matrices are some of the most sparse matrices

encountered in real-life applications, while also being irregular. Recently, references [25, 33] have

reported scalable Choleski solvers with extremely good performance for large numbers of processors,

but they are for matrices that have more rows/columns, that have more nonzero elements per

row/column, and that are more regular than power systems matrices. When empirical performance

of sparse linear solvers is examined using real, irregular sparse matrices, available parallelism in the

sparse matrix or load-imbalance overhead can be as much the reason for poor parallel e�ciency as

the parallel algorithm or implementation [37, 47].

1.1 The State of Parallel Power Systems Linear Solver Re-

search

Power systems matrices are both irregular and the sparsest matrices available to the academic and

industrial communities. As a result, research into e�cient sparse linear solvers for power systems

applications has not met with the same success as research into e�cient general parallel sparse

linear solvers [7, 54]. The state of parallel direct linear solver development in the power systems

community has yielded solvers su�ciently ine�cient that sequential algorithms are used to factor

and triangular solve equations that may be formulated in parallel [7]. While e�cient parallel linear

solvers have not been reported in the power systems community journals to solve the special very

sparse irregular power systems network matrices, there has been signi�cant research into e�cient

general sparse linear solvers for general matrices, always larger and less sparse than power systems

network matrices [8, 9, 10, 19, 20, 21, 25, 29, 46, 47, 55, 56, 57, 58, 64].

In the research presented in this thesis, we have developed specialized, e�cient parallel sparse

linear solvers for linear systems derived from power systems networks. The performance of our

parallel linear solvers is signi�cantly better than the performance of linear solvers reported in the

power systems literature [7, 54]. In order to develop e�cient parallel linear solvers, we have utilized

state-of-the-art research into:

� e�cient general parallel sparse linear solvers,

� power systems analysis,

� computational science,
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and applied these concepts to the special nature of power systems applications with deliberate

attention to maximizing performance for power systems network matrices. We have combined:

� load-balanced elimination trees from the general parallel sparse linear solver community [21,

25, 29],

� diakoptics from the power system community [26, 62],

� early work with block-diagonal-bordered form matrices [15],

� e�cient parallel algorithm design guidelines [17, 23, 24, 41, 52],

to develop our e�cient parallel block-diagonal-bordered linear solvers.

Research by others into general parallel linear solvers has answered many of the outstanding ques-

tions concerning the development of techniques for e�cient parallel algorithms to solve general sparse

matrices from the structural analysis community. The research presented in this thesis presents ef-

�cient parallel direct and iterative linear solvers that yield e�cient performance on power systems

network linear equations for either symmetric positive de�nite matrices or position symmetric ma-

trices that do not require pivoting to ensure numerical stability. Developing linear solvers for power

systems applications that require pivoting remains as future research, as has the optimization of the

use of preconditioning techniques with iterative solvers. Another power systems application prob-

lem that remains for future research, is the development of new, more e�cient di�erential-algebraic

equation (DAE) solvers that would utilize the parallel block-diagonal-bordered linear solvers and

address the entire linearized block-diagonal-bordered DAE matrix [34]. A summary of the research

to date and future research is presented in �gure 1.1

1.2 Block-Diagonal-Bordered Power System Matrices

Power system distribution networks are generally hierarchical with limited numbers of high-voltage

lines transmitting electricity to connected local networks that eventually distribute power to cus-

tomers. In order to ensure reliability, highly interconnected local networks are fed electricity from

multiple high-voltage sources. Electrical power grids have graph representations which in turn can

be expressed as matrices | electrical buses are graph nodes and matrix diagonal elements, while

electrical transmission lines are graph edges which can be represented as non-zero o�-diagonal matrix

elements. We show that it is possible to identify the hierarchical structure within a power system

matrix using only the knowledge of the interconnection pattern by tearing the matrix into multiple

partitions and coupling equations that yield a block-diagonal-bordered matrix.

Diakoptics, or the tearing of systems into smaller subsystems then solving the subsystems in

a piecewise manner before reconstructing the system, has o�ered promise to be used as the basis
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Figure 1.1: Summary of Completed and Future Research

for parallel sparse linear solvers for power systems applications [12, 26]. A specialized form of

diakoptics, node-tearing nodal analysis, has been used to partition power systems network matrices

into block-diagonal-bordered form [49]. The application of diakoptic techniques identi�es inherent

power systems network structure that in turn can be exploited to provide parallelism for sparse

linear solvers embedded within power systems applications. Node-tearing diakoptic techniques are

readily identi�ed with methods to identify parallelism in general sparse linear solvers. In particular,

node-tearing-based partitioning of power systems networks identi�es block-diagonal-bordered form

matrices, that are related to elimination trees, and supernodes within the network where there is

inherent parallelism. Diakoptic node-tearing-based partitioning identi�es the basic network structure

that provides parallelism for the majority of calculations within both direct and iterative solutions

of power systems network-based linear systems.
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In this thesis, we examine the applicability of parallel block-diagonal-bordered sparse solvers for

real power system applications that require either the solution of symmetric positive de�nite sparse

matrices or location symmetric sparse matrices that result from solving problems relating to power

systems networks. Variations of this technique could be used to solve other power system sparse

linear systems such as those that result from solving linearized di�erential-algebraic equations from

transient stability analysis applications or small-signal stability assessments. The implementations

we describe in this paper work directly with the equations resulting from the power systems network,

the smallest class of power system matrix.

The implementations we developed can be used to solve symmetric positive de�nite load ow

analysis Jacobian matrices or position symmetric network matrices from transient stability analysis.

In spite of only examining linear solver implementations that solve relatively small network-related

matrices, we have been able to obtain good parallel speedups. We expect that even better perfor-

mances would be possible for parallel implementations designed to solve a single system of linear

equations that represent a combination of the generator dynamical equations and network equations

from transient stability analysis or small-signal analysis. For these problems, there are additional

parallel calculations with no additional parallel communications overhead.

1.2.1 Block-Diagonal-Bordered Direct Linear Solvers

Block-diagonal-bordered sparse matrix algorithms require modi�cations to the normal preprocess-

ing phase described in numerous papers on parallel Choleski factorization [19, 20, 21, 29, 55, 56,

57, 58, 64]. Each of the numerous papers referenced above use the paradigm to order the sparse

matrix and then perform symbolic factorization in order to determine the locations of all �llin values

so that static data structures can be utilized for maximum e�ciency when performing numerical

factorization. We modify this commonly used sparse matrix preprocessing phase to include an ex-

plicit load balancing step coupled to the ordering step so that the workload is uniformly distributed

throughout a distributed-memory multi-processor and parallel algorithms make e�cient use of the

computational resources.

Parallel block-diagonal-bordered sparse direct linear solvers o�er the potential for regularity

often absent from other parallel sparse solvers [34, 35, 36, 38]. Our research into specialized matrix

ordering techniques has shown that it is possible to order actual power system matrices readily

into block-diagonal-bordered form, and to load-balance su�ciently e�ectively that relative speedups

greater than ten have been observed in empirical performance measurements for direct solvers on a

32 processor Thinking Machines CM-5.
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1.2.2 Block-Diagonal-Bordered Iterative Linear Solvers

Even though Gauss-Seidel algorithms for dense matrices are inherently sequential, it is possible to

identify sparse matrix partitions without data dependencies so calculations can proceed in parallel

while maintaining the strict precedence rules in the Gauss-Seidel technique [35, 36]. All data paral-

lelism in our Gauss-Seidel algorithm is derived from within the actual interconnection relationships

between elements in the matrix. We employed two distinct ordering techniques in a preprocessing

phase to identify the available parallelism within the matrix structure:

1. partitioning the matrix into block-diagonal-bordered form,

2. multi-coloring the last diagonal matrix block.

The same diakoptic node-tearing-based network partitioning used to order matrices into block-

diagonal-bordered form for direct linear methods has been used to identify available parallelism

within the irregular sparse power systems matrices for our parallel Gauss-Seidel implementation,

Node-tearing-based partitioning identi�es the basic network structure that provides parallelism

for the majority of calculations within a Gauss-Seidel iteration. Meanwhile, without additional or-

dering, the last diagonal block would be purely sequential, limiting the potential speedup of the

algorithm in accordance with Amdahl's law. The last diagonal block represents the interconnection

structure within the equations that couple the partitions found in the block-diagonal-bordered ma-

trix. Graph multi-coloring has been used to order this matrix partition and subsequently identify

those rows that can be solved in parallel.

We implemented explicit load balancing as part of each of the aforementioned ordering steps to

maximize e�ciency as the parallel Gauss-Seidel algorithm is applied to real power system load-ow

matrices. An attempt was made to place equal amounts of processing in each partition, and in each

matrix color. The metric employed when load-balancing the partitions is the number of oating

point multiply/add operations, not simply the number of rows per partition. Load-balancing for

the parallel Gauss-Seidel algorithm is su�ciently e�ective that relative speedups greater than 20

have been observed in empirical performance measurements for iterative solvers on a 32 processor

Thinking Machines CM-5.

1.3 Low-Latency Communications

For this work, active message-based communications on the Thinking Machines CM-5 provided

implementations with extremely low-latency interprocessor communications. Separate algorithms

have been developed for conventional non-blocking, bu�ered communications and low-latency, active

message-based communications. Active message remote procedure calls (RPCs) provide protocol-

less access to the transport layer of the CM-5 communication network. The user must assume
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responsibilities for all aspects of communications | but is rewarded with very low-latency com-

munications for short messages. The extremely low-latency communications available with active

messages, permit a parallel-code development paradigm that greatly simpli�es the implementation

of these sparse matrix algorithms. Empirical data have been collected on both active message-based

implementations and more traditional non-blocking, bu�ered message passing commands in order

to illustrate the need for low-latency communications when solving matrices as sparse and irregular

as power systems matrices.

1.4 Embedded Software Applications

Our research has examined the performance of block-diagonal-bordered direct solvers, with im-

plementations for both Choleski and LU factorization, to be incorporated within electrical power

system applications. Because we are considering software to be embedded within a more extensive

application, we examine e�cient parallel forward reduction and backward substitution algorithms

in addition to parallel factorization algorithms. Due to the reduced amount of calculations in the

triangular solution phases of solving a system of factored linear equations, these algorithms are of-

ten ignored when parallel Choleski or LU factorization algorithms are presented in the literature.

However, we will show that for large power systems network matrices, there is less than an order of

magnitude di�erence in parallel factorization and parallel triangular solution empirical run times.

In our research, we have found that the development of parallel factorization algorithms must

consider forward reduction and backward substitution, because the choice of the order of calcula-

tions in factorization can greatly inuence the performance of the parallel triangular solutions. In

order to ensure cache hits, data structures are dependent on the order of calculations, and data

structures a�ect the amount of communications in parallel forward reduction and backward substi-

tution. We have found that the results of additional communications overhead can eliminate any

potential speedup for parallel forward reduction with column oriented data storage. This communi-

cations overhead cannot be eliminated for Choleski factorization, where either forward reduction or

backward substitution must be performed with an implicit transpose of the factored matrix [29, 40].

Fortunately, the LU factorization algorithm can be implemented in a manner to eliminate this com-

munications overhead problem.

One goal of our research has been to compare performance for parallel block-diagonal-bordered

direct and iterative solvers to determine which algorithm could provide the best performance when

embedded within a parallel power systems application. Direct methods obtain the exact solution

for Ax = b in a �nite number of operations, whereas iterative methods calculate sequences of

approximations that may or may not converge to the solution. Nevertheless, if the parallel sparse

Gauss-Seidel method does converge and does so rapidly for an application, the iterative technique
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can provide algorithmic speedup when compared to parallel direct sparse methods. For sequential

dense Gauss-Seidel and LU factorization, both a Gauss-Seidel iteration and forward-reduction and

backward substitution have the same computational complexity, O(N2); however, a single iteration

of the sparse Gauss-Seidel algorithm has less computations than the combination of sparse forward

reduction and backward substitution. Both algorithms perform a sparse matrix � vector product;

however, the a Gauss-Seidel iteration has only the original non-zeros in the sparse matrix, while the

forward reduction and backward substitution for a direct method also includes �llin | or values

that become non-zero during the process of factorization. The computational complexity for dense

factorization, O(N3), is even greater than for forward reduction and backward substitution, adding

computational costs to the parallel sparse direct methods.

To illustrate the potential algorithmic speedup available for the parallel iterative solver, we pro-

vide parametric comparisons of the parallel sparse Gauss-Seidel algorithm and the parallel sparse

direct methods using empirical data collected on the Thinking Machines CM-5. Comparisons of

algorithm performance can be made as a function of the number of iterations that can be performed

in the time to perform the factorization and any number of forward reductions and backward sub-

stitutions. Performance improvements can only be assured for the solution of diagonally dominate

or positive de�nite matrices, where convergence with the Gauss-Seidel method is ensured [23].

1.5 Organization of this Thesis

This thesis is organized as follows. In chapter 2, we describe the electrical power system applications

that are the basis for this work. We compare the size and sparsity of �ve sample power systems

matrices to other sample matrices used frequently to compare the performance of parallel sparse

linear solvers. Pseudo images representing the original sparse power matrices are provided for

comparison to other pseudo images that represent the matrices after ordering into block-diagonal-

bordered form.

In chapter 3, we briey review techniques for both direct and iterative linear solvers. We discuss

the direct techniques, factorization and forward reduction/backward substitution, and the Gauss-

Seidel iterative method. We review the extensive literature describing research into general parallel

LU and Choleski factorization algorithms, and the literature describing research into parallel iterative

methods. This is followed in chapter 4 by a theoretical derivation of the available parallelism in both

direct methods and the Gauss-Seidel iterative method when solving block-diagonal-bordered form

sparse matrices.

Paramount to exploiting the advantages of either the parallel sparse block-diagonal-bordered

direct methods or the parallel sparse block-diagonal-bordered iterative Gauss-Seidel method is the

process of ordering the irregular sparse power system matrices into this form in a manner that
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balances the workload among multi-processors. In chapter 5, we describe the preprocessing phase

used to generate matrix ordering for block-diagonal-bordered matrices with uniformly distributed

processing load. Both solver types require a three-step process that includes network partitioning,

determining the workload in each partition, and an explicit load-balancing step. In this chapter,

we introduce pseudo-factorization and we review minimum degree ordering and pigeon-hole load

balancing algorithms.

In chapter 6, we describe the Thinking Machines CM-5 implementations of our parallel block-

diagonal-bordered sparse LU, Choleski, and Gauss-Seidel algorithms. Analysis of the performance of

the ordering techniques and the parallel implementations is presented in chapter 7 for actual power

system network matrices from the Boeing-Harwell series, the Electrical Power Research Institute

(EPRI), and an electrical utility, the Niagara Mohawk Power Corporation. Comparisons of the

direct and iterative methods also are presented in this chapter. Predictions of performance on

future parallel architectures are presented in chapter 8. We present our conclusions concerning

parallel block-diagonal-bordered linear solvers for electrical power system applications in chapter 9.

In appendix A, we provide a description of selected terminology used throughout this work. In

appendices B through D, we present detailed discussions of algorithms used in the preprocessing

phase: the node-tearing algorithm developed to order matrices into block-diagonal-bordered form,

the minimum degree ordering algorithm, and the graph multi-coloring algorithm developed specif-

ically to order the last diagonal block in the parallel Gauss-Seidel algorithm. In appendix E, we

present pseudo-code descriptions of the parallel algorithms described in chapter 6, and in appendix F,

we present tables of statistics to illustrate the performance of our diakoptics-based power systems

network matrix ordering technique.



Chapter 2

Power System Applications

The underlying impetuous for our research is to improve the performance of electrical power system

applications that provide real-time power system control and real-time support for proactive decision

making with e�cient parallel linear solver algorithms. In particular, our research has focused on

load-ow and transient stability applications [1, 2, 4, 62], where sparse linear solvers account for

a substantial percentage of oating point operations encountered [7, 54]. E�cient parallel linear

solvers could signi�cantly a�ect real-time performance of these applications.

2.1 Load-Flow Analysis

Load-ow analysis examines steady-state equations based on the positive de�nite network admit-

tance matrix that represents the power system distribution network. Load-ow analysis is used for

identifying potential network problems in contingency analyses, for examining steady-state opera-

tions in network planning and optimization, and also for determining initial system state in transient

stability calculations [62]. Load ow analysis entails the solution of non-linear systems of simulta-

neous equations, which are performed by repeatedly solving sparse linear equations. Load ow is

calculated using the network admittance matrices, which are symmetric positive de�nite and have

sparsity de�ned by the power system distribution network. The size of these matrices is limited

because individual power systems generally use networks with less than 2,000 sparse complex equa-

tions in their operations centers, while regional power authority operations centers would also be

limited to sparse load-ow matrices with less than 10,000 sparse complex equations. Power systems

planning studies often incorporate larger networks as lower voltage distribution lines are included in

these studies. Sparse matrices employed in planning studies can have from 5,000 to 50,000 sparse

equations. This paper presents data for power system networks with 1,723, 1,766, 5,300, 6,692, and

10
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Figure 2.1: Ordering the Admittance Sub-Matrix in Transient Stability Di�erential-Algebraic Equa-

tions

9,430 nodes.

2.2 Transient Stability Analysis

Transient stability analysis is a detailed simulation of the power system that models the dynamic be-

havior of the electrical distribution networks, electrical loads, and the electro-mechanical equations

of motion of the interconnected generators [4]. Transient stability analysis can be used to perform

selective detailed analyses of generator commitment stability, and to support crisis decision-making

during network recovery. The transient stability problem is modeled by di�erential algebraic equa-

tions (DAEs) with di�erential equations representing the generators and non-linear algebraic equa-

tions representing the power system network that interconnects the generators. The DAEs are in

natural non-symmetric block-diagonal-bordered form, with diagonal blocks of generator equations

coupled by the power system distribution network. In this representation, there are as many cou-

pling equations as the entire sparse admittance matrix. It is also possible to order the admittance

matrix to block-diagonal-bordered form in order to increase available parallelism. This is illustrated

in �gure 2.1. The size of the sparse matrices representing the DAEs have as many as 10,000 complex

equations for an individual power system, while regional power authorities could have as many as

50,000 sparse complex equations in the matrix formed from the DAEs.
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It is also possible to solve the above equations by decoupling the generator equations from

the network equations. For decoupled transient stability analysis, the transient stability di�erential-

algebraic equation matrix is partitioned into four sub-matrices. In �gure 2.1, the generator equations

are in the block-diagonal matrix labeled AG. The generator equations are solved independently of

the network equations, then the sparse admittance matrix is modi�ed by the matrix coe�cients

in the sparse borders, labeled B and C. The admittance matrix is labeled JN in this �gure. In-

stead of the common practice of decoupling the generator and network calculations in a transient

stability simulation, we hope to continue this research and eventually examine the use of more pow-

erful di�erential-algebraic equation solvers for transient stability analysis that do not decouple the

generator and network equations. The fully-coupled di�erential-algebraic equations will o�er more

potential for good parallel performance because

� the matrices are larger,

� a large portion of these matrices are non-symmetric and require calculations in both the upper

and lower triangular portions of the diagonal blocks,

� pivoting will be required in the diagonal blocks containing the generator equations to ensure

numerical stability.

The amount of work available will be greater and the e�ects of load-balance overhead will be mini-

mized, while the amount of communications overhead will remain nearly the same as solving for the

decoupled transient stability equations.

2.3 Power System Network Matrices

Power system distribution networks are generally hierarchical with limited numbers of high-voltage

lines transmitting electricity to connected local networks that eventually distribute power to cus-

tomers. In order to ensure reliability, highly interconnected local networks are fed electricity from

multiple high-voltage sources. Electrical power grids have graph representations which in turn can

be expressed as matrices | electrical buses are graph nodes and matrix diagonal elements, while

electrical transmission lines are graph edges which can be represented as non-zero o�-diagonal matrix

elements.

Matrices representing power system networks are some of the most sparse matrices encountered

throughout the academic or industrial community. Figure 2.2 illustrates the proportion of graph

nodes with a particular number of graph edges or the number of non-zero values in a matrix row or

column for �ve separate power system matrices:

� Boeing-Harwell matrix BCSPWR09 | 1,723 nodes and 2,394 graph edges [13],
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� Boeing-Harwell matrix BCSPWR10 | 5,300 nodes and 8,271 graph edges [13],

� EPRI matrix EPRI6K matrix | 6,692 nodes and 10,535 graph edges [14],

� Niagara Mohawk Power Corporation operations matrix NiMo-OPS | 1,766 nodes and 2,506

graph edges,

� Niagara Mohawk Power Corporation planning matrix NiMo-PLANS | 9,430 nodes and 14,001

graph edges.

Matrices BCSPWR09 and BCSPWR10 are from the Boeing Harwell series and represent electrical

power system networks from the Western and Eastern US respectively. The EPRI6K matrix is

distributed with the Extended Transient-Midterm Stability Program (ETMSP) from the Electrical

Power Research Institute (EPRI). Matrices NiMo-OPS and NiMo-PLANS have been made available

by the Niagara Mohawk Power Corporation, Syracuse, NY.

In this relative frequency histogram, the most frequently occurring number of edges per node

is only 2! Table 2.1 provides additional data to illustrate that power system matrices are both

relatively small in size and also have the fewest average edges per node of available matrices. In this

table, all data except that from EPRI and Niagara Mohawk are from the Boeing-Harwell series [13].

The structural matrices, BCSSTK13 to BCSSTK32, are frequently used in papers to benchmark

parallel sparse linear algorithms [19, 20, 21, 25, 29, 33, 46, 47, 55, 56, 57, 58, 64]. For power system

matrices, the average number of edges per node is less than two while for many of the structural

matrices, the average number of nodes per edge is greater than ten. Also the number of nodes in

power system matrices are limited when compared to the Boeing-Harwell structural matrices.

While power systems matrices are extremely sparse, they are also irregular, with the larger

matrices having some nodes with greater than twenty edges. The histogram presented in �gure 2.2

has been truncated at ten edges per node to emphasize the high incidence of edges with less than

three nodes. As a result of the degree of sparsity and irregularity in these matrices, developing

parallel sparse linear solvers for power systems application has proven to be a challenge [7, 38,

54]. Nevertheless, by developing parallel algorithms that actively address the irregular nature of

the graphs with explicit load-balancing and by making all necessary communications as balanced,

regular, and as asynchronous as possible, we will show in sections 7.1 and 7.2 that our block-diagonal-

bordered approach to addressing linear solvers for power system applications can yield respectable

speedups even for as many as 32 processors.
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Figure 2.2: Relative Frequency Histogram of Edges per Graph Node

2.4 Pseudo-Images Representing Sparse Power Systems Net-

work Matrices

In order to illustrate the sparsity and irregularity of the matrices that represent the power systems

networks and to provide a baseline with which to illustrate the performance of the node-tearing

algorithm in sections 7.1 and 7.2, we provide representations of the original matrices for the �ve

power systems networks in �gure 2.3. These pseudo-images illustrate the locations of the non-zero

values in the matrices as black pixels, and the matrices are symmetrical around the diagonal. A

bounding box has been placed around each sparse matrix, with the matrix identi�er located in the

upper triangular portion of each symmetric matrix.

These matrices have no �llin and are presented with the graph node identi�ers as supplied in

the distribution of the data | without any additional ordering. When examining these unordered

matrices, there appears to be signi�cant di�erences between the power systems networks from the

Boeing-Harwell series and power systems networks from the Niagara Mohawk Power Corporation.

The Niagara Mohawk Power Corporation matrices have distinct block structure, while the Boeing-

Harwell matrices and the EPRI matrix appear that they have been previously ordered with a min-

imum degree ordering. The upper left portion of these matrices appears to have fewer values in

rows/columns, while the lower right hand portion of the matrices appears denser.
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Figure 2.3: Pseudo-Images of Original Sparse Power Systems Matrices
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Table 2.1: Comparison of Power System Matrices and Boeing-Harwell Structural Matrices

Graph Number Number Average Edges

Name Description of Nodes of Edges per Node

BCSPWR09 Western US Power Network 1,723 2,394 1.39

BCSPWR10 Eastern US Power Network 5,300 8,271 1.56

EPRI6K Power Network 6,692 10,535 1.57

NiMo-OPS Eastern US Power Network 1,766 2,506 1.41

NiMo-PLANS Eastern US Power Network 9,430 14,001 1.48

BCSSTK13 Fluid Flow Generalized Eigenvalues 2,003 40,940 20.44

BCSSTK14 Roof of Omni Coliseum, Atlanta 1,806 30,824 17.07

BCSSTK15 Module of an O�shore Platform 3.948 56,934 14.42

BCSSTK16 Corp of Engineers Dam 4.884 142,747 29.23

BCSSTK17 Elevated Pressure Vessel 10,974 208,838 19.03

BCSSTK18 R.E.Ginna Nuclear Power Station 11,948 68,571 5.74

BCSSTK24 Calgary Olympic Saddledome Arena 3.562 78,174 21.95

BCSSTK25 76 Storey Skyscraper 15,439 118,401 7.67

BCSSTK28 Solid Element Model 4,410 107,307 24.33

BCSSTK29 Boeing 767 rear pressure bulkhead 13,992 302,748 21.64

BCSSTK30 O�-Shore Generator Platform 28,924 1,007,284 34.83

BCSSTK31 Automobile Component 35,588 572,914 16.10

BCSSTK32 Automobile Chassis 44,609 985,046 22.08



Chapter 3

Linear Solvers

This thesis presents research into parallel linear solvers for block-diagonal-bordered sparse matrices,

but �rst we review algorithms for sequential sparse linear solvers. We address both direct and

iterative solvers in this work, each having their own advantages and disadvantages. Direct methods

obtain the exact solution for a series of simultaneous linear equations in a �nite number of operations,

whereas iterative methods calculate sequences of approximations that may or may not converge to

the solution. While direct methods obtain an exact solution of the linear system, they may require

signi�cantly more computations than required for iterative methods to obtain a usable solution.

The remainder of this chapter discusses two related direct methods, LU factorization and Choleski

factorization, and one iterative solver, the Gauss-Seidel method.

3.1 Direct Methods

We are considering the solution of the linear system

Ax = b; (3.1)

where A is an (N � N ) sparse matrix. The sparse matrix A can be numerically factored into

two separate triangular matrices, one sparse matrix being lower triangular, L, and the other sparse

matrix being upper triangular, U:

Ax = LUx = b; (3.2)

A lower triangular matrix, L, has all zeros above the diagonal and an upper triangular matrix, U,

has all zeros below the diagonal [12].

17
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3.1.1 LU Factorization

The sparse matrix A can be numerically factored into a lower triangular matrix L and an upper

triangular matrix U as in equation 3.2, where all values on the diagonal of either L or U must

equal 1 | lkk = 1 or ukk = 1, where k = 1; � � � ; N . Equation 3.2 is solved by setting Ux = y, and

substituting y for Ux. The numerical solution for Ly = b is found by forward reduction, and the

numerical solution for x is calculated by backward substitution in the equation Ux = y. Triangular

linear systems can be readily solved numerically by solving for the �rst value in the triangular linear

system and substituting that value into subsequent equations.

Sparse LU factorization can mirror any similar dense factorization algorithm, although generally

a sparse matrix algorithm has only one explicit for loop, which can be for any single index in the

dense case. The remaining indices are examined only for non-zero values in the original matrix or

for non-zero values that will occur from �llin in the matrix. Sparse matrix �llin occurs when a

value that originally was zero becomes non-zero in the process of factoring the matrix. Fillin can be

controlled in sparse factorization by ordering the matrix before performing the factorization if there

is no requirement for pivoting to ensure numerical stability of the calculations [12]. There are many

ordering techniques for position symmetric matrices, with one of the most common being minimum

degree ordering. If pivoting is required to ensure numerical stability, a Markowitz ordering/pivoting

strategy can be employed, and �llin determined during the solution of the matrix. The Markowitz

ordering strategy selects pivots with the added constraint of minimizing �llin [12]. Additional

discussions on the state of the literature for LU factorization are presented below.

We present a general sequential sparse factorization algorithm, in �gure 3.1, based upon the

factorization algorithms commonly attributed to Doolittle for matrices that do not require pivoting.

In Doolittle factorization, all values on the diagonal of L equal 1 | lkk = 1. We also present general

sequential sparse forward reduction and backward substitution algorithms in �gures 3.2 and 3.3

respectively that would be used in conjunction with the Doolittle-based algorithm to solve for x in

Ax = b.

3.1.2 Choleski Factorization

If the matrix A is an (N �N ) symmetric positive de�nite sparse matrix, then a special form of LU

factorization can be used that exploits the symmetry and inherent numerical stability of this matrix

form [12]. A symmetric positive de�nite sparse matrix A can be numerically factored into a single

lower triangular matrix L:

Ax = LLTx = b; (3.3)

Equation 3.3 is solved by setting LTx = y, and substituting y for LTx. The numerical solu-

tion for Ly = b is found by forward reduction, and the numerical solution for x is calculated
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for k = 1 to N /* for all elements along the diagonal */

for each i 2 [k;N ]

for each j 2 [1; k� 1] such that aij 6= 0 and ajk 6= 0

aik  aik � (aij � ajk)
endfor

endfor

for each i 2 [k + 1; N ]

akj  (akj=akk)

endfor

for each j 2 [k + 1; N ]

for each i 2 [1; k� 1] such that aki 6= 0 and aij 6= 0

akj  akj � (aki � aij)
endfor

endfor

endfor

Figure 3.1: Sparse LU Factorization | Doolittle Algorithm

for k = 1 to N /* for all elements along the diagonal */

yk  bk

for each i 2 [k + 1; N ] such that lik 6= 0

bi  bi � (yk � lik)
endfor

endfor

Figure 3.2: Sparse Forward Reduction for Doolittle Factorization
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for k = N to 1 by �1 /* for all elements along the diagonal */

xk  (yk=ukk)

for each i 2 [1; k� 1] such that uik 6= 0

yi  yi � (xk � uik)
endfor

endfor

Figure 3.3: Sparse Backward Substitution for Doolittle Factorization

for k = 1 to N /* for all elements along the diagonal */

for each i 2 [k;N ]

for each j 2 [1; k� 1] such that aij 6= 0 and ajk 6= 0

aik  aik � (aij � ajk)
endfor

endfor

akk  pakk
for each i 2 [k + 1; N ]

akj  (akj=akk)

endfor

endfor

Figure 3.4: Sparse Column Choleski Factorization

by backward substitution in the equation LTx = y. Our analysis of the available parallelism in

block-diagonal-bordered LU factorization, presented in chapter 4, can be extended to an analysis

of available parallelism in block-diagonal-bordered Choleski factorization by simply substituting LT

for U. Additional discussions on the state of the literature for Choleski factorization are presented

below.

We present a general sequential sparse factorization algorithm based upon the column Choleski

factorization algorithm [29], which is similar to the factorization algorithms commonly attributed to

Crout and Doolittle, and similar to the LU algorithm presented in �gure 3.1. A sequential sparse

factorization algorithm is presented in �gure 3.4, and we present sequential sparse forward reduction

and backward substitution algorithms for Choleski factorization in �gures 3.5 and 3.6 respectively.

In the backward substitution algorithm, the calculations are performed by implicitly transposing L.
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for k = 1 to N /* for all elements along the diagonal */

yk  (bk=lkk)

for each i 2 [k + 1; N ] such that lik 6= 0

bi  bi � (yk � lik)
endfor

endfor

Figure 3.5: Sparse Forward Reduction for Choleski Factorization

for k = N to 1 by �1 /* for all elements along the diagonal */

xk  (yk=lkk)

for each j 2 [1; k� 1] such that lkj 6= 0

yj  yj � (xk � lkj)
endfor

endfor

Figure 3.6: Sparse Backward Substitution for Choleski Factorization

3.1.3 Ordering Sparse Matrices for Direct Methods

Position symmetric sparse matrices can be represented by graphs with elements in equations corre-

sponding to undirected edges in the graph [12, 29]. The motivating applications for this research

have position symmetric or position symmetric sub-matrices that are derived from power system

networks that in turn, have graph representations. Ordering a symmetric sparse matrix modi�es

the order in which nodes are factored and is actually little more than changing the labels associated

with nodes in an undirected graph; however, this simple task can drastically e�ect the amount of

calculations involved when factoring a sparse matrix by a�ecting the amount of �llin. Fillin are

those matrix locations with zeros as initial values that become non-zeros during factorization.

For symmetric positive de�nite matrices, there is much latitude in the order to perform the cal-

culations, because there is no requirement for pivoting for numerical stability and the only e�ect of

modifying the order of calculations might result from changes in round-o� errors [29]. Diagonally

dominant matrices also can be factored with little concern for pivoting, and there are many appli-

cations where time constraints are critical, so in order to speedup sparse LU factorization, pivoting

is ignored. If there is no pivoting, ordering can be performed a priori and static data structures can

be used for the most e�cient sequential algorithm.
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There is a graph-theoretical interpretation for �llin; factoring a node is equivalent to removing

the node from the graph; however, any path through the factored node to adjacent edges must

remain and must now be explicitly listed. This phenomenon is illustrated in �gure 3.7 for a segment

of a graph. In this example, the node with the least number of edges is selected for factoring, and two

of three possible new edges are created. Only two new edges are created because there is an existing

edge already connecting a pair of nodes. Fillin causes the number of edges in the remaining nodes

to increase, often drastically increasing the number of calculations. The amount of �llin generated

when any node is factored is bounded by the binomial coe�cient of the number of edges at a node

choose 2 or

fk �
 

�k

2

!
=

�k!

2� (�k � 2)!
=

(�k � (�k � 1))

2
; (3.4)

where:

fk is the number of �llin when factoring node k.

�k is the number of edges at node k.

There are several notable techniques to minimize �llin, with one of the commonly used techniques

being minimum-degree ordering. This ordering technique is used for position symmetric matrices and

attempts to minimize �llin by selecting the next node for elimination that has the lowest degree or

least number of connected edges. Minimum-degree ordering is closely related to Markowitz ordering

[12] | both heuristics select the next row/column to eliminate that has the least row/column

elements. The node-tearing-based ordering technique is utilized to generate block-diagonal-bordered

form sparse matrices, and minimumdegree ordering is used to minimize �llin locally in the mutually

independent blocks and the borders. This technique is commonly referred to as multiple minimum

degree ordering [13, 22]. Additional detail on minimum degree-based sparse matrix ordering is

presented in appendix C.

Modifying the ordering of a sparse matrix is simple to perform using a permutation matrix P

of all zeros and ones that simply generates elementary row and column exchanges. Applying the

permutation matrix P to the original linear system in equation 3.1 yields the linear system

(PAPT )(Px) = (Pb); (3.5)

that is solved by factoring PAPT into LU factors �L and �U in �L �U or the Choleski factor �L in �L�LT

and then performing forward reduction, backward substitution, and undoing the permutation on

the x vector. For LU factorization, these steps would require the solutions of:

�L = Pb; �Uz = y;x = PTz: (3.6)

For Choleski factorization, simply substitute �LT for �U in equation 3.6. Also for Choleski factoriza-

tion, as long as a symmetric positive de�nite matrix A is ordered with the permutation matrix P
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Figure 3.7: Graph Theoretical Explanation of Fillin

to PAPT , the resultant matrix after ordering remains symmetric positive de�nite.

3.1.4 A Survey of the Literature for Parallel Direct Methods

Signi�cant research e�ort has been expended to examine parallel direct methods | for both dense

and sparse matrices. Numerous papers have documented research on parallel dense matrix solvers

[11, 60, 61], and these articles illustrate that good e�ciency is possible when solving dense matrices

on multi-processor computers. The calculation time complexity of dense matrix LU factorization is

O(N3), and there are su�cient, regular calculations for good parallel algorithm performance. Some

implementations are better than others [60, 61], nevertheless, performance is deterministic for:

� the algorithm,

� the multi-processor architecture,

� the number of processors,

� the matrix size.

Direct sparse matrix solvers, on the other hand, have computational complexity signi�cantly less

than O(N2:0), and actual power system sparse matrices used in this work have orders of complexity

less than O(N1:5). These orders of complexity are consistent with matrices from circuit analysis
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applications that have complexities ranging from O(N1:2) to O(N1:5) [48]. With signi�cantly less

calculations than dense direct solvers, and lacking uniform, organized communications patterns,

direct parallel sparse matrix solvers often require detailed knowledge of the application to permit

e�cient implementations.

The bulk of recent research into parallel direct sparse matrix techniques has centered around

symmetric positive de�nite matrices, and implementations of Choleski factorization. A signi�cant

number of papers concerning parallel Choleski factorization for symmetric positive de�nite matrices

have been published recently [19, 20, 21, 29]. These papers have thoroughly examined many aspects

of the parallel direct sparse matrix solver implementations, symbolic factorization, and appropriate

data structures. Techniques to improve interprocessor communications using block partitioning

methods have been examined in [46, 56, 57, 58].

Some of the most celebrated recent work has revived research into parallel sparse multifrontal

Choleski techniques [25, 33]. Multifrontal techniques identify parallelismwithin the matrix structure

in a manner similar to references [19, 20, 21, 29], but then create multiple small, dense matrices from

independent rows/columns of data, and update each frontal matrix with dense techniques. Parallel

sparse multifrontal algorithms have shown scalable performance for very-large, extremely regular

sparse structural matrices. There has been some work on solving less-regular problems. Research

has recently been published in [47] that describes load balancing techniques to support the work

in [46]. Also, research has been ongoing to examine techniques that can e�ciently factor irregular

matrices using multifrontal techniques [8, 9, 10].

Techniques for sparse Choleski factorization have even been developed for single-instruction-

multiple-data (SIMD) computers like the Thinking Machines CM-1 and the MasPar MPP [44].

These techniques rely on regularity in the data to avoid processor load-imbalance.

Developing e�cient parallel sparse matrix factorization algorithms requires more than just im-

plementing parallel versions of sparse direct algorithms. All parallelism is identi�ed in the structure

of the sparse matrix, so before parallel factorization of the matrix can proceed, preprocessing of

the matrix must occur. References [19, 20, 21, 29, 56, 57, 58] have utilized a general two step

preprocessing paradigm for parallel sparse Choleski factorization:

1. order the matrix to minimize �llin,

2. symbolically factor the matrix to identify �llin and to identify static data structures.

In this paper, we break from this two step preprocessing paradigm and introduce a new three-step

preprocessing phase that includes:

1. order the matrix,

2. pseudo-factor the matrix,
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3. explicit load balance the matrix.

Pseudo-factorization is similar to the symbolic factorization step, although we require that the

number of calculations in matrix partitions be calculated so that we can perform explicit load-

balancing on the majority of the sparse matrix. Our three-step preprocessing phase is described in

chapter 5.

This discussion is by no means an exhaustive literature survey, although it does represent a

signi�cant portion of the general direct sparse matrix research performed for vector and multi-

processor computers.

3.2 Iterative Methods

We are considering an iterative solution to the linear system

Ax = b; (3.7)

where A is an (N � N ) sparse matrix, x and b are vectors of length N , and we are solving for x.

Iterative solvers are an alternative to direct methods that attempt to calculate an exact solution

to the system of equations. Iterative methods attempt to �nd a solution to the system of linear

equations by repeatedly solving the linear system using approximations to the x vector. Iterations

continue until the solution is within a predetermined acceptable bound on the error.

3.2.1 Gauss-Seidel

Common iterative methods for general matrices include the Gauss-Jacobi and Gauss-Seidel, while

conjugate gradient methods exist for positive de�nite matrices. Critical in the choice and use of

iterative methods is the convergence of the technique. Gauss-Jacobi uses all values calculated in the

previous iteration, while Gauss-Seidel requires that the most recent values calculated be used in the

present iteration. The Gauss-Seidel method generally has better convergence than the Gauss-Jacobi

method, although for dense matrices, the Gauss-Seidel method is inherently sequential. Better

convergence means fewer iterations, and a faster overall algorithm, as long as the strict precedence

rules can be observed. The convergence of the iterative method must be examined for the application

along with algorithm performance to ensure that a useful solution to Ax = b can be found.

The Gauss-Seidel method can be written as:

x

(k+1)
i =

1

aii

0
@
bi �

X
j<i

aijx
(k+1)
j �

X
j>i

aijx
(k)
j

1
A
; (3.8)
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where:

x

(k)
i is the i

th unknown in x during the k
th iteration, i = 1; � � � ; N and k = 0; 1; ::: ,

x

(0)
i is the initial guess for the i

th unknown in x,

aij is the coe�cient of A in the i
th row and j

th column,

bi is the i
th value in b.

or

x(k+1) = (D+ L)�1[b�Ux(k)]; (3.9)

where:

x(k) is the k
th iterative solution to x, k = 0; 1; ::: ,

x(0) is the initial guess at x,

D is the diagonal of A,

L is the strictly lower triangular portion of A,

U is the strictly upper triangular portion of A,

b is right-hand-side vector.

The representation in equation 3.8 is used in the development of the parallel algorithm, while the

equivalent matrix-based representation in equation 3.9 is used below in discussions of available

parallelism.

We present a general sequential sparse Gauss-Seidel algorithm in �gure 3.8. Only non-zero values

in A are used when calculating x(k+1). This algorithm calculates a constant number of iterations

before checking for convergence. For very sparse matrices, such as power systems matrices, the

computational complexity of the section of the algorithm which checks convergence is O(N ), nearly

the same as that of a new iteration of x(k+1). Consequently, we perform multiple iterations between

convergence checks.

It is very di�cult to determine if one-step iterative methods, like the Gauss-Seidel method,

converge for general matrices. Nevertheless, for some classes of matrices, it is possible to prove

Gauss-Seidel methods do converge and yield the unique solution x for Ax = b with any initial

starting vector x(0). Reference [23] proves theorems to show that this holds for both diagonally

dominant and symmetric positive de�nite matrices. The proofs of these theorems state that the

Gauss-Seidel method will converge for these matrix types; however, there is no evidence as to the

rate of convergence | the rate of convergence is data dependent.

It may be possible to improve the convergence rate of iterative methods such as Gauss-Seidel

by using preconditioning techniques such as incomplete LU factorization. This preconditioning

technique performs operations similar to an LU factorization, but no calculations are performed that

would generate �llin [23]. The use of preconditioners for parallel Gauss-Seidel algorithms raises many

questions over and above the convergence performance improvement that may be possible for power
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� 1
while � > �converge

for k = 1 to niter

for i = 1 to N

~xi  xi

xi  bi

for each j 2 [1; N ] such that aij 6= 0

xi  xi � (aij � xj)
endfor

xi  xi=aii

endfor

endfor

� 0

for i = 1 to N

� �+ abs(~xi � xi)

endfor

endwhile

Figure 3.8: Sparse Gauss-Seidel Algorithm

systems network matrices. These questions deal with compromises in available parallelism, e�ective

load-balancing, and matrix ordering priorities between the two distinct algorithms. Implementation

and testing of parallel preconditioners for parallel Gauss-Seidel linear solvers has not been examined

in this work, although due to its potential impact on parallel iterative solver performance, we note

that such algorithms should be examined in future research.

3.2.2 Ordering Sparse Matrices for Iterative Methods

Symmetric sparse matrices can be represented by graphs with elements in equations corresponding

to undirected edges in the graph [29]. Ordering a symmetric sparse matrix modi�es the order in

which rows are solved and is actually little more than changing the labels associated with nodes

in an undirected graph. Modifying the ordering of a sparse matrix is simple to perform using a

permutation matrix P of either zeros or ones that simply generates elementary row and column

exchanges. Applying the permutation matrix P to the original linear system in equation 3.1 yields

the linear system

(PAPT )(Px) = (Pb); (3.10)
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that is solved using the parallel Gauss-Seidel algorithm. While ordering the matrix greatly simpli�es

accessing parallelism inherent within the matrix structure, ordering can have an e�ect on convergence

[23]. In section 7.2, we present empirical data to show that in spite of the ordering to yield parallelism,

convergence appears to be rapid for positive de�nite power systems load-ow matrices.

3.2.3 A Survey of the Literature for Parallel Iterative Methods

Parallel implementations of Gauss-Seidel have generally been developed for regular problems such

as the solution of Laplace's equations by �nite di�erences [17, 23], where red-black coloring schemes

are used to provide independence in the calculations and some parallelism. This scheme has been

extended to multi-coloring for additional parallelism in more complicated regular problems [23];

however, we are interested in the solution of irregular linear systems. There has been some research

into applying parallel Gauss-Seidel to circuit simulation problems [48], although this work showed

poor parallel speedup potential in a theoretical study. Reference [48] also extended traditional

Gauss-Seidel and Gauss-Jacobi methods to waveform relaxation methods that trade overhead and

convergence rate for parallelism. A theoretical discussion of parallel Gauss-Seidel methods for power

system load-ow problems on an alternating sequential/parallel (ASP) multi-processor is presented

in [63]. Other research with the parallel Gauss-Seidel methods for power systems applications is

presented in [31], although our research di�ers substantially from that work. The research we

present here utilizes a di�erent matrix ordering paradigm, a di�erent load balancing paradigm, and

a di�erent parallel implementation paradigm than that presented in [31]. Our work utilizes diakoptic-

based matrix partitioning techniques developed initially for a parallel block-diagonal-bordered direct

sparse linear solver [35, 36, 37, 39, 40]. In reference [37], we examined load balancing issues associated

with partitioning power systems matrices for parallel Choleski factorization.



Chapter 4

Available Parallelism

The most signi�cant aspect of parallel sparse LU factorization is that the sparsity structure can

be exploited to o�er more parallelism than is available with dense matrix solvers. Parallelism in

dense matrix factorization is achieved by distributing the data in a manner that the calculations in

one of the for loops can be performed in parallel. Sparse factorization algorithms have inadequate

calculations in any row or column for e�cient parallelism; however, sparse matrices o�er additional

parallelism as a result of the nature of the data and the precedence rules governing the order of

calculations. Instead of just parallelizing a single for loop as in parallel dense matrix factorization,

entire independent portions of a sparse matrix can be factored in parallel | especially when the

sparse matrix has been ordered into block-diagonal-bordered form.

Provided that a matrix can be ordered into block-diagonal-bordered form, the parallel sparse LU

algorithm can reap additional bene�ts, such as the elimination of task graphs for distributed-memory

multi-processor implementations. Minimizing or eliminating task graphs is signi�cant because the

task graph can contain as much information as the representation of the sparse matrix for more

conventional parallel sparse LU solvers [18].

The same independence between diagonal blocks in these sparse matrices can also be exploited

in our parallel sparse Gauss-Seidel algorithm. While Gauss-Seidel algorithms for dense matrices are

inherently sequential, it is possible to identify portions of sparse matrices that do not have mutual

data dependencies, so calculations can proceed in parallel on mutually independent matrix partitions

while maintaining the strict precedence rules in the Gauss-Seidel technique. All parallelism in

the Gauss-Seidel algorithm is derived from within the actual interconnection relationships between

elements in the matrix. Furthermore, the extremely sparse last diagonal block also has inherent

parallelism that can be identi�ed by using graph multi-coloring techniques.

There are several distinct ways to illustrate available parallelism in block-diagonal-bordered form

29
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matrices. Available parallelism in a block-diagonal-bordered sparse matrix can be illustrated by the

graph of the matrix. Figure 4.1 represents the form of a graph with four mutually independent sub-

matrices (subgraphs) interconnected by shared coupling equations. No graph node in a subgraph

has an interconnection to another subgraph except through the coupling equations. It should be

intuitive that data in columns associated with nodes in subgraphs can be factored independently

up to the point where the coupling equations are factored. The description of parallelism presented

here for direct methods is also closely related to the concept of elimination graphs and super-nodes

described in [29]. For the parallel Gauss-Seidel, a concept similar to elimination graphs could be

utilized to depict the precedence in the calculations.

A block-diagonal-bordered form sparse matrix can be represented by an elimination or general

precedence tree with supernodes at only two levels. Supernodes are collections of nodes in the

elimination tree that are considered as a single entity, and form the elimination tree leaves, with

another supernode as the root of the Nprocsary tree. By simply restructuring the graph presented

in �gure 4.1, it is possible to represent the same concept as a tree. An elimination tree for a block-

diagonal-bordered form matrix with four supernodes as leaves and a single supernode as the tree's

root is presented in �gure 4.2. Each leaf supernode will have an inherent hierarchy of calculations,

that can be calculated independently of other leaf supernodes. The root supernode for factorization

algorithms has little additional parallelism as a result of independent calculations, and would be

represented generally as a vertical chain of nodes. This is due to �llin as a result of factorization.

Conversely, the last block for the block-diagonal-bordered parallel Gauss-Seidel method represents

only the interconnection structure within the equations that couple the partitions in the block-

diagonal portion of the matrix.

For iterative methods, the reduced interconnectivity in the last diagonal block o�ers more avail-

able parallelism, but at the cost of requiring multiple iterations for change in the value of any x
(k)
i to

propagate throughout any interconnected values. Fillin in a factored matrix increases the amount

of calculations, but any interconnection theoretically possible from the matrix graph representation

has been considered. Unfortunately, there is little available parallelism inherent in factoring the

last diagonal block, so pipelined techniques similar to those used for dense matrices are required for

parallel factorization of the last diagonal block.

4.1 Available Parallelism in Block-Diagonal-Bordered Form

Matrices for Direct Methods

While an elimination graph o�ers intuition into the available parallelism in block-diagonal-bordered

sparse matrices for direct methods, it is possible to examine the theoretical mathematics of matrix
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partitioning to clearly identify available parallelism in this sparse matrix form. By partitioning the

block-diagonal-bordered matrix into:

� a block-diagonal matrix,

� an upper border,

� a lower border,

� a last block,

and calculating the Shur complement [12], it is possible to identify available parallelism for direct

methods by proving a theorem that states the LU factors of a block-diagonal-bordered matrix are

also in block-diagonal-bordered form. A supporting lemma stating that the LU factors of a block-

diagonal matrix are also block-diagonal form is required to complete the proof of the theorem. A

similar version of this derivation can be used to identify the parallelism in Choleski factorization.

De�ne a partition of A = LU as

A =

 
A1;1 A1;2

A2;1 A2;2

!
=

 
L1;1 0

L2;1 L2;2

! 
U1;1 U1;2

0 U2;2

!
= LU (4.1)

where:

A1;1, L1;1, and U1;1 are of size N1 � N1

A2;1 and L2;1 are of size N2 � N1

A1;2 and U1;2 are of size N1 �N2

A2;2, L2;2, and U2;2 are of size N2 � N2.

The Shur complement of the partitioned matrices in equation 4.1 can be calculated by simply

performing the matrix multiplication on the LU partitions which yields:

A =

 
A1;1 A1;2

A2;1 A2;2

!
=

 
L1;1U1;1 L1;1U1;2

L2;1U1;1 L2;1U1;2 + L2;2U2;2

!
(4.2)

By equating blocks in equation 4.2, we can easily identify how to solve for the partitions:

A1;1 = L1;1U1;1 ) L1;1U1;1 = A1;1

A1;2 = L1;1U1;2 ) U1;2 = L�11;1A1;2

A2;1 = L2;1U1;1 ) L2;1 = A2;1L�11;1

A2;2 = L2;1U1;2 + L2;2U2;2 ) L2;2U2;2 = A2;2 �L2;1U1;2

(4.3)
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Before we can proceed and prove the theorem that the LU factors of a block-diagonal-bordered

(BDB) position symmetric sparse matrix are also in block-diagonal-bordered form, we must de�ne

additional matrix partitions in the desired form and prove a Lemma that the LU factors of a block-

diagonal (BD) matrix are also in block-diagonal form. At this point, we must de�ne additional

partitions of A that represent the block-diagonal-bordered nature of the original A matrix:

ABDB =

 
A1;1 A1;2

A2;1 A2;2

!
=

0
BBBBBBB@

A1;1 0 A1;m+1

A2;2 A2;m+1

0
. . .

...

Am;m Am;m+1

Am+1;1 Am+1;2 � � � Am+1;m Am+1;m+1

1
CCCCCCCA

(4.4)

LBDB =

 
L1;1 0

L2;1 L2;2

!
=

0
BBBBBBB@

L1;1

L2;2 0

0
. . .

Lm;m

Lm+1;1 Lm+1;2 � � � Lm+1;m Lm+1;m+1

1
CCCCCCCA

(4.5)

UBDB =

 
U1;1 U1;2
0 U2;2

!
=

0
BBBBBBB@

U1;1 0 U1;m+1

U2;2 U2;m+1

0
. . .

...

Um;m Um;m+1

Um+1;m+1

1
CCCCCCCA

(4.6)

A1;1 = ABD =

0
BBBBB@

A1;1 0

A2;2

0
. . .

Am;m

1
CCCCCA (4.7)

A1;2 =

0
BBBBB@

A1;m+1

A2;m+1

...

Am;m+1

1
CCCCCA (4.8)

A2;1 =
�
Am+1;1 Am+1;2 � � � Am+1;m

�
(4.9)

A2;2 = Am+1;m+1 (4.10)

Lemma | The LU factors of a block-diagonal matrix are also in block-diagonal form
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Proof:

Let:

ABD =

 
A1;1 0

0 A2;2

!
=

 
L1;1 0

L2;1 L2;2

! 
U1;1 U1;2
0 U2;2

!
= LBDUBD (4.11)

By applying the Shur complement to equation 4.11, we obtain:

A1;2 = L1;1U1;2 = 0) U1;2 = L�11;10 = 0 (4.12)

and

A2;1 = L2;1U1;1 = 0) L2;1 = 0U�11;1 = 0 (4.13)

If ABD is non-singular and has a numerical factor, then L�11;1 and U�11;1 must exist and be non-zero:

thus

ABD =

 
A1;1 A1;2

A2;1 A2;2

!
=

 
L1;1 0

0 L2;2

! 
U1;1 0

0 U2;2

!
= LBDUBD (4.14)

This lemma can be applied recursively to a block-diagonal matrix with any number of diagonal blocks

to prove that the LU factorization of a block-diagonal matrix preserves the block structure.

Theorem | The LU factors of a block-diagonal-bordered matrix are also in block-diagonal-

bordered form. To restate this theorem, we must show that ABDB = LBDBUBDB .

Proof:

First the matrix partitions A2;1 and A1;2 have simply been further partitioned to match the

sizes of the diagonal blocks. Meanwhile, the matrix partition A2;2 has been left unchanged. In the

lemma, we proved that the factors of A1;1 are block-diagonal if A1;1 is block-diagonal. Consequently,

ABDB = LBDBUBDB .

As a result of this theorem, it is relatively straight forward to identify available parallelism by

simply performing the matrix multiplication in a manner similar to the Shur complement. As a

result we obtain:

1. Diagonal Blocks: A1;1 = L1;1U1;1 )

8>><
>>:
A1;1 = L1;1U1;1

A2;2 = L2;2U2;2

...

,

2. Lower Border: A2;1 = L2;1U1;1 )

8>><
>>:
Am+1;1 = Lm+1;1U1;1

Am+1;2 = Lm+1;2U2;2

...

,

3. Upper Border: A1;2 = U1;2L1;1 )

8>><
>>:
A1;m+1 = L1;1U1;m+1

A2;m+1 = L2;2U2;m+1

...

,
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4. Last Block:

A2;2 �L2;1U1;2 = L2;2U2;2)
(
Am+1;m+1 �

mX
i=1

Lm+1;iUi;m+1 = Lm+1;m+1Um+1;m+1

.

If the matrix blocks Ai;i, Am+1;i, and Ai;m+1 (1 � i � m) are assigned to the same processor,

then there are no communications until the last block is factored. At that time, only sums of sparse

matrix � sparse matrix products are sent to the processors that hold the appropriate data in the

last block.

This derivation identi�es the parallelism in the LU factorization step of a block-bordered-diagonal

sparse matrix. The parallelism in the forward reduction and backward substitution steps also bene�ts

from the aforementioned data/processor distribution. By assigning data in a matrix block and its

associated border sections to the same processor, no communications would be required in the

forward reduction phase until the last block of the factored matrix, L, is updated by the product

of a dense vector partition ym+1 � the sparse matrix Am+1;i (1 � i � m). No communications is

required in the backward substitution phase after the values of xm+1 are distributed to all processors

holding the matrix blocks Ai;i and Ai;m+1 (1 � i � m).

Figure 4.3 illustrates both the LU factorization steps and the reduction/substitution steps for

a block-diagonal-bordered sparse matrix. In this �gure, the strictly lower diagonal portion of the

matrix is L, and the strictly upper diagonal portion of the matrix is U. This �gure depicts four

diagonal blocks, and processor assignments (P1, P2, P3, and P4) are listed with the data block.

This �gure would represent the block-diagonal-bordered form matrix and data distribution for the

data represented in �gures 4.1 and 4.2.

4.2 Available Parallelism in Block-Diagonal-Bordered Form

Matrices for Iterative Methods

All parallelism in the Gauss-Seidel algorithm is derived from within the actual interconnection

relationships between elements in the matrix. Ordering sparse matrices into block-diagonal-bordered

form can o�er substantial opportunity for parallelism, because the values of x(k+1) in entire sparse

matrix partitions can be calculated in parallel without requiring communications. Because the sparse

matrix is a single system of equations, all equations sharing o�-diagonal variables are dependent.

Dependencies within the linear system requires data movement frommutually independent partitions

to those equations that couple the linear system. After we derive the formulation of the Gauss-Seidel

algorithm for a block-diagonal-bordered matrix, the optimum data/processor assignments for an

e�cient parallel implementation are straightforward.
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Figure 4.3: Block Bordered Diagonal Form Sparse Matrix Solution Steps

While much of the parallelism in this algorithm is made clearly visible as a result of the block-

diagonal-bordered ordering of the sparse matrix, further ordering of the last diagonal block is required

to provide parallelism in what would otherwise be a purely sequential portion of the algorithm. The

last diagonal block represents the interconnection structure within the equations that couple the

partitions in the block-diagonal portion of the matrix. These equations are rather sparse, often

with substantially fewer o�-diagonal matrix elements (graph edges) than diagonal matrix elements

(graph nodes). Consequently, it is rather simple to color the graph representing this portion of the

matrix. Separate graph colors represent rows where x(k+1) can be calculated in parallel, because

within a color, no two nodes have any adjacent edges, and there is no precedence when performing

the calculations. For the parallel Gauss-Seidel algorithm, a synchronization barrier is required

between colors to ensure that all new x(k+1) values are distributed to the processors so that the

strict precedence relation in the calculations are maintained.

4.2.1 Parallelism in Block-Diagonal-Bordered Matrices

To clearly identify the available parallelism in the block-diagonal-bordered Gauss-Seidel method,

we de�ne a block diagonal partition on the matrix, apply that partition to formula 3.9, and equate
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terms to identify available parallelism. We must also de�ne a sub-partitioning of the last diagonal

block to identify parallelism after multi-coloring.

First, we de�ne a partitioning of the system of linear equations (PAPT )(Px) = (Pb), where the

permutation matrix P orders the matrix into block-diagonal-bordered form.0
BBBBB@

A1;1 0 A1;m+1

0
. . .

...

Am;m Am;m+1

Am+1;1 � � � Am+1;m Am+1;m+1

1
CCCCCA

0
BBBBB@

x
(k)
1

...

x
(k)
m

x
(k)
m+1

1
CCCCCA =

0
BBBBB@

b1
...

bm

bm+1

1
CCCCCA : (4.15)

Equation 3.9 divides the PAPT matrix into a diagonal component D, a strictly lower diagonal

portion of the matrix L, and a strictly upper diagonal portion of the matrix U such that:

PAPT = D+ L+U (4.16)

Derivation of the block-diagonal-bordered form of the D, L, and U matrices is straightforward.

Equation 3.9 requires the calculation of (D+ L)�1, which is simple to determine explicitly, because

this matrix has block-diagonal-lower-bordered form. The diagonals in (D+ L)�1 are of the form:

(D+ L)�1i;i = (Di;i + Li;i)
�1

; i = 1; � � � ;m+ 1 (4.17)

and the only other non-zero terms are in the last row. These values are of the form:

(D+ L)�1m+1;i = (Dm+1;i + Lm+1;i)
�1(�Lm+1;i)(Di;i + Li;i)

�1
; i = 1; � � � ;m: (4.18)

Given these partitioned matrices, it is relatively straightforward to identify available parallelism

by substituting the partitioned matrices and partitioned x(k) and b vectors into the de�nition of the

Gauss-Seidel method and then performing the matrix multiplications. As a result we obtain:

x(k+1) =

0
BBBBBB@

(D1;1 + L1;1)
�1
h
b1 �U1;1x

(k)
1 �U1;m+1x

(k)
m+1

i
...

(Dm;m + Lm;m)
�1
h
bm �Um;mx

(k)
m �Um;m+1x

(k)
m+1

i
(Dm+1;m+1 + Lm+1;m+1)

�1
h
bm+1 �

Pm

i=1(L
�1
m+1;ix

(k+1)
i ) �Um+1;m+1x

(k)
m+1

i

1
CCCCCCA

:

(4.19)

We can identify the parallelism in the block-diagonal-bordered portion of the matrix by examining

equation 4.19. If we assign each partition i, (i = 1; � � � ;m), to a separate processor the calculations

of x
(k+1)
i are independent and require no communications. Note that the vector x

(k)
m+1 is required

for the calculations in each partition, and there is no violation of the strict precedence rules in the

Gauss-Seidel because it is calculated in the previous step. After calculating x
(k+1)
i in the �rst m
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partitions, the values of x
(k+1)
m+1 must be calculated using the lower border and last block. From the

previous step, the values of x
(k+1)
i would be available on the processors where they were calculated,

so the values of (L�1m+1;ix
(k+1)
i ) can be readily calculated in parallel. Only matrix � vector products,

calculated in parallel, are involved in the communications phase. Furthermore, if we assign

b̂ = bm+1 �
mX
i=1

�
L�1m+1;ix

(k+1)
i

�
; (4.20)

then the formulation of x
(k+1)
m+1 looks similar to equation 3.9:

x̂(k+1) = x
(k+1)
m+1 = (Dm+1;m+1 + Lm+1;m+1)

�1
h
b̂�Um+1;m+1x

(k)
i
: (4.21)

4.2.2 Parallelism in Multi-Colored Matrices

The ordering imposed by the permutation matrix P, includes multi-coloring-based ordering of the

last diagonal block that produces sub-partitions with parallelism | nodes with the same color are

independent and can be solved in parallel. We de�ne the sub-partitioning as:

Am+1;m+1 =

0
BBBBB@

D̂1;1 Â1;2 � � � Â1;c

Â2;1 D̂2;2 � � � Â2;c

...
. . .

...

Âc;1 Âc;2 � � � D̂c;c

1
CCCCCA : (4.22)

where D̂i;i are diagonal blocks and c is the number of colors. After formingLm+1;m+1 andUm+1;m+1,

it is straight forward to prove that:

x̂(k+1) =

0
BBBBB@

x̂
(k+1)
1

x̂
(k+1)
2

...

x̂
(k+1)
c

1
CCCCCA =

0
BBBBBB@

D̂�11;1

h
b̂1 �

P
j>1 Â1;jx̂

(k)
j

i
D̂�12;2

h
b̂2 �

P
j<2 Â2;jx̂

(k+1)
j �Pj>2 Â2;jx̂

(k)
j

i
...

D̂�1c;c

h
b̂c �

P
j<c Âc;j x̂

(k+1)
j

i

1
CCCCCCA

: (4.23)

Calculating x̂
(k+1)
i in each sub-partition of x̂(k+1) does not require other values of x̂

(k+1)
i within the

sub-partition, so we can calculate the individual values within x̂
(k+1)
i in any order and distribute

these calculations to separate processors without concern for precedence. In order to maintain the

strict precedence in the Gauss-Seidel algorithm, the values of x̂k+1i calculated in each step must be

broadcast to all processors that require them, and processing cannot proceed for any processor until

it receives the new values of x̂
(k+1)
i from all other processors.

If the block-diagonal-bordered matrix partitions Ai;i, Am+1;i, and Ai;m+1 (1 � i � m) are

assigned to the same processor, then there are no communications until x̂(k+1) is calculated. At
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Figure 4.4: Block-Bordered-Diagonal Form Gauss-Seidel Method

that time, only matrix � vector products are sent to the processors that hold the appropriate

data in the last diagonal block. Figure 4.4 describes the calculation steps in the parallel Gauss-

Seidel for a block-diagonal-bordered sparse matrix. This �gure depicts four diagonal blocks, and

data/processor assignments (P1, P2, P3, and P4) are listed for the data block. Figure 4.5 illustrates

the data/processor assignments in the last diagonal block.
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Chapter 5

The Preprocessing Phase

In the previous chapter, we developed the theoretical foundations for parallel sparse block-diagonal-

bordered linear solvers, and we now will discuss the procedures required to generate the permutation

matrices, P, to produce block-diagonal-bordered/multi-colored sparse matrices so that our parallel

algorithms are e�cient. To reach this goal, we must ensure that the parallel algorithms are not

overwhelmed by load-imbalance-overhead and are as e�cient as possible on an architecture. We

must reiterate that all parallelism for our linear solvers is identi�ed from the power systems network

structure during this preprocessing phase. The speci�cs for the direct and iterative solvers are

discussed separately below.

The preprocessing phase may be incorporated into an optimization framework that is used to

produce matrix orderings with optimal overall performance for a particular version of the block-

diagonal-bordered sparse matrix factorization algorithm. For this research, the optimization has

been performed by hand. We have examined ordered matrices resulting from various values of the

input parameter for the node-tearing algorithm, and we have identi�ed the block-diagonal-bordered

form sparse matrix with the best empirical run-time performance for each of �ve sample power

system networks. These results are presented in sections 7.1 and 7.2.

This preprocessing phase incurs signi�cantly more overhead than solving a single instance of the

sparse matrix; consequently, the use of this technique will be limited to problems that have static

matrix structures that can reuse the ordered matrix and load balanced processor assignments mul-

tiple times in order to amortize the cost of the preprocessing phase over numerous matrix solutions.

The times for solving the linear power systems network matrices in parallel are measured in fractions

of a second to seconds; however, the times for the preprocessing stage are at least an order of magni-

tude greater. The preprocessing phase for direct methods takes longer than the preprocessing phase

41
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for iterative methods, due to requirements for multiple minimum degree ordering. The preprocess-

ing phase produces a permutation matrix with which to order the actual matrix, and de�nes what

rows/columns are placed on what processors. The permutation matrix can be calculated with no

more information than the graph interconnectivity of the power systems networks, which represent

actual power systems generators, power lines, and distribution substations. The infrastructure un-

derlying the power systems network matrices changes infrequently, so the e�ort to perform a single

ordering can be amortized over days or even over weeks.

5.1 The Preprocessing Phase for Direct Methods

For parallel sparse block-diagonal-bordered direct linear solvers to be e�cient when factoring irreg-

ular sparse matrices, the following three step preprocessing phase is required:

� order the matrix into block-diagonal-bordered form while minimizing the number of calcula-

tions,

� pseudo-factor the matrix to identify both �llin and the number of calculations for all diagonal

blocks and corresponding portions of the borders,

� load balance the matrix to distribute the calculations uniformly among processors.

The �rst step determines the block-diagonal-bordered form and the ordering of nodes within diag-

onal blocks to minimize calculations; the second step determines the locations of �llin values for

static data structures and also determines the number of calculations in independent blocks for the

load balancing step; and the third step determines a mapping of data to processors for e�cient

implementation of the algorithm for the user speci�ed data.

5.1.1 Ordering

The preprocessing phase ordering step must identify diagonal matrix blocks while also attempting

to minimize the amount of �llin during factorization. Few matrices can be readily ordered into

block-diagonal-bordered form with equal workload in each block. The exception to this rule are

highly regular matrices from the structural analysis community, where the nested dissection ordering

algorithm can produce balanced block-diagonal-bordered matrices [29]. Recursive spectral bisection

can be used to partition irregular matrices [3, 45, 50], and subsequently, the coupling equations

can be extracted. Unfortunately, this technique, as well as nested dissection, relies on dividing

the matrix into equal sized partitions, without considering the number of coupling equations or

considering the number of calculations in each diagonal block. Load-imbalance limits the potential

for using recursive spectral bisection, because the number of calculations in a block for factorization
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or forward reduction/backward substitution are related to the sparsity of the subgraph, which can

vary signi�cantly for irregular power systems network matrices [37].

A third method to order a sparse matrix into block-diagonal-bordered form is referred to as

node-tearing [12, 49], which is a specialized form of diakoptics [26]. This technique attempts to

extract the natural structure in the matrix or graph, and generally produces many irregularly sized

blocks, while minimizing the number of coupling equations or the size of the lower border and last

diagonal block. Additional detail on the node-tearing form of diakoptics is presented in appendix B.

Load balancing techniques must be used after the node-tearing matrix ordering step to distribute

the processing load uniformly onto a multi-processor. As shown in chapter 4, diagonal blocks can

be assigned to any processor without requirements for interprocessor communications to factor the

diagonal block and associated portion of the lower border.

There are several notable techniques to minimize �llin when factoring a sparse matrix, with one

of the commonly used techniques being minimum-degree ordering. Minimum degree ordering is used

in conjunction with the node-tearing-based ordering technique to generate block-diagonal-bordered

form sparse matrices with a minimum number of �llin and resulting calculations. Additional detail

on minimum degree-based sparse matrix ordering is presented in appendix C.

5.1.2 Pseudo-Factorization

The metric for performing load balancing or for comparing the performance of ordering techniques

must be based on the actual workload required by the processors in a distributed-memory multi-

computer. Consequently, more information is required than just the locations of �llin as in previous

work that used symbolic factorization to identify �llin for static data structures [21, 29, 56]. The

number of oating point operations may not be proportional to the number of equations assigned

to a processor because the number of calculations in an independent subgraph is a function of the

number and location of non-zero matrix elements in that block | not the number of equations in a

block. For dense matrices, the computational complexity of factorization is O(N3). Meanwhile, the

computational complexity for factoring entire sparse power systems matrices used in later parallel

algorithm performance studies is less than O(N1:5), but greater than O(N ). Determining the actual

workload requires a detailed simulation of all processing for the factorization phases, which we refer

to as pseudo-factorization.

Pseudo-factorization is merely a replication of the numerical factorization process without actu-

ally performing the calculations. Numbers of calculations to factor the independent data blocks and

numbers of calculations to update the last block using data from the borders are tallied.

There is no way to avoid the computational expense of this preprocessing step, because the com-

putational workload in factorization is not correlated with the number of equations in an independent

block. E�cient parallel sparse matrix solvers require that any disparities in processor workloads be
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minimized in order to minimize load imbalance overhead, and consequently, to maximize processor

utilization.

5.1.3 Load Balancing

The load balancing step of the preprocessing phase can be performed with a simple pigeon-hole

type algorithm that uses metrics based on the numbers of oating point operations determined in

the pseudo-factorization step. There are three distinct steps in the block-diagonal-bordered matrix

solver:

� factor independent blocks,

� update the last block using data from the borders,

� factor the last block.

Load balancing, as implemented for factorization of the diagonal blocks and the lower border, em-

phasizes the uniform distribution of the processing workload in the �rst two steps. The second

factorization step, updating the last block using data in the borders, requires that the results of

sparse matrix � sparse matrix products be sent to the processor that holds the data for an element

in the last block. The independent nature of calculations in the diagonal blocks and the border

permit a processor to start the second phase as soon as that processor has completed factoring

the independent blocks. Consequently, the sum total of all calculations in the diagonal blocks and

corresponding border sub-matrices can be used when load balancing. The parallel calculations in

the last diagonal block are performed using a pipelined blocked kji-saxpy LU algorithm that does

not require explicit load-balancing [61].

The metrics we use consider only the number of oating point operations and do not consider

indexing overhead, which can be rather extensive when sparse matrices are stored in an implicit

form. The data structure used in our solver has explicit links between non-zero values in a column

and stores the data in any row as a sparse vector. This data structure should minimize indexing

overhead at the cost of additional memory required to store the sparse matrix when compared with

other sparse data storage methods [13]. The implementation of the parallel block-diagonal-bordered

LU solver is discussed in greater detail in chapter 6.

The load-balancing algorithm is a simple greedy assignment algorithm that distributes objec-

tive function values to multiple pigeon-holes in a manner that minimizes the disparity between the

sums of objective function values in each pigeon-hole. This is performed in a three-step process.

First the objective function values for each of the independent blocks are placed into descending

order. Second, the Nprocs greatest values are distributed to a pigeon-hole for each processor, where

Nprocs is the number of processors in a distributed-memory multi-computer. Then the remaining
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objective function values are selected in descending order and placed in the pigeon-hole with the

least aggregate workload. This algorithm is straightforward and minimizes the disparity in aggre-

gate workloads between processors. This algorithm �nds an optimal distribution for workload to

processors; however, actual disparity in processor workload is dependent on the irregular sparse

matrix structure. This algorithm works best when there are minimal disparities in the workloads

for independent blocks or when there are signi�cantly more independent blocks than processors. In

this instance, the workloads in multiple small blocks can sum to equal the workload in a single block

with more computational workload.

5.2 The Preprocessing Phase for Iterative Methods

For parallel sparse block-diagonal-bordered iterative methods to be e�cient when solving irregular

sparse matrices, we must:

1. order the matrix into block-diagonal-bordered form while minimizing the size of the last diag-

onal block,

2. order the last diagonal block using multi-coloring techniques.

After performing the �rst ordering step, we must:

� pseudo-solve to identify the workload for each diagonal block and corresponding portion of the

borders,

� load balance to distribute the workload uniformly among processors.

As with the preprocessing step for direct methods, the metric for load balancing must be based on

the actual workload required by the individual processors. This number may di�er substantially

from the number of equations assigned to processors because the number of calculations in a matrix

partition is a function of the number of non-zero matrix elements in that block | not the number

of equations in a block. For dense matrices, the computational complexity of the Gauss-Seidel

algorithm is O(N2); however, the computational complexity of calculating x(k+1) for sparse power

systems matrices is only slightly greater than O(N1). Determining the actual workload requires

calculating the number of multiply/addition operations in each matrix block, which we refer to as

the pseudo-solution.

When performing the second ordering step, we must consider that there are a limited number

of calculations in the last diagonal block and communications requirements for this portion of the

algorithm are extensive. In the worst case, all values calculated on a processor must be broadcast



CHAPTER 5. THE PREPROCESSING PHASE 46

to all other processors | resulting in signi�cant communications overhead. Consequently, we load-

balance this ordering step as a function of the amount of communications, and make this load

balancing step integral with the graph multi-coloring algorithm.

5.2.1 Ordering

As with ordering matrices into block-diagonal-bordered form for direct methods, we are looking for

an ordering technique that produces a permutation matrix P that transforms the irregular power

systems matrix into block-diagonal-bordered form while balancing the workload in the diagonal

blocks and also limiting the number of coupling equations in the last diagonal block. Minimizing

the size of the last diagonal block in a parallel block-diagonal-bordered sparse matrix minimizes the

amount of communications; however, we illustrate in section 7.2 with empirical data that there are

trade-o�s with minimizing the number of equations in the last diagonal block and balancing the

workload in the block-diagonal portion of the matrix. If the size of the last block of the matrix

can be adequately constrained, the amount of communications can be drastically reduced. When

determining the optimal ordering for a sparse matrix, an ordering that yields a better load-balance

in the highly parallel portion of the calculations may be traded for the size of the last diagonal block

and the subsequent additional communications.

The method we have chosen to order the sparse power systems networks into block-diagonal-

bordered form matrices for parallel Gauss-Seidel is a specialized form of diakoptics, referred to as

node-tearing [12, 26, 49]. We have performed an analysis similar to that described above to order

power systems matrices into block-diagonal-bordered form for direct methods, and have found that

node-tearing nodal analysis has features that make it superior to recursive spectral bisection and

nested dissection | techniques that attempt to load-balance on the number of rows/columns in

a partition, rather than the actual workload in the irregular matrix. The node-tearing form of

diakoptics analysis attempts to extract the natural structure in the matrix or graph, and generally

produces many irregularly sized blocks, while minimizing the size of the lower border and last

diagonal block. Additional detail on the node-tearing form of diakoptics is presented in appendix B.

Load balancing techniques must be used in a separate step after the node-tearing ordering step to

distribute the processing load uniformly onto a multi-processor.

When ordering power systems networks into block-diagonal-bordered form for the parallel Gauss-

Seidel method, there is no concern for additional ordering of the diagonal blocks to minimize �llin,

because iterative methods do not generate these additional non-zero values. However, additional

ordering is required for the last diagonal block, because without ordering, the calculations in this

portion of the matrix would be purely sequential, limiting the potential speedup of the algorithm

in accordance to Amdahl's law. The last diagonal block represents the interconnection structure

within the equations that couple the partitions found in the node-tearing-based ordering step. In
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other words, the variables in the last-diagonal block are the interconnections within the equations

that tie the entire matrix together. Graph multi-coloring has been used for ordering this portion

of the matrix | all nodes of the same color share no interconnections, consequently, the values of

x̂(k+1) in these rows can be calculated in any order without violating the strict precedence rules in

the Gauss-Seidel method. As a result, rows within a color can be solved in parallel, and barriers to

synchronize parallel operations are only required between graph colors.

The multi-coloring algorithm we selected for this work is based on the saturation degree ordering

algorithm. We also require load balancing, a feature not commonly implemented within graph multi-

coloring. As part of our implementation we added a feature that equalizes the number of rows per

color to provide load-balancing for communications. The graph multi-coloring technique is discussed

in greater detail in appendix D.

5.2.2 Pseudo-Solution

E�cient parallel sparse matrix solvers require that any disparities in processor workloads be mini-

mized in order to minimize load imbalance overhead, and consequently, to maximize processor uti-

lization. The metric for performing load balancing must be based on the actual workload required by

the processors in a distributed-memory multi-computer. The metric employed when load-balancing

the partitions for parallel Gauss-Seidel, is the number of oating point multiply/add operations,

not simply the number of rows per partition. Determining the number of oating point operations

in each partition for the parallel Gauss-Seidel is simple when compared to the pseudo-factorization

required for parallel direct methods. Pseudo-solving for an iteration examines the number of opera-

tions when calculating x(k+1) in the matrix partitions and the number of operations when calculating

the sparse matrix vector products in preparation to solve for x(k+1) in the last diagonal block. It

simply requires that the number of o�-diagonal non-zero elements in all rows within a partition be

summed. While this step is simple and can be performed with signi�cantly less e�ort than pseudo-

factorizations for parallel direct methods, it is an essential input to the load-balancing step for the

block-diagonal portion of the matrix.

5.2.3 Load Balancing

The load balancing step of the preprocessing phase can be performed with the same simple pigeon-

hole type algorithm described above for direct methods in section 5.1.3. The load-balancing algo-

rithm uses a metric based on the numbers of oating point multiply/add operations in a partition,

not simply the number of rows per partition. The independent nature of calculations in the diagonal

blocks and the border permit a processor to start updating the last diagonal block as soon as that

processor has completed calculating x(k+1) in the diagonal blocks. The parallel calculations in the
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last diagonal block are load balanced separately, by dividing the rows within colors evenly among

processors to minimize communications overhead. These metrics do not consider indexing overhead,

which can be rather extensive when working with very sparse matrices stored in an implicit form.

We have found that load-balancing for the parallel block-diagonal-bordered Gauss-Seidel algo-

rithm has been easier to perform than load-balancing for direct methods, because workload per

partition has less variability for iterative methods than direct methods. Workloads within a parti-

tion for direct methods have a higher computational complexity than for iterative methods, so for

the same partitioned matrix, there may be signi�cantly di�erent distributions of data to processors

for the two methods.



Chapter 6

Parallel Sparse Matrix Solver

Implementations

This chapter is divided into three sections. In the �rst section we describe methods to improve

performance of the sequential portions of the linear solver implementations. In the other two sec-

tions, we describe in detail the implementations of the parallel sparse matrix solvers. Pseudo-code

descriptions of the parallel algorithms are presented in appendix E.

The parallel implementation presented in this chapter has been developed as an instrumented

proof-of-concept to examine the e�ciency of each section of the algorithm. The host processor is

used to gather and tabulate statistics on the multi-processor calculations. Statistics are gathered in

a manner that do not impact the total empirical measures of timing data for factorization, forward

reduction, or backward substitution in the implementation of the direct solvers, nor do statistics

impact the total measures of performance for the parallel Gauss-Seidel.

6.1 Sequential Code Optimization

In this chapter, we describe the implementations of the parallel block-diagonal-bordered sparse

matrix solvers that we have developed for the Thinking Machines CM-5 distributed-memory multi-

processor. All implementations have been developed with special concern for sequential code opti-

mization, in addition to optimization of the more complex parallel code. Paramount to sequential

code optimization is matching the data structures to the algorithm in order to maximize cache hits.

This can be accomplished by attempting to always perform operations on vectors of consecutively

stored data. The algorithm for the iterative Gauss-Seidel method makes this easy. The Gauss-Seidel

algorithm is essentially a matrix � vector product with multiple vector � vector products as new

49
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Figure 6.1: Optimal Row-Major Data Storage for Gauss-Seidel Algorithms

values of x
(k+1)
i are calculated for the i

th row. The sparse implementation of Gauss-Seidel requires

the calculation of a sparse matrix � a dense vector product. Figure 6.1 illustrates the optimal way

to perform the matrix � vector product, with the (sparse) matrix stored in row-major form. In

this �gure, long horizontal lines depict sparse vectors and the vertical line representing x is a dense

vector.

Algorithms for direct linear solvers have much more complicated access patterns. For dense direct

methods, normal storage of data in conventional two-dimensional matrices always leaves the data

in a pattern that is not accessible in one direction as a vector, and unless the software is written

to optimize over strides in the matrix, there may be cache hit problems when performing dense

factorization. Figure 6.2 illustrates four possible dense factorization implementations, two each for

column-major storage and row-major storage [30]. In this �gure, long lines depict dense vectors and

dots represent scalar access.

For sparse direct linear solvers, we store the sparse matrices implicitly, providing rich opportu-

nities for improving sequential program cache hits. It is simple to store data with separate data

structures for the diagonal, lower triangular, and upper triangular portions of the matrix and have

sparse vector � sparse vector products throughout the factorization calculations. This is illustrated
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Figure 6.2: Optimal Data Storage for Dense Factorization

in �gure 6.3 for a factorization algorithm with lower triangular matrix data stored in row-major or-

der and upper triangular matrix storage in column-major order. Care must be taken to use forward

reduction and backward substitution algorithms compatible with the data structures that optimize

performance. This is easy to perform, because the loops to perform the triangular solutions can be

performed in either order.

Now we examinemethods to optimize parallel direct and parallel iterative solver implementations.

6.2 Parallel Sparse Direct Solver Implementations

We have implemented a parallel version of a block-diagonal-bordered sparse LU solver and a similar

Choleski solver in the C programming language for the Thinking Machines CM-5 multi-computer us-

ing message passing and a host-node paradigm. In order to have an implementation with extremely

low-latency communications, we utilized the Connection Machine active message layer (CMAML)

remote procedure call features [53, 59]. We also implemented versions of the algorithms using non-

blocking, bu�ered communications. Substantial improvements in the performance of the algorithm

have been observed for low-latency active messages, when compared to more traditional commu-

nications paradigms that use non-blocking communications functions in conjunction with packing

data into communications bu�ers. Throughout this discussion of parallel direct sparse solvers, the

active message communications paradigm is the means with which we implemented low-latency

communications on the Thinking Machines CM-5.



CHAPTER 6. PARALLEL SPARSE MATRIX SOLVER IMPLEMENTATIONS 52

ROW-MAJOR DATA STORAGE FOR L

COLUMN-MAJOR DATA STORAGE FOR U

VECTORWISE ACCESS

Figure 6.3: Optimal Data Storage for Sparse Factorization | Doolittle's Algorithm

A version of the software is available that runs on a single processor on the CM-5 to provide

empirical speed-up data to quantify multi-processor performance. Empirical performance data has

been gathered for a range of numbers of processors with real power systems sparse network matrices.

Results based on empirical data collected in benchmarking trials are presented in the next chapter.

Our block-diagonal-bordered sparse direct solvers have the following distinct segments which were

derived in chapter 4:

1. LU factorization |

� factor the mutually independent diagonal blocks and associated portions of the border |

Ai;i = Li;iUi;i, Am+1;i = Lm+1;iUi;i and Ai;m+1 = Li;iUi;m+1 for (1 � i � m),

� update the last diagonal block using the data in the borders |

Am+1;m+1 = Am+1;m+1 �
Pm

i=1 Lm+1;iUi;m+1,

� factor the last diagonal block | Am+1;m+1 = Lm+1;m+1Um+1;m+1,

2. forward reduction |

� calculate the y vector partition corresponding to the mutually independent

diagonal blocks | yi for (1 � i � m),

� update the b vector partition corresponding to the last diagonal block |

bm+1 = bm+1 �
Pm

i=1 yiLm+1;i,

� calculate the y vector partition corresponding to the last diagonal block | ym+1,

3. backward substitution |
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� calculate the x vector partition corresponding to the last diagonal block | xm+1,

� calculate the x vector partition corresponding to the mutually independent diagonal

blocks | xi for (1 � i � m).

The Choleski factorization algorithm is similar to LU factorization, with the block-diagonal-bordered

Choleski algorithm having the same distinct sections as described above with the exception of LTi;i

and LTm+1;i being substituted for Ui;i and Ui;m+1 respectively.

6.2.1 The Hierarchical Data Structure

This block-diagonal-bordered sparse LU solver uses implicit hierarchical data structures based on

vectors of C programming language structures to e�ciently store and retrieve data for a block-

diagonal-bordered sparse matrix. These data structures provide good cache hit access, because non-

zero data values and row and column location indicators are stored in adjacent physical memory

locations. For this work, we are assuming that there is no requirement for pivoting; consequently, we

can use static data structures and the locations of all �llin are determined before memory is allocated

for the data structures. We use explicit pointers to subsequent data locations in order to reduce

indexing overhead. Row location indicators are explicitly stored as are pointers to subsequent values

in columns that are required when updating values in the matrix. The use of additional memory

in the data structures is traded for reduced indexing overhead. Modern distributed memory multi-

processors are available with substantial amounts of random access memory at each node, and power

systems network matrices are actually small relative to other matrices found in the academic and

industrial communities. Consequently, this research examines data structures that are designed to

optimize processing speed at the cost of increased memory usage when compared to other compressed

storage formats. We compare the memory requirements for these data structures to the memory

requirements for the more conventional compressed data structures below.

The hierarchical data structure is composed of eight separate parts that implicitly store a block-

diagonal-bordered sparse matrix. The hierarchical nature of these structures store only non-zero

values, especially in the borders where entire rows may be zero. Eight separate C language structures

are employed to store the data in a manner that can e�ciently be accessed with minimal indexing

overhead. Static vectors of each structure type are used to store the block-diagonal-bordered sparse

matrix. Figure 6.4 graphically illustrates the hierarchical nature of the data structure, where the

distinct C structure elements presented in that �gure are:

1. diagonal block identi�ers,

2. matrix diagonal elements,

3. non-zero values in the lower triangular diagonal matrix blocks (stored as sparse row vectors),
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Figure 6.4: The Hierarchical Data Structure for Parallel LU Factorization

4. non-zero values in the upper triangular diagonal matrix blocks (stored as sparse column vec-

tors),

5. non-zero row identi�ers in the lower border,

6. non-zero column identi�ers in the upper border,

7. non-zero values in the lower border (stored as sparse row vectors),

8. non-zero values in the upper border (stored as sparse column vectors).

At the top of the hierarchical data structure is the information on the storage locations of

independent diagonal blocks, and both the lower and upper borders. The next layer in the data

structure hierarchy has the matrix diagonal and the identi�ers of non-zero border rows and columns.

Data values on the original matrix diagonal are stored in the diagonal portion of the data structure;

however, most of the remaining information stored along with each diagonal element are pointers so

that data in related columns or rows can be accessed rapidly.

Data in the strictly lower triangular portion of the matrix is stored as sparse row vectors; likewise,

data in the strictly upper triangular portion of the matrix is stored as sparse column vectors. This

data storage scheme minimizes the e�ort to �nd non-zero Ai;k | Ak;j pairs used to modify Ai;j

by consecutively storing values in lower triangular rows and upper triangular columns. However,

Crout and Doolittle-based LU factorization algorithms require access to the next non-zero value in
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the same column or row for lower/upper triangular matrices, so pointers are used to permit direct

access to those values without requiring searches for the data as is required in other compressed

storage formats. This data structure provides the bene�ts of a doubly linked data structure in order

to minimize indexing overhead. The value corresponding to any diagonal element has pointers to

the �rst non-zero element in the lower triangular row and upper triangular column, and to the �rst

non-zero elements in the lower and upper border. This data structure trades memory utilization for

speed by storing indicators to all non-zero column values. In addition, the combination of adjacent

storage of non-zero row values and the explicit storage of column identi�ers, greatly simplify the

forward reduction and backward substitution steps.

The remaining portions of the hierarchical data structure e�ciently store the non-zero values in

the borders. Because entire lower border rows or upper border columns may be sparse in a block,

two layers are required to store this data in an e�cient manner. The next level in this portion of

the hierarchy stores the location of the �rst non-zero value in the row or column. The corresponding

row and column identi�ers can be found by referencing the structure that the pointer references.

The non-zero values in the lower and upper borders are stored with the same format as data in the

diagonal blocks.

Conventional compressed data formats require less storage than this data structure; however,

additional memory has been traded for reduced indexing overhead. Two reasons exist that justify

the use of additional memory: large memories are available with state-of-the-art distributed-memory

multi-processors and these algorithms have been designed with the expressed intention to support

real-time applications. The compressed data format requires

Sc = (�fp + �int)� �(A) + (�int � N ) (6.1)

bytes to store the A matrix implicitly. Likewise, the hierarchical data structure used in this imple-

mentation requires

Sh = (�fp + (3� �int))� �(A) + (�int �N ) + ((3� �int)�Nblocks) + ((2� �int)� Nborder) (6.2)

bytes to store the same matrix implicitly.

where:

Sc is the storage requirements in bytes for the compressed data structure.

Sh is the storage requirements in bytes for the hierarchical data structure.

�fp is the length if a oating point data type.

�int is the length if an integer data type.

�(A) is the number of non-zero values in the matrix.

N is the order of the matrix.

Nblocks is the number of independent blocks.
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Nborder is the number of non-zero row and column segments in the borders.

For double precision oating point or single precision complex representations of the actual

data values and single word integer representations of all pointers, the hierarchical data structure

takes approximately twice the data storage of the compressed data structure. By doubling the

storage requirements, row and column data is available as sparse vectors for ready cache access

when updating values and subsequent column or row values are directly addressable. When using

conventional compressed data structures, indexing information is stored only on a single dimension

and values along the other dimension must be found by searching through the data structures to

�nd the next value to update. To �nd a value in a row or column, the average number of operations

in the search will be one-half the average number of values in the row or column. Given that this

costly search must be performed for nearly every non-zero value in the matrix, substantial indexing

overhead is required when using the implicit compressed storage format. By using this data structure

and doubling the storage, there is a signi�cant decrease in indexing overhead even for the sequential

version of this sparse block-diagonal-bordered LU factorization algorithm.

While Crout and Doolittle factorization algorithms permit partial pivoting [30], this static hier-

archical data structure assumes that no pivoting is required to maintain numerical stability in the

calculations. Traditional numerical pivoting can be di�cult in a general sparse matrix due to the

sparsity structure and concerns for �llin, so considerations are made to relax the normal numerical

pivoting rules in Markowitz pivoting when the matrix is neither positive de�nite nor diagonally

dominate [12]. Block-diagonal-bordered sparse matrices o�er the potential for an additional relaxed

pivoting rule that limits pivoting choices to within a diagonal matrix block. For the present research,

it is assumed that numerical pivoting will not be required, because the matrices for power systems

distribution networks will be derived from matrices that are diagonally dominate or even positive

de�nite.

6.2.2 Parallel Blocked-Diagonal-Bordered LU Factorization

Implementations for both parallel block-diagonal-bordered sparse LU and Choleski factorization have

been developed in the C programming language for the Thinking Machines CM-5 multi-processor

using a host-node paradigm with explicit message passing. Two versions of each parallel block-

diagonal-bordered algorithm have been implemented: one implementation uses low-latency active

messages to update the last diagonal block using data in the borders and the second implementa-

tion uses conventional high(er) latency non-blocking, bu�ered interprocessor communications. The

communications paradigms for these two implementations di�er signi�cantly. The communications

paradigm we used with active messages, is to calculate a vector � vector product and immediately



CHAPTER 6. PARALLEL SPARSE MATRIX SOLVER IMPLEMENTATIONS 57

send the value to the processor holding the corresponding value of Am+1;m+1. The communications

paradigm for bu�ered communications is to perform the vector � vector products, store them in a

bu�er, and then have each processor send bu�ers to all other processors. The low-latency, active mes-

sage communications paradigm greatly simpli�ed development of the algorithm, and the empirical

results presented in the next chapter, show that (not unexpectedly) the low-latency communication

implementation is substantially faster.

The block-diagonal-bordered LU factorization algorithm can be broken into three component

parts as de�ned in the derivation on available parallelism in chapter 4. Pseudo-code representations

of each parallel algorithm section are presented separately in �gures E.1 through E.4 in appendix E.

In particular, each of these �gures correspond to the following �gure numbers:

1. factor the diagonal blocks and border | �gure E.1,

2. update the last diagonal block |

� low-latency communications paradigm | �gure E.2,

� bu�ered communications paradigm | �gure E.3,

3. factor the last diagonal block | �gure E.4.

The LU factorization algorithm for the diagonal blocks and border follows a Doolittle's form and

is a fan-in type algorithm. Conversely, the LU factorization algorithm for the last diagonal block

follows a fan-out algorithm requiring rank-1 sub-matrix updates as each row or block of rows are

factored.

The algorithm section that updates the last diagonal block calculates a sparse matrix � sparse

matrix product by calculating individual sparse vector � sparse vector products for lower border

rows and upper border columns. These partial sums must be distributed to the proper processor

holding data in the last diagonal block. Separate sparse vector products are performed for each

block of data on a processor. Only non-zero rows in the lower border and non-zero columns in the

upper border are utilized when calculating vector � vector products to generate the required partial

sum values to update the last diagonal block. Examining only non-zero values signi�cantly limits

the amounts of calculations in this phase. In the process of developing an implementation with

optimal performance, we discovered that any attempt to consolidate updates to a value in the last

diagonal block caused more overhead than was encountered by sending multiple update values to

the same processor. There is more work required to sum update data than to calculate the sparse

vector products. Likewise, there has been no attempt at parallel reduction of the partial sums of

updates from the borders.

This block-diagonal-bordered LU factorization implementation solves the last block using a sparse

blocked kji-saxpy LU algorithm based on the dense kij-saxpy algorithm described in [61]. Here k
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is the index corresponding to the diagonal, i is the index corresponding to rows, and j is the index

corresponding to columns. Our examinations of power systems network matrices showed that after

partitioning these matrices into block-diagonal-bordered form, there is little additional available

parallelism in the last diagonal block | insu�cient inherent parallelism to be exploited in a load-

balanced manner. Consequently, a pipelined algorithm has been used. The algorithm to factor

the last diagonal block maintains the blocked format and pipelined nature of the dense kij-saxpy

algorithm; however, special changes were made to the algorithm in order to minimize calculations

and to minimize overhead when performing communications. The three signi�cant changes to the

kij-saxpy algorithm are:

� the order of calculations in each fan-out update has been changed,

� sparse data structures have been utilized,

� separate data structures are used to store the values on the diagonal and values in the strictly

lower and strictly upper triangular matrices.

While changing the order of calculations in each rank-1 update of the partially-factored sub-

matrix has little e�ect on the factorization algorithm, it is equivalent to exchanging the order of for

loops. This seemingly small modi�cation contributed signi�cantly to improving the performance of

the forward reduction and backward substitution steps. This small modi�cation reduced the amount

of communications greatly during both forward reduction and backward substitution by allowing

the broadcast of only calculated values of ym+1 and xm+1 and not also requiring the broadcast of

partial sums encountered when updating values.

As would be expected with a sparse matrix, data is stored as sparse vectors with explicit row

and column identi�ers. To optimize performance for a kji algorithm, data is stored in sparse vectors

corresponding to rows in the matrix. These sparse vectors of row data are stored as three separate

data structures:

1. values on the diagonal,

2. values in the strictly lower triangular matrix,

3. values in the strictly upper triangular matrix.

The use of three data structures greatly simpli�es parallel rank-1 updates in this fan-out algorithm.

In parallel LU factorization, only the data in either the strictly lower triangular or strictly upper

triangular matrix must be broadcast to all processors when updating the sub-matrix. By storing

the data in the triangular matrices in separate data structures, the data in a block can be accessed

directly by the bu�ered communications software. With irregular sparse matrices, this storage



CHAPTER 6. PARALLEL SPARSE MATRIX SOLVER IMPLEMENTATIONS 59

technique is required to eliminate a memory-to-memory copy step required if data was stored in

single sparse row or column vectors. The data is irregular and no regular strides can be used when

forming the communications bu�er if all data is stored contiguously for a row.

Parallel block-diagonal-bordered Choleski factorization algorithms are similar to the LU factor-

ization algorithms presented in �gures E.1 through E.4 | with modi�cations to account for the

symmetric nature of the matrices used in Choleski factorization. Choleski factorization has only

about half of the calculations of LU factorization, and block-diagonal-bordered Choleski factoriza-

tion has only half the number of updates to the last diagonal block. The parallel Choleski algorithm

using the active message communications paradigm would see reduced communications when com-

pared to LU factorization; however, there would be no reduction in the number of messages required

in a bu�ered communications update of the last diagonal block. While the bu�ers would be shorter,

there is still the requirement for each processor to communicate with all other processors. In most

instances, the message start-up latency dominates, not the per-word transport costs. There would

also be no reduction in the amount of communications when factoring the last block.

In other words, parallel Choleski factorization is a more di�cult algorithm to implement e�-

ciently than LU factorization, because there is a signi�cant reduction in the amount of calculations

without a similar reduction in communications overhead. The computation-to-communications ratio

for Choleski factorization is 1
2 to 1

8 of LU factorization. Consequently, the results in section 7.1 will

compare the performance of LU factorization and Choleski factorization to illustrate performance as

a function of the amount of oating point operations versus the communications overhead. To get a

better understanding of this trend, a version of the parallel block-diagonal-bordered LU factorization

algorithm has been implemented for complex data. Complex math has four oating point multi-

plies and four subtracts/adds when compared to double precision oating point multiply/subtract

operations. With these three implementations, we will be able to clearly illustrate the need for

low-latency communications for algorithms to solve power systems network linear equations. These

matrices are su�ciently sparse, that by increasing the number of oating-point operations by two or

eight times that of Choleski factorization, there is a marked increase in the relative parallel speedup

of these algorithms. Communications overhead remains constant and only the number of oating

point operations increases. By considering the capabilities of the target parallel architecture, namely

the computation-to-communications ratio or granularity, you can identify the communications ca-

pabilities required in target parallel architectures.

6.2.3 Forward Reduction and Backward Substitution

The remaining steps in the parallel algorithm are forward reduction and backward substitution. The

parallel version of these algorithms take advantage of the fact that calculations can be performed

in one of two distinct orders that preserve the precedence relation in the calculations [34]. The
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combination of these techniques is utilized to minimize communications times when solving for the

last diagonal block. The forward reduction algorithm to operate with the parallel block-diagonal-

bordered LU factorization algorithm can be broken into three component parts, similar to LU

factorization. Pseudo-code representations of each parallel algorithm section are presented separately

in �gures E.5 through E.8 in appendix E. In particular, each of these �gures correspond to the

following �gure numbers:

1. forward reduce the diagonal blocks and border | �gure E.5,

2. update the last diagonal block |

� low-latency communications paradigm | �gure E.6,

� bu�ered communications paradigm | �gure E.7,

3. forward reduce the last diagonal block | �gure E.8.

The backward substitution algorithm to operate with the parallel block-diagonal-bordered LU

factorization algorithm can be broken into two component parts, back substitute the last diagonal

block then back substitute the remaining upper triangular matrix. The only interprocessor commu-

nications required occurs when solving for xm+1 in the last diagonal block. The solution for xm+1 in

this portion of the matrix broadcasts the values of xm+1 to all processors, so those values are available

to the next step, solving for x1 to xm in the remaining diagonal blocks. Pseudo-code representations

of each parallel algorithm section are presented separately in �gures E.9 and E.10 in appendix E,

respectively for backward substitution of the last diagonal block and backward substitution of the

diagonal blocks and border.

Forward reduction and backward substitution algorithms for Choleski factorization are similar

to those for LU factorization, with one major di�erence. The factorization process generates only

a single lower triangular matrix, L. For the last diagonal block, one triangular solution step must

occur in a manner that requires more communications than an optimally implemented triangular

solution for LU factorization. The kji order for LU factorization in the last diagonal block has

been selected to maximize performance for both forward reduction and backward substitution |

by minimizing communications overhead. Meanwhile, for Choleski factorization, the optimal direct

solver algorithm must use a column distribution for the data in the last block, require additional

communications be incurred in the forward reduction of the last diagonal block, and then backward

substitute the last diagonal block using an implicit transpose of L. The �nal step ensures that all

xm+1 values are broadcast to all processors, eliminating an extra, costly communications step. This

combination of data distributions and algorithm speci�cs ensures the least number of calculations

and the minimum amount of communications are performed and should o�er the best opportunity

for good parallel performance.
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6.3 Parallel Sparse Iterative Solver Implementations

We have implemented a parallel version of a block-diagonal-bordered sparse Gauss-Seidel algorithm

in the C programming language for the Thinking Machines CM-5 multi-computer using using explicit

message passing and a host-node paradigm. In order to have an implementation with extremely low-

latency communications, we utilized the Connection Machine active message layer (CMAML) remote

procedure call features [53, 59]. We also implemented versions of the algorithms using non-blocking,

bu�ered communications. A signi�cant portion of the communications require each processor to

send short data bu�ers to every other processor, imposing signi�cant communications overhead

due to latency. Substantial improvements in the performance of the algorithm were observed for

low-latency active messages, when compared to more traditional communications paradigms that

use non-blocking communications functions in conjunction with packing data into communications

bu�ers. Throughout this discussion of parallel iterative sparse solvers, the active message commu-

nications paradigm is the means with which we implemented low-latency communications on the

Thinking Machines CM-5.

The low-latency communications paradigm we use throughout this algorithm is to send a double

precision or complex data value to the destination processor as soon as the value is calculated and

the value is sent only to those processors that need the value. Communications in the algorithm

occur at distinct time phases, making polling for the active message handler function e�cient. An

active message on the CM-5 has a four word payload, which is more than adequate to send a

double precision oating point value and an integer position indicator or a similar complex value

and integer position indicator. The use of active messages greatly simpli�ed the development and

implementation of this parallel sparse Gauss-Seidel algorithm, because there was no requirement to

maintain and pack communications bu�ers.

A version of the software is available that runs on a single processor on the CM-5 to provide

empirical speed-up data to quantify multi-processor performance. Empirical performance data has

been gathered for a range of numbers of processors and real power systems sparse network matrices.

Results based on empirical data collected in benchmarking trials are presented in section 7.2. This

block-diagonal-bordered sparse Gauss-Seidel method has the following distinct segments which were

derived in chapter 4:

1. calculate x
(k+1)
i in the diagonal blocks and upper border, Ai;i and Ai;m+1

respectively, where (1 � i � m),

2. update the values of b̂ using values in the lower border |

b̂ = bm+1 �
Pm

i=1

�
L�1m+1;ix

(k+1)
i

�
|

the actual implementations use values of b̂ ,
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3. calculate x̂(k+1) using the values of b̂ and the last diagonal block Am+1;m+1.

6.3.1 The Hierarchical Data Structure

This block-diagonal-bordered sparse Gauss-Seidel method uses implicit data structures based on

vectors of C programming language structures to store and retrieve data e�ciently within the sparse

matrix. These data structures provide good cache hit access, because non-zero data values and

column location indicators are stored in adjacent physical memory locations. The hierarchical data

structure is composed of six separate parts that implicitly store the block-diagonal-bordered sparse

matrix and the last block. The hierarchical nature of these structures store only non-zero values,

especially in the lower border where entire rows may be zero. Six separate C language structures

are employed to store the data in a manner that can e�ciently be accessed with minimal indexing

overhead. Static vectors of each structure type are used to store the block-diagonal-bordered sparse

matrix. Figure 6.5 graphically illustrates the relationships within the data structure, where the

distinct C structure elements presented in that �gure are:

1. diagonal block identi�ers and matrix diagonal elements,

2. non-zero values in the diagonal blocks and upper border (stored as sparse row vectors),

3. non-zero row identi�ers in the lower border,

4. non-zero values in the lower border (stored as sparse row vectors),

5. last diagonal block identi�ers and matrix diagonal elements,

6. non-zero values in the last diagonal block (stored as sparse row vectors).

As illustrated in the �gure, the block-diagonal structure, the border-row structure, and the last-

block-diagonal structure contain pointers to the sparse row vectors. The second values in the two

diagonal pointers are the values of aii, while the second value in the border-row structure is the

destination processor, �, for the vector � vector product from this border row used in calculating

values in the last diagonal block.

The hierarchical data structure for parallel Gauss-Seidel actually has three separate data struc-

tures that have pointers to corresponding data structures to store o�-diagonal non-zero row vector

elements. The �rst data structure of pointers to o�-diagonal non-zero matrix elements represents

the elements on the diagonal within blocks, excluding the last diagonal block. The last diagonal

block is handled separately by the third set of data structures. The second data structure of pointers

e�ciently stores the non-zero values in the lower border. Because entire lower border rows or upper

border columns may be sparse in a block, two layers are required to store this data in an e�cient

manner.
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Figure 6.5: The Hierarchical Data Structure for Parallel Gauss-Seidel Methods

The data structures for the sparse block-diagonal-bordered Gauss-Seidel algorithm are much

simpler than the data structures for the direct methods. Data structures for the parallel Gauss-

Seidel method have one less layer than the data structures for direct methods | it is possible to

eliminate the block identi�ers without causing additional e�ort to search for values. In addition,

separate data storage for the upper borders has been eliminated. These values are entered into

sparse column vectors that are denoted by the block identi�ers. The extra loops for blocks and

the upper border must be eliminated in order to reduce indexing overhead that would occur in the

parallel implementation but not in the sequential implementation. During algorithm development,

we discovered that this indexing overhead signi�cantly degraded parallel algorithm performance, so

enhanced data structures were developed that required a minimum of for loop instantiations.

6.3.2 Parallel Blocked-Diagonal-Bordered Gauss-Seidel

Implementations for the parallel block-diagonal-bordered sparse Gauss-Seidel method have been

developed in the C programming language for the Thinking Machines CM-5 multi-processor using

a host-node paradigm with explicit message passing. Two versions of the parallel block-diagonal-

bordered iterative algorithm have been implemented: one implementation uses low-latency active

messages to update b̂ using data in the lower border and to distribute values of x̂(k+1) from the

last diagonal block. The second implementation uses conventional high(er) latency non-blocking,

bu�ered interprocessor communications. The programmingparadigms for these two implementations

di�er signi�cantly.

The programming paradigm we used with active messages, is to calculate a vector � vector

product when updating the last diagonal block and immediately send the value to the processor
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holding the corresponding value of b̂. Likewise, when values of x̂(k+1) are calculated, they are sent

immediately but to only those processors that require these values. The programming paradigm we

used with bu�ered communications is to perform the vector � vector products, store them in separate

bu�ers, and then have each processor send bu�ers to all other processors. Likewise, when values of

x̂(k+1) are calculated, they are stored in a bu�er at each processor and sent to all other processors.

The active message communications programming paradigm greatly simpli�ed development of the

algorithm, and the empirical results, presented in section 7.2, show that (not unexpectedly) the

low-latency, active message-based implementation is signi�cantly faster.

The parallel block-diagonal-bordered sparse Gauss-Seidel algorithm can be broken into three

component parts as de�ned in the derivation of available parallelism in chapter 4:

1. solve for x(k+1) in the diagonal blocks,

2. calculate b̂ = bm+1 �
Pm

i=1

�
L�1m+1;ix

(k+1)
i

�
by forming the

matrix � vector products in parallel,

3. solve for x̂(k+1) in the last diagonal block.

Pseudo-code representations of each parallel algorithmsection are presented separately in �gures E.11

through E.18 in appendix E. In particular, each of these �gures correspond to the following �gure

numbers:

1. monitor convergence for the parallel Gauss-Seidel method | �gure E.11,

2. solve for x(k+1) in the diagonal blocks and upper border | �gure E.12,

3. update b̂ for the last diagonal block |

� low-latency communications paradigm | �gure E.13,

� bu�ered communications paradigm | �gure E.14,

4. solve for x̂(k+1) in the last diagonal block |

� low-latency communications paradigm | �gure E.15,

� bu�ered communications paradigm | �gure E.16,

5. perform the convergence check |

� low-latency communications paradigm | �gure E.17,

� bu�ered communications paradigm | �gure E.18.
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Figure E.11 provides the framework for the parallel block-diagonal-bordered sparse Gauss-Seidel

implementation. In this implementation, multiple iterations are performed before a check is made

on convergence. Convergence checks have computational complexity nearly as great as to solve for

x(k+1), so the algorithm performs a prede�ned number of iterations before the convergence check. To

better understand the algorithm, timing statistics were collected for each portion of the algorithm.

A version of the software is available that runs on a single processor on the CM-5 to provide

empirical speed-up data to quantify multi-processor performance. This sequential software simply

places all data into one diagonal block without a border and includes the capability to gather

convergence-rate data. The parallel implementation has been developed as an instrumented proof-

of-concept to examine the e�ciency of each section of the code described above. The host processor is

used to gather and tabulate statistics on the multi-processor calculations. Statistics are gathered at

synchronization points, so there is no impact on total empirical measures of performance. Empirical

performance data is presented in section 7.2 for varied numbers of processors solving real power

systems sparse network matrices.

The algorithm section that updates the values of b̂ calculates a sparse matrix � dense vector

product by calculating individual sparse vector � dense vector products for lower border rows. These

partial sums must be distributed to the proper processor holding the respective row data in the last

diagonal block. Separate sparse vector � dense vector products are performed for each block of data

on a processor. Only nonzero rows in the lower border are utilized when calculating vector � vector

products to generate the required partial sum values to update the values of b̂. Examining only

non-zero values signi�cantly limits the amounts of calculations in this phase.

There has been no attempt at parallel reduction of the partial sums of updates from the borders.

In the process of developing an implementation with optimal performance, we discovered that any

attempt to consolidate updates to a value in the last diagonal block caused more overhead than was

encountered by sending multiple update values to the same processor. There is more work required

to sum update data than to calculate the sparse vector � dense vector products. Likewise, there

has been no attempt at parallel reduction of the partial sums of updates from the borders.

In the parallel Gauss-Seidel, di�erences in programming paradigms resulting from the di�erent

interprocessor communications capabilities are no more signi�cant than when calculating new values

in the last diagonal block. With active message communications, only those communications that

are required are performed. Lists of processors that require a particular value of x̂(k+1) are calcu-

lated a priori and used repeatedly. Empirical data presented in section 7.2 clearly illustrates the

limited growth in the number of communications messages as the number of processors increases.

When using bu�ered communications, the programming paradigm is to calculate all values on a pro-

cessor within a color and then broadcast those values to all other processors. Development testing

illustrated that the algorithm for this communications paradigm would be the most e�cient way
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to implement the algorithm. There is little to be gained by attempting to determine a subset of

processors. In almost all distributions of data to processors, one or more of the multiple values in a

bu�ered message was required on every processor. As a result, every processor must broadcast data

to all other processors after every color. While some communications overhead could be saved by

limiting what data is sent to each processor | shorten the messages | it was determined that too

much overhead would be required to sort the data and produce separate communications bu�ers for

each destination processor.



Chapter 7

Empirical Results for Parallel

Linear Solvers

Empirical results for the parallel block-diagonal-bordered direct and iterative methods are pre-

sented in this chapter along with comparisons of performance of direct versus iterative parallel

linear solvers. We analyze the empirical performance of the parallel block-diagonal-bordered LU

solvers in section 7.1, we analyze the empirical performance of the parallel block-diagonal-bordered

iterative solver in section 7.2, and in section 7.3, we compare performance of the two algorithms.

7.1 Empirical Results for Parallel Direct Linear Solvers

A stated goal of this block-diagonal-bordered direct solver is to simplify the task organization of the

parallel LU algorithm and have interprocessor communications signi�cantly reduced and regular.

The performance of this block-diagonal-bordered LU solver is dependent on the ability to order the

real power systems sparse matrices into the desired form with uniformly distributed data in the

diagonal blocks and a minimum number of equations in the lower border.

In section 7.1.1, we illustrate the ordering capabilities of the node-tearing nodal analysis by

presenting pseudo-images of selected sparse power systems network matrices after we have applied

both our node-tearing algorithm to partition the matrices into block-diagonal-bordered form and our

pigeon-hole load-balancing algorithm. We provide additional information as to the overall perfor-

mance of the three-step preprocessing phase, with special note to the amount of �llin in the matrices

after ordering and to the total number of oating point operations required to factor the matrices.

We then report on the performance of the block-diagonal-bordered sparse LU and Choleski solvers in

section 7.1.2. Performance of these parallel block-diagonal-bordered direct linear solvers is dependent

67
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upon the ability of the preprocessing phase, in addition to the performance of the parallel imple-

mentations. The real performance test of the node-tearing algorithm occurs when the performance

of the block-diagonal-bordered sparse LU solver is examined for real power system network matrices

in section 7.1.2. In section 7.1.3, we compare the performance of low-latency, active message-based

implementations and bu�ered communications-based implementations. In section 7.1.4, we present

preliminary results when running the complex variate LU algorithms on the IBM SP1 and SP2 scal-

able parallel processors, and in section 7.1.5, we present our conclusions concerning the performance

of our parallel direct implementations.

7.1.1 Ordering Power Systems Network Matrices into Block-Diagonal-

Bordered Form

Critical to the e�cient operation of these parallel block-diagonal-bordered direct sparse matrix

solvers is the ability to order sparse power systems networks into block-diagonal-bordered form

with equal workloads in all processors. In this section, we illustrate that it is possible to order

power systems networks to the desired form, and later we present empirical data that show the

load-balancing capabilities of the preprocessing phase.

To demonstrate the performance of the graph partitioning algorithm, we present pseudo-images

that show the locations of the non-zero values in the sparse matrices, both the original non-zero values

and those that would become non-zero due to �llin during factorization. In the following pseudo-

images, original non-zero values are represented as black pixels and �llin values are represented by

a lighter grey color. A bounding box has been placed around the sparse matrix. These pseudo-

images clearly show the block-diagonal-bordered form of the power systems network matrices after

the preprocessing phase.

We examine the performance of our parallel block-diagonal-bordered LU and Choleski solvers

with �ve separate power systems network matrices:

� Boeing-Harwell matrix BCSPWR09 | 1,723 nodes and 2,394 graph edges [13],

� Boeing-Harwell matrix BCSPWR10 | 5,300 nodes and 8,271 graph edges [13],

� EPRI matrix EPRI6K matrix | 6,692 nodes and 10,535 graph edges [14],

� Niagara Mohawk Power Corporation operations matrix NiMo-OPS | 1,766 nodes and 2,506

graph edges,

� Niagara Mohawk Power Corporation planning matrix NiMo-PLANS | 9,430 nodes and 14,001

graph edges.
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In order to provide a baseline with which to illustrate the performance of the node-tearing algorithm,

we have provided pseudo-images of these original, unordered matrices in chapter 2.

Our parallel block-diagonal-bordered direct algorithms require that the power systems network

matrix be ordered into block-diagonal-bordered form in a manner that yields a minimum of oating

point operations and that has uniformly distributed workloads at all processors. A single speci�ed

input parameter, the maximum partition size, de�nes the shape of the matrix after ordering by

the node-tearing algorithm, which in turn directly impacts the size of the borders and the last

diagonal block, the number of oating point operations, and the e�cacy of load-balancing. In order

to illustrate the ability of the node-tearing-based ordering algorithm, we present a detailed analysis

of graph partitioning for the BCSPWR09 power systems network in �gure 7.1, with sample ordered

matrices for maximum diagonal block sizes of 16, 32, 64, and 96 nodes. For the larger values of

maximum partition size, the application of minimum degree ordering within a partition is evident

in these �gures. The upper left-hand corner of a diagonal block has fewer values than the lower

right-hand corner.

Detailed statistics for the matrix partitionings are presented in table F.1 (appendix F) for the

four example orderings of the BCSPWR09 matrix. This table includes the number of �llin, and the

number of rows/columns in the borders and last diagonal block of the ordered matrix. Table F.1

shows that the ordering with maximum partition size of 32 has the least �llin, the fewest total

operations, and the largest percentage of operations in the mutually independent matrix partitions.

Empirical data collected when benchmarking the parallel software implementation on the CM-5 show

that this partitioning has the best parallel direct linear solver performance for this power systems

network.

The pseudo-images in �gure 7.1 illustrate that the size of the borders and last diagonal block can

be manipulated by varying the the maximum partition size. The number of rows/columns in the

borders and last diagonal block of these ordered matrices vary from 277 to 131 for maximumpartition

size of 16 and 96 respectively. Each of these four �gures has been load-balanced for eight processors,

and the pseudo-images in �gure 7.1 include additional markings to illustrate how this matrix would

be distributed to the eight processors | P1 through P8. The metric for load-balancing is the number

of operations and not the number of columns or rows assigned to a processor. The load balancing

step is simply another permutation of the matrix that keeps rows/columns within partitions together

in the same order. As the matrix is load-balanced for various numbers of processors, there is no

change in the number of �llin nor in the total number of operations.

Figure 7.2 has families of curves that illustrate the relationship between maximumpartition size

and size of the borders and last diagonal block when partitioning each of the �ve power systems

networks used in this analysis. The partitioning results for the BCSPWR09 network are very similar

to the data for the Niagara Mohawk operations data, NiMo-OPS. These matrices are similar in size
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Figure 7.1: BCSPWR09 | Block-Diagonal-Bordered Form | Load Balanced for 8 Processors
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Figure 7.2: Last Diagonal Block Size after Partitioning

and have similar numbers of edges per node. Meanwhile, larger matrices have signi�cantly greater

numbers of rows in the border and last diagonal block. Also, these larger matrices have signi�cantly

greater variations between the number of rows in the last diagonal block. This empirical evidence

suggests that there are fundamental di�erences between operational analysis networks and larger

planning networks. Additional evidence of these di�erences is discussed below, both as we present

orderings for these matrices and as we discuss the performance of the parallel direct linear solvers.

Note, that in �gure 7.2, the maximum size of the diagonal blocks is inversely related to the size

of the last diagonal block. This is intuitive, because as diagonal matrix blocks are permitted to grow

larger, multiple smaller blocks can be incorporated into a single block. Not only will the two blocks

be consolidated into the single block, but in addition, any elements in the coupling equations that are

unique to those network partitions would also be moved into the larger block. Another interesting

point with the relationship between maximum size of the diagonal block and the size of the last

block, is that the percentage of non-zeros and �llin in the last diagonal block increases signi�cantly

as the size of the last block decreases. The empirical performance data for the parallel solvers show

that the best parallel performance is closely correlated with minimum numbers of operations.

In tables F.2 through F.5 (appendix F), we present summary statistics for the remaining power

systems networks used in this analysis. In each table, the maximum partition size that yielded the
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best parallel performance has been identi�ed.

In �gure 7.3, we provide an accompanying visual reference to the partitioning performance data

presented in tables F.2 through F.5. For each power systems network, we present a representation of

the matrix after partitioning and load-balancing for 8 processors. Partitioned graphs presented here

have maximumpartition size values that yielded the best empirical parallel block-diagonal-bordered

direct linear solver performance. The pseudo-images of the block-diagonal-bordered matrices are

highlighted to illustrate the manner in which each matrix would be distributed to eight processors

| P1 through P8.

We want to reiterate that the block-diagonal-bordered matrix for the BCSPWR09 network has

many similarities with the NiMo-OPS network. Also, the EPRI6K matrix has noticeable similarities

with the NiMo-PLANS matrix. The BCSPWR09 and NiMo-OPS matrices are operational networks

that are homogeneous and have very similar voltage distributions throughout. Meanwhile, the

EPRI6K and NiMo-PLANS matrices are from planning applications, and one subsection of these

networks includes some lower voltage electrical distribution lines. This matrix has enhanced detail

in the local area, with less detail in areas distant from the power utility's own network. This causes

additional rows/columns in the borders and the last diagonal blocks, but our parallel block-diagonal-

bordered direct solvers appear to have little di�culty with e�ciently solving these matrices. The

small, highly connected graph section can be seen at the lower right-hand corner of the EPRI6K

and NiMo-PLANS matrices in �gure 7.3.

7.1.2 Parallel Direct Sparse Solver Performance

We have collected empirical data for parallel block-diagonal-bordered sparse direct methods on the

Thinking Machines CM-5 multi-computer for three solver implementations |

1. Choleski factorization and forward reduction/backward substitution for double precision vari-

ables,

2. LU factorization and forward reduction/backward substitution for double precision variables,

3. LU factorization and forward reduction/backward substitution for complex variables,

for each of two communications paradigms |

1. low-latency communications,

2. bu�ered communications,

for �ve separate power systems networks |

1. BCSPWR09,
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Figure 7.3: Block-Diagonal-Bordered Form Matrices | Load Balanced for 8 Processors
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2. BCSPWR10,

3. EPRI6K,

4. NiMo-OPS,

5. NiMo-PLANS,

for 1, 2, 4, 8, 16, and 32 processors, and for four matrix partitions with a maximum of 16, 32, 64,

and 96 graph nodes per partition.

For the three solver implementations, there are increasing amounts of oating point calcula-

tions in double precision Choleski factorization, double precision LU factorization, and complex LU

factorization, with a relative workload of approximately 1:2:8. Choleski algorithms have only ap-

proximately one half the number of oating point operations of LU algorithms, and complex oating

point operations require four separate multiplications and four addition/subtraction operations for

a single complex multiply/add operation. While there are di�ering amounts of calculations in these

algorithms, there are nearly equal amounts of communications, thus the granularity of the algorithm

increases proportionally to 1:2:8. The empirical timing data presented below will illustrate just how

sensitive the parallel sparse direct solvers for power systems networks are to communications over-

head. This sensitivity is not totally unexpected, given the extremely sparse nature of power systems

matrices.

Communications in block-diagonal-bordered Choleski or LU factorization occurs in two locations

| updating the last diagonal block using data in the borders and factoring the last diagonal block.

Because LU factorization requires the update of Lm+1;m+1Um+1;m+1 versus only Lm+1;m+1, there

are twice as many calculations and twice as many values to distribute when updating the last diagonal

block for LU factorization versus Choleski factorization. Meanwhile, there are equal amounts of

communications for LU and Choleski factorization when factoring the last diagonal block. The

parallel block-diagonal-bordered Choleski algorithm requires that data in LTm+1;m+1 be broadcast to

all processors in the pipelined algorithm that perform the rank 1 update of the sub-matrix. However,

for the last diagonal block in the parallel block-diagonal-bordered LU factorization algorithm, only

Um+1;m+1 must be broadcast during the parallel rank 1 update. For this research, we are assuming

that the matrices are position symmetric, so Lm+1;m+1 and Um+1;m+1 have equal numbers of non-

zero values.

As we examine the empirical results, we �rst describe the selection process to identify the matrix

partitioning with the best parallel empirical performance. This reduces the amount of data we must

consider when examining the performance of the implementations.
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Figure 7.4: Parallel LU Factorization Timing Data | Double Precision

7.1.2.1 Selecting Partitioned Matrices with Best Parallel Solver Performance

The primary factors, that a�ect the performance of parallel direct sparse linear solvers, are available

parallelism, load balancing, and communication overhead. Our choice to order the power systems

matrices into block-diagonal-bordered form provides a means to signi�cantly limit the task graph

to factor the matrix and to make all communications regular. We have shown in section 7.1.1 that

the node-tearing algorithm can partition the power systems network matrices into block-diagonal-

bordered form and o�er substantial parallelism in the diagonal blocks and borders.

The single input parameter to the node-tearing algorithm, the maximum partition size, when

varied, a�ects the size of the diagonal blocks and the size of the borders and last diagonal block.

When determining the partitioning with the best parallel direct block-diagonal-bordered sparse linear

solver performance, we examined the empirical data collected from algorithmbenchmark trials on the

Thinking Machines CM-5 multi-computer. Graphs presented in �gure 7.4 illustrate the performance

for LU factorization and the combination of the forward and backward triangular solution steps for

the Boeing-Harwell matrices: BCSPWR09 and BCSPWR10. Each graph has timing data for double

precision LU factorization and for forward reduction/backward substitution. These graphs are on a

log-log scale and show that for each power system network, a maximum of 32 nodes per partition

yields the best overall performance for factorization.

We are considering software to be embedded within a more extensive power systems applica-

tion, so we must examine e�cient parallel forward reduction and backward substitution algorithms

in addition to parallel factorization algorithms. Due to the reduced amount of calculations in the
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triangular solution phases, these algorithms are often ignored when parallel Choleski or LU factor-

ization algorithms are presented in the literature. However, graphs presented in �gure 7.4 show that

the time to factor the matrix is only approximately an order of magnitude greater than the time

required to perform forward reduction and backward substitution on a single processor. This is a

direct result of the extremely sparse nature of power system network matrices. For a dense matrix,

the number of calculation to factor a matrix is O(N3) and the number of calculations to triangular

solve the matrix is O(N2). For dense matrices as large as these two matrices, there would be a

signi�cant di�erence in wall-clock time between factorization and triangular solutions, a di�erence

that is not present here. As a result, we must also consider the performance of the triangular solution

step, especially if there will be dishonest (re)use of a factored matrix as it is repeatedly (re)used for

multiple triangular solutions. Meanwhile, this order of magnitude di�erence in performance erodes

for large numbers of processors, because it will be shown that there is better relative speedup for

the factorization algorithms than for forward reduction and backward substitution.

For the BCSPWR10 power systems network in �gure 7.4, we must consider the performance of

the forward reduction/backward substitution step in selecting the optimum network partitioning.

Performance of the factorization algorithm are nearly similar, although the performance of the

triangular solution step is signi�cantly better for 32 nodes per partition than 16 nodes per partition.

7.1.2.2 Timing Performance Comparisons

For the three solver implementations, there are increasing amounts of oating point calculations

in double precision Choleski factorization, double precision LU factorization, and complex LU fac-

torization, with granularity proportional to the relative workload of approximately 1:2:8. While

there are di�ering amounts of calculations in these algorithms, there are nearly equal amounts of

communications. We present sample timing comparisons for the three solver implementations in

�gure 7.5 for two power system networks: BCSPWR09 and BCSPWR10. These graphs each have

six curves | three each for factorization and for the triangular solution. These graphs illustrate

the sensitivity that parallel sparse direct solvers for power systems networks exhibit relative to the

amount of communications overhead. This sensitivity is not totally unexpected, given the extremely

sparse nature of power systems network matrices. Performance is similar for the other sample power

systems network matrices examined in this research.

These graphs plot the time in milliseconds that it takes to factor or calculate a triangular solution

for these matrices. These graphs also show the relative number of oating point operations for the

three implementations, when examining performance on a single processor. When comparing the

empirical parallel performance data from the three implementations, the ratios of the times to

factor the matrix decrease as additional processors are utilized. With nearly constant amounts of

communications, this overhead has proportionally less of an e�ect when there are more calculations
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Figure 7.5: Parallel Choleski and LU Timing Comparisons

in the LU factorization algorithms, and it is also easier to hide communications behind calculations

when more oating point operations are being performed.

These graphs also illustrate some important facts concerning parallel triangular solutions for

Choleski factorization. First, while there is only half the calculations in the factorization step, there

is no reduction in the number of calculations in the triangular solution step | both forward re-

duction and backward substitution steps must be performed. To calculate the triangular solution,

every non-zero coe�cient in L is used once during forward reduction and every non-zero coe�cient

in LT must also be used once during backward substitution. While it is possible to avoid explicitly

performing the matrix transpose, one of the triangular solutions will require additional communi-

cations overhead because the data will be oriented inconveniently. This solution phase must incur

additional communications, proportional to the number of non-zeros in the last diagonal block as

compared to the communications for LU factorization-based forward reduction, which would be pro-

portional to the number of rows or columns. The number of non-zeros is greater than the number of

rows/columns in the matrix, especially after considering the amount of �llin. For a single processor,

there is the same amount of work when solving the factored equations for double precision LU and

Choleski. However, the e�ect of the additional communications overhead has a noticeable e�ect on

the slope of the curve representing the triangular solution for Choleski solvers. We observed this

phenomenon for all �ve power systems networks.
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Figure 7.6: Relative Speedup | Parallel Direct Solvers

7.1.2.3 Examining Speedup

We present graphs of relative speedup calculated from empirical performance data in �gure 7.6 for the

three parallel direct solver implementations. The graphs for double precision and complex variate

LU factorization each have two families of speedup curves that show speedup for the �ve power

systems networks examined in this research with separate families of curves for both factorization

and the triangular solution. The graph for Choleski factorization has three families of curves that

show speedup for factorization, forward reduction, and backward substitution. Each curve plots

relative speedup for 2, 4, 8, 16, and 32 processors,

The graph for complex variate LU factorization in �gure 7.6 illustrates that parallel performance

of the complex LU factorization algorithm can be as much as 18 on 32 processors for the BCSPWR10
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power systems network. Meanwhile, factorization performance for the other data sets range from

eight to nearly eleven. The BCSPWR10 matrix has the most calculations, and for a single processor,

the empirical timing data for this matrix requires a greater relative increase in time from double

precision LU factorization to complex LU factorization than other power systems networks. A

signi�cant increase in the time to factor the matrix on a single processor will cause signi�cant

increases in speedup. We believe that the unusually good performance of the parallel solver for the

BCSPWR10 data is a result of caching e�ects | when the program is run on one or two processors,

there is too much data on each processor to �t into the fast-access cache memory. When more

processors are used, there is less data per processor, and the entire portion of the matrix assigned

to each processor can �t concurrently into the fast-access cache, and as a result, the program runs

considerably faster.

While there is a noticeable improvement in speedup performance for complex variate LU fac-

torization of the BCSPWR10 matrix, complex triangular solutions for this matrix do not exhibit

as signi�cant an increase in performance over the other power systems network matrices. Complex

variate triangular solutions provide speedups ranging between a low of four to a high of eight.

The graph for double precision LU factorization in �gure 7.6 illustrates that parallel perfor-

mance of the double precision LU factorization algorithm can be nearly 10 on 32 processors for the

BCSPWR10 power systems network. Factorization performance falls between seven and eight for

the other four networks. Likewise, double precision triangular solutions provide speedups ranging

from a low of three to slightly greater than four.

Parallel Choleski factorization yields speedups that are less than similar LU algorithms. Empiri-

cal data for relative speedup varies between four and �ve for 32 processors, as illustrated in the graph

for Choleski factorization in �gure 7.6. This �gure also presents empirical speedup data for forward

reduction and backward substitution. Due to the signi�cant di�erences in the implementation of

these triangular solution algorithms, empirical data are presented for both.

Backward substitution is the simplest algorithm with the lowest communications overhead |

limited to only the broadcast of recently calculated values in xm+1 when performing the triangular

backward substitution on LTm+1;m+1. Empirical relative speedup ranges from 2.5 to a high of 3.5.

These speedups are only slightly less than speedups for backward substitution associated with LU

factorization. Meanwhile, essentially no speedup has been measured for the forward reduction algo-

rithm, due primarily to additional communications overhead for this implementation than either LU

forward reduction or Choleski backward substitution. Communications are required to update the

last diagonal block using data in the borders, and there are additional communications for reduc-

ing the last diagonal block. These additional communications occur because the data distribution

forces interprocessor communications of partial updates when calculating values in ym+1, rather
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than broadcasting values in ym+1 as in the LU-based forward reduction. Interprocessor communi-

cations increase from being proportional to the number of rows/columns in the last diagonal block

to being proportional to the number of non-zeros in the last diagonal block. After minimum degree

ordering of the last diagonal block, the number of non-zeros may be signi�cantly greater than the

number of rows or columns. Due to the characteristics of Choleski factorization, it is inevitable that

either forward reduction or backward substitution would have to deal with the problem of increased

interprocessor communications [29].

The analysis in this thesis section has used relative speedup, where the sequential execution time

was measured with a version of the parallel algorithm running on a single processor. The block-

diagonal-bordered form matrices have additional �llin and additional calculations when compared

to a matrix that has been ordered as a single large matrix. Tables F.1 through F.5 (appendix F),

present summary statistics for the power systems networks used in this analysis and show that there

are between 15% and 20% additional non-zeros due to �llin in the block-diagonal-bordered matrices

when compared to general minimum degree ordered matrices.

Di�erences in run times would be expected to be a greater percentage because of the algorithm

complexity is greater that O(N ). However, when preliminary tests were run with the NiMo-OPS

matrix on single processor Sun Microsystems SPARCstations, the di�erence in performance ranged

between 5% to 10%, depending on processor type. The general sparse sequential direct solver was a

fan-out algorithm, that requires access to any memory location through out the remaining matrix as

rank 1 updates are performed. We hypothesize that general sequential sparse algorithm performance

was less than expected due to cache access di�culties. While the general sparse algorithm requires

access to the entire matrix as updates are performed, the sequential block-diagonal-bordered direct

solver performs operations on limited portions of the matrix at any instance.

Due to the limited di�erence in performance between the sparse block-bordered-diagonal solver

and the general sparse fan-out solver, sequential timings were taken from single processor runs with

the parallel solver. Relative speedups reported here should di�er from speedup calculated with the

best sequential algorithm by no more that 10%.

The sensitivities of these parallel algorithms to communications overhead is clearly apparent

when comparing the relative speedups presented in �gure 7.6. Communications overhead is nearly

constant and the 1:2:8 relative workload of oating point operations result in relative speedups

of 1:2:4 (4.5:9:18) for the BCSPWR10 power systems network. Consequently, if speedups of 18

were required for a Choleski factorizations algorithm embedded in a real-time application, one way

to reach those design goals is to improve the processor/communications performance by a factor of

eight to cause proportional reductions in the communications overhead. Another way that algorithm

speedup could be achieved is by increasing the performance of the oating point capability of the

processor, although, the ratio of computation-to-communications must stay equal to that in the
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CM-5 to obtain similar parallel speedups [17].

7.1.2.4 Analyzing Algorithm Component Performance

We next present a detailed analysis of the performance of the component parts of the parallel block-

diagonal-bordered direct linear solver. We present graphs that show the time in milliseconds to

perform each of the component operations of the algorithm:

1. factor |

� diagonal blocks,

� update last diagonal block,

� last diagonal block,

2. forward reduction |

� diagonal blocks,

� update last diagonal block,

� last diagonal block,

3. backward substitution |

� last diagonal block,

� diagonal blocks.

This detailed analysis of the parallel algorithm will demonstrate that the preprocessing phase can

e�ectively load balance the matrix for as many as 32 processors and illustrate some of the limitations

of the algorithm for certain classes of data sets. We present the data for two separate power systems

networks: BCSPWR09 | a 1723 node network from an operations application; and BCSPWR10

| a larger, 5300 node network from a planning application. The operations network empirical

performance data is presented in �gure 7.7 and the planning network empirical performance data is

presented in �gure 7.8.

For factoring the operations network, the respective graph in �gure 7.7 illustrates that factoring

the diagonal blocks and updating the last diagonal block have no apparent load balancing overhead.

Also, communications overhead is minimal when updating the last diagonal block. The curve rep-

resenting the performance to factor the diagonal blocks is nearly straight, with a slope that denotes

nearly perfect parallelism| relative speedup at each point is approximately equal to the number of

processors. The curve representing the performance to update the last diagonal block is also nearly

straight, although the slope of the curve shows that some overhead has occurred. On this log-log
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Figure 7.7: BCSPWR09 | Algorithm Component Timing Data

chart, the di�erence in slope is slight. Meanwhile, the curve representing the times to factor the

last diagonal block show that this portion of the algorithm has poor performance | speedups are

no more that 1.84 for sixteen processors and performance shows no improvement for 32 processors.

Fortunately, the preprocessing phase was able to partition the network and generate matrices where

the number of operations to factor the last diagonal block is signi�cantly less than the number of

operations to factor the diagonal blocks or update the last diagonal block.

For the triangular solutions, the respective graphs in �gure 7.7 show that we were able to get

no speedup when performing the triangular solutions in the last diagonal block. Both triangular

solution algorithms su�ered load imbalance overhead, which was slight and not unexpected. We

distributed the data to processors as a function of balanced computational load for factorization.
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Figure 7.8: BCSPWR10 | Algorithm Component Timing Data

The sparse matrices associated with these power systems networks have signi�cantly lower orders of

computational complexity for the two components; however, factorization still has more calculations

per row than triangular solves. As a result, some load imbalance overhead has been encountered in

these algorithms.

We next examine parallel algorithmperformance for a larger power systems network, BCSPWR10,

that has four times the number of rows/columns and over eleven times the number of oating point

operations. The graph for LU factorization in �gure 7.8 illustrates that the performance of factor-

ing the diagonal blocks and updating the last diagonal block have little apparent load balancing

overhead and communications overhead is minimal when updating the last diagonal block. Relative

speedups are 29.9 for factoring the diagonal blocks on 32 processors and 21.6 for updating the last
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diagonal block on 32 processors. Performance for factoring the last diagonal block shows great im-

provement for this planning matrix when compared to the small operations matrix, BCSPWR09.

While there is no measurable speedup for two processors due to the pipelined-nature of the algo-

rithm, parallel performance improves respectably for larger numbers of processors. The timing data

for LU factorization in �gure 7.8 correspond to speedups of 4.9 for factoring the last diagonal block

on 32 processors. The extensive amount of operations to update and factor the last block make it

imperative that good speedups have been obtained in these algorithm sections | in spite of the fact

that both algorithm sections contain communications. The relative speedup obtained for factoring

this matrix is 9.4 for 32 processors.

Performance of the triangular solvers on this larger, planning matrix is more promising than for

the operations matrix. The respective graphs in �gure 7.8 show that we were able to get limited

speedup when performing the triangular solutions in the last diagonal block. Both triangular solution

algorithms su�ered nearly no load imbalance overhead for this larger power systems network, in spite

of the fact that we distributed the data to processors as a function of balanced computational load

for factorization.

We have conducted similar detailed examinations into the performance of the algorithm for the

three other power systems networks, and have obtained similar results. We draw the following

conclusions from this detailed examination of the parallel direct algorithm components:

� Power systems networks can vary greatly | not only are planning networks larger than opera-

tions networks, they also have di�erent characteristics than power systems operations networks.

Planning matrices are likely to have adequate workload in the last diagonal block | as a result,

this portion of the algorithm will yield good speedups. Little speedup appeared possible when

factoring the last diagonal block in operations matrices: however, this generates minimal cause

for concern, because there is very little work involved in factoring that matrix relative to the

other algorithm sections. For planning matrices, the last block was larger, with a larger per-

centage of calculations; however, better speedups were achieved with these matrices, allowing

improved relative speedups.

� The preprocessing stage was successful in generating matrices with block-diagonal-bordered

form and balancing the processing load in the diagonal blocks and the update of the last

diagonal block.

� There are limitations to the number of processors that can be used to solve linear systems

derived from these power systems networks due to the extreme sparsity of these matrices. We

have shown that all algorithm components have good performance for as many as 32 processors,

except those algorithm components working with the last diagonal block. There is overhead to

�ll pipelines, and it is questionable whether or not there are adequate oating point operations
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Figure 7.9: Speedup | Low-Latency versus Bu�ered Communications

to keep the pipeline full for algorithms that factor or solve the last diagonal block. Increasing

the size of the last block results in signi�cant performance improvements, but no power sys-

tem network examined here was large enough that the algorithm could get speedups greater

than ten for parallel double precision block-diagonal-bordered LU factorization. Performance

improved when the number of oating point operations increased for a complex-variate version

of the algorithm and worsened when the number of oating point operations was reduced in a

Choleski implementation.

7.1.3 Comparing Communications Paradigms

We have developed two versions of this parallel block-diagonal-bordered sparse linear solver, one

version uses a low-latency, active message-based communications paradigm and the other uses a

bu�ered communications paradigm. These communications paradigms signi�cantly modi�ed the

respective algorithms as seen in chapter 6. For all power systems networks examined, the largest

relative workload when factoring or forward reducing the matrix is to update the last diagonal

block. Increases in communications overhead in this portion of the algorithm could signi�cantly

a�ect parallel algorithm performance. In �gure 7.9, we present graphs of the speedups obtained

using low-latency communications versus bu�ered communications on the CM-5 for factoring and

reducing the matrices. These graphs show that overall speedups can be as great as 1.6 for factoring

the operations matrices with an algorithm based on the low-latency communications paradigm,

but speedups are less for the larger planning networks. Speedups are also greatest for the smaller

operations matrices when updating the last diagonal block during forward reduction.
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Figure 7.10: Speedup | Low-Latency versus Bu�ered Communications | Update Last Block

The speedups reported in the two graphs in �gure 7.9 are relative to the entire time required to

factor or reduce the matrices in parallel for the respective number of processors. While updating

the last block has the most relative workload for a single processor, for larger numbers of processors,

this relative workload changes signi�cantly. The last diagonal block algorithm section assumes a

larger relative portion of the workload because this algorithm section is less e�cient. To provide a

better understanding of the algorithm speedup at the component level, we present speedup graphs

for active messages versus bu�ered communications in �gure 7.10. Speedups for the factorization

algorithm component are as great as 2.8, while speedups for the reduction component are as much

as 14.8. Low-latency communications have their greatest impact when there are fewer operations to

o�set the greater communications overhead of the bu�ered communications. This is most evident

when comparing speedups for factorization versus forward reduction in �gure 7.10.

It has been su�ciently di�cult to obtain usable speedups for the triangular solutions with the

low-latency communications paradigm, and performance reductions of 1.2 to 2.0 for bu�ered com-

munications would have a signi�cant impact on the usability of this algorithm. For complex-variate

implementations of these LU algorithms, the e�ect was somewhat less than for double precision LU

algorithms. Conversely, the Choleski implementation saw more pronounced speedups from active

messages due to the reduced workload. There are the same number of bu�ered communications

messages in all algorithms, with less data sent for the Choleski algorithms.
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7.1.4 Algorithm Performance for the IBM SP1 and SP2

We have ported this parallel block-diagonal-bordered direct solver to the IBM scalable parallel pro-

cessors (SPPs), the IBM SP1 and SP2. These multi-computers are based on workstation clusters

with switched network communications. The available communications on the IBM parallel ma-

chines required the use of a non-blocking, bu�ered communications paradigm. Our communications

language of choice for this architecture has been the Message Passing Interface (MPI), because it is

being developed as a communications standard for multi-processors with strong emphasis on opti-

mizing message-passing performance. In table 7.1, we present empirical performance data for both

the IBM SP1 and IBM SP2 using MPI, and the IBM SP2 using standard Transmission Control Pro-

tocol (TCP)/Internet Protocol (IP) based communications through the embedded communications

switch. In addition to providing the timing data for factorization and the triangular solutions of the

EPRI6K data set, this table also provides the relative speedups for factorization. This table shows

that we measured no speedup in these benchmarks for forward reduction and backward substitu-

tion. Meanwhile, speedup for factorization on the SP2 was a maximum of approximately 3.2 for

eight processors.

This preliminary performance data from the IBM SP1 and SP2 SPPs also illustrate the following:

� From the time that the empirical data was collected on the Cornell Theory Center SP1 and

SP2 running MPI, there was a processor upgrade that increased processor capability by nearly

50%.

� Relative speedup for the Cornell Theory Center IBM SP2 using MPI and the NPAC SP2

using TCP/IP-based communications were similar, although the version of the processors

in the machines were di�erent. Granularity remained constant, as the lower performance

communications were o�set by the lesser capable processors.

� Communications latency becomes a signi�cant factor for the triangular solutions, with no

speedup observed for the MPI implementations and serious performance problems observed

for the TCP/IP-based implementations.

The latency for the IBM SP2 is approximately 30 �seconds, and is lower than the 86 �second

latency encountered with the Thinking Machines CM-5. Consequently, the limited speedup measured

on this architecture denotes a greater communications overhead, most likely a result of processor

to communications performance ratio. A more detailed performance comparison is presented in

chapter 8, as we predict algorithm performance for future architectures.
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Table 7.1: EPRI6K | IBM SP1 and SP2 Performance Data | Complex Variate LU Solver

Cornell Theory Center IBM SP1 using MPI

Number Factorization Forward Backward

of Relative Reduction Substitution

Processors (milliseconds) speedup (milliseconds) (milliseconds)

1 1450.0 50.0 50.0

2 1165.0 1.2 50.0 45.0

4 827.5 1.8 45.0 40.0

Cornell Theory Center IBM IBM SP2 using MPI

Number Factorization Forward Backward

of Relative Reduction Substitution

Processors (milliseconds) speedup (milliseconds) (milliseconds)

1 980.0 40.0 30.0

2 610.0 1.6 40.0 40.0

4 400.5 2.5 50.0 40.0

8 320.0 3.1 40.7 40.0

NPAC IBM SP2 using TCP/IP

Number Factorization Forward Backward

of Relative Reduction Substitution

Processors (milliseconds) speedup (milliseconds) (milliseconds)

1 1460.0 80.0 80.0

2 865.0 1.7 165.0 115.0

4 607.5 2.4 175.0 180.0

8 460.0 3.2 203.7 212.5
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7.1.5 Conclusions

We have extensively analyzed the performance of parallel linear solvers for power systems applica-

tions on the Thinking Machines CM-5. We have shown that the node-tearing-based partitioning

algorithm can yield matrices in block-diagonal-bordered form with balanced workloads; and we have

shown that the performance of our parallel block-diagonal-bordered sparse direct linear solvers can

yield good speedups for LU factorization. Power system matrices are so sparse that we were able to

show that relative speedups for parallel Choleski factorization and complex-variate LU factorization

can di�er by factors of four for an eight-fold increase in the number of calculations. Matrix sparsity

has an even greater e�ect on the triangular solution steps as it does on the factorization. Commu-

nications overhead when reducing or substituting in the last diagonal block is so great that there is

no available speedup, so the performance of these algorithms becomes limited by Amdahl's law for

both the Thinking Machines CM-5 architecture and the IBM SPPs.

7.2 Empirical Results for the Parallel Iterative Linear Solver

We have developed the parallel block-diagonal-bordered sparse Gauss-Seidel algorithm in order to

examine the performance of parallel iterative methods and compare performance with parallel direct

methods for power systems networks. In this section, we discuss the performance of the parallel

sparse Gauss-Seidel linear solver implementation, and in section 7.3, we compare the performance

of parallel direct and parallel iterative methods.

Overall performance of our parallel Gauss-Seidel linear solver is dependent on both the perfor-

mance of the preprocessing phase to order the matrix and the performance of the parallel Gauss-

Seidel implementation. Because these two components of the parallel Gauss-Seidel algorithm are

inextricably related, the best way to assess the potential of this parallel iterative algorithm is to

measure the empirical performance using matrices from real power systems networks. But �rst, in

section 7.2.1, we illustrate the ordering capabilities of the node-tearing nodal analysis for the Gauss-

Seidel algorithm by presenting pseudo-images of selected sparse power systems network matrices

after we have applied both our node-tearing algorithm to partition the matrices into block-diagonal-

bordered form and our pigeon-hole load-balancing algorithm. We next describe the performance of

the parallel block-diagonal-bordered sparse Gauss-Seidel method in section 7.2.2, and we also present

data to illustrate the performance of the pigeon-hole load-balancing performed in the preprocessing

phase.

Iterative linear solvers must be concerned with the rate of convergence for the intended appli-

cations, because iterative solutions only converge in the limit to the solution [23]. We have chosen

the Gauss-Seidel method because it converges better than similar iterative techniques such as the

Gauss-Jacobi, and we have been able to develop a parallel sparse Gauss-Seidel algorithm that can
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maintain the strict precedence relations while having no inherently sequential calculations. We

discuss the convergence of Gauss-Seidel techniques for power systems network applications in sec-

tion 7.2.3, we compare the performance of low-latency, active message-based implementations and

bu�ered communications-based implementations in section 7.2.4, and in section 7.2.5, we present

our conclusions concerning the performance of our parallel iterative implementations.

7.2.1 Ordering Power Systems Network Matrices into Block-Diagonal-

Bordered Form

Critical to the e�cient operation of this parallel block-diagonal-bordered direct sparse matrix solvers

is the ability to order the sparse power systems networks into block-diagonal-bordered form with

equal workload in all processors. In this section, we show the results of ordering power systems

networks to the desired block-diagonal-bordered form, and later we present empirical data that

illustrate the load-balancing capabilities of this algorithm. We demonstrate the performance of the

graph partitioning algorithmwith pseudo-images that show the location of the non-zero values in the

sparse matrices with black pixels. A bounding box has been placed around the sparse matrices. The

pseudo-images clearly show both the block-diagonal-bordered form of the power systems network

matrices after ordering with diakoptic techniques, and the additional multi-colored ordering of the

last diagonal block.

Performance of our parallel block-diagonal-bordered LU and Choleski solvers will be examined

with �ve separate power systems network matrices:

� BCSPWR09 | 1,723 nodes and 2,394 graph edges [13],

� BCSPWR10 | 5,300 nodes and 8,271 graph edges [13],

� EPRI6K | 6,692 nodes and 10,535 graph edges [14],

� NiMo-OPS | 1,766 nodes and 2,506 graph edges,

� NiMo-PLANS | 9,430 nodes and 14,001 graph edges.

Pseudo-images of the matrices without ordering have been presented in chapter 2 to provide a

baseline that illustrates the irregular sparse nature of these power systems network matrices. In order

to illustrate the utility of the node-tearing ordering algorithm described in appendix C and the graph

multi-coloringalgorithmdescribed in appendix D, we present a detailed analysis of graph partitioning

for the parallel block-diagonal-bordered sparse Gauss-Seidel algorithm using the BCSPWR09 power

systems network.
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Our parallel block-diagonal-bordered Gauss-Seidel algorithm requires that the power systems

network matrix be ordered into block-diagonal-bordered form in a manner that yields uniformly dis-

tributed workloads at all processors. The algorithm also requires that the last block be multi-colored

in order to have parallelism in this portion of the algorithm. A single speci�ed input parameter,

the maximum partition size, de�nes the shape of the matrix after ordering by the node-tearing al-

gorithm. Examples of applying the node-tearing algorithm to the BCSPWR09 matrix are presented

in �gure 7.11, with separate pseudo-images for maximum diagonal block sizes of 32, 96, and 160

nodes. These three sparse matrices in �gure 7.11 have been load balanced for 32 processors, for

sixteen processors, and for eight processors respectively.

The pseudo-image for maximumblock size of 160 nodes in �gure 7.11 includes additional markings

to illustrate how the blocks and border of this matrix would be distributed to eight processors |

P1 through P8. The metric for load-balancing is the number of operations and not the number

of columns assigned to a processor. Due to the amount of clutter within the pseudo-images, no

processor assignments are listed for the pseudo-images partitioned with a maximum of 32 and 96

nodes.

These pseudo-images represent the actual matrix orderings that yielded the best performance

for the respective number of processors. We have found in this work, that there are two signi�cant

areas that must be considered for optimal parallel Gauss-Seidel performance for a particular number

of processors:

� load-balancing the workload for the diagonal blocks and lower border,

� reducing the size of the last block in order to minimize the amount of communications in this

step.

The pseudo-images in �gure 7.11 illustrate that the size of the borders and last diagonal block can

be manipulated by varying the value of the maximum partition size. The number of rows/columns

in the borders and last diagonal block of these ordered matrices vary from 190 to 117 for maximum

partition size of 32 and 160 respectively. Statistics are presented in table F.6 (appendix F) for six

example orderings of the BCSPWR09 matrix. The data presented in this table is for maximum

partition sizes that have varied from 16 to 160. For each ordering, only three separate colors were

required for the last diagonal block, and as many as 96.8% of oating point operations are in the

diagonal blocks and border. There is a detailed listing of the number of oating point operations in

this table for each ordering of the BCSPWR09 power systems network.

The pseudo-images in �gure 7.12 provide an accompanying visual reference to the partitioning

performance data presented in tables F.7 through F.10. We present a �gure for each power systems

network that illustrates the ordering after partitioning, multi-coloring, and load-balancing for eight
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Figure 7.11: BCSPWR09 | Block-Diagonal-Bordered Form for Parallel Gauss-Seidel
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processors | P1 through P8. Partitioned graphs presented here have values of the maximumparti-

tion size that yielded the best empirical parallel block-diagonal-bordered Gauss-Seidel performance.

It is important to note that the block-diagonal-bordered matrices for the BCSPWR09 network

has many similarities with the NiMo-OPS network. Also the EPRI6K matrix and the NiMo-PLANS

matrix have many notable similarities. The BCSPWR09 and NiMo-OPS matrices are for operations

networks that are homogeneous and have very similar voltage distributions throughout. Meanwhile,

the EPRI6K and NiMo-PLANS matrices are from planning applications, and one subsection of these

networks includes some lower voltage distribution lines.

Planning networks have enhanced detail in the area that represents the local power systems grid,

with less detail in areas distant from the power utility's own network. Depending on the size of this

highly connected portion of the graph and the maximumpartition size, the size and interconnectivity

of the last diagonal block can be a�ected. As a result, the last diagonal block for planning matrices

may require more than four colors when this portion of the matrix is ordered. Algorithmic e�ciency

is severely hampered when solving the last diagonal block with eight or more colors on 32 processors,

as will be shown below. The highly interconnected graph section can be seen at the upper left-hand

matrix corner and in the last diagonal block after coloring for the EPRI6K and NiMo-PLANS power

systems network matrices in �gure 7.12.

When using additional processors, ordering with lesser values of maximum nodes per partition

give better performance because they trade better load balance for additional rows/columns in the

last diagonal block. The dense partition in the upper left-hand corners of these sparse matrices are

torn into smaller partitions with the coupling equations being directed to the last diagonal block.

7.2.2 Parallel Sparse Gauss-Seidel Performance

We have collected empirical performance data for the parallel block-diagonal-bordered sparse Gauss-

Seidel method running on the Thinking Machines CM-5 multi-computer for two implementations|

1. parallel sparse Gauss-Seidel for double precision variables,

2. parallel sparse Gauss-Seidel for complex variables,

for each of two communications paradigms |

1. low-latency communications,

2. bu�ered communications,

for �ve separate power systems networks |

1. BCSPWR09,
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2. BCSPWR10,

3. EPRI6K,

4. NiMo-OPS,

5. NiMo-PLANS,

for 1, 2, 4, 8, 16, and 32 processors, and for as many as nine matrix partitions with the maximum

graph nodes per partition varying from 16 to 512.

As we examine the empirical results, we �rst describe the selection process to identify the ma-

trix partitioning that yielded the best parallel empirical performance for each number of processors.

This reduces the amount of data we must consider when examining the performance of the imple-

mentations. For the two iterative solver implementations, there are increasing amounts of oating

point calculations with the relative workload on a single processor of approximately 1:4, for dou-

ble precision versus complex variate versions of the algorithms. Complex oating point operations

require four separate multiplications and four addition/subtraction operations for a single complex

precision multiply/add operation. While there are di�ering amounts of oating point calculations in

these algorithms, there are equal amounts of communications, thus the granularity of the algorithm

increases proportionally to 1:4.

We will present timing comparisons that illustrate the e�ect that partition size has on this parallel

sparse Gauss-Seidel algorithm. We next examine relative speedup for the two solver implementations,

and then examine the performance of the load-balancing step by examining the timing data for each

component of the algorithm. Lastly, we discuss the performance improvements achieved by using low-

latency communications and the corresponding simpli�cations to the algorithm that were possible

using the low-latency communications paradigm. The low-latency communicationsparadigmpermits

an important implementation di�erence. The low-latency, active message-based implementation has

only the minimal necessary communications when calculating values for x̂(k+1) in the last diagonal

block, which greatly improves the performance of the low-latency implementation when compared

to the bu�ered communications implementation.

7.2.2.1 Selecting Partitioned Matrices with Best Parallel Solver Performance

The primary factors a�ecting the performance of this parallel sparse Gauss-Seidel algorithm are

available parallelism, load balancing overhead, and communications overhead. Our choice to order

the power systems matrices into block-diagonal-bordered form and color the last diagonal block

provides the means:

1. to make all parallelism easy to visualize,
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Figure 7.13: Parallel Gauss-Seidel Timing Data | Double Precision

2. to signi�cantly limit the task graph when performing an iteration on the matrix,

3. to minimize the amount of communications for the low-latency implementation or at least

make all communications regular for the bu�ered communications implementation.

We have shown in section 7.2.1 that the node-tearing algorithm can partition power systems net-

work matrices into block-diagonal-bordered form and o�er substantial parallelism in the diagonal

blocks and borders while the multi-coloring algorithm can provide parallelism in this portion of the

calculations.

The single input parameter to the node-tearing algorithm, the maximum partition size, when

varied, a�ects the size of the diagonal blocks and the size of the borders and last diagonal block.

Tables F.6 through F.10 (appendix F) illustrate that the percentage of oating point operations

in the diagonal blocks and borders are a function of the maximum partition size. To determine

the partitioning with the best parallel block-diagonal-bordered sparse Gauss-Seidel performance, we

examined the empirical data collected from algorithm benchmark trials on the Thinking Machines

CM-5 multi-computer. Graphs presented in �gure 7.13 illustrate the performance of four Gauss-

Seidel iterations and one convergence check for the Boeing-Harwell matrices: BCSPWR09 and

BCSPWR10. For each power system network, a maximum of 32 nodes per partition yields the best

overall performance.

The graph for the Boeing-Harwell BCSPWR09 matrix in �gure 7.13 presents families of curves

for the empirical performance of the double precision Gauss-Seidel for six values of the maximum

number of nodes per partition. Timing performance is reported in milliseconds. All partitionings

have roughly the same performance for a single processor; however, performance becomes quite
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variable for 32 processors. We are interested in the fastest times for a partitioning at the number

of processors. Performance data is plotted on log-log scales, so for every doubling of the number

of processors, the run time would be halved for perfect speedup and each curve would appear as

a straight line. However, load imbalance is evident for some partitionings when the curves show

no performance improvement for increasing from sixteen to 32 processors. Nevertheless, there are

orderings that yield scalable performance even for 32 processors.

For small numbers of processors, performance is best with large partitions; however, smaller

partitions yield the best performance for large numbers of processors. The size of the last diagonal

block, and the communications overhead associated with solving that portion of the matrix is in-

versely related to the maximum partition size. The best performance at a number of processors is a

trade-o� of the amount of parallel work in the diagonal blocks and the border versus the amount of

communications in the last diagonal block. Consequently, the best performance for a power systems

network will be dependent both on the number of processors and the partition size.

The graph for the Boeing-Harwell BCSPWR10 matrix in �gure 7.13 presents families of curves

for the empirical performance of the double precision Gauss-Seidel for nine values of the maximum

number of nodes per partition. This matrix has both more rows/columns and a slightly higher

average number of non-zeros per row than the BCSPWR09 matrix. As a result, there are more

partitions that have shown only limited e�ects of workload imbalance for 32 processors.

The performance for the complex variate parallel sparse Gauss-Seidel algorithm is similar to the

double precision algorithm performance for these two matrices.

7.2.2.2 Timing Performance Comparisons

We present timing comparisons in �gure 7.14 for two sample power system networks, BCSPWR09

and BCSPWR10, with curves for both implementations | double precision and complex. These

graphs illustrate the sensitivity of the parallel sparse power systems network Gauss-Seidel solvers

to load imbalance overhead for 32 processors. Meanwhile, the graphs also illustrate the relative

insensitivity of the low-latency parallel Gauss-Seidel implementations to communications overhead.

For 16 and 32 processors, smaller partitions are required to minimize load imbalance overhead.

The empirical data for both complex and double precision implementations on each graph include

the maximum number of nodes per partition at each plotted point. The general trend in the

performance data is for signi�cantly smaller partitions for 16 and 32 processors, causing a trade-o�

in small increases in communications overhead in return for (possible signi�cant) decreases in load-

imbalance overhead. This trade-o� yields signi�cant results for the BCSPWR09, BCSPWR10, and

NiMo-OPS power systems networks, although load-imbalance overhead dominates the results for 32

processors with the EPRI6K and NiMo-PLANS power systems network planning matrices.

There are increasing amounts of oating point calculations in the double precision and complex
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Figure 7.14: Best Empirical Performance for Parallel Gauss-Seidel Implementations

Gauss-Seidel, with a relative workload of approximately 1:4. While there are di�ering amounts of cal-

culations in these algorithms, there are equal amounts of communications. Additional oating point

operations can do little to mitigate load imbalance; however, they can improve the computation-to-

communications ratio or granularity within the algorithm, and as a result, the additional computa-

tions can have a positive e�ect on implementation performance. The graphs in �gure 7.14 illustrate

that there is some improvement in performance due to computation-to-communications granularity,

although the performance improvement is minimal. The di�erence in performance can be seen by

examining the relative slopes of the curve splines between 16 and 32 processors. For the complex

variate implementation, this spline always has a steeper negative slope, but the slope di�erences are

still minimal. As a result, we can conclude that the low-latency parallel block-diagonal-bordered

Gauss-Seidel implementation is not as sensitive to granularity as the parallel block-diagonal-bordered

direct solvers. Communications overhead does not signi�cantly detract from nearly perfect parallel

speedups.

7.2.2.3 Examining Speedup

Graphs of relative speedup calculated from empirical performance data are provided in �gure 7.15 for

the two parallel iterative solver implementations. Each �gure has a family of speedup curves for the

�ve power systems networks examined in this research. Each curve plots relative speedup for 2, 4,

8, 16 and 32 processors. This analysis of parallel block-diagonal-bordered Gauss-Seidel speedup has

used the best sequential algorithm to collect sequential execution performance data time. Research

showed that there was a signi�cant di�erence in the performance of a general sequential Gauss-Seidel
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Figure 7.15: Relative Speedup | Parallel Gauss-Seidel

algorithm and the �rst version of the parallel block-diagonal-bordered sparse Gauss-Seidel solver.

Modi�cations to the �rst parallel Gauss-Seidel algorithm yielded an algorithm that is performance

competitive with the best sequential Gauss-Seidel algorithm.

These �gures illustrate that parallel performance of the double precision parallel Gauss-Seidel

implementation can be as much as 17 for 32 processors and 21 for the complex variate implemen-

tation. The best speedups were obtained with the BCSPWR10 power systems network, and nearly

as good relative speedups were obtained for the BCSPWR09 and NiMo-OPS networks. The e�ects

of load-imbalance overhead, described in the previous section, clearly a�ect the relative speedup for

the EPRI6K and NiMo-PLANS networks. Performance for all networks is similar for two through

sixteen processors; however, there is a radical change in the rate of increase for relative speedup

with 32 processors for these two planning matrices.

7.2.2.4 Analyzing Algorithm Component Performance

We next present a detailed analysis of the performance of the component parts of the parallel block-

diagonal-bordered Gauss-Seidel algorithm. We present graphs that show the time in milliseconds to

perform each of the component operations of the algorithm:

1. calculate x(k+1)i in the diagonal blocks,

2. update b̂ using values in the lower border,

3. calculate x̂(k+1) using the values of b̂ and the last diagonal block Am+1;m+1,

4. perform a convergence check.
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Detailed parallel algorithm analysis will demonstrate that the preprocessing phase can e�ectively

load balance the matrix for as many as sixteen processors for all networks examined and can ef-

fectively load balance the matrix for as many as 32 processors for certain classes of data sets. We

present graphs that illustrate algorithm component performance in �gure 7.16. Each graph has four

curves that show parallel Gauss-Seidel component performance for a single iteration.

These �gures corroborate the results of the previous two sections that identi�ed load imbalance for

the two planning networks | EPRI6K and NiMo-PLANS. The graphs with performance data from

the BCSPWR09, BCSPWR10, and NiMo-OPS power systems matrices show good load balancing

for the diagonal blocks and lower border; however, the graphs for the EPRI6K and NiMo-PLANS

data show degraded performance for 32 processors. Load imbalance is evident when empirical

performance data for calculating x(k+1) in the diagonal blocks does not yield a straight line. Load

imbalance is also the likely cause that the slope of individual curve splines, both for updating b̂ in

the last diagonal block and for performing convergence checks, do not have constant slope. Previous

graphs showed little e�ect by increasing the computation-to-calculations granularity, so any degraded

performance would be due to sources of overhead other than communications overhead.

The times to calculate x̂(k+1) in the multi-colored last diagonal block are always the least of the

four operations for all �ve power systems networks, and for all but the planning matrices, the time

to solve for x̂(k+1) is monotonically decreasing. Communications overhead, if it exists, would occur

in this algorithm component as the number of processors increases.

We draw the following conclusions from this detailed examination of the parallel Gauss-Seidel

algorithm components:

� The low-latency, active message-based implementations are able to obtain good performance

improvements for all algorithm components as the number of processors increase, even when

solving for x̂(k+1) for small operations matrices.

� Power systems networks can vary greatly | planning networks may be larger than operations

networks, and these matrices have di�erent characteristics. Planning matrices are likely to

have the poorest performance for 32 processors due to load imbalance. For operations matrices,

performance times for every component are monotonically decreasing, illustrating good load

balance. For planning matrices, performance at 16 and 32 processors show the limitations

of our preprocessing phase to order these matrices for the parallel Gauss-Seidel algorithm.

Nevertheless, this parallel block-diagonal-bordered algorithm can get speedups of over 20 for

32 processors with large power systems networks with homogeneous voltage lines throughout

the entire matrix. Operations matrices demonstrate performance that is nearly as good.
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Figure 7.16: Algorithm Component Timing Data | Double Precision Gauss-Seidel
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Table 7.2: Convergence for the BCSPWR09 Power Systems Network

Total Error

Iteration
P
8i abs(x

(k+1)
i � x

(k)
i ) min8ix

(k+1)
i max8ix

(k+1)
i

1 1571.468461828037 0.00224373 0.33095152

2 81.288218360425 0.00037820 0.09514502

3 3.853385295799 0.00020072 0.08294093

4 0.174783477277 0.00020007 0.08292770

5 0.007786745594 0.00020006 0.08292727

6 0.000348455903 0.00020006 0.08292725

7 0.000015535582 0.00020006 0.08292725

8 0.000000688160 0.00020006 0.08292725

9 0.000000030701 0.00020006 0.08292725

10 0.000000001391 0.00020006 0.08292725

11 0.000000000064 0.00020006 0.08292725

12 0.000000000003 0.00020006 0.08292725

7.2.3 Convergence Rate

Critical to the performance of an iterative linear solver is the convergence of the technique for a

given data set. We have applied our sparse Gauss-Seidel solver to sample positive de�nite matrices

with the sparsity pattern from actual power systems networks and random values for the entries.

We have examined convergence for various matrices and various matrix orderings. Samples of the

measured convergence data are presented in tables 7.2 and 7.3 for the BCSPWR09 and BCSPWR10

power systems networks respectively. These tables present the total error for an iteration, and the

minimumand maximumvalues encountered that iteration. All initial values, x(0), have been de�ned

to equal zero.

In both tables 7.2 and 7.3, convergence is rather rapid, and after twelve iterations, total error is

less than 1� 10�10. Consequently, only eight iterations are required for six decimal place accuracy

with these data sets. In a positive de�nite matrix, the maximum values in the matrix fall on the

diagonal. In this generated data, the magnitude of the diagonals were set equal to the number of

non-zeros in the row plus a uniformly distributed random number between zero and one while the

o�-diagonal values were set equal to a uniformly distributed randomly number between zero and

one. The values of b were set equal to one plus a uniformly distributed random number between
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Table 7.3: Convergence for the BCSPWR10 Power Systems Network

Total Error

Iteration
P

8i abs(x
(k+1)
i � x

(k)
i ) min8ix

(k+1)
i max8ix

(k+1)
i

1 4758.441355684042 0.00258651 0.55232051

2 303.405396555044 0.00140069 0.11749015

3 15.449365377376 0.00108438 0.09064293

4 0.782082340337 0.00102508 0.09046819

5 0.040509560300 0.00101835 0.09045822

6 0.002134338000 0.00101787 0.09045768

7 0.000114933652 0.00101784 0.09045765

8 0.000006358080 0.00101784 0.09045765

9 0.000000362744 0.00101784 0.09045765

10 0.000000021373 0.00101784 0.09045765

11 0.000000001301 0.00101784 0.09045765

12 0.000000000082 0.00101784 0.09045765

zero and one. If the relative magnitude of the diagonals with respect to the o�-diagonals is larger,

convergence will be even faster

We hypothesize that this good convergence rate is in part due to having good estimates of the

initial starting vector. For actual solutions of power systems networks, this solver would be used

within an iterative non-linear solver, so even better estimates of starting points for each solution

will be readily available, especially for transient stability simulations where di�erential-algebraic

equations are solved for small time increments.

7.2.4 Comparing Communications Paradigms

We have developed two versions of this parallel block-diagonal-bordered sparse linear solver: one

version uses a low-latency, active message-based communications paradigm and the other uses a

bu�ered communications-based paradigm. These communications paradigms signi�cantly modi�ed

the respective algorithms as seen in section 6.3.

The graphs in �gure 7.17 illustrate direct comparisons of relative speedup for the low-latency,

active message-based communications implementation and the bu�ered communications implemen-

tations for two power systems network matrices: BCSPWR09 and BCSPWR10. Performance



CHAPTER 7. EMPIRICAL RESULTS FOR PARALLEL LINEAR SOLVERS 104

2 4 8 16 32

Number of Processors

0

2

4

6

8

10

12

14

R
e

la
ti

v
e

 S
p

e
e

d
u

p

BCSPWR09

Low-Latency Comm  

Buffered Comm  

2 4 8 16 32

Number of Processors

0

2

4

6

8

10

12

14

16

18

R
e

la
ti

v
e

 S
p

e
e

d
u

p

BCSPWR10

Low-Latency Comm  

Buffered Comm  

Figure 7.17: Relative Speedup | Double Precision Parallel Gauss-Seidel

for the other data sets were similar. These �gures clearly illustrate the superior performance of

the low-latency communications paradigm for the parallel block-diagonal-bordered sparse Gauss-

Seidel solver. The low-latency implementations are always faster, even for two processors, and

clearly faster for 32 processors. For the algorithm based on a more traditional send and receive

paradigm, performance quickly becomes unacceptable as the number of processors increases. With

the bu�ered communications-based implementation no speedup was measured for 16 and 32 pro-

cessors. Meanwhile, speedups of as great as fourteen were measured for the double precision low-

latency communications-based implementation. The remainder of this section discusses the reasons

for the drastic di�erences in algorithm performance as a function of interprocessor communications

paradigms.

For the low-latency communications-based parallel Gauss-Seidel algorithm, the amount of com-

munications is greatly reduced by only sending values of x̂(k+1) to those processors that actually

need them when solving for an iteration in the last diagonal block. Figure 7.18 illustrates the num-

ber of low-latency messages required to distribute the values of x̂(k+1) calculated, while �gure 7.19

presents the percentage of low-latency messages required to distribute these values. Families of

curves in �gure 7.18 show that the number of low-latency messages increases apparently at linear

rates (with a log(Nprocs) horizontal axis) for three of the �ve power systems networks. This implies

that the number of low-latency messages increases at a rate proportional to log(Nprocs). Meanwhile,

�gure 7.18 illustrates the percentages of data actually sent with the low-latency communications

paradigm relative to the maximum possible for a broadcast. For 32 processors, only 10% to 18% of

the broadcast values are actually required.
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Figure 7.18: Number of Low-Latency Messages Required to Distribute x̂(k+1)

In �gures 7.20 and 7.21, we explore this phenomenon further for the BCSPWR09 and BCSPWR10

power systems networks. These �gures present families of histograms of the number of low-latency

messages to distribute the values of x̂(k+1). Each histogram shows the distribution of the number

of required low-latency messages, and is labeled to emphasize the maximum number of messages,

(Nprocs�1). For the BCSPWR09 network, the maximumnumber of processors requiring any single

value of x̂(k+1) is only eleven. Likewise, for the BCSPWR10 network, the maximum number of

processors requiring any single value of x̂(k+1) is only eight. Signi�cantly reducing the amount of

communications in this component of the algorithm makes a corresponding improvement in overall

parallel Gauss-Seidel algorithm performance. As a result, we are able to attain speedup even for an

algorithm component that could have been sequential, and would have limited the overall algorithm

performance as a function of Amdahl's law.

The e�ect of reduced communications overhead can be clearly seen as performance of the low-

latency algorithm is compared to performance of an algorithm with more traditional bu�ered com-

munications. In the portion of the algorithm that solves for values of x̂(k+1), the bu�ered com-

munications implementation must broadcast the values of x̂(k+1) to all other processors before the

next color can proceed. The number of communications messages is O(N2
procs) for traditional in-

terprocessor communications. Consequently, as the number of processors increases, the number of
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Figure 7.19: Percentage of Broadcast Values Required to Distribute x̂(k+1)

messages increase but the bu�ered communications messages size decreases. For traditional message

passing paradigms, the cost for communications increases dramatically as the number of processors

increases, because each message incurs the same latency regardless of the amount of data sent. The

cost of non-blocking, bu�ered communications is 86 �seconds latency and :12 �seconds per word

or four bytes of bu�ered data on the Thinking Machines CM-5. Meanwhile, with the low-latency

paradigm, the cost of an active message is only 1:6 �seconds to transfer four words of data.

In �gure 7.22, we present speedup comparisons of the low-latency communications-based algo-

rithm and the bu�ered communications-based algorithm. This series of graphs includes a comparison

of overall speedup of the low-latency communications paradigm versus the bu�ered communications

paradigm, and separate graphs of speedup for each of the three portions of the algorithm that

have interprocessor communications. Overall, the small operations matrices have speedups for low-

latency communications of greater than 28. The speedups for the larger matrices are smaller, because

bu�ered communications are more e�cient | more data can be sent in each message, improving

performance for this message type. Nevertheless, for 32 processors, speedups from between nine and

thirteen have been measured for four iterations and a convergence check on these power systems

network matrices.

The other graphs in �gure 7.22 illustrate the speedups for the algorithm components:
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Figure 7.22: Low-Latency Communications Speedup | Parallel Gauss-Seidel
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� empirical performance when updating b̂ before solving the last diagonal block yields speedups

from seven to nineteen for the low-latency message implementation,

� empirical performance when solving for x̂(k+1) yields speedups from 45 to greater than 80 for

the low-latency message implementation,

� empirical performance when checking convergence yields speedups from eight to 22 for the

low-latency message implementation.

7.2.5 Conclusions

We have extensively analyzed the performance of parallel solvers for power systems applications on

the Thinking Machines CM-5. We have shown that the node-tearing-based partitioning algorithm

can yield matrices in block-diagonal-bordered form with balanced workloads for power systems net-

works with homogeneous voltage distribution lines; and we have shown that the performance of our

parallel block-diagonal-bordered sparse iterative linear solvers can yield good speedups for Gauss-

Seidel methods for those networks with balanced workloads. Not unexpectedly, low-latency commu-

nications paradigms greatly improve the performance of the algorithm, because of both improved

communications performance and signi�cantly simpler implementations.

7.3 Comparing Parallel Direct and Iterative Algorithms

We have developed both parallel direct and iterative methods in this research, with parallel direct

implementations yielding speedups of nearly ten for double precision LU factorization and even

greater speedups for complex variate LU factorization with 32 processors. Speedups for parallel

block-diagonal-bordered Choleski factorization were less than for LU factorization, only 4.5 for 32

processors, and there are formidable problems implementing forward reduction due to the distribu-

tion of data to processors in the last diagonal block. Meanwhile, we were able to obtain signi�cantly

greater speedups, 17 to 21 for 32 processors, with our parallel block-diagonal-bordered sparse Gauss-

Seidel solver implementations, although the only matrix types where there is assurance of conver-

gence for Gauss-Seidel methods are diagonally dominant and positive de�nite matrices. Choleski

factorization is limited to either of these symmetric matrix types. When comparing the performance

of parallel sparse Choleski solvers and parallel sparse Gauss-Seidel algorithm, we show that there is

potential for signi�cant algorithmic speedup with the use of the iterative solver.

Power systems applications use sparse linear solvers in conjunction with either non-linear equa-

tion solvers or di�erential-algebraic equation solvers. Often applications reuse a factored matrix

numerous times, as a trade-o� is made between the computational costs of repeated factorization

and additional iterations in the non-linear equation solvers. A new LU factorization is not calculated
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every iteration { instead, an old LU decomposition is used to solve an approximate linear system.

A new factorization is only calculated every few iterations. The cost of multiple linear solutions

for dishonest reuse would be a linear combination of the cost for factorization plus the cost for the

repeated number of factorization (re)uses:

Ts(�) = Tf + (� � T4); (7.1)

where:

Ts(�) is the total time for a single factorization and � triangular solutions.

Tf is the time for (parallel) factorization.

� is the number of dishonest (re)uses:.

T4 is the time for a (parallel) triangular solution.

It is important to note that both the sequential and parallel implementations of Gauss-Seidel

yield the same convergence rate. The parallel block-diagonal-bordered form Gauss-Seidel solver

maintains the same strict precedence relation in the calculations as does the sequential algorithm.

7.3.1 Parallel Choleski versus Parallel Gauss-Seidel

We compare the performance of parallel Choleski solvers with parallel iterative Gauss-Seidel solvers

by determining the number of iterations for the parallel Gauss-Seidel given a number of (re)uses.

Families of curves plotting the number of iterations versus the number of dishonest (re)uses are

presented in �gure 7.23 for one through ten reuses and one through 32 processors for power systems

networks: BCSPWR09 and BCSPWR10. The shape of the curves show that the largest number of

iterations possible for a constant time solution occur for a single use of the factored matrix. As the

factorization is (re)used, the cost to factor the matrix is amortized over the additional (re)uses. For

large numbers of factorization (re)uses, the curve becomes asymptotic to

y =
T4Ch

TGS

; (7.2)

where:

T4Ch is the time for a single (parallel) Choleski triangular solution.

TGS is the time for a single (parallel) Gauss-Seidel iteration.

For the other power systems network matrices examined in this research, performance is similar to

these graphs.

The graph for the BCSPWR09 operations matrix in �gure 7.23 illustrates that on a single

processor, 12 Gauss-Seidel iterations take as much time as a single factorization and triangular

solution. Meanwhile, only four iterations per solution would equal the time for 10 dishonest (re)uses.
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Figure 7.23: Gauss-Seidel Iterations as a Function of Dishonest Reuses of the Choleski LLT Matrix

However, when 32 processors are utilized, 54 Gauss-Seidel iterations could be performed in the same

time as a single direct solution, and 24 iterations per solution for 10 dishonest (re)uses. The graph

for the BCSPWR10 operations matrix in �gure 7.23 illustrates even greater numbers of iterations

| nearly 120 Gauss-Seidel iterations could be performed in the same time as a single direct solution

for 32 processors, and 55 iterations per solution for 10 dishonest (re)uses. These comparisons are

for a convergence check every four iterations. Previous discussions on Gauss-Seidel convergence in

section 7.2.3. have concluded that after twelve iterations, total error is less than 1�10�10. Only eight
iterations are required for six decimal place accuracy with data sets generated for actual sparse power

systems networks. Given that there are good starting points for each successive iterative solution,

there is a strong possibility that the use of parallel Gauss-Seidel should yield signi�cant algorithmic

speedups for diagonally dominant or positive de�nite sparse matrices. For these two cases, such

speedups could be as high as a factor of ten for large data sets.

7.3.2 Parallel LU Solvers versus Parallel Gauss-Seidel

LU factorization has none of the limitations on matrix characteristics that de�ne Choleski factor-

ization. As a result, there is no guarantee that the iterative solution will converge. Nevertheless,

we extend the performance comparison of parallel direct solvers with parallel iterative Gauss-Seidel

solvers from the previous section. Again we compare direct and iterative solver performance by de-

termining the number of iterations for the parallel Gauss-Seidel given a number of (re)uses. Families

of curves plotting the number of iterations versus the number of dishonest (re)uses for a double pre-

cision parallel block-diagonal-bordered LU-based solver are presented in �gure 7.24 for one through
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Figure 7.24: Gauss-Seidel Iterations as a Function of Dishonest Reuses of the Double Precision LU

Matrix

ten reuses and one through 32 processors for the BCSPWR09 and BCSPWR10 power systems net-

works. Likewise, we present similar families of curves in �gure 7.25 for parallel complex variate

LU-based and Gauss-Seidel solvers. The shape of the curves show that the largest number of iter-

ations possible for a constant time solution occur for a single use of the factored matrix. As the

factorization is (re)used, the cost to factor the matrix is amortized over the additional (re)uses. For

large numbers of factorization (re)uses, the curve becomes asymptotic to

y =
T4LU

TGS

: (7.3)

where:

T4LU is the time for a single (parallel) LU triangular solution.

TGS is the time for a single (parallel) Gauss-Seidel iteration.

Graphs in �gures 7.24 and 7.25 illustrate that for one use of the factored matrix, the number

of Gauss-Seidel iterations per dishonest reuse of the factored matrix are more for LU factorization

than for parallel Choleski solvers. We have shown in section 7.1 that the time to factor a matrix into

LU versus LLT is greater because there are twice as many calculations in the LU factorization than

Choleski factorization. However, the time to perform the triangular solutions are less for parallel LU

solvers than parallel Choleski solvers | Choleski solvers must perform one of the triangular solutions

for the last diagonal block with less than optimal communications. As a result, while the number of

iterations for a single reuse of the double precision solver may be greater, the number of available
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Figure 7.25: Gauss-Seidel Iterations as a Function of Dishonest Reuses of the Complex LU Matrix

iterations for multiple dishonest reuses actually decreases when compared to the Choleski/Gauss-

Seidel comparison curves. The e�ects of the higher cost in the triangular solution phase can be

clearly seen when comparing graphs in �gures 7.23 and 7.24. For ten reuses with 32 processors,

there would be time for 45 iterations per Choleski solution for the BCSPWR10 data set, meanwhile,

there would only be time for 25 parallel Gauss-Seidel iterations per parallel double precision LU

solution.

Parallel performance of the complex LU solver increases signi�cantly when compared to the

parallel Choleski and substantially when compared to the double precision LU solver. Meanwhile,

there is only a small improvement in performance for the added calculations in parallel complex

variate Gauss-Seidel versus the double precision version of this solver. As a result, parallel complex

Gauss-Seidel would o�er less potential for improved performance than for parallel double precision

Gauss-Seidel.

7.3.3 Conclusions

Due to the guaranteed convergence of the Gauss-Seidel algorithm for positive de�nite or diagonally

dominate matrices and the relative performance for the parallel Choleski solver, there is potential

for signi�cant speedup by selecting the parallel Gauss-Seidel method for solving those power sys-

tems network matrices that would normally require double precision Choleski factorization. For

those applications that require LU factorization, more information concerning the iterative solver

convergence would be required in addition to the rate of convergence before decisions could be made

concerning the selection of direct versus iterative methods.



Chapter 8

Algorithm Performance on Future

SPP Architectures

We design and implement algorithms on existing hardware; however, for industrial applications such

as power systems network analysis, it is equally important to predict algorithm performance for

future architectures. Performance predictions for future architectures will help determine whether

or not it will be cost-e�ective to port critical software to parallel architectures now or to simply wait

and get speedup in the future from faster single processor computers.

This analysis is a good case in point | performance for the parallel block-diagonal-bordered

sparse solvers developed here is rather good on the Thinking Machine CM-5 for moderate number

of processors (2{32). For Choleski solver applications, the parallel block-diagonal-bordered Gauss-

Seidel algorithm yields good speedups and o�ers substantial algorithmic speedup when compared

with parallel block-diagonal-bordered direct solvers. However, in this section we show that the superb

computation-to-communication ratio available on the CM-5 using low-latency active messages will

probably not be equaled in future architectures where processor performance increases signi�cantly.

Performance of our parallel Gauss-Seidel algorithm is latency dependent, due to the large number of

small messages. Meanwhile, performance of our parallel direct algorithm is bandwidth dependent,

due to the limited number of moderate size messages.

We show in this chapter that while the bandwidth-dependent parallel sparse block-

diagonal-bordered direct solvers may port to future architectures with equal or bet-

ter performance, the latency-dependent parallel sparse block-diagonal-borderedGauss-

Seidel solvers may not. While future architectures will have greater bandwidth than

115
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the Thinking Machines CM-5, they will not have a comparable reduction in communi-

cations latency. Any algorithmic performance gains possible with the parallel Gauss-

Seidel algorithm would not be realized on future architectures that do not have the

computation-to-communication ratio available on the CM-5.

We open this chapter by discussing future computing architectures and the requirements of the

power utility industry in section 8.1. We introduce overhead-based performance estimates, in sec-

tion 8.2, that we developed to predict algorithm performance on future high-performance computing

architectures. We apply these estimation techniques to both sparse parallel block-diagonal-bordered

direct and iterative solvers developed in this research in sections 8.3 and 8.4. Due to the poor

performance of the parallel iterative solver on future SPP architectures, we include comments on

improving the latency performance of SPP communications in section 8.5, and in section 8.6, we

reiterate the signi�cant conclusions for porting our parallel linear solvers to future SPP architectures.

8.1 Parallel Computing for the Power Utility Industry

We believe that a power utility's interests in future parallel architectures will be in scalable parallel

processors (SPPs) rather than massively parallel processors (MPPs), because:

1. the compatibility of SPP nodes with networked desktop computing resources contributes to

reduced business overhead costs,

2. small to midsized SPPs o�er an improved cost/performance ratio when compared to small

MPPs.

We can expect future SPP architectures to be similar to the IBM SP-series with 2-64 processors

interconnected by a non-blocking, high-bandwidth, switched network [16]. Internode communica-

tions performance may soon approach that of the Cray T3D massively parallel computer (1 �second

latency and 300 megabytes per second bandwidth) [43]. When comparing the single processor per-

formance of the CM-5 (a 33 MHz Sparc microprocessor from Sun Microsystems) [6] with a node

of the Cornell Theory Center SP1 or Northeast Parallel Architectures Center (NPAC) SP2 (a 62.5

MHz IBM RS/6000 model 370 four command superscalar microprocessor), we have shown in sec-

tion 7.1, that the IBM RS/6000 microprocessor in the SP1 is 6.6 times faster than the 33 MHz

Sparc microprocessor when comparing empirical data from our algorithm run on a single processor.

The speed for the microprocessor in the Cornell Theory Center SP2 is even 50% faster than the

SP1 RS/6000 microprocessor. In the near-future, it will be feasible to get four times the individual

processor power that is now available on the SP1, so it is conceivable that the future generation of

SPP microprocessors will be 25 times as fast as those used in the Thinking Machines CM-5. Some
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of this processing power may come from placing multiple shared-memory processors per SPP node

[16],

If SPP node processor capability increases by a factor of 25 relative to the Thinking Machines

CM-5, communications capabilities must improve by at least as much if parallel sparse direct lin-

ear solver performance for power systems applications is to have equal or better multiple processor

speedup. In other words, the computation-to-communications ratio for the SPP must remain con-

stant or improve in order that SPP speedup remains constant or improves.

8.2 Overhead-Based Performance Estimates

For many concurrent algorithms, overhead associated with the concurrent algorithm appears more

critical than the inherent percentage of sequential operations in the algorithm. In these situations,

parallel overhead provides a better preliminary estimate of the potential speedup in a concurrent

algorithm than Amdahl's Law. In these instances, the parallel execution time for an algorithm can

be de�ned as

Tp � Tseq

p

(1 + ft) [17]; (8.1)

where:

Tp is the parallel execution time.

Tseq is the sequential execution time.

p is the number of processors | p = Nprocs.

ft is the total parallel overhead.

For predicting parallel algorithm performance with future architectures, we assume that the algo-

rithm will be applied to a matrix that can be partitioned into block-diagonal-bordered form with no

load-imbalance, and we assume that the same algorithm is being implemented on both architectures.

As a result, we can assume that the only component of interest in ft, the total parallel overhead, is

fc, the communications overhead, and we can rewrite equation 8.1 as

Tp � Tseq

p

(1 + fc): (8.2)

This can be further rewritten as

fc =

�
pTp

Tseq

� 1

�
=

�
p

Sp

� 1

�
; (8.3)

by substituting relative speedup, Sp for
�
Tseq
Tp

�
. Relative speedup is de�ned in equation A.2.

Communications overhead, fc, is a measure of the additional workload incurred in a paral-

lel algorithm as a result of interprocessor communications [17, 25, 28], and is dependent on the
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computation-to-communications ratio, not just the amount of communications

fc � tcomm

tcalc

; (8.4)

or

fc =

�
�� tcomm

tcalc

�
; (8.5)

where tcalc is the metric describing the computational capability of a single processor [17], tcomm

is the metric describing the communications characteristics, and the constant � is an algorithm

dependent coe�cient of proportionality. The quantity tcalc
tcomm

is often referred to as the computation-

to-communications ratio and is related to the granularity of the parallel algorithm. For traditional

bu�ered interprocessor communications, tcomm is a linear combination of latency, bandwidth, and

message size

tcomm � tlatency + (
4

B bytes
�Nwords): (8.6)

tlatency is the communications latency or startup time, Bbytes is the bandwidth measured in bytes

per second, and Nwords is the number of words or four byte units of data. For active messages,

tcomm is the product of the message latency and number of messages, NRPC ,

tcomm � (tlatency �NRPC ) : (8.7)

We can determine �, the algorithm dependent constant of proportionality by combining formu-

las 8.3 and 8.5 to yield

� =

�
tcalc

tcomm

��
p

Sp

� 1

�
: (8.8)

We can calculate estimates of speedup for a new parallel architecture without detailed simulation

of an algorithm by using available empirical timing data to calculate the algorithm dependent con-

stant of proportionality, and combine it with the number of processors and parallel architecture

characteristics. Let ~
fc be the communication overhead for the new architecture, then

~
fc = �

�
~tcomm

~
tcalc

�
=

�
tcalc

tcomm

��
p

Sp

� 1

��
~tcomm

~
tcalc

�
: (8.9)

Terms can be reordered to yield

~
fc =

�
tcalc

~
tcalc

��
~
tcomm

tcomm

��
p

Sp

� 1

�
: (8.10)

The value of ~
fc can be used to calculate ~

Sp, the speedup for the new architecture, using

~
Sp =

p

(1 + ~
fc)

=
p�

1 +
�
tcalc
~tcalc

��
~tcomm

tcomm

��
p
Sp
� 1

�� : (8.11)

In the next section, we present an analysis that predicts performance for future architectures using

these formulas.
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8.3 Performance Predictions for Direct Solvers

We implemented two versions of the parallel block-diagonal-bordered sparse direct solver on the

Thinking Machines CM-5 and the notable di�erences between the two implementations are the

communications paradigms when updating the last diagonal block in the matrix. One communica-

tions paradigm uses low-latency, active message-based communications, and the other uses bu�ered

communications. Active message-based communications on the CM-5 has latency of 1.6 �second to

send four words, while the bu�ered communications version of the algorithm utilizes the traditional

CMMD communications library, which has 86 �second latency and 0.12 �second per word commu-

nications costs [6]. Both versions of the algorithm utilized the active message s-copy-based bu�ered

communications for factoring the last diagonal block. S-copy communications has 23 �second latency

and 0.12 �second per word communications costs [6]. The CM-5 has a multi-tiered communications

network with 40 megabyte-per-second bandwidth at the lowest layer [6].

8.3.1 Model Validation

In order to validate our formulas for comparing speedup on di�erent architectures, we have used

empirical performance data from section 7.1 and developed performance comparisons for complex

variate LU factorization on the SP1 and SP2. We have extended the number of processors beyond

the number actually utilized to collect the empirical data from the SPP architectures. Our im-

plementations on the SP1 and SP2 used the Message Passing Interface (MPI), because it is being

developed as a communications standard for multi-processors with strong emphasis on optimizing

message-passing performance. The IBM SP2 has a 30 �second latency and 30 megabyte-per-second

bandwidth in present con�gurations [16]. In �gure 8.1, we present actual and predicted speedup

values for the complex LU factorization algorithm with the EPRI6K power systems network for

1. empirical speedup data from the CM-5 implementation using bu�ered communications,

2. empirical speedup data from the SP1 implementation using MPI,

3. empirical speedup data from the SP2 implementation using MPI,

4. predicted speedup for the SP1 (6:6� processor speedup),

5. predicted speedup for the SP2 (9:9� processor speedup),

In this �gure, we plot predicted values for both the SP1 and the SP2, where the single processor

performance of the SP1 is 6.6 times the single processor performance of the Thinking Machines

CM-5 and the SP2 is 50% faster than the SP1. When comparing the actual data to the predicted

data, it may be possible that this simplistic technique has some di�culties in vertical displacement.
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Figure 8.1: Performance Validation for Parallel Complex LU Factorization

While the slope of the curve splines for the predicted data and the curve splines for the empirical

data are similar for the SP2, the predicted curve appears to underestimate the speedup by a nearly

constant amount. These predictions have been made using a very simple model, and should only be

interpreted as in indication of possible future performance. Better estimates are possible by carefully

simulating the algorithms using models with more variables and greater detail.

8.3.2 Performance Predictions

In the near-future, we expect interprocessor communications for SPPs to improve signi�cantly, with

latency for bu�ered communications decreasing to levels that are available in MPPs like the Cray

T3D today. We anticipate that bu�ered communications latency for SPPs, in the near future, will

be only 1 �second, with 100 megabyte-per-second bandwidths between individual processors [43].

Per-word communications costs for this architecture should be less than 0.04 �second. In �gure 8.2.

we present actual and predicted speedup values for the complex LU factorization algorithm with the

BCSPWR10 and EPRI6K power systems networks for

1. empirical speedup data from the CM-5 implementation using bu�ered communications,
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Figure 8.2: Performance Predictions for Parallel Complex LU Factorization

2. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 100 megabyte-per-second bandwidth,

3. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 1000 megabyte-per-second bandwidth.

The graphs in this �gure show that we may see reduced speedup performance with this algorithm

for 25� processor speeds and communications networks with 1 �second latency and 100 megabyte-

per-second bandwidth. However, we may see improved speedup performance for a network that

is 10 times faster. The slower network has a lower computation-to-communications ratio than the

CM-5, but the faster network has a greater computation-to-communications ratio than the CM-5.

The predicted performance for future architectures as seen in the two graphs presented in �gure 8.2

is similar to the predicted performance that has been observed in all data sets, and is a direct result

of the scaling imposed by the constant of proportionality de�ned as a function of the processor and

communications performance in equation 8.10.

To fully understand the predicted speedup values, we will analytically examine how changes in

the computation-to-communications ratio theoretically a�ect speedup on a future architecture. In

order to be thorough, we will examine both sections of the parallel block-diagonal-bordered direct

solver that have interprocessor communications:

1. update the last diagonal block using the data in the borders |

Am+1;m+1 = Am+1;m+1 �
Pm

i=1Lm+1;iUi;m+1,

2. factor the last diagonal block | Am+1;m+1 = Lm+1;m+1Um+1;m+1,
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and when appropriate, we will examine both implementations:

1. low-latency communications,

2. bu�ered communications.

We �rst examine updating the last diagonal block. For the low-latency communications version of

the algorithm, we can't expect any improvement in the computation-to-communications ratio when

updating the last diagonal block | we expect individual processor performance to yield decreases in

run times by a factor of 25 and tcomm would decrease only to 1.16 �second from 1.6 �second. Thus

the computation-to-communication ratio would decrease, accentuating the e�ect of communications

overhead. Meanwhile, for bu�ered communications, most communications messages are of moderate

size, approximately 500 words, so we can expect that communications performance in this section

of the algorithm would improve substantially, by as much as a factor of seven ( (86+:12�500)
(1+:04�500) ). Due

to the limited number of moderate sized messages, performance in this portion of our parallel direct

algorithm using bu�ered communications is bandwidth dependent. If communications latency de-

creases as signi�cantly as we anticipate and the communications bandwidth increases as expected,

the version of the algorithm to update the last diagonal block that would yield the best performance

would be the bu�ered communications algorithm. Nevertheless, in spite of the dramatic communi-

cations improvement, tcomm would not keep pace with the performance improvement of individual

SPP processors, tcalc.

The communications in the section of the CM-5 program that factors the last diagonal block

uses active message s-copy commands, which have 23 �second latency and 0.12 �second per word

communications costs [6]. Messages are also of moderate size, several hundred words, so we can

expect that communications performance would improve by a factor of nearly �ve ( (23+:12�200)
(1+:04�200) ).

This is also signi�cantly less than the factor of 25 improvement in single processor performance.

Due to the limited number of moderate sized messages, performance in this portion of our parallel

direct algorithm is also bandwidth dependent.

If we combine the three portions of the speedup analysis: improvements of a factor of 25 for

the processor speed, and improvements of �ve to seven in the communications speeds, it may not

be possible to sustain the parallel speedup that we have obtained in this example program. Perfor-

mance may be limited for 32 processors; however, strong performance with fewer processors may be

sustainable, because communications overhead is not as great with fewer processors. Consequently,

we should be able to obtain signi�cant speedups with a single processor due to increased proces-

sor performance, while additional speedup due to parallelism will be less than we obtained in this

research.

If communications bandwidths between individual processors for our future machine improved an

order of magnitude, to a gigabyte-per-second, the prognosis for this algorithm would change because
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of bandwidth dependency in this algorithm. For gigabyte-per-second networks, communications to

update the last-diagonal block could improve by a factor of 48 ( (86+:12�500)
(1+:004�500)) and communications to

factor the last diagonal block could improve by a factor greater than 25 ( (23+:12�200)
(1+:004�200)). As a result,

the computation-to-communications ratio would be preserved, if not improved, and similar or better

parallel speedups could be expected. This is clearly evident in the two graphs in �gure 8.2.

8.4 Performance Predictions for Iterative Solvers

As stated above, we expect interprocessor communications for SPPs to improve signi�cantly in the

near-future, with latency for bu�ered communications decreasing to 1 �second, with 100 megabyte-

per-second bandwidths between individual processors. Per-word communications costs for this ar-

chitecture should be less than 0.04 �second. In �gure 8.3. we present actual and predicted speedup

values for the complex LU factorization algorithm with the BCSPWR10 and EPRI6K power systems

networks for

1. empirical speedup data from the CM-5 implementation using low-latency communications,

2. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 100 megabyte-per-second bandwidth,

3. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 1000 megabyte-per-second bandwidth.

The two graphs in this �gure show that we may see signi�cantly reduced speedup for this algorithm

with either future architecture. For the BCSPWR10 data set, with 25� processor speeds and

communicationsnetworks with 1 �second latency and 100 megabyte-per-second bandwidth, speedups

would be less than three for 32 processors and only slightly better, four, with a network that is 10

times faster. The computation-to-communications ratio for both network options are less than for the

Thinking Machines CM-5 with low-latency, active message-based communications | tcomm would

decrease only to 1.16 �second and 1.016 �second from 1.6 �second respectively for the two anticipated

communications capabilities. This improvement in communications is small in comparison to the

25� improvement anticipated for tcalc. Performance of this parallel Gauss-Seidel implementation, is

(not unexpectedly) highly dependent on communications latency, due to the large number of small

messages. Similar poor performance is predicted for future architectures running the EPRI6K data

set.

In �gure 8.4. we present actual and predicted speedup values for the complex Gauss-Seidel

algorithm solving applications using the BCSPWR10 and EPRI6K power systems networks for

1. empirical speedup data from the CM-5 implementation using bu�ered communications,
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Figure 8.3: Performance Predictions for Parallel Complex Gauss-Seidel | Low-Latency Communi-

cations Paradigm

2. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 100 megabyte-per-second bandwidth,

3. predicted speedup for 25� processor speeds and communications networks with 1 �second

latency and 1000 megabyte-per-second bandwidth.

The graphs in this �gure show that we may see slightly improved speedup for this algorithm for both

future architectures with respect to the empirical data collected on the Thinking Machines CM-5;

although, performance is not scalable to 32 processors. This lack of scalability is due primarily to

the parallel software overhead required to set up the bu�ers. For the BCSPWR10 data set, with

25� processor speeds and communications networks with 1 �second latency and 100 megabyte-per-

second bandwidth, speedups would be greater than eight for 16 processors and slightly better, ten,

with a network that is 10 times faster. The computation-to-communications ratio for both network

options are both greater than for the Thinking Machines CM-5 with bu�ered communications |

tcomm would increase by a factor greater than 62 ( (86+:12�10)
(1+:04�10) ) for 100 megabyte-per-second band-

width communications and greater than 83 ( (86+:12�10)
(1+:004�10)) for the faster proposed network. These

communications performance improvements compare favorably to the anticipated 25� improvement

anticipated for tcalc. Similar improved performance is predicted for future architectures running the

EPRI6K data set; although, peak performance improvement is not as great as for the BCSPWR10

data set.
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Figure 8.4: Performance Predictions for Parallel Complex Gauss-Seidel | Bu�ered Communications

Paradigm

8.5 Low-Latency Communications Considerations

This research was inspired, in part, by the low-latency communications made possible using active

messages on the Thinking Machines CM-5. The parallel block-diagonal-bordered Gauss-Seidel al-

gorithm, as many others, would bene�t from extremely low-latency communications, especially for

short messages. As a result, future SPP architectures may provide low-latency communications for

short messages because there are many classes of parallel algorithms that can only be implemented

e�ciently with this type of interprocessor communications support. SPP hardware developers recog-

nize that low-latency communications increase the utility of their multi-computer and, consequently,

improve market potential. There are, however, limits to possible reductions in latency.

Network latency can be viewed as a linear combination of several factors:

� physical network size,

� software latency,

� processing latency.

� switching latency,

Physical network size contributes to latency as a function of the distance signals must travel. At

the speed-of-light eleven inches equals a nanosecond, or 1
1000 of a �second. In order to limit latency,

physical network size will be a concern in future SPPs | extremely low-latency communications



CHAPTER 8. ALGORITHM PERFORMANCE ON FUTURE SPP ARCHITECTURES 126

will not be possible in spatially diverse networked workstations. The other three latencies are more

di�cult to control, but can be reduced proportionally to processor speeds.

Active messages on the CM-5 are able to signi�cantly limit software latency and processing

latency by forcing the user to assume all responsibilities of identifying what data to send and to

identify the handler-function at the receiving processor. As a result, no more than 50 machine

cycles are required for these operations. If active message-style communications were implemented

on future, faster processors, the implementations should scale with processor speed.

The �nal factor that contributes to latency is the time required to send signals through switch(s)

in the interconnection network. Switch latencies will decrease as faster components are used or as

data parallel switching implementations are utilized. Given these contributions to latency, it may

be possible to continue to decrease latency with faster components, although latency will always be

bound by physical size of the network and hardware speeds.

If communications capabilities can improve signi�cantly more than the performance of indi-

vidual processors, additional classes of parallel algorithms can be implemented e�ectively on new

multi-processor architectures. Nevertheless, improving communications capabilities proportional to

computational performance increases will prove su�ciently challenging.

8.6 Conclusions

We have shown that the superb computation-to-communication ratio available on the CM-5 using

low-latency active messages will probably not be equaled in future SPP architectures where processor

performance increases signi�cantly. Performance of our parallel Gauss-Seidel algorithm is latency

dependent, due to the large number of small messages. Meanwhile, performance of our parallel

direct algorithm is bandwidth dependent, due to the limited number of moderate sized messages.

We have shown that while the parallel sparse block-diagonal-bordered direct solvers may port to

future architectures with equal or better performance, the parallel sparse block-diagonal-bordered

Gauss-Seidel solvers may not. While future architectures will have greater bandwidth than the

Thinking Machines CM-5, they will not have a comparable reduction for communications latency.

Any algorithmic performance gains possible with the parallel Gauss-Seidel algorithm would not be

realized on future architectures that do not have the computation-to-communication ratio available

on the CM-5.



Chapter 9

Conclusions

In this thesis, we have presented research into parallel linear solvers for block-diagonal-bordered

sparse matrices. The block-diagonal-bordered form identi�es parallelism that can be exploited for

both direct and iterative linear solvers. Direct methods obtain the exact solution for Ax = b in a

�nite number of operations, whereas iterative methods calculate sequences of approximations that

may or may not converge to the solution. In order to compare performance for parallel sparse di-

rect and iterative linear solvers for power systems network applications, we have developed parallel

block-diagonal-bordered sparse direct methods based on LU factorization and Choleski factorization

algorithms, and we have developed a parallel block-diagonal-bordered sparse iterative linear solver

based on the Gauss-Seidel method. We are examining parallel sparse linear solvers for embedded

power systems applications, so our direct solver implementations also require parallel forward re-

duction and backward substitution algorithms. The parallel block-diagonal-bordered sparse linear

solvers for power systems network applications have proven to be rather sensitive to computation-

to-communications ratio or granularity.

This research has focused on block-diagonal-bordered formmatrices, that are generated by tearing

networks into mutually independent partitions by using diakoptic techniques. We have described

how the power-systems-analysis-oriented diakoptic node-tearing techniques relate to the state-of-the-

art in parallel sparse matrix algorithms. Using the node-tearing-based matrix ordering techniques,

we have been able to partition power systems network matrices into highly parallel subgraphs that

can be further ordered to balance workloads and to provide parallelism throughout all segments of

the calculations.

127
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9.1 Direct Methods

We have developed parallel block-diagonal-bordered sparse direct linear solver algorithms that have

been optimized for the special irregular sparse matrices originating in the electrical power sys-

tems community. Available parallelism in the block-diagonal-bordered matrix structure has shown

promise for simpli�ed implementation and also provides a simple decomposition of the problem into

clearly identi�able sub-problems. Parallel block-diagonal-bordered direct linear solvers require a

three step preprocessing phase and the ordered matrix is reusable for many sparse linear solutions.

The matrix is ordered into block-diagonal-bordered form, pseudo-factored to identify the location

of all �llin and to obtain operations counts in the mutually independent diagonal blocks and corre-

sponding portions of the borders, and load-balanced to distribute workload uniformly throughout

all processors.

We developed an implementation that o�ered speedups on 32 processors of nearly ten for double

precision LU factorization and even greater speedups for complex variate LU factorization. Speedups

for parallel block-diagonal-bordered Choleski factorization were less than for LU factorization, and

there are formidable problems implementing forward reduction due to last diagonal block data dis-

tributions. These parallel block-diagonal-bordered direct solvers address the most di�cult power

systems applications to implement on a multi-processor | solutions to linear equations correspond-

ing to only power system networks. Load-ow has the smallest matrices and the fewest calculations

due to symmetry and lack of requirements for pivoting to ensure numerical stability. LU factoriza-

tion of network equations for decoupled solutions of di�erential-algebraic equations has additional

calculations, but often is solved without numerical pivoting. These parallel direct algorithms are

very sensitive to communications overhead, and the capabilities of the particular parallel architec-

ture. We have been able to quantify the e�ects of granularity on implementation performance and

we have shown that by simply increasing the granularity by a factor of eight, parallel speedup of the

algorithm improves signi�cantly.

9.2 Iterative Methods

We have also developed a parallel block-diagonal-bordered sparse Gauss-Seidel algorithm that also

has been optimized for the same very sparse, irregular matrices encountered in electrical power

system applications. We have developed this parallel Gauss-Seidel iterative method in order to

compare the performance of parallel iterative algorithms with similar parallel direct algorithms.

Block-diagonal-bordered matrix structure o�ers promise for simpli�ed implementation and also o�ers

a simple decomposition of the problem into clearly identi�able sub-problems. The node-tearing

ordering heuristic has proven to be successful in identifying the hierarchical structure in the power
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systems matrices, and reducing the number of coupling equations so that the graph multi-coloring

algorithm can often color the last block with only three colors. All available parallelism in our Gauss-

Seidel algorithm is derived from within the actual interconnection relationships between elements

in the matrix, and identi�ed in the sparse matrix orderings. Consequently, available parallelism

is not unlimited. Like the direct methods we have developed in this research, the parallel block-

diagonal-bordered Gauss-Seidel algorithm requires a three step preprocessing phase that is reusable

for static matrices. The matrix is ordered into block-diagonal-bordered form, pseudo-solved to

obtain operations counts in the mutually independent diagonal blocks and corresponding portions

of the borders, and load-balanced to distribute oating-point operations uniformly throughout all

processors.

We have extensively analyzed the performance of parallel solvers for power systems applications

on the Thinking Machines CM-5. We have shown that the node-tearing-based partitioning algorithm

can yield matrices in block-diagonal-bordered form with balanced workloads for power systems

networks with homogeneous voltage distribution lines; and we have shown that the performance

of our parallel block-diagonal-bordered sparse iterative linear solvers can yield good speedups for

Gauss-Seidel methods for those networks with balanced workloads. We have measured speedups in

excess of 20 for 32 processors with this parallel sparse Gauss-Seidel algorithm.

The parallel Gauss-Seidel algorithm has proven quite sensitive to the interprocessor communi-

cations paradigm. The low-latency communications paradigm, greatly improved the performance

of the algorithm, because of both reduced latency and signi�cantly simpli�ed implementation. The

low-latency communications paradigm permits values to be sent to other processors in an asyn-

chronous manner as soon as the values are calculated. This implementation greatly reduces the

parallel software overhead, no bu�ers must be maintained, and also greatly reduces the amount

of data required to distribute the values calculated in the last diagonal block. With total control

over individual messages in the last diagonal block, as few as 10% of values that normally would

be broadcast require distribution for 32 processors. As a result, we have measured good relative

speedups for the low-latency communications paradigm implementation of parallel Gauss-Seidel,

while the bu�ered communications version of this algorithm o�ers little or no speedup.

9.3 Comparisons of Direct and Iterative Methods

We are able to get substantially better speedups with the parallel Gauss-Seidel algorithm than with

the parallel direct methods for power systems networks, although the only matrix types where there

is assurance of convergence for Gauss-Seidel solvers are diagonally dominant and positive de�nite

matrices. Choleski-based linear solvers encountered the worst parallel performance, and are limited

to matrix forms where Gauss-Seidel convergence is assured. Due to guarantees of convergence for
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the Gauss-Seidel algorithm for positive de�nite or diagonally dominate matrices and the relative

performance for the parallel Choleski solver, there is potential for signi�cant algorithmic speedup

by selecting the Gauss-Seidel for solving those power systems network matrices that could also use

Choleski factorization. We have shown that the applications provide good estimates of starting

points for the iterative methods, so convergence appears to be su�ciently rapid that algorithmic

speedups of as great as ten may be possible. For those applications that require LU factorization,

more information concerning iterative solver convergence would be required in addition to the rate

of convergence for real power systems applications data before decisions could be made concerning

the selection of direct versus iterative methods.

9.4 Future Architectures

We design and implement algorithms on existing hardware; however, for industrial applications such

as power systems network analysis, it is equally important to predict algorithm performance for

future architectures. Performance predictions for future architectures will help determine whether

or not it will be cost-e�ective to port critical software to parallel architectures now or to simply wait

and get speedup in the future from faster single processor computers.

This analysis is a good case in point | performance for the parallel block-diagonal-bordered

sparse solvers developed here is rather good on the Thinking Machine CM-5 for moderate num-

ber of processors (2{32). For Choleski solver applications, the parallel block-diagonal-bordered

Gauss-Seidel algorithm yields good speedups and o�ers substantial algorithmic speedup when com-

pared with parallel block-diagonal-bordered direct solvers. However, the superb computation-to-

communication ratio available on the CM-5 using low-latency active messages will probably not be

equaled in future architectures where processor performance increases signi�cantly.

While the bandwidth-dependent parallel sparse block-diagonal-bordered direct solvers may port

to future architectures with equal or better performance, the latency-dependent parallel sparse block-

diagonal-bordered Gauss-Seidel solvers may not. While future architectures will have greater band-

width than the Thinking Machines CM-5, they will not have a comparable reduction in communica-

tions latency. Any algorithmic performance gains possible with the parallel Gauss-Seidel algorithm

would not be realized on future architectures that do not have the computation-to-communication

ratio available on the CM-5.

9.5 Future Research Opportunities

The parallel block-diagonal-bordered direct solvers we implemented in this research, address the

most di�cult power systems applications to implement on multi-processor architectures | solutions
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pertaining only to power system networks. Parallel block-diagonal-bordered sparse linear solver

algorithms can readily be extended to applications that have power systems networks as a small

portion of a larger matrix, for example, the entire system of linearized di�erential-algebraic equations

(DAEs) encountered in transient stability analysis or small-signals analysis applications. These

applications add many natural blocks of linearized di�erential equations that signi�cantly increase

the size of the matrix and the data density. The linearized di�erential equations are less-sparse

than the network equations and may require pivoting to ensure numerical stability. Pivoting for

this matrix would be limited to within diagonal-blocks to place limits on �llin, but the e�cient

static data structures would need to be replaced by less-e�cient dynamic linked-list-based data

structures. Any of these modi�cations would increase computational workload | work that does

not require interprocessor communications. As a result, any modi�cations to algorithms to include

these additional features would improve problem granularity and parallel speedup on the Thinking

Machines CM-5 and on future SPPs.

In addition to simply implementing a version of these parallel block-diagonal-bordered linear

solvers for transient stability or small signals analysis Jacobian solutions, there is a rich area for

research to incorporate the concepts of these parallel linear solvers more closely with DAE solvers

used to solve the di�erential equations and non-linear algebraic equations found in power systems

simulations [34]. This research has examined general parallel block-diagonal-bordered sparse linear

solvers; meanwhile, there are research opportunities to examine a more tight coupling of parallel

block-diagonal-bordered sparse linear solvers with DAE solvers in power systems applications.

The parallel block-diagonal-bordered Gauss-Seidel solver we implemented in this research, does

not include a preconditioner to speed convergence of the iterative solver. Future research could

examine e�ective and e�cient ways to add preconditioners such as incomplete LU factorization to

improve overall iterative linear solver performance.
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Appendix A

Nomenclature

A.1 Parallel Processor Architectures

Scalable Parallel Processors (SPP): Multicomputers with relatively small numbers of proces-

sors, 2 { 64, generally interconnected by switched networks. SPPs are often compatible with

workstations, and may be composed of networked workstations.

Highly Parallel Processors (HPP): Multicomputers with 64 { 1024 processors.

Massively Parallel Processors (MPP): Multicomputers with greater than 1024 processors.

A.2 Parallel Computing Analysis

Speedup | Sa1 : Given a single problem with two algorithms that exhibit execution times of Ta1

and Ta2 with Ta1 < Ta2 , speedup for algorithm a1 is de�ned as

Sa1 �
Ta2

Ta1

: (A.1)

This simple, intuitive de�nition will be expanded in order to compare the performance of

sequential and parallel algorithms [51].

Parallel Execution Time | Tp: The time to run a parallel algorithm on p processors [17, 25].

Sequential Execution Time | Tseq: The time to run a sequential algorithm as a single process

Tseq = T1 [17, 25].

Relative Speedup | Sp: Given a single problem with a sequential algorithm running on one

processor and a concurrent algorithm running on p independent processors, relative speedup
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is de�ned as

Sp � Tseq

Tp

[51]: (A.2)

Relative E�ciency | Ep: Relative e�ciency is de�ned as

Ep � Sp

p

[51]: (A.3)

E�ciency can be viewed as the speedup-per-node [17].

Amdahl's Law: A rule formalized by Gene Amdahl, which de�nes limits on parallel program

speedup as a function of the sequential portion of the overall calculations. Given T1, the time

to solve a problem on a single processor, then T̂p can be parameterized in � 2 [0; 1] by

T̂p � �T1 + (1� �)
T1

p

; (A.4)

where � is the inherently sequential fraction of computations [17, 25, 28, 51]. The aforemen-

tioned estimate of T̂p can be used when estimating the speedup Ŝp [51] by

Ŝp =
p

1 + (p � 1)�
=

1

�+ (1� �)=p
� Ŝ1 � �

�1
: (A.5)

Amdahl's Law can be used to estimate the maximum potential relative speedup by taking the

inverse of the sequential portion of the parallel problem. According to Amdahl's law, a task

with 10% sequential operations could obtain no more than a speedup of 10, regardless of the

number of processors applied to the problem.

Total Parallel Overhead | ft: The sum of all overhead incurred in the parallel calculations by

all processors. ft includes overhead due to communications costs, load-imbalance, costs for

additional software replicated on each processor, and non-optimal algorithms for the parallel

processor [17, 25]. ft is de�ned as

ft � (p� Tp)� T1: (A.6)

When ft is calculated using empirical data, it can be either a non-negative or negative quantity.

Negative overhead signi�es that speedup for the problem has not been bounded by p, and

thus superlinear speedup has occurred. Superlinear speedup can result from cache e�ects as a

problem is divided onto multiple processors, the amount of memory required on each processors

is reduced, generally proportionally to the number of processors. The entire problem may not

�t in fast cache for one or several processors, but the problem may �t into fast cache memory

as the number of processors increases. Consequently, doubling the number of processors may

more than double the measured speedup.
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Communications Overhead | fc: A measure of the additional workload incurred in a parallel

algorithm as a result of interprocessor communications [17, 25, 28]. fc is dependent on the

ratio of communications to calculations, not just the amount of communications

fc � tcomm

tcalc

; (A.7)

where tcalc is a metric describing the computational capability of a single processor [17], and

tcomm represents the communications characteristics. The quantity tcalc
tcomm

is often referred to

as the computation-to-communications ratio. For traditional bu�ered interprocessor commu-

nications, tcomm is a linear combination of latency, bandwidth, and message size

tcomm � tlatency +

�
4

B bytes
� Nwords

�
: (A.8)

tlatency is the communications latency or startup time, Bbytes is the bandwidth measured in

bytes per second, and Nwords is the number of words or four byte units of data.

Load-Imbalance Overhead | fl : Parallel speedup is limited by the time of the slowest processor

in the calculations. fl is the sum of idle time for processors waiting for the slowest processor

[17, 28] .

Parallel Software Overhead | fs: Parallel algorithms may require additional calculations that

must be replicated at each processor, such as additional index calculations | the overhead to

startup loops must be replicated in spite of the fact that the loops may have fewer applications,

due to work being distributed amongst multiple processors [17].

Parallel Algorithmic Overhead | fp: E�cient parallel algorithms may require additional cal-

culations that are not present in a sequential algorithm. fp denotes the additional work

performed in the parallel algorithm not required in the sequential algorithm [17].

Overhead-Based Performance Estimate | �
Tp: Amdahl's Law gives one preliminary estimate

of the potential speedup in a concurrent algorithm; however, for some concurrent algorithms,

overhead associated with the concurrent algorithm appears more critical than the inherent

percentage of sequential operations in a concurrent algorithm. In these instances, the time for

a parallel algorithm can be de�ned as

�
Tp � Tseq

p

(1 + ft): (A.9)

This can be rewritten as

�
Sp =

p

1 + ft

; (A.10)
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and

�
Ep =

1

1 + ft

� 1� ft; (A.11)

which yields an estimate for ft,

ft =
1
�
Ep

� 1: (A.12)

This measure of parallel algorithm performance, along with Amdahl's law, can be used to

generate estimates of potential performance for algorithms on other existing or even future

parallel architectures [17].

Computation-to-Communications Ratio: The computation-to-communications ratio denotes

the relative number of calculations on a processor compared to the amount of communications.

This quantity is related to granularity, and also is related to the inverse of fc, communications

overhead [17, 28].

Granularity: The amount of operations performed by a process between interprocessor commu-

nications events. A �ne-grain process performs only a few operations between requisite com-

munications, while a coarse-grain process performs many operations between interprocessor

communications [17, 28].
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Node-Tearing Nodal Analysis

Node-tearing nodal analysis partitions a power systems network graph into independent subgraphs

and a coupling network, which corresponds to determining the diagonal blocks and lower border in

a block-diagonal-bordered form matrix. We have selected node-tearing nodal analysis to partition

power systems networks and form block-diagonal-bordered matrices because this algorithm examines

the natural structure in the matrix while providing the means to minimize the number of coupling

equations. Tearing here refers to breaking the original problem into smaller sub-problems whose

partial solutions can be combined to give the solution of the original problem. Node-tearing nodal

analysis is a specialized form of diakoptic analysis [26] that was developed especially for power

system network analysis [49]. In general, node-tearing analysis is superior to conventional diakoptic

analysis because node-tearing simply orders the network graph and does not generate new nodes

in the power distribution network graph. For power systems networks, the corresponding ordered

admittance matrices retain their symmetry and positive de�nite nature. Examples in reference [49]

illustrate that the technique also has validity for general structural analysis matrices.

B.1 The Node-Tearing Algorithm

To describe node-tearing in rigorous mathematical terms, let the set N denote the nodes of an

undirected graph G and let E denote the edges in G, or G = (N ; E). Partition the node set N into

two arbitrary subsets N1 and N2, and partition the edge set E into two subsets E1 and E2 such that:

1. E1 contains all edges in E that touch nodes in N1,

2. E2 contains all other edges of E .
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Two conditions exist to ensure that the partitioned graph is suitable for tearing. The topological

condition speci�es the form into which we partition the graph, and the edge-coupling condition

speci�es limits on the connectivity of edges in graph partitions. Before de�ning the topological

condition concerning the connected nature of the graph, we introduce the concept of a section

graph.

De�nition | Section Graph Given a graph G, let S � G, then a section graph is de�ned as:

G(S) � (S; ES); (B.1)

where: ES � f" 2 E j " is incident only with Sg [49].

The topological condition for graph connectivity requires that the section graph GN1
can be

partitioned into m, (m > 1) disconnected sub-graphs such that:

G(N 1
1 ) � (N 1

1 ; E11 )
G(N 2

1 ) � (N 2
1 ; E21 )

...

G(Nm
1 ) � (Nm

1 ; Em1 ):

(B.2)

Given the topological condition, we can de�ne the two partitions of the node set N:

N1 � [mi=1N i
1

N2 � N �N1

(B.3)

where:

N1 is the set of nodes in the mutually independent subgraph

N2 is the set of nodes in the coupling equations

In the case of block-diagonal-bordered form matrices, N1 equates to the diagonal blocks, and N2

equates to those block-diagonal-bordered matrix rows/columns in the borders and the last diagonal

block.

The edge-coupling condition simply requires that the edges in E i1 are not connected to edges in Ej1
8 i 6= j and i; j = 1; 2; : : : ;m. Consequently, G(N i

1) has no edges in commonwith G(N j
1 ), 8i 6= j, and

there are no edges directly interconnecting any nodes in N i
1 and N j

1 , 8i 6= j. Connectivity between

G(N i
1) and G(N j

1 ), 8i 6= j, is not direct and must go through nodes in N2. Reference [49] contains

the straight forward proof that these conditions yield a block-diagonal-bordered form matrix when

the corresponding graph G is ordered by node-tearing.

In addition to ordering matrices into block-diagonal-bordered form using node-tearing, we require

that the number of coupling equations, j N2 j, is minimized over all distinct partitions fN1;N2g of

G. The tearing optimization problem attempts to minimize j N2 j given that:
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Iterating Sets Adjacency Sets Contour Number

Ik1 Ak
1 c

k
1

Ik2 Ak
2 c

k
2

Ik3 Ak
3 c

k
3

...
...

...

Figure B.1: Sample Contour Tableau for the k
th Diagonal Block

1. the topological condition holds,

2. the edge coupling condition holds,

3. j N k
1 j� maxDB , k = 1; 2; : : :;m.

The last constraint for the tearing optimization problem permits some control of the maximum size

of diagonal blocks,maxDB , which can prove quite useful when tearing a graph for factoring on multi-

processors. By modifying this parameter, control can be exercised over the shape of the ordered

sparse matrix | yielding narrow bandwidth block-diagonal-bordered form matrices when maxDB is

small and limiting the size of the borders in a block-diagonal-bordered matrix when maxDB is large.

The e�ects of varying the value of maxDB is illustrated in sections 7.1 and 7.2. This optimization

problem belongs to the family of NP-complete problems [49]. We expect to apply node-tearing to

order large sparse matrices into block-diagonal-bordered form, so the use of an exact exponentially-

bounded-complexity algorithm is not feasible, and the following e�cient heuristic algorithm has

been developed,

The technique chosen to solve the graph optimization problem is based on examining the contour

of the graph [49], and developing a contour tableau to identify independent subgraphs. A contour-

tableau consists of three columns as illustrated in �gure B.1 and a separate contour-tableau is

developed for each diagonal block. The leftmost column contains the iterating sets or the potential

elements of a set of nodes in the subgraph N k
1 . The middle column contains the adjacency set, which

contains the set of nodes adjacent to, but not including any elements in the corresponding iterating

set. The remaining column contains the contour number or the cardinality of the corresponding

adjacency set.

The contour tableau is constructed by selecting the initial iterating set element �1 and placing �1

in Ik1 . Next, all nodes adjacent to �1, �(�1), are stored in Ak
1 : then j Ak

1 j is placed in c
k
1 . The next

iterating set is constructed by forming the union of the previous iterating set and the next iterating

node:

Ik(i+1) = Iki [ f�(i+1)g: (B.4)
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The adjacency set is updated by the formula:

Ak
(i+1) = Ak

i [ �(�(i+1))� f�(i+1)g; (B.5)

and

c
k
(i+1) =j Ak

(i+1) j : (B.6)

What remains to be described are the methods to select an initial node, select the next node, and to

select an independent graph partition from the contour tableau. Because the algorithm is attempting

to minimize j N2 j, it can be shown that the selection of both the initial node and the next node

should always be the node with the smallest number of adjacent nodes or select �(i+1) such that

�(�(i+1)) = min
8�2N�Ik

i

�(�) (B.7)

If there are ties, then a node is selected arbitrarily. Lastly, the criteria to select an independent

graph partition from the contour tableau requires identifying the iterating set Iki that has a local

minimum value of cki , i � maxDB . This selection criteria is obvious because at any location in the

contour tableau, three disjoint sets are speci�ed:

1. Iki | the iterating set,

2. Ak
i | the adjacency set,

3. Zk
i = N � Iki � Ak

i | the remaining nodes in G.

In this representation, no node in Iki is adjacent to a node in Zk
i , and Ak

i represents the coupling

equations between the two sets. The number of elements in the set Ak
i varies as a function of i. One

constraint in this optimization problem is to minimize the number of coupling equations, j N2 j,
so a greedy algorithm that uses the heuristic for building the k

th independent partition, N k
1 , by

minimizing the cardinality of Ak
i should yield an acceptable solution in a polynomial algorithm.

Moreover, when a partition is selected, nodes remaining in Ak
i are placed directly into the set N2,

N2 = N2 [Ak
i (B.8)

because Ak
i represents the nodes adjacent to but not included within the set Iki . According to the

topological condition, these nodes must be part of the coupling equations.

B.2 An Example of Node-Tearing

An example illustrating node-tearing nodal analysis is presented in �gures B.2 through B.6. The

example graph, presented in �gure B.2, has two distinct portions connected at node �4. Node �1
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ν
1

ν
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ν
3

ν
4

ν
5

ν
6

ν
7

FIRST

NODE

COUPLING

NODE

Figure B.2: Graph for a Node-Tearing Example

Iterating Sets Adjacency Sets Contour Number

1 f�1g f�2; �3; �4g 3

2 f�1; �2g f�3; �4g 2

3 f�1; �2; �3g f�4g 1

4 f�1; �2; �3; �4g f�5; �6; �7g 3

5 f�1; �2; �3; �4; �5g f�6; �7g 2

6 f�1; �2; �3; �4; �5; �6g f�7g 1

7 f�1; �2; �3; �4; �5; �6; �7g f�g 0

Figure B.3: Example Contour Tableau

meets the selection criteria for the �rst node, and the contour tableau is presented in �gure B.3.

There is a distinct local minimum in the contour number at c3 which identi�es node �4 as the node

that couples the two mutually independent graph partitions. Figure B.4 presents the ordered graph

| note that only the labels on the modes have changed from �gure B.2. To illustrate the e�ect of

ordering the matrix, the matrix sparsity structure for the original and ordered graphs are presented

in �gure B.5. In these �gures, original data values are represented with + symbols while �llin are

denoted with F characters. Within the subgraphs, the values would be ordered with a minimum-

degree ordering algorithm. For this sample matrix, minimum degree ordering for the entire matrix

would yield the same results.

Figure B.6 completes this example by illustrating the elimination tree for this example. For

the unordered matrix, there are no branches in the elimination tree; consequently, if calculations

are performed in the original order, there would be no factorization operations that could be per-

formed in parallel. However, after ordering there is available parallelism denoted by the multiple

leaf supernodes in the elimination tree.
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Figure B.4: Relabeled Example Graph

+ + + 0 0 0 +
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independent
sub-matrix

(a) Original Matrix (b) Ordered Matrix
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Figure B.5: Matrix Representation of the Example Graphs

(b) Ordered Matrix(a) Original Matrix
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Figure B.6: Elimination Trees for the Example Graphs
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B.3 The Node-Tearing Implementation

The software implementation to perform node-tearing nodal analysis utilizes the basic concept of

building a contour tableau to identify independent sub-matrices and the coupling equations in an

undirected graph representing a sparse matrix. In our implementation, the search for the local

minimum of the contour number is limited to within the range (� � maxDB) � i � maxDB,

0 < � < 1. When an independent sub-matrix is found, this iterating set is moved into a set

N k
1 , where j N k

1 j= i. After the sets N1 = fN 1
1 ; : : : ;Nm

1 g and N2 are determined, the equations

corresponding to the sets N 1
1 ; : : : ;Nm

1 and N2 are further ordered independently using the multiple

minimum-degree ordering algorithm.

Figure B.7 illustrates the major steps in the node-tearing ordering algorithm that produces block-

bordered-diagonal form matrices with minimum �llin. The algorithm examines all nodes essentially

once, where the size of the independent subgraphs are limited to maxDB. The computational

complexity of this algorithm is

O(max
8 i

j Aki j �N ) (B.9)

due to the fact that all nodes in the graph must be examined, and for each element in the contour

tableau | all elements of the adjacency set must be examined for the next node. The value of

max8 i j Aki j must be less than N , and because the graphs will be sparse, the maximum number in

the adjacency set will be substantially less than N , so the computational complexity of the algorithm

is substantially less than O(N2).
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G  the graph representing the sparse matrix

while G 6= � do

while i � maxDB do

select �i 2 Ak(i�1) such that �(�i) = min�2Ik
(i�1)

�(�)

Iki  Ik(i�1) [ f�g
Aki  Ak(i�1) [ �(�i) � f�ig
if (��maxDB) � i � maxDB

determine the location of the local minimum  

endif

endwhile

N k
1  Ik 
N2  N2 [Ak 
G  G � N k

1 �N2

if ordering for direct methods

minimum-degree order N k
1

endif

end while

if ordering for direct methods

minimum-degree order N2

endif

Figure B.7: The Node-Tearing Algorithm
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Minimum-Degree Ordering

Minimum-degree ordering has been used in our research in a two-fold manner:

1. to order symmetric power system admittance matrices to provide baseline orderings with which

to compare the performance of other ordering techniques

2. to order the independent sub-matrices in recursive spectral bisection and node-tearing ordering

techniques

Minimum degree ordering is a greedy algorithm that selects a node with a minimum number of

connected edges in the graph for factoring next. This algorithm is not optimal because truly e�cient

techniques do not exist to resolve ties and numerous rows have equal numbers of elements. The

minimum-degree ordering algorithm is based on the iterative application of the following equation

to solve for i for all rows in a matrix:

r

(k)
i = min

t
r

(k)
t ; (C.1)

where:

r

(k)
i is the number of variables in row i when factoring the k

th row.

r

(k)
t is the number of variables in row t when factoring the k

th row

When factoring the k
th row, the row with the minimum number of variables is selected, moved

by elementary row and column exchange rules to the k
th row, and then factored. Algorithms to

implement this iterative formula are best described using the graph theoretical explanation of �llin

presented in �gure 3.7. Let G be an undirected graph and � a node in G, then let �G(�) describe the

set of nodes adjacent to � and let j�G(�)j represent the degree of node �. The last concept required

to develop a concise minimum-degree algorithm is the concept of an elimination graph [22]. Given a

graph G, the elimination graph G� is the resulting graph after the node � is factored. Elimination

150



APPENDIX C. MINIMUM-DEGREE ORDERING 151

G the symmetric graph representing the sparse matrix

while G 6= � do

select a node � 2 G with minimum degree

order � next

/* calculate the elimination graph G� */

for all nodes � 2 �G(�)

�G�
(�)  (�G(�) [ �G(�))� f�; �g

end for

G G�

end while

Figure C.1: The Minimum-Degree Algorithm

graphs get their name because of the close relationship of LU factorization and Gaussian elimination.

The rudimentary minimum-degree algorithm used throughout this work is presented in �gure C.1.

The outer loop examines each node in the graph, and the inner loop searches through all remaining

nodes in the present graph to select a node with the minimumdegree. After a minimum-degree node

is selected, the edges at adjacent nodes must be updated to reect factorization. As illustrated in

�gure 3.7, the addition of new edges in the elimination graph G� is limited to those nodes in �G(�).

For � 2 �G(�), then

�G�
(�) = (�G(�) [ �G(�))� f�; �g: (C.2)

Given the two nested loops that can examine all nodes in the original sparse graph, the compu-

tational order of this algorithm is O(N2), although a signi�cant portion of the workload is required

to calculate the elimination graph G� [22]. As stated above, in formula 3.4, the total amount of

calculations in the loop to update the elimination graph G� is bounded by the binomial coe�cient of

the number of edges at a node choose 2 or j�G(�)j chose 2. See equation 3.4 for details on calculating

the binomial coe�cient. It is important to note that the location of all �llin can be determined when

using this classical implementation of minimum degree ordering.

This version of the minimum-degree algorithmhas been used in our research in a two-foldmanner:

to order symmetric power systems admittance matrices to provide baseline orderings with which to

compare the performance of other ordering techniques, and to order the independent sub-matrices

obtained with node-tearing ordering techniques. We apply the algorithm independently to each

graph partition and the coupling equations, so we are actually implementing a version of the multiple

minimum degree ordering algorithm.
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Graph Coloring

To describe graph-coloring in rigorous mathematical terms, let the set N denote the nodes of an

undirected graph G and let E denote the edges in G, or G = (N ; E). Graph edges are tuples (i; j),

where i; j 2 E and i 6= j. The two nodes are de�ned to be neighbors if the tuple (i; j) 2 E . Given a

graph G, we de�ne a coloring of G to be an assignment of colors to the nodes N of G such that no

two adjacent nodes are given the same color. This can be restated as a coloring of G is a mapping

� : N ! f1; 2; : : : ; �̂g such that �(i) 6= �(j) 8(i; j) 2 E . The color of node i is �(i) and �̂ � �G.

The minimum possible value for �̂ is known as the chromatic number of G, which we denote as �G

[32].

D.1 The Basic Greedy Graph Coloring Heuristic

Multi-coloring a graph G is an NP-complete problem that attempts to de�ne a minimum number

of colors for the nodes of a graph where no adjacent nodes are assigned the same color [27, 32, 42].

A greedy polynomial time heuristic can yield an optimal ordering if the nodes are visited in the

correct order, although the same heuristic may be arbitrarily bad for a di�erent order [5]. The basic

greedy graph coloring heuristic is presented in �gure D.1. The only aspect of the basic heuristic

that is normally modi�ed, as variations on this algorithm are developed, is the rule to select the

node �̂ from the remaining uncolored nodes [32]. In adding load-balancing, we have also modi�ed

the selection of the smallest available consistent color.
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N̂  N
while N̂ 6= � do

select a node �̂ from N̂
�(�̂) the smallest available consistent color

N̂  N̂nf�̂g
end while

Figure D.1: The Graph Multi-Coloring Algorithm

D.2 The Saturation Degree Ordering Heuristic

We selected the saturation degree ordering heuristic [32] to color the last diagonal block in our

preprocessing phase when generating matrices in block-diagonal-bordered form for parallel Gauss-

Seidel methods, but we have modi�ed saturation degree ordering to include load-balancing. The

saturation degree ordering heuristic selects a node in the graph that has the largest number of

di�erently colored neighbors and is de�ned as follows. Suppose that nodes �̂1; : : : ; �̂i�1 have been

selected and colors �(1) to �(i� 1) assigned to these nodes. The next node, �̂i, selected for coloring

is a node with the most adjacent colored nodes in the set f�̂1; : : : ; �̂i�1g. When there are multiple

nodes that meet this selection criteria, a node is selected at random.

We have added a load-balancing capability to the saturation degree ordering algorithm that

selects the color for a node and attempts to equalize the number of nodes with a particular color in

a manner similar to the pigeon-hole load balancing algorithm. Whenever possible, a color is selected

that will reduce the disparity in the number of nodes assigned a certain color. Our version of the

saturation degree ordering algorithm simply selects the consistent color with the fewest occurrences.

A consistent color for the node �̂i is an element of the set fc1; : : : ; ckg, where ck < �̂ and 8j such

that (i; j) 2 E , �(j) 3 fc1; : : : ; ckg. We de�ne a function (m) that determines the cardinality of

the set of nodes with the color m | (m) =j f�̂i j 8i(�(i) = m)g j. With our modi�cations to the

saturation degree algorithm, a consistent color for the node �̂i is an element of the set fc1; : : : ; ckg,
where 8j such that (i; j) 2 E , �(j) 3 fc1; : : : ; ckg and fclb j (clb) � (m) 8m 2 fc1; : : : ; ckgg.
This added selection condition helps to break ties when there are multiple consistent colors in the

traditional saturation degree algorithm.

We present our version of the saturation degree ordering-based graph multi-coloring algorithm

in �gure D.2. The computational complexity of this algorithm is O(max�2N̂ j�Ĝ(�)j � N̂ ), where

�
Ĝ
(�) de�nes the set of nodes in Ĝ adjacent to �. The graphs encountered for coloring in this work
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N̂  N2 /* the nodes in the sparse last diagonal block */

while N̂ 6= � do

select a node �̂ from N̂ such that �̂ has the largest

number of neighbors with di�erent colors

�(�̂) the consistent color with the fewest occurrences

N̂  N̂nf�̂g
end while

Figure D.2: The Graph Multi-Coloring Algorithm for the Last Diagonal Block of a Block-Diagonal-

Bordered Matrix

are very sparse, generally with no more than three nodes adjacent to any single node. Some graphs

representing the last diagonal blocks in real power systems networks after node-tearing ordering

proved to be bipartite, while many graphs required only three colors. The results of graph coloring

the last diagonal block when preprocessing the networks for the parallel Gauss-Seidel are presented

in section 7.2.



Appendix E

Implementation Pseudo-Code

This appendix contains the pseudo-code listing of the parallel block-diagonal-bordered iterative

solvers that have been developed in the C programming language for the Thinking Machines CM-5

multi-processor using a host-node paradigm with message passing. Pseudo-code listings are pre-

sented both for direct and iterative methods. Detailed discussions of the implementations are pro-

vided in chapter 6.

E.1 Parallel Blocked-Diagonal-Bordered LU Factorization

Implementations for both parallel block-diagonal-bordered sparse LU and Choleski factorization

have been developed during this research. The pseudo-code presented in this section focuses on LU

factorization, although Choleski factorization implementations are similar to these algorithms with

modi�cations to account for the symmetric nature of the matrices used in Choleski factorization.

The block-diagonal-bordered LU factorization algorithm can be broken into three component parts

as de�ned in the derivation on available parallelism in chapter 4. Pseudo-code representations of

each parallel LU factorization algorithm section are presented separately in �gures E.1 through E.4.

In particular, each of these �gures correspond to the following �gure numbers:

1. factor the diagonal blocks and border | �gure E.1,

2. update the last diagonal block |

� low-latency communications paradigm | �gure E.2,

� bu�ered communications paradigm | �gure E.3,

3. factor the last diagonal block | �gure E.4.
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The remaining steps in the parallel algorithm are forward reduction and backward substitution.

The forward reduction algorithm to operate with the parallel block-diagonal-bordered LU factoriza-

tion algorithm can be broken into three component parts, similar to LU factorization. Pseudo-code

representations of each parallel algorithm section are presented separately in �gures E.5 through E.8.

In particular, each of these �gures correspond to the following �gure numbers:

1. forward reduce the diagonal blocks and border | �gure E.5,

2. update the last diagonal block |

� low-latency communications paradigm | �gure E.6,

� bu�ered communications paradigm | �gure E.7,

3. forward reduce the last diagonal block | �gure E.8.

The backward substitution algorithm to operate with the parallel block-diagonal-bordered LU

factorization algorithm can be broken into two component parts, back substitute the last diagonal

block then back substitute the remaining upper triangular matrix. Pseudo-code representations of

each parallel algorithm section are presented separately in �gures E.9 and E.10, respectively for

backward substitution of the last diagonal block and backward substitution of the diagonal blocks

and border.

E.2 Parallel Blocked-Diagonal-Bordered Gauss-Seidel

Implementations for the parallel block-diagonal-bordered sparse Gauss-Seidel method have been

developed during this research. Pseudo-code representations of each parallel algorithm section are

presented separately in �gures E.11 through E.18. In particular, each of these �gures correspond to

the following �gure numbers:

1. monitor convergence for the parallel Gauss-Seidel method | �gure E.11,

2. solve for x(k+1) in the diagonal blocks and upper border | �gure E.12,

3. update b̂ for the last diagonal block |

� low-latency communications paradigm | �gure E.13,

� bu�ered communications paradigm | �gure E.14,

4. solve for x̂(k+1) in the last diagonal block |

� low-latency communications paradigm | �gure E.15,
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Node Program

/* factor the independent blocks and corresponding borders */

for those independent blocks l assigned to this processor

for all elements k along the diagonal in block l

for each i 2 [k;Nl]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each i 2 [k + 1; Nl]

Ak;j  (Ak;j=Ak;k)

endfor

for each j 2 [k + 1; Nl]

for each i 2 [1; k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

endfor

endfor

endfor

Figure E.1: Parallel Block-Diagonal-Bordered Sparse LU Factorization Algorithm | Diagonal

Blocks and Border

� bu�ered communications paradigm | �gure E.16,

5. perform the convergence check |

� low-latency communications paradigm | �gure E.17,

� bu�ered communications paradigm | �gure E.18.

Figure E.11 provides the framework for the parallel block-diagonal-bordered sparse Gauss-Seidel

implementation. In this implementation, multiple iterations are performed before a check is made

on convergence.
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Node Program

/* calculate updates to the last block */

for those independent blocks l assigned to this processor

for all non-zero columns j in the upper border of this block

for all non-zero rows i in the lower border

� = 0

for each k such that Li;k and Uk;j 6= 0

�  � + (Li;k � Uk;j)

endfor

endfor

p P(i; j) /* map the (i; j) tuple to the processor location p */

Send an active message RPC to the handler function

Update FAC LB(�; i; j) on processor p

Poll for active message RPCs

endfor

endfor

/* update the last block with active message RPC handler function Update FAC LB */

Function Update FAC LB(�; i; j)

Ai;j  Ai;j � �

End Update FAC LB

Figure E.2: Parallel Block-Diagonal-Bordered Sparse LU Factorization Algorithm | Update the

Last Diagonal Block | Low-Latency Communications Paradigm
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Node Program

/* calculate updates to the last block */

��;�;� = 0

for those independent blocks l assigned to this processor

for all non-zero columns j in the upper border

for all non-zero rows i in the lower border

p P(i; j) /* map the (i; j) tuple to the processor location p */

for each k such that Li;k and Uk;j 6= 0

�i;j;p �i;j;p + (Li;k � Uk;j)

endfor

endfor

endfor

endfor

/* update the last diagonal block using data calculated on this processor */

for all data in the bu�er

Ai;j  Ai;j � �i;j

endfor

/* update the last diagonal block using data calculated on other processors */

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors around a conceptual ring

Asynchronously send ��;�;psend to processor psend

Asynchronously receive ~��;� from processor preceive

/* update the last diagonal block on this processor using

data from processor preceive */

for all data in the received bu�er

Ai;j  Ai;j � ~�i;j

endfor

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

endfor

Figure E.3: Parallel Block-Diagonal-Bordered Sparse LU Factorization Algorithm | Update the

Last Diagonal Block | Bu�ered Communications Paradigm
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Node Program

/* factor the last block | all communications are sent around a conceptual ring */

pfactor  pstart  0

if pfactor = local proc num

factor the �rst block

send the panel of values to processor 1

end if

for all blocks on this processor

if pfactor 6= local proc num

receive the next panel

if pstart 6= local proc num

psend  (local proc num + 1) mod Nprocs

send the next panel of values to processor psend

end if

end if

pfactor  (pfactor + 1) mod Nprocs

if pfactor = local proc num

update only the next block with the next panel

factor the next block

if not the last block

psend  (local proc num + 1) mod Nprocs

send the panel of values to processor psend

pstart  psend

end if

end if

update all remaining blocks with the next panel

endfor

Figure E.4: Parallel Block-Diagonal-Bordered Sparse LU Factorization Algorithm | Last Diagonal

Block
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Node Program

/* reduce the independent blocks */

for all independent blocks l assigned to this processor

for all elements k along the diagonal in block l

for each j 2 [1; k� 1] such that Lk;j 6= 0

bj  bj � (yj � Lk;j)

endfor

yk  bk

endfor

endfor

Figure E.5: Parallel Block-Diagonal-Bordered Sparse Forward Reduction Algorithm | LU Factor-

ization | Diagonal Blocks and Border
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Node Program

/* calculate updates to the last block */

for all independent blocks l assigned to this processor

for all non-zero rows i in the lower border of this block

� = 0

for each j such that Li;j 6= 0

�  � + (yj � Li;j)

endfor

p P(i) /* map the row value (i) to the processor location p */

Send an active message RPC to the handler function

Update FR LB(�; i) on processor p

endfor

endfor

/* update the last block with active message RPC handler function Update FR LB */

Function Update FR LB(�; i)

bi  bi � �

End Update FR LB

Figure E.6: Parallel Block-Diagonal-Bordered Sparse Forward Reduction Algorithm | LU Factor-

ization | Update the Last Diagonal Block | Low-Latency Communications Paradigm
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Node Program

/* calculate updates to the last block */

for all independent blocks l assigned to this processor

for all non-zero rows i in the lower border of this block

p P(i) /* map the row value (i) to the processor location p */

for each j such that Li;j 6= 0

�i;p  �i;p + (yj � Li;j)

endfor

endfor

endfor

/* update the last diagonal block using data calculated on this processor */

for all data in the bu�er

bi  bi � �i

endfor

/* update the last diagonal block using data calculated on other processors */

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors around a conceptual ring

Asynchronously send ��;psend to processor psend

Asynchronously receive ~�� from processor preceive

/* update the last diagonal block on this processor using

data from processor preceive */

for all data in the received bu�er

bi  bi � ~�i

endfor

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

endfor

Figure E.7: Parallel Block-Diagonal-Bordered Sparse Forward Reduction Algorithm | LU Factor-

ization | Update the Last Diagonal Block | Bu�ered Communications Paradigm
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Node Program

/* reduce the last block */

preduce  pstart  0

if preduce = local proc num

forward reduce the �rst block

send the values of y from this block to processor 1

end if

for all blocks on this processor

if preduce 6= local proc num

receive the next values of y

if pstart 6= local proc num

psend  (local proc num + 1) mod Nprocs

send the next values of y on to processor psend

end if

end if

preduce  (preduce + 1) mod Nprocs

if preduce = local proc num

forward reduce only the next block with the next values of y

if not the last block

psend  (local proc num + 1) mod Nprocs

send the values of y from this block to processor psend

pstart  psend

end if

end if

forward reduce all remaining blocks with the next values of y

endfor

Figure E.8: Parallel Block-Diagonal-Bordered Sparse Forward Reduction Algorithm | LU Factor-

ization | Last Diagonal Block
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Node Program

/* backward substitute the last block */

psub pstart  plast block

if psub = local proc num

backward substitute the last block

psend (local proc num+ Nprocs � 1) mod Nprocs

send the values of x from this block to processor psend

end if

for all blocks on this processor

if psub 6= local proc num

receive the next values of x

if pstart 6= local proc num

psend  (local proc num +Nprocs � 1) mod Nprocs

send the next values of x on to processor psend

end if

end if

psub (psub +Nprocs � 1) mod Nprocs

if psub = local proc num

backward substitute only the next block with the next values of x

if not the �rst block

psend  (local proc num +Nprocs � 1) mod Nprocs

send the values of x from this block to processor psend

pstart  psend

end if

end if

backward substitute all remaining blocks with the next values of x

endfor

Figure E.9: Parallel Block-Diagonal-Bordered Sparse Backward Substitution Algorithm | LU Fac-

torization | Last Diagonal Block
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Node Program

/* backward substitute in the independent blocks and the border */

for all independent blocks l in descending order

/* backward substitute the border in this block */

for all elements k along the diagonal in block l in descending order

for each i in the upper border such that Ui;k 6= 0

yi  yi � (xk � Ui;k)

endfor

endfor

/* backward substitute the triangular section of this block */

for all elements k along the diagonal in block l in descending order

xk  (yk=Uk;k)

for each i 2 [1; i� 1] such that Ui;k 6= 0

yi  yi � (xk � Ui;k)

endfor

endfor

endfor

Figure E.10: Parallel Block-Diagonal-Bordered Sparse Backward Substitution Algorithm | LU

Factorization | Diagonal Blocks and Border
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Node Program

� 1
while � > �converge

for k = 1 to niter

solve for x(k+1) in the diagonal blocks and upper border

update b̂ for the last diagonal block

solve for x̂(k+1) in the last diagonal block */

endfor

check convergence

endwhile

Figure E.11: The Iterative Framework for the Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel

Algorithm

Node Program

/* solve for x(k+1) in the diagonal blocks and upper border */

for all rows i in blocks assigned to this processor

~xi  xi

xi  bi

for each j 2 [1; n] such that aij 6= 0

xi  xi � (aij � xj)
endfor

xi  xi=aii

endfor

Figure E.12: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Diagonal Blocks
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Node Program

/* update b̂ = x̂ for the last diagonal block */

for all rows i in the last block assigned to this processor

~xi  xi

x̂i  bi

endfor

for all non-zero rows i in the lower border of this block

for each j such that aij 6= 0

�  � � (aij � xj)

endfor

Send an active message RPC to the handler function

Update x̂(�; i) on processor �i

Poll for active message RPCs

endfor

/* update x̂ with active message RPC handler function Update x̂ */

Function Update x̂(�; i)

x̂i  x̂i � �

End Update x̂

Figure E.13: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm| Update b̂| Low-

Latency Communications Paradigm
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Node Program

/* update b̂ = x̂ for the last diagonal block */

��;� = 0

for all rows i in the last block assigned to this processor

~xi  xi

x̂i  bi

endfor

for all non-zero rows i in the lower border of this block

for each j such that aij 6= 0

�i;�i  �i;�i � (aij � xj)
endfor

endfor

/* update x̂i on this processor using data calculated on this processor */

for all data in the bu�er

x̂i  x̂i � �i

endfor

/* update x̂i on this processor using data calculated on other processors */

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors around a conceptual ring

Asynchronously send ��;psend to processor psend

Asynchronously receive ~�� from processor preceive

/* update x̂i on this processor using data from processor preceive */

for all data in the received bu�er

x̂i  x̂i � ~�i

endfor

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

endfor

Figure E.14: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Update b̂ |

Bu�ered Communications Paradigm
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Node Program

/* solve for x̂(k+1) in the last diagonal block */

for all colors c

for all rows i in color c assigned to this processor

for each j 2 [1; n] such that aij 6= 0

x̂i  x̂i � (aij � xj)

endfor

xi  x̂i=aii

for all processors � requiring xi

Send an active message RPC to the handler function

Store x(xi; i) on processor �

Poll for active message RPCs

endfor

endfor

Poll for active message RPCs

endfor

/* store xi with active message RPC handler function Store x */

Function Store x(�x; i)

xi  �xi

End Store x

Figure E.15: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Last Diagonal

Block | Low-Latency Communications Paradigm
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Node Program

/* solve for x̂(k+1) in the last diagonal block */

for all colors c

for all rows i in color c assigned to this processor

for each j 2 [1; n] such that aij 6= 0

x̂i  x̂i � (aij � xj)
endfor

xi  x̂i=aii

endfor

/* update xi on this processor using data calculated on other processors */

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors around a conceptual ring

Asynchronously send x from this color to processor psend

Asynchronously receive x from this color from processor preceive

endfor

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

endfor

Figure E.16: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Last Diagonal

Block | Bu�ered Communications Paradigm
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Node Program

/* check convergence */

�̂ 0

for all rows i assigned to this processor

�̂ �̂+ abs(~xi � xi)

endfor

� �̂

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors � around a conceptual ring

Send an active message RPC to the handler function

Update �(�̂) on processor �

endfor

/* update � with active message RPC handler function Update � */

Function Update �(�̂)

� �+ �̂

End Update �

Figure E.17: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Convergence

Check | Low-Latency Communications Paradigm
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Node Program

/* check convergence */

�̂ 0

for all rows i assigned to this processor

�̂ �̂+ abs(~xi � xi)

endfor

� �̂

/* update � on this processor using data calculated on other processors */

psend  preceive local proc num

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

for all processors around a conceptual ring

Asynchronously send �̂ to processor psend

Asynchronously receive �̂ from processor preceive

� �+ �̂

psend  (psend + 1) mod Nprocs

preceive (preceive + Nprocs � 1) mod Nprocs

endfor

Figure E.18: Parallel Block-Diagonal-Bordered Sparse Gauss-Seidel Algorithm | Convergence

Check | Bu�ered Communications Paradigm



Appendix F

Network Ordering Performance

Statistics

This appendix contains tables of statistics to support the manual optimization process to select the

best matrix orderings for each of the �ve matrices used through out this research. Separate sections

are provided for direct and iterative solvers. Detailed discussions of the empirical performance results

are provided in chapters 7.1 and 7.2.

F.1 Parallel Direct Solver Statistics

Statistics are presented in tables F.1 through F.5 for four orderings of each of the �ve matrices

used through out this research. In this table, NLB is the number of rows/columns in the borders

and last diagonal block of the ordered matrix and NFILLIN is the number of �llin. The matrix

partitionings that yielded the best empirical performance during benchmarking the parallel software

implementations on the Thinking Machines CM-5 are labeled.

F.2 Parallel Iterative Solver Statistics

Statistics are presented in tables F.6 through F.10 for multiple orderings of each of the �ve matrices

used through out this research. In this table, NLB is the number of rows/columns in the borders.
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Table F.1: BCSPWR09 | LU and Choleski Factorization Ordering Statistics

number of nodes 1723

number of edges 2394

�llin for minimum degree ordering 2168

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 277 3109 7226 18958 36.5% 5503 58.9%

32y 190 2765 6882 16759 45.7% 5192 67.7%

64 153 3248 7365 23809 37.7% 5642 65,6%

96 131 3266 7383 24906 40.3% 5660 68.1%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

Table F.2: BCSPWR10 | LU and Choleski Factorization Ordering Statistics

number of nodes 5300

number of edges 8271

�llin for minimum degree ordering 14525

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 1059 20040 33611 193384 17.0% 28311 41.5%

32y 789 19080 32651 190445 20.1% 27351 50.7%

64 668 21886 35457 261910 18.5% 30157 49.8%

96 600 22812 36383 295067 18.3% 31983 50.0%

y Best parallel direct block-diagonal-bordered sparse linear solver performance
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Table F.3: EPRI6K | LU and Choleski Factorization Ordering Statistics

number of nodes 6692

number of edges 10535

�llin for minimum degree ordering 10048

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16y 1041 15267 32494 207825 18.1% 25802 50.0%

32 655 14923 32150 242716 19.8% 25458 55.1%

64 524 15692 32919 271605 19.7% 26227 58.0%

96 444 15989 33216 309488 20.5% 26524 57.8%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

Table F.4: NiMo-OPS | LU and Choleski Factorization Ordering Statistics

number of nodes 1766

number of edges 2506

�llin for minimum degree ordering 2227

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 281 3408 7680 22616 32.9% 5914 58.0%

32y 173 3152 7424 22762 35.7% 5658 65.2%

64 136 2959 7231 21147 40.7% 5465 69.6%

96 130 3259 7531 25727 37.1% 5765 67.7%

y Best parallel direct block-diagonal-bordered sparse linear solver performance
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Table F.5: NiMo-PLANS | LU and Choleski Factorization Ordering Statistics

number of nodes 9430

number of edges 14001

�llin for minimum degree ordering 13637

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 1450 20300 43731 243945 19.4% 34301 52.2%

32y 886 19172 42603 250301 23.1% 33173 58.9%

64 721 19508 42939 265654 22.8% 33509 60.2%

96 612 19974 43405 287427 27.6% 33975 62.9%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

Table F.6: BCSPWR09 | Gauss-Seidel Ordering Statistics

number of nodes 1723

number of edges 2394

number of non-zeros 6511

percent non-zeros 0.22%

Maximum % Operations Floating Point Operations (��)
Partition in Blocks Diagonal Last

Size NLB and Borders Colors Blocks Borders Block

16 258 92.0% 3 4951 1040 520

32 190 94.3% 3 5245 896 370

64 153 95.6% 3 5397 825 289

96 131 96.3% 3 5538 734 239

128 128 96.1% 3 5544 715 252

160 117 96.8% 3 5610 694 207
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Table F.7: BCSPWR10 | Gauss-Seidel Ordering Statistics

number of nodes 5300

number of edges 8271

number of non-zeros 21842

percent non-zeros 0.08%

Maximum % Operations Floating Point Operations (��)
Partition in Blocks Diagonal Last

Size NLB and Borders Colors Blocks Borders Block

32 789 92.9% 3 16907 3384 1551

64 668 93.9% 4 17476 3032 1334

128 578 95.0% 3 18037 2705 1100

192 513 95.7% 3 18394 2509 939

256 476 95.8% 3 18613 2319 910

320 516 95.5% 4 18311 2555 976

384 504 95.5% 3 18364 2504 974

448 489 95.7% 3 18492 2411 939

512 511 95.4% 3 18275 2562 1005
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Table F.8: EPRI6K | Gauss-Seidel Ordering Statistics

number of nodes 6692

number of edges 10535

number of non-zeros 27762

percent non-zeros 0.06%

Maximum % Operations Floating Point Operations (��)
Partition in Blocks Diagonal Last

Size NLB and Borders Colors Blocks Borders Block

32 655 89.7% 12 21260 3641 2853

64 524 92.0% 11 22308 3220 2234

128 387 94.1% 9 23189 2938 1635

192 346 95.2% 9 24088 2350 1324

256 345 93.3% 12 23084 2691 1849

320 338 93.0% 11 23383 2651 1652

384 256 98.1% 6 25374 1872 516

448 200 98.7% 4 25931 1473 358

512 210 98.4% 6 25760 1562 440
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Table F.9: NiMo-OPS | Gauss-Seidel Ordering Statistics

number of nodes 1766

number of edges 2506

number of non-zeros 6778

percent non-zeros 0.22%

Maximum % Operations Floating Point Operations (��)
Partition in Blocks Diagonal Last

Size NLB and Borders Colors Blocks Borders Block

16 251 92.3% 4 5218 1041 519

32 173 94.9% 3 5562 867 349

64 136 95.5% 4 5708 766 304

96 130 96.1% 4 5763 753 262

128 101 97.4% 3 5986 619 173

160 105 97.4% 3 5945 658 175
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Table F.10: NiMo-PLANS | Gauss-Seidel Ordering Statistics

number of nodes 9430

number of edges 14001

number of non-zeros 37432

percent non-zeros 0.04%

Maximum % Operations Floating Point Operations (��)
Partition in Blocks Diagonal Last

Size NLB and Borders Colors Blocks Borders Block

32 886 92.1% 11 29653 4683 3096

64 721 92.2% 11 30311 4138 2983

96 612 94.0% 10 31361 3831 2240

128 553 93.8% 12 31423 3510 2499

192 443 96.5% 9 33113 2986 1333

256 402 97.3% 8 33589 2809 1034

320 436 95.5% 11 32516 3240 1676

384 378 97.4% 8 33764 2670 998

448 312 98.6% 5 34670 2228 534

512 313 98.0% 7 34313 2348 771
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To Close on the Lighter Side : : :

In a forest, a ferret bumps into a little mouse, and says, \Hi, Junior, what

are you up to?

\I'm writing a dissertation on how mice eat ferrets," said the mouse.

\Come now, friend mouse, you know that's impossible!"

\Well, followme and I'll show you." They both go inside the mouse's dwelling

and after a while the mouse emerges with a satis�ed expression on his face.

Comes along a badger. \Hello, what are you doing these days?"

\I'm writing the second chapter of my thesis, on how mice devour badgers.'

\Are you crazy? Where is your academic honesty?"

\Come with me and I'll show you." As before, the mouse comes out with a

satis�ed look on his face and a diploma in his paw.

Finally, the camera pans into the mouse's cave and, as everybody should have

guessed by now, we see a mean-looking, huge Fox sitting next to some bloody

and furry remnants of the ferret and badger.

The moral: It's not the contents of your thesis that are important | it's

your Ph.D. advisor that really counts.

The UNIX Fortune Cookie Routinez

zNames have been changed here, not to protect the innocent, but rather to make this classic story a bit more

relevant to my academic career at Syracuse University: : : Never underestimate the e�ect of a variable transform! ;)
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