
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

9-1992

Parallel Cellular Automata: A Model Program for Computational Parallel Cellular Automata: A Model Program for Computational

Science Science

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch, "Parallel Cellular Automata: A Model Program for Computational Science" (1992).
Electrical Engineering and Computer Science - Technical Reports. 167.
https://surface.syr.edu/eecs_techreports/167

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/167?utm_source=surface.syr.edu%2Feecs_techreports%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-92-18

Parallel Cellular Automata:
A Model Program tor Computational Science

Per Brinch Hansen

September 1992

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

Parallel Cellular Automata:
A Model Program for Computational Science1

PER BRINCH HANSEN

Syracuse University, Syracuse, New York 132./.4

September 1992

We develop a model program for parallel execution of cellular automata on a mul
ticomputer. The model program is then adapted for simulation of forest fires and
numerical solution of Laplace's equation for stationary heat fl.ow. The performance
of the parallel program is analyzed and measured on a Computing Surface configured
as a matrix of transputers with distributed memory.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concur
rent programming-distributed programming

General Terms: Algorithms

Additional Key Words and Phrases: Cellular automata, Multicomputers, Program
ming methodology

CONTENTS

INTRODUCTION
1. CELLULAR AUTOMATA
2. INITIAL STATES
3. DATA PARALLELISM
4. PROCESSOR NODES
5. PARALLEL RELAXATION
6. LOCAL COMMUNICATION
7. GLOBAL OUTPUT
8. PROCESSOR NETWORK
9. EXAMPLE: FOREST FIRE

10. EXAMPLE: LAPLACE'S EQUATION
11. COMPLEXITY
12. PERFORMANCE
SUMMARY
APPENDIX: COMPLETE ALGORITHM
ACKNOWLEDGEMENTS
REFERENCES

1Copyright@l992 Per Brinch Hansen

Parallel Cellular Automata 2

INTRODUCTION

This is one of several papers that explore the benefits of developing model programs
for computational science [Brinch Hansen 1990, 1991a, 1991b, 1992a]. The theme of
this paper is parallel cellular automata.

A cellular automaton is a discrete model of a system that varies in space and time.
The discrete space is an array of identical cells, each representing a local state. As
time advances in discrete steps, the system evolves according to universal laws. Every
time the clock ticks, the cells update their states simultaneously. The next state of a
cell depends only on the current state of the cell and its nearest neighbors.

In 1950 John von Neumann and Stan Ulam introduced cellular automata to study
self-reproducing systems [von Neumann 1966, Ulam 1986]. John Conway's game
of Life is undoubtedly the most widely known cellular automaton [Gardner 1970,
1971, Berlekamp et al. 1982]. Another well-known automaton simulates the life
cycles of sharks and fish on the imaginary planet Wa-Tor [Dewdney 1984]. The
numerous applications include forest infestation [Hoppenstadt 1978], fluid flow [Frisch
et al. 1986], earthquakes [Bak and Tang 1989], forest fires [Bak and Chen 1990], and
sandpile avalanches [Hwa and Kardar 1989].

Cellular automata can simulate continuous physical systems described by partial
differential equations. The numerical solution of, say, Laplace's equation by grid re
laxation is really a discrete simulation of heat flow performed by a cellular automaton.

Cellular automata are ideally suited for parallel computing. Our goal is to explore
programming methodology for multicomputers. We will illustrate this theme by devel
oping a model program for parallel execution of cellular automata on a multicomputer
with a square matrix of processor nodes. We will then show how easy it is to adapt
the model program for two different applications: (1) simulation of a forest fire, and
(2) numerical solution of Laplace's equation for stationary heat flow. On a Computing
Surface with transputer nodes, the parallel efficiency of the model program is close
to one.

1. CELLULAR AUTOMATA

A cellular automaton is an array of parallel processes, known as cells. Every cell has
a discrete state. At discrete moments in time, the cells update their states simultane
ously. The state transition of a cell depends only on its previous state and the states
of the adjacent cells.

We will program a two-dimensional cellular automaton with fixed boundary states
(Fig. 1).

Parallel Cellular Automata 3

- + + + + + + -

+ ? ? ? ? ? ? +
+ ? ? ? ? ? ? +
+ ? ? ? ? ? ? +
+ ? ? ? ? ? ? +
+ ? ? ? ? ? ? +
+ ? ? ? ? ? ? +
- + + + + + + -

Fig. 1 A cellular automaton

The automaton is a square matrix with three kinds of cells:

1. Interior cells, marked "?", may change their states dynamically.

2. Boundary cells, marked "+", have fixed states.

3. Corner cells, marked "-", are not used.

Figure 2 shows an interior cell and the four neighbors that may influence its state.
These five eells are labeled c (central), n (north), s (south), e (east), and w (west).

Fig. 2 Adjacent cells

The cellular automaton will be programmed in Pascal, extended with statements
for parallel execution and message communication.

The execution of k statements St, S2 , .•• , Sk as parallel processes is denoted

The parallel execution continues until every one of the k processes has terminated.
The parallel for statement

parfor i := 1 to k do S(i)

Parallel Cellular Automata 4

is equivalent to
parbegin S(1)IS(2)! .. . !S(k) end

We assume that parallel processes communicate through synchronous channels
only. The input and output of a value x through a channel c are denoted

c?x c!x

A cellular automaton is a set of parallel communicating cells. If we ignore bound
ary cells and communication details, a two-dimensional automaton is defined as fol
lows:

parfor i := 1 to n do
parfor j := 1 to n do

cell(i, j)

After initializing its own state, every interior cell goes through a fixed number of
state transitions before outputting its final state:

initialize own state;
for k := 1 to steps do

begin
exchange states with

adjacent elements;
update own state

end;
output own state

The challenge is to transform this fine-grained parallel model into an efficient
program for a multicomputer with distributed memory.

2. INITIAL STATES

Consider a cellular automaton with 36 interior cells and 24 boundary cells. In a
sequential computer, the combined state of the automaton can be represented by an
8 x 8 matrix, called a grid (Fig. 3). For reasons that will be explained later, the grid
elements are indicated by O's and 1 's.

Parallel Cellular Automata 5

- 1 0 1 0 1 0 -

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

- 0 1 0 1 0 1 -

Fig. 3 A square grid

Figure 4 shows the initial values of the elements. The boundary elements have
fixed values Ut, u 2 , u3, and u4. Every interior element has the same initial value us.

ul

u4 Us u3

u2

Fig. 4 Initial values

In general, a grid u has n x n interior elements and 4n boundary elements:

const n = ... ;
type state= (...);

row = array [O .. n+l] of state;
grid= array [O .. n+l] of row;

var u: grid;

Since the possible states of every cell vary from one application to another, we
deliberately leave them unspecified. The grid dimension n and the initial states u1 ,

u2, u3, u4, and us are also application dependent.
On a sequential computer, the grid is initialized as follows:

Parallel Cellular Automata

for i := 0 to n + 1 do
for j := 0 ton+ 1 do

u[i,j] := initial(i, j)

6

Algorithm 1 defines the initial value of element u[i,j]. The values of the corner
elements are arbitrary (and irrelevant).

function initial(i, j: integer)
: state;

begin
ifi = 0 then

initial := u1
else if i = n + 1 then

initial := u2
else if j = n + 1 then

initial := u3
else if j = 0 then

initial := u4
else

initial := u5
end

Algorithm 1

3. DATA PARALLELISM

For simulation of a cellular automaton, the ideal multicomputer architecture is a
square matrix of identical processor nodes (Fig. 5). Every node is connected to its
nearest neighbors (if any) by four communication channels.

Fig. 5 Processor matrix

Parallel Cellular Automata 7

Figure 6 shows a grid with 36 interior elements divided into 9 subgrids. We now
have a 3 X 3 matrix of nodes and a 3 X 3 matrix of subgrids. The two matrices define a
one-to-one correspondence between subgrids and nodes. We will assign each subgrid
to the corresponding node and let the nodes update the subgrids simultaneously. This
form of distributed processing is called data parallelism.

- 1 0 1 0 1 0 -

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

- 0 1 0 1 0 1 -

Fig. 6 A subdivided grid

Every processor holds a 4 x 4 subgrid with 4 interior elements and 8 boundary
elements (Fig. 7). Every boundary element holds either an interior element of a
neighboring subgrid or a boundary element of the entire grid. (We will say more
about this later.)

- 1 0 -

1 0 1 0

0 1 0 1

- 0 1 -

Fig. 7 A subgrid

4. PROCESSOR NODES

With this background, we are ready to program a cellular automaton that runs on a
q X q processor matrix.

The nodes follow the same script (Algorithm 2).

Parallel Cellular Automata

procedure node(qi, qj: integer;
n, s, e, w: channel);

var u: subgrid; k: integer;
begin

newgrid(qi, qj, u);
for k := 1 to steps do

relax(qi, qj, n, s, e, w, u);
output(qi, qj, e, w, u)

end

Algorithm 2

8

A node is identified by its row and column numbers (q,, q;) in the processor matrix,
where

1 ~ q, < q and 1 ~ q; :5 q

Four communication channels labeled n, s, e, and w connect a node to its nearest
neighbors (if any).

Every node holds a subgrid with m x m interior elements and 4m boundary ele
ments (Fig. 7):

const m = ... ;
type subrow =array [O .. m+1] of state;

subgrid =array [O .. m+1] of subrow;

The grid dimension n is a multiple of the subgrid dimension m:

After initializing its subgrid, a node updates the subgrid a fixed number of times
before outputting the final values. In numerical analysis, grid iteration is known as
relaxation.

Node (q,, q;) holds the following subset of the complete grid u[O .. n + 1, O •. n + 1]:

u[io .. io + m + 1,jo .. jo + m + 1]

where
io = (qi- 1)m and io = (q;- 1)m

The initialization of a subgrid is straightforward (Algorithm 3).

Parallel Cellular Automata

procedure newgrid(qi, qj:
integer; var u: subgrid);

var i, iO, j, jO: integer;
begin

iO := (qi - 1)*m;
jO := (qj - 1)*m;
fori:= 0 tom+ 1 do

end

for j := 0 to m + 1 do
u[iJ] := initial(iO+i, jO+j)

Algorithm 3

5. PARALLEL RELAXATION

9

In each time step, every node updates its own subgrid. The next value of an interior
element is a function of its current value uc, and the values un, u8 , ue, and U10 of the
four adjacent elements (Fig. 2). Every application of a cellular automaton requires a
different transition function (Algorithm 4).

function next(uc, un, us,
ue, uw: state): state;

begin next := ... end

Algorithm 4

Parallel relaxation is not quite as easy as it sounds. When a node updates row
number 1 of its subgrid, it needs access to row number m of the subgrid of its northern
neighbor (Fig. 6). To relax its subgrid, a node must share a single row or column
with each of its four neighbors.

The solution to this problem is to let two neighboring grids overlap by one row
or column vector. Before a node updates its interior elements, it exchanges a pair
of vectors with each of the adjacent nodes. The overlapping vectors are kept in the
boundary elements of the subgrids (Fig. 7). If a neighboring node does not exist, a
boundary vector holds the corresponding boundary elements of the entire grid (Figs.
4 and 6).

The northern neighbor of a node outputs row number m to the node, which
inputs it in row number 0 of its own subgrid (Fig. 7). In return, the node outputs
row number 1 to its northern neighbor, which inputs it in row number m + 1 of its
subgrid. Similarly, a node exchanges rows with its southern neighbor, and columns
with its eastern and western neighbors (Fig. 5).

The shared elements raise the familiar concern about time-dependent errors in
parallel programs. Race conditions are prevented by a rule of mutual exclusion: While

Parallel Cellular Automata 10

a node updates an element, another node cannot access the same element. This rule
is enforced by an ingenious method [Barlow and Evans 1982].

Every grid element u[i, j] is assigned a parity

(i + j) mod 2

which is either even (0) or odd (1) as shown in Figs. 3 and 6. To eliminate tedious
(and unnecessary) programming details, we assume that the subgrid dimension m is
even. This guarantees that every subgrid has the same parity ordering of the elements
(Figs. 6 and 7).

Parity ordering reveals a simple property of grids: The next values of the even
interior elements depend only on the current values of the odd elements, and vice
versa. This observation suggests a reliable method for parallel relaxation.

In each relaxation step, the nodes scan their grids twice:

First scan: The nodes exchange odd elements with their neighbors and update all
even interior elements simultaneously.

Second scan: The nodes exchange even elements and update all odd interior ele
ments simultaneously.

The key point is this: In each scan, the simultaneous updating of local elements
depends only on shared elements with constant values! In the terminology of parallel
programming, the nodes are disjoint processes during a scan.

The relaxation procedure uses a local variable to update elements with the same
parity b after exchanging elements of the opposite parity 1 - b with its neighbors
(Algorithm 5).

Parallel Cellular Automata

procedure relax(qi, qj: integer;
n, s, e, w: channel; var u:
subgrid);

var b, i, j, k, last: integer;
begin

forb := 0 to 1 do
begin

end

exchange(qi, qj, 1 - b,
n, s, e, w, u);

for i := 1 to m do

end

begin
k := (i + b) mod 2;
j := 2- k;
last:= m- k
while j <=last do

end

begin
u[i,j] := next(u[i,j],

u[i-1,j], u[i+1,j],
u[i,j+1], u[i,j-1]);

j := j + 2
end

Algorithm 5

6. LOCAL COMMUNICATION

11

The nodes communicate through synchronous channels with the following properties:

1. Every channel used connects exactly two nodes.

2. The communications on a channel take place one at a time.

3. A communication takes place when a node is ready to output a value through
a channel and another node is ready to input the value through the same channel.

4. A channel can transmit a value in either direction between two nodes.

5. The four channels of a node can transmit values simultaneously.

Parallel Cellular Automata 12

These requirements are satisfied by transputer nodes programmed in occam [Cok
1991].

The identical behavior of the nodes poses a subtle problem. Suppose the nodes
simultaneously attempt to input from their northern channels. In that case, the
nodes will deadlock, since none of them are ready to output through these channels.
There are several solutions to this problem. We use a method that works well for
transputers.

Before the nodes scan elements of the same parity, they communicate with their
neighbors in two phases (Fig. 8).

n n

w t------:~ e w IE--- e

8 8

Fig. 8 Communication phases

In each phase, every node communicates simultaneously on its four channels as
shown below. Phases 1 and 2 correspond to the left and right halves of Fig. 8.

Channel Phase 1 Phase 2
n input output
s output input
e output input
w input output

Since every input operation on a channel is matched by a simultaneous output oper
ation on the same channel, this protocol is deadlock free. It is also very efficient, since
every node communicates simultaneously with its four neighbors.

Algorithm 6 defines the exchange of elements of parity b between a node and its
four neighbors.

Parallel Cellular Automata

procedure exchange(qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

begin
phase1(qi, qj, b, n, s, e, w, u);
phase2(qi, qj, b, n, s, e, w, u)

end

Algorithm 6

13

Phase 1 is defined by Algorithm 7. The if statements prevent boundary nodes
from communicating with nonexisting neighbors (Fig.5).

procedure phase1 (qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

var k, last: integer;
begin

k := 2- b;
last:= m- b;
while k <=last do

end

begin
par begin

if qi > 1 then n?u[O,k] I
if qi < q then s!u[m,k] I
if qj < q then e!u[k,m] I
if qj > 1 then w?u[k,O]

end;
k := k + 2

end

Algorithm 7

Parallel Cellular Automata

Phase 2 is similar (Algorithm 8).

procedure phase2(qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

var k, last: integer;
begin

k := b + 1;
last:= m + b- 1;
while k <= last do

end

begin
par begin

if qi > 1 then n!u[1,k] I
if qi < q then s?u[m+1,k] I
if qj < q then e?u[k,m+1] I
if qj > 1 then w!u[k,1)

end;
k := k + 2

end

Algorithm 8

14

We have used this protocol on a Computing Surface with transputer nodes. Since
transputer links can communicate in both directions simultaneously, the two commu
nication phases run in parallel. So every transputer inputs and outputs simultaneously
through all four links!

If the available processors cannot communicate simultaneously with their neigh
bors, a sequential protocol must be used [Dijkstra 1982]. This is also true if the
overhead of parallelism and communication is substantial. However, the replacement
of one protocol by another should only change Algorithms 6-8 and leave the rest of
the program unchanged.

7. GLOBAL OUTPUT

At the end of a simulation, the nodes output their final values to a master processor
that assembles a complete grid. The boundary channels of the processor matrix are
not used for grid relaxation (Fig. 5). We use the horizontal boundary channels to
connect the nodes and the master into a pipeline for global output (Fig. 9).

Parallel Cellular Automata 15

Master Nodes

Fig. 9 Output pipeline

The boundary elements of the entire grid have known fixed values (Fig. 4). These
elements are needed only during relaxation. The final output is an n x n matrix of
interior elements only. Every element defines the final state of a single cell.

9).

So we redefine the full grid, omitting the boundary elements:

type row = array [l..n] of state;
grid= array [l..n] of row;

The master inputs the final grid row by row, one element at a time (Algorithm

procedure master(inp: channel;
var u: grid);

var i, j: integer;
begin

for i := 1 to n do
for j := 1 to n do

inp?u[i,j]
end

Algorithm 9

The nodes use a common procedure to output interior elements in row order (Al
gorithm 10).

Parallel Cellular Automata

procedure output(qi, qj: integer;
inp, out: channel; var u:
subgrid);

var i, j: integer;
begin

for i := 1 to m do
begin

for j := 1 to m do
out!u[iJ];

copy((q- qj)*m, inp, out)
end;

copy((q- qi)*m*n, inp, out)
end

Algorithm 10

16

Every row of elements is distributed through a row of nodes (Figs. 5 and 6).
For each of its subrows, node (qi,q;) outputs the m interior elements and copies
the remaining (q- q;)m elements of the same row from its eastern neighbor. This
completes the output of the rows of elements, which are distributed through row qi of
the processor matrix. The node then copies the remaining (q- qi)m complete rows
of n elements each.

A simple procedure is used to copy a fixed number of elements from one channel
to another (Algorithm 11).

procedure copy(no: integer;
inp, out: channel);

var k: integer; uk: state;
begin

fork:= 1 to no do
begin

end

inp?uk; out!uk
end

Algorithm 11

In our program for the Computing Surface, we extended the copy procedure with
parallel input/output. We also modified Algorithms 2 and 9 slightly to enable the
program to output intermediate grids at fixed intervals.

8. PROCESSOR NETWORK

Figure 10 illustrates the network that ties the processors together. The network
consists of a horizontal channel matrix hand a vertical channel matrix v.

Parallel Cellular Automata

IVO,l IV0,2 lvo,s

M ho3 ---==-- 1,1 hll 1, 2 ht2 1,3~

Vt,l r·' Vt,3

ht3
---"'-"'---- 2,1 h21

' 2,2 h2,2 2,3~

v2,1 v2,2 v2,3

~ 3,1 h31 3,2 h32 3,3~

lv3,1 lv3,2 I v3,3

Fig. 10 Processor network

The following examples illustrate the abbreviations used:

M master
3,2 node(3,2)

v2,2 channel v[2, 2]
h3,1 channel h[3, 1]

17

Algorithm 12 defines parallel simulation of a cellular automaton that computes a
relaxed grid u. Execution of the parallel statements activates (1) the master, (2) the
first column of nodes, and (3) the rest of the nodes.

Parallel Cellular Automata

procedure simulate(var u: grid);
type

line= array [l..q] of channel;
matrix = array [0 .. q] of line;

var h, v: matrix; i, j, k: integer;
begin

par begin
master(h[O,q], u) I
parfor k := 1 to q do

node(k, 1, v[k-1,1], v[k,1],
h[k,1], h[k-1,q]) I

parfor i := 1 to q do
parfor j := 2 to q do

node(i, j, v[i-l,j], v[i:j],
h[i,j], h[i,j-1])

end
end

Algorithm 12

18

This completes the development of the model program. We will now demonstrate
how easily the program can be adapted to different applications of cellular automata.

9. EXAMPLE: FOREST FIRE

A typical application of a cellular automaton is simulation of a forest fire. Every cell
represents a tree that is either alive, burning, or dead. In each time step, the next
state of every tree is defined by probabilistic rules similar to the ones proposed by
Bak and Chen [1990]:

1. If a live tree is next to a burning tree, it burns; otherwise, it catches fire with
probability p1 .

2. A burning tree dies.

3. A dead tree has probability p2 of being replaced by a live tree.

Parallel simulation of a forest fire requires only minor changes of the model pro
gram:

1. The possible states are:

type state= (alive, burning, dead)

Parallel Cellular Automata

2. The initial states may, for example, be:

u1 = u2 = u3 = u4 = dead u5 = alive

3. Algorithm 4.1 defines state transitions.

function next(uc, un, us,
ue, uw: state): state;

const p1 = 0.01; p2 = 0.3;
begin

if uc = alive then
if (un =burning) or

(us = burning) or
(ue = burning) or
(uw = burning)

then next :=burning
else if random<= p1

then next := burning
else next := alive

else if uc = burning then
next:= dead

else { uc = dead}

end

if random <= p2
then next := alive
else next := dead

Algorithm 4.1

4. A random number generator is added.

10. EXAMPLE: LAPLACE'S EQUATION

19

A cellular automaton can also solve Laplace's equation for equilibrium temperatures in
a square region with fixed temperatures at the boundaries. Every cell represents the
temperature at a single point in the region. In each time step, the next temperature
of every cell is defined by a simple deterministic rule.

Parallel simulation of heat flow requires the following changes of the model pro
gram:

1. The states are temperatures represented by reals.

2. A possible choice of initial temperatures is:

Parallel Cellular Automata

Ut - 0
U2 - 100
ua - 100
U4 - 0
Us - 50

3. Algorithm 4.2 defines the next temperature of an interior cell.

function next(uc, un, us,
ue, uw: real): real;

var res: real;
begin

res:= (un +us+ ue +
uw)/4.0 - uc;

next := uc + fopt*res
end

Algorithm 4.2

20

In steady state, the temperature of every interior cell is the average of the neigh
boring temperatures:

Uc = (un + u, + Ue + Uw)/4.0

This is the discrete form of Laplace's equation. The residual res is a measure of how
close the temperatures are to satisfying this equation. The correction of a tempera
ture Uc is proportional to its residual.

4. A relaxation factor /opt is added:

For a large square grid relaxed in parity order, the relaxation factor

/opt = 2- 271" /n

ensures the fastest possible convergence towards stationary temperatures. In numeri
cal analysis, this method is called successive overrelaxation with parity ordering. The
method requires n relaxation steps to achieve 3-figure accuracy of the final tempera
tures [Young 1954, Press et al. 1989].

The complete algorithm for parallel simulation of steady state heat flow is listed in
the Appendix. The corresponding sequential program is explained in [Brinch Hansen
1992b). Numerical solution of Laplace's equation on multicomputers is also discussed
in [Barlow and Evans 1982, Evans 1984, Pritchard et al. 1987, Saltz et al. 1987, Fox
et al. 1988].

Parallel Cellular Automata 21

11. COMPLEXITY

In each time step, every node exchanges overlapping elements with its neighbors in
O(m) time and updates its own subgrid in O(m2) time. The final output takes O(n2)

time. The parallel run time required to relax an n X n grid n times on p processors is

T(n,p) = n(am2 + O(m)) + O(n2)

where a is a system-dependent constant of relaxation and

n=m-vP (1)

The complexity of parallel simulation can be rewritten as follows:

T(n,p) = n2(anfp + 0(1) + 0(1/ JP))

For 1 :5 p < n, the communication times are insignificant compared to the
relaxation time, and we have approximately

T(n,p) R:: an3 fp for n > p (2)

If the same simulation runs on a single processor, the sequential run time is ob
tained by substituting p = 1 in (2):

T(n, 1) R:: an3 for n > 1 (3)

The processor efficiency of the parallel program is

E() _ T(n, 1)
n,p -

p T(n,p)
(4)

The nominator is proportional to the number of processor cycles used in a sequen
tial simulation. The denominator is a measure of the total number of cycles used by
p processors performing the same computation in parallel.

By (2), (3), and (4) we find that the parallel efficiency is close to one, when the
problem size n is large compared to the machine size p:

E(n,p) R:: 1 for n > p

Since this analysis ignores communication times, it cannot predict how close to one
the efficiency is.

In theory, the efficiency can be computed from (4) by measuring the sequential
and parallel run times for the same value of n. Unfortunately, this is not always
feasible. When 36 nodes relax a 1500 x 1500 grid of 64-bit reals, every node holds a
subgrid of 250 x 250 x 8 = 0.5 Mbytes. However, on a single processor, the full grid
occupies 18 Mbytes.

Parallel Cellular Automata 22

A more realistic approach is to make the O(n2) grid proportional to the machine
size p. Then every node has an O(m2) subgrid of constant size independent of the
number of nodes. And the nodes always perform the same amount of computation
per time step.

When a scaled simulation runs on a single processor, the run time is approximately

T(m, 1) R1 am3 form> 1

since p = 1 and n = m.
From (1), (3), and (5) we obtain

T(n, 1) R1 p312T(m, 1) form> 1

The computational rule we need follows from (4) and (6):

.JP T(m, 1)
E(n,p) R1 T(n,p) form> 1

(5)

(6)

(7)

This formula enables us to compute the efficiency of a parallel simulation by running
a scaled-down version of the simulation on a single node.

12. PERFORMANCE

We reprogrammed the model program in occam 2 and ran it on a Computing Surface
with T800 transputers configured as a square matrix with a master node [Inmos 1988,
Meiko 1987, Trew and Wilson 1991]. The program was modified to solve Laplace's
equation as explained in Section 10. The complete program is found in the Appendix.

Table I shows measured (and predicted) run times T(n,p) in seconds for n re
laxations of an n X n grid on p processors. In every run, the subgrid dimension
m = 250.

Table I
p n T(n,p) E(n,p)
1 250 278 (281) 1.00
4 500 574 (563) 0.97
9 750 863 (844) 0.97

16 1000 1157 (1125) 0.96
25 1250 1462 (1406) 0.95
36 1500 1750 (1688) 0.95

The predicted run times shown in parentheses are defined by (2) using

a= 18 p,s

The processor efficiency E(n,p) was computed from (7) using the measured run
times.

Parallel Cellular Automata 23

SUMMARY

We have developed a model program for parallel execution of cellular automata on a
multicomputer with a square matrix of processor nodes. We have adapted the model
program for simulation of forest fires and numerical solution of Laplace's equation
for stationary heat flow. On a Computing Surface with 36 transputers the program
performs 1500 relaxations of a 1500 x 1500 grid of 64-bit reals in 29 minutes with an
efficiency of 0.95.

APPENDIX: COMPLETE ALGORITHM

The complete algorithm for parallel solution of Laplace's equation is composed of Al
gorithms 1-12.

const q = 6; m = 250 {even};
n = 1500 {m*q};

type row = array [L.n] of real;
grid = array [L.n] of row;

procedure laplace(var u: grid; u1, u2,
u3, u4, u5: real; steps: integer);

const pi = 3.14159265358979;
type subrow = array [O .. m+1] of real;

subgrid =array [O .. m+1] of subrow;
var fopt: real;

procedure master(inp: channel;
var u: grid);

var i, j: integer;
begin

for i := 1 to n do
for j := 1 ton do

inp?u[i,j]
end;

procedure copy(no: integer;
inp, out: channel);

var k: integer; uk: real;
begin

fork:= 1 to no do
begin

inp?uk; out!uk
end

end;

Parallel Cellular Automata

procedure output(qi, qj: integer;
inp, out: channel; var u:
subgrid);

var i, j: integer;
begin

fori := 1 tom do
begin

for j := 1 tom do
' [" .] out.u I,J ;

copy((q- qj)*m, inp, out)
end;

copy((q- qi)*m*n, inp, out)
end;

procedure phase1(qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

var k, last: integer;
begin

k := 2- b;
last:= m- b;
while k <= last do

end;

begin
par begin

if qi > 1 then n?u[O,k) I
if qi < q then s!u[m,k) I
if qj < q then e!u[k,m) I
if qj > 1 then w?u[k,O)

end;
k := k + 2

end

24

Parallel Cellular Automata

procedure phase2(qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

var k, last: integer;
begin

k := b + 1;
last := m + b - 1;
while k <= last do

begin
par begin

if qi > 1 then n!u[1,k) I
if qi < q then s?u[m+1,k) I
if qj < q then e?u[k,m+1) I
if qj > 1 then w!u[k,1)

end;
k := k + 2

end
end;

procedure exchange(qi, qj, b:
integer; n, s, e, w: channel;
var u: subgrid);

begin
phase1(qi, qj, b, n, s, e, w, u);
phase2(qi, qj, b, n, s, e, w, u)

end;

function initial(i, j: integer)
: real;

begin
ifi = 0 then

initial := ul
else if i = n + 1 then

initial := u2
else if j = n + 1 then

initial := u3
else if j = 0 then

initial := u4
else

initial := u5
end;

25

Parallel Cellular Automata

function next(uc, un, us,
ue, uw: real): real;

var res: real;
begin

res:= (un +us+ ue +
uw)/4.0 - uc;

next := uc + fophres
end;

procedure newgrid(qi, qj:
integer; var u: subgrid);

var i, iO, j, jO: integer;
begin

iO := (qi- l)*m;
jO := (qj - 1)*m;
for i := 0 to m + 1 do

for j := 0 to m + 1 do
u[i,j] := initial(iO+i, jO+j)

end;

procedure relax(qi, qj: integer;
n, s, e, w: channel; var u:
subgrid);

var b, i, j, k, last: integer;
begin

forb:= 0 to 1 do
begin

exchange(qi, qj, 1 - b,
n, s, e, w, u);

fori:= 1 tom do
begin

k := (i +b) mod 2;
j := 2- k;
last:= m- k
while j <=last do

end
end

end;

begin
u[i,j] := next(u[i,j],

u[i-l,j], u[i+1,j],
u[i,j+1], u[i,j-1]);

j := j + 2
end

26

Parallel Cellular Automata

procedure node(qi, qj: integer;
n, s, e, w: channel);

var u: subgrid; k: integer;
begin

newgrid(qi, qj, u);
for k := 1 to steps do

relax(qi, qj, n, s, e, w, u);
output(qi, qj, e, w, u)

end;

procedure simulate(var u: grid);
type

line = array [1. .q] of channel;
matrix = array [O .. q] of line;

var h, v: matrix; i, j, k: integer;
begin

par begin
master(h[O,q], u) I
parfor k := 1 to q do

node(k, 1, v[k-1,1], v[k,l],
h[k,l], h[k-l,q]) I

parfor i := 1 to q do
parfor j := 2 to q do

node(i, j, v[i-lj], v[ij],
h[ij), h[ij-1])

end
end;

begin
fopt := 2.0 - 2.0*pi/n;
simulate(u)

end

ACKNOWLEDGEMENTS

27

It is a pleasure to acknowledge the constructive comments of Jonathan Greenfield
and the flawless text editing of Elaine Weinman.

REFERENCES

BAK, P., and TANG, C. 1989. Earthquakes as a self-organized critical phenomenon.
Journal of Geophysical Research 94, Bll, 15635-15637.

Parallel Cellular Automata 28

BAK, P., and CHEN, K. 1990. A forest-fire model and some thoughts on turbulence.
Physics Letters A 147, 5, 6, 297-299.

BARLOW, R. H., and EVANS, D. J. 1982. Parallel algorithms for the iterative
solution to linear systems. Computer Journal25, 1, 56-60.

BERLEKAMP, E. R., CONWAY, J. H., and GUY, R. K. 1982. Winning Ways for
Your Mathematical Plays. Vol. 2. Academic Press, New York, NY, 817-850.

BRINCH HANSEN, P. 1990. The all-pairs pipeline. School of Computer and Infor
mation Science, Syracuse University, Syracuse, NY.

BRINCH HANSEN, P. 1991a. A generic multiplication pipeline. School of Computer
and Information Science, Syracuse University, Syracuse, NY.

BRINCH HANSEN, P. 1991b. Parallel divide and conquer. School of Computer and
Information Science, Syracuse University, Syracuse, NY.

BRINCH HANSEN, P. 1992a. Parallel Monte Carlo trials. School of Computer and
Information Science, Syracuse University, Syracuse, NY.

BRINCH HANSEN, P. 1992b. Numerical solution of Laplace's equation. School of
Computer and Information Science, Syracuse University, Syracuse, NY.

COK, R. S. 1991. Parallel Programs for the Transputer. Prentice Hall, Englewood
Cliffs, NJ.

DEWDNEY, A. K. 1984. Sharks and fish wage an ecological war on the toroidal
planet Wa-Tor. Scientific American 251, 6, 14-22.

DIJKSTRA, E. W. 1982. Selected Writings on Computing: A Personal Perspective.
Springer-Verlag, New York, NY, 334-337.

EVANS, D. J. 1984. Parallel SOR iterative methods. Parallel Computing 1, 3-18.

FOX, G. C., JOHNSON, M.A., LYZENGA, G. A., OTTO, S. W., SALMON, J. K.,
and WALKER, D. W. 1988. Solving Problems on Concurrent Processors. Vol. I.
Prentice-Hall, Englewood Cliffs, N J.

FRISCH, U., HASSLACHER, B., and POMEAU, Y. 1986. Lattice-gas automata for
the Navier-Stokes equation. Physical Review Letters 56, 14, 1505-1508.

GARDNER, M. 1970. The fantastic combinations of John Conway's new solitaire
game "Life." Scientific American 223, 10, 120-123.

GARDNER, M. 1971. On cellular automata, self-reproduction, the Garden of Eden
and the game "Life." Scientific American 224, 2, 112-117.

Parallel Cellular Automata 29

HOPPENSTEADT, F. C. 1978. Mathematical aspects of population biology. Math
ematics Today: Twelve Informal Essays, L. A. Steen, ed., Springer-Verlag, New
York, 297-320.

HWA, T., and KARDAR, M. 1989. Dissipative transport in open systems: an inves
tigation of self-organized criticality. Physical Review Letters 62, 16, 1813-1816.

INMOS, 1988. Occam 2 Reference Manual. Prentice-Hall, Englewood Cliffs, NJ.

MEIKO, 1987. Computing Surface Technical Specifications. Meiko Ltd, Bristol, Eng
land.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., and VETTERLING, W. T.
1989. Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge
University Press, Cambridge, MA.

PRITCHARD, D. J., ASKEW, C. R., CARPENTER, D. B., GLENDINNING, 1.,
HEY, A. J. G., and NICOLE, D. A. 1987. Practical parallelism using transputer
arrays. Lecture Notes in Computer Science 258, 278-294.

SALTZ, J. H., NAIK, V. K., and NICOL, D. M. 1987. Reduction of the effects
of the communication delays in scientific algorithms on message passing MIMD
architectures. SIAM Journal on Scientific and Statistical Computing 8, 1, sl18-
134.

TREW, A., and WILSON, G. eds. 1991. Past, Present, Parallel-A Survey of
Available Parallel Computer Systems. Springer-Verlag, New York, NY.

ULAM, S. 1986. Science, Computers, and People: From the 1lree of Mathematics.
Birkhauser, Boston, MA.

VON NEUMANN, J. 1966. Theory of Self-Reproducing Automata. Edited and com
pleted by A. W. Burks, University of Illinois Press, Urbana, IL.

YOUNG, D. M. 1954. Iterative methods for solving partial difference equations of
elliptic type. Transactions of the American Mathematical Society 76, 92-111.

	Parallel Cellular Automata: A Model Program for Computational Science
	Recommended Citation

	SU-CIS-92-18_001c
	SU-CIS-92-18_002c
	SU-CIS-92-18_003c
	SU-CIS-92-18_004c
	SU-CIS-92-18_005c
	SU-CIS-92-18_006c
	SU-CIS-92-18_007c
	SU-CIS-92-18_008c
	SU-CIS-92-18_009c
	SU-CIS-92-18_010c
	SU-CIS-92-18_011c
	SU-CIS-92-18_012c
	SU-CIS-92-18_013c
	SU-CIS-92-18_014c
	SU-CIS-92-18_015c
	SU-CIS-92-18_016c
	SU-CIS-92-18_017c
	SU-CIS-92-18_018c
	SU-CIS-92-18_019c
	SU-CIS-92-18_020c
	SU-CIS-92-18_021c
	SU-CIS-92-18_022c
	SU-CIS-92-18_023c
	SU-CIS-92-18_024c
	SU-CIS-92-18_025c
	SU-CIS-92-18_026c
	SU-CIS-92-18_027c
	SU-CIS-92-18_028c
	SU-CIS-92-18_029c
	SU-CIS-92-18_030c

