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INTRODUCTION 

This is one of several papers that explore the benefits of developing model programs 
for computational science [Brinch Hansen 1990, 1991a, 1991b, 1992a]. The theme of 
this paper is parallel cellular automata. 

A cellular automaton is a discrete model of a system that varies in space and time. 
The discrete space is an array of identical cells, each representing a local state. As 
time advances in discrete steps, the system evolves according to universal laws. Every 
time the clock ticks, the cells update their states simultaneously. The next state of a 
cell depends only on the current state of the cell and its nearest neighbors. 

In 1950 John von Neumann and Stan Ulam introduced cellular automata to study 
self-reproducing systems [von Neumann 1966, Ulam 1986]. John Conway's game 
of Life is undoubtedly the most widely known cellular automaton [Gardner 1970, 
1971, Berlekamp et al. 1982]. Another well-known automaton simulates the life 
cycles of sharks and fish on the imaginary planet Wa-Tor [Dewdney 1984]. The 
numerous applications include forest infestation [Hoppenstadt 1978], fluid flow [Frisch 
et al. 1986], earthquakes [Bak and Tang 1989], forest fires [Bak and Chen 1990], and 
sandpile avalanches [Hwa and Kardar 1989]. 

Cellular automata can simulate continuous physical systems described by partial 
differential equations. The numerical solution of, say, Laplace's equation by grid re
laxation is really a discrete simulation of heat flow performed by a cellular automaton. 

Cellular automata are ideally suited for parallel computing. Our goal is to explore 
programming methodology for multicomputers. We will illustrate this theme by devel
oping a model program for parallel execution of cellular automata on a multicomputer 
with a square matrix of processor nodes. We will then show how easy it is to adapt 
the model program for two different applications: (1) simulation of a forest fire, and 
(2) numerical solution of Laplace's equation for stationary heat flow. On a Computing 
Surface with transputer nodes, the parallel efficiency of the model program is close 
to one. 

1. CELLULAR AUTOMATA 

A cellular automaton is an array of parallel processes, known as cells. Every cell has 
a discrete state. At discrete moments in time, the cells update their states simultane
ously. The state transition of a cell depends only on its previous state and the states 
of the adjacent cells. 

We will program a two-dimensional cellular automaton with fixed boundary states 
(Fig. 1). 
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Fig. 1 A cellular automaton 

The automaton is a square matrix with three kinds of cells: 

1. Interior cells, marked "?", may change their states dynamically. 

2. Boundary cells, marked "+", have fixed states. 

3. Corner cells, marked "-", are not used. 

Figure 2 shows an interior cell and the four neighbors that may influence its state. 
These five eells are labeled c (central), n (north), s (south), e (east), and w (west). 

Fig. 2 Adjacent cells 

The cellular automaton will be programmed in Pascal, extended with statements 
for parallel execution and message communication. 

The execution of k statements St, S2 , .•• , Sk as parallel processes is denoted 

The parallel execution continues until every one of the k processes has terminated. 
The parallel for statement 

parfor i := 1 to k do S( i) 
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is equivalent to 
parbegin S(1)IS(2)! .. . !S(k) end 

We assume that parallel processes communicate through synchronous channels 
only. The input and output of a value x through a channel c are denoted 

c?x c!x 

A cellular automaton is a set of parallel communicating cells. If we ignore bound
ary cells and communication details, a two-dimensional automaton is defined as fol
lows: 

parfor i := 1 to n do 
parfor j := 1 to n do 

cell(i, j) 

After initializing its own state, every interior cell goes through a fixed number of 
state transitions before outputting its final state: 

initialize own state; 
for k := 1 to steps do 

begin 
exchange states with 

adjacent elements; 
update own state 

end; 
output own state 

The challenge is to transform this fine-grained parallel model into an efficient 
program for a multicomputer with distributed memory. 

2. INITIAL STATES 

Consider a cellular automaton with 36 interior cells and 24 boundary cells. In a 
sequential computer, the combined state of the automaton can be represented by an 
8 x 8 matrix, called a grid (Fig. 3). For reasons that will be explained later, the grid 
elements are indicated by O's and 1 's. 
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- 1 0 1 0 1 0 -

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

- 0 1 0 1 0 1 -

Fig. 3 A square grid 

Figure 4 shows the initial values of the elements. The boundary elements have 
fixed values Ut, u 2 , u3, and u4. Every interior element has the same initial value us. 

ul 

u4 Us u3 

u2 

Fig. 4 Initial values 

In general, a grid u has n x n interior elements and 4n boundary elements: 

const n = ... ; 
type state= ( ... ); 

row = array [O .. n+l] of state; 
grid= array [O .. n+l] of row; 

var u: grid; 

Since the possible states of every cell vary from one application to another, we 
deliberately leave them unspecified. The grid dimension n and the initial states u1 , 

u2, u3, u4, and us are also application dependent. 
On a sequential computer, the grid is initialized as follows: 
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for i := 0 to n + 1 do 
for j := 0 ton+ 1 do 

u[i,j] := initial(i, j) 

6 

Algorithm 1 defines the initial value of element u[i,j]. The values of the corner 
elements are arbitrary (and irrelevant). 

function initial(i, j: integer) 
: state; 

begin 
ifi = 0 then 

initial := u1 
else if i = n + 1 then 

initial := u2 
else if j = n + 1 then 

initial := u3 
else if j = 0 then 

initial := u4 
else 

initial := u5 
end 

Algorithm 1 

3. DATA PARALLELISM 

For simulation of a cellular automaton, the ideal multicomputer architecture is a 
square matrix of identical processor nodes (Fig. 5). Every node is connected to its 
nearest neighbors (if any) by four communication channels. 

Fig. 5 Processor matrix 
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Figure 6 shows a grid with 36 interior elements divided into 9 subgrids. We now 
have a 3 X 3 matrix of nodes and a 3 X 3 matrix of subgrids. The two matrices define a 
one-to-one correspondence between subgrids and nodes. We will assign each subgrid 
to the corresponding node and let the nodes update the subgrids simultaneously. This 
form of distributed processing is called data parallelism. 

- 1 0 1 0 1 0 -

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 

0 1 0 1 0 1 0 1 

- 0 1 0 1 0 1 -

Fig. 6 A subdivided grid 

Every processor holds a 4 x 4 subgrid with 4 interior elements and 8 boundary 
elements (Fig. 7). Every boundary element holds either an interior element of a 
neighboring subgrid or a boundary element of the entire grid. (We will say more 
about this later.) 

- 1 0 -

1 0 1 0 

0 1 0 1 

- 0 1 -

Fig. 7 A subgrid 

4. PROCESSOR NODES 

With this background, we are ready to program a cellular automaton that runs on a 
q X q processor matrix. 

The nodes follow the same script (Algorithm 2). 
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procedure node( qi, qj: integer; 
n, s, e, w: channel); 

var u: subgrid; k: integer; 
begin 

newgrid( qi, qj, u); 
for k := 1 to steps do 

relax(qi, qj, n, s, e, w, u); 
output(qi, qj, e, w, u) 

end 

Algorithm 2 

8 

A node is identified by its row and column numbers ( q,, q;) in the processor matrix, 
where 

1 ~ q, < q and 1 ~ q; :5 q 

Four communication channels labeled n, s, e, and w connect a node to its nearest 
neighbors (if any). 

Every node holds a subgrid with m x m interior elements and 4m boundary ele
ments (Fig. 7): 

const m = ... ; 
type subrow =array [O .. m+1] of state; 

subgrid =array [O .. m+1] of subrow; 

The grid dimension n is a multiple of the subgrid dimension m: 

After initializing its subgrid, a node updates the subgrid a fixed number of times 
before outputting the final values. In numerical analysis, grid iteration is known as 
relaxation. 

Node (q,, q;) holds the following subset of the complete grid u[O .. n + 1, O •. n + 1]: 

u[io .. io + m + 1,jo .. jo + m + 1] 

where 
io = (qi- 1)m and io = (q;- 1)m 

The initialization of a subgrid is straightforward (Algorithm 3). 
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procedure newgrid(qi, qj: 
integer; var u: subgrid); 

var i, iO, j, jO: integer; 
begin 

iO := (qi - 1)*m; 
jO := (qj - 1)*m; 
fori:= 0 tom+ 1 do 

end 

for j := 0 to m + 1 do 
u[iJ] := initial(iO+i, jO+j) 

Algorithm 3 

5. PARALLEL RELAXATION 

9 

In each time step, every node updates its own subgrid. The next value of an interior 
element is a function of its current value uc, and the values un, u8 , ue, and U10 of the 
four adjacent elements (Fig. 2). Every application of a cellular automaton requires a 
different transition function (Algorithm 4). 

function next(uc, un, us, 
ue, uw: state): state; 

begin next := ... end 

Algorithm 4 

Parallel relaxation is not quite as easy as it sounds. When a node updates row 
number 1 of its subgrid, it needs access to row number m of the subgrid of its northern 
neighbor (Fig. 6). To relax its subgrid, a node must share a single row or column 
with each of its four neighbors. 

The solution to this problem is to let two neighboring grids overlap by one row 
or column vector. Before a node updates its interior elements, it exchanges a pair 
of vectors with each of the adjacent nodes. The overlapping vectors are kept in the 
boundary elements of the subgrids (Fig. 7). If a neighboring node does not exist, a 
boundary vector holds the corresponding boundary elements of the entire grid (Figs. 
4 and 6). 

The northern neighbor of a node outputs row number m to the node, which 
inputs it in row number 0 of its own subgrid (Fig. 7). In return, the node outputs 
row number 1 to its northern neighbor, which inputs it in row number m + 1 of its 
subgrid. Similarly, a node exchanges rows with its southern neighbor, and columns 
with its eastern and western neighbors (Fig. 5). 

The shared elements raise the familiar concern about time-dependent errors in 
parallel programs. Race conditions are prevented by a rule of mutual exclusion: While 
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a node updates an element, another node cannot access the same element. This rule 
is enforced by an ingenious method [Barlow and Evans 1982]. 

Every grid element u[ i, j] is assigned a parity 

(i + j) mod 2 

which is either even (0) or odd (1) as shown in Figs. 3 and 6. To eliminate tedious 
(and unnecessary) programming details, we assume that the subgrid dimension m is 
even. This guarantees that every subgrid has the same parity ordering of the elements 
(Figs. 6 and 7). 

Parity ordering reveals a simple property of grids: The next values of the even 
interior elements depend only on the current values of the odd elements, and vice 
versa. This observation suggests a reliable method for parallel relaxation. 

In each relaxation step, the nodes scan their grids twice: 

First scan: The nodes exchange odd elements with their neighbors and update all 
even interior elements simultaneously. 

Second scan: The nodes exchange even elements and update all odd interior ele
ments simultaneously. 

The key point is this: In each scan, the simultaneous updating of local elements 
depends only on shared elements with constant values! In the terminology of parallel 
programming, the nodes are disjoint processes during a scan. 

The relaxation procedure uses a local variable to update elements with the same 
parity b after exchanging elements of the opposite parity 1 - b with its neighbors 
(Algorithm 5). 
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procedure relax(qi, qj: integer; 
n, s, e, w: channel; var u: 
subgrid); 

var b, i, j, k, last: integer; 
begin 

forb := 0 to 1 do 
begin 

end 

exchange(qi, qj, 1 - b, 
n, s, e, w, u); 

for i := 1 to m do 

end 

begin 
k := (i + b) mod 2; 
j := 2- k; 
last:= m- k 
while j <=last do 

end 

begin 
u[i,j] := next(u[i,j], 

u[i-1,j], u[i+1,j], 
u[i,j+1], u[i,j-1]); 

j := j + 2 
end 

Algorithm 5 

6. LOCAL COMMUNICATION 

11 

The nodes communicate through synchronous channels with the following properties: 

1. Every channel used connects exactly two nodes. 

2. The communications on a channel take place one at a time. 

3. A communication takes place when a node is ready to output a value through 
a channel and another node is ready to input the value through the same channel. 

4. A channel can transmit a value in either direction between two nodes. 

5. The four channels of a node can transmit values simultaneously. 
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These requirements are satisfied by transputer nodes programmed in occam [ Cok 
1991]. 

The identical behavior of the nodes poses a subtle problem. Suppose the nodes 
simultaneously attempt to input from their northern channels. In that case, the 
nodes will deadlock, since none of them are ready to output through these channels. 
There are several solutions to this problem. We use a method that works well for 
transputers. 

Before the nodes scan elements of the same parity, they communicate with their 
neighbors in two phases (Fig. 8). 

n n 

w t------:~ e w IE--- e 

8 8 

Fig. 8 Communication phases 

In each phase, every node communicates simultaneously on its four channels as 
shown below. Phases 1 and 2 correspond to the left and right halves of Fig. 8. 

Channel Phase 1 Phase 2 
n input output 
s output input 
e output input 
w input output 

Since every input operation on a channel is matched by a simultaneous output oper
ation on the same channel, this protocol is deadlock free. It is also very efficient, since 
every node communicates simultaneously with its four neighbors. 

Algorithm 6 defines the exchange of elements of parity b between a node and its 
four neighbors. 
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procedure exchange(qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

begin 
phase1(qi, qj, b, n, s, e, w, u); 
phase2(qi, qj, b, n, s, e, w, u) 

end 

Algorithm 6 

13 

Phase 1 is defined by Algorithm 7. The if statements prevent boundary nodes 
from communicating with nonexisting neighbors (Fig.5). 

procedure phase1 ( qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

var k, last: integer; 
begin 

k := 2- b; 
last:= m- b; 
while k <=last do 

end 

begin 
par begin 

if qi > 1 then n?u[O,k] I 
if qi < q then s!u[m,k] I 
if qj < q then e!u[k,m] I 
if qj > 1 then w?u[k,O] 

end; 
k := k + 2 

end 

Algorithm 7 
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Phase 2 is similar (Algorithm 8). 

procedure phase2(qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

var k, last: integer; 
begin 

k := b + 1; 
last:= m + b- 1; 
while k <= last do 

end 

begin 
par begin 

if qi > 1 then n!u[1,k] I 
if qi < q then s?u[m+1,k] I 
if qj < q then e?u[k,m+1] I 
if qj > 1 then w!u[k,1) 

end; 
k := k + 2 

end 

Algorithm 8 
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We have used this protocol on a Computing Surface with transputer nodes. Since 
transputer links can communicate in both directions simultaneously, the two commu
nication phases run in parallel. So every transputer inputs and outputs simultaneously 
through all four links! 

If the available processors cannot communicate simultaneously with their neigh
bors, a sequential protocol must be used [Dijkstra 1982]. This is also true if the 
overhead of parallelism and communication is substantial. However, the replacement 
of one protocol by another should only change Algorithms 6-8 and leave the rest of 
the program unchanged. 

7. GLOBAL OUTPUT 

At the end of a simulation, the nodes output their final values to a master processor 
that assembles a complete grid. The boundary channels of the processor matrix are 
not used for grid relaxation (Fig. 5). We use the horizontal boundary channels to 
connect the nodes and the master into a pipeline for global output (Fig. 9). 
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Master Nodes 

Fig. 9 Output pipeline 

The boundary elements of the entire grid have known fixed values (Fig. 4). These 
elements are needed only during relaxation. The final output is an n x n matrix of 
interior elements only. Every element defines the final state of a single cell. 

9). 

So we redefine the full grid, omitting the boundary elements: 

type row = array [l..n] of state; 
grid= array [l..n] of row; 

The master inputs the final grid row by row, one element at a time (Algorithm 

procedure master(inp: channel; 
var u: grid); 

var i, j: integer; 
begin 

for i := 1 to n do 
for j := 1 to n do 

inp?u[i,j] 
end 

Algorithm 9 

The nodes use a common procedure to output interior elements in row order ( Al
gorithm 10). 
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procedure output( qi, qj: integer; 
inp, out: channel; var u: 
subgrid); 

var i, j: integer; 
begin 

for i := 1 to m do 
begin 

for j := 1 to m do 
out!u[iJ]; 

copy((q- qj)*m, inp, out) 
end; 

copy((q- qi)*m*n, inp, out) 
end 

Algorithm 10 

16 

Every row of elements is distributed through a row of nodes (Figs. 5 and 6). 
For each of its subrows, node (qi,q;) outputs the m interior elements and copies 
the remaining (q- q;)m elements of the same row from its eastern neighbor. This 
completes the output of the rows of elements, which are distributed through row qi of 
the processor matrix. The node then copies the remaining (q- qi)m complete rows 
of n elements each. 

A simple procedure is used to copy a fixed number of elements from one channel 
to another (Algorithm 11). 

procedure copy(no: integer; 
inp, out: channel); 

var k: integer; uk: state; 
begin 

fork:= 1 to no do 
begin 

end 

inp?uk; out!uk 
end 

Algorithm 11 

In our program for the Computing Surface, we extended the copy procedure with 
parallel input/output. We also modified Algorithms 2 and 9 slightly to enable the 
program to output intermediate grids at fixed intervals. 

8. PROCESSOR NETWORK 

Figure 10 illustrates the network that ties the processors together. The network 
consists of a horizontal channel matrix hand a vertical channel matrix v. 
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IVO,l IV0,2 lvo,s 

M ho3 ---==-- 1,1 hll 1, 2 ht2 1,3~ 

Vt,l r·' Vt,3 

ht3 
---"'-"'---- 2,1 h21 

' 2,2 h2,2 2,3~ 

v2,1 v2,2 v2,3 

~ 3,1 h31 3,2 h32 3,3~ 

lv3,1 lv3,2 I v3,3 

Fig. 10 Processor network 

The following examples illustrate the abbreviations used: 

M master 
3,2 node(3,2) 

v2,2 channel v[2, 2] 
h3,1 channel h[3, 1] 

17 

Algorithm 12 defines parallel simulation of a cellular automaton that computes a 
relaxed grid u. Execution of the parallel statements activates (1) the master, (2) the 
first column of nodes, and (3) the rest of the nodes. 
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procedure simulate(var u: grid); 
type 

line= array [l..q] of channel; 
matrix = array [0 .. q] of line; 

var h, v: matrix; i, j, k: integer; 
begin 

par begin 
master(h[O,q], u) I 
parfor k := 1 to q do 

node(k, 1, v[k-1,1], v[k,1], 
h[k,1], h[k-1,q]) I 

parfor i := 1 to q do 
parfor j := 2 to q do 

node(i, j, v[i-l,j], v[i:j], 
h[i,j], h[i,j-1]) 

end 
end 

Algorithm 12 

18 

This completes the development of the model program. We will now demonstrate 
how easily the program can be adapted to different applications of cellular automata. 

9. EXAMPLE: FOREST FIRE 

A typical application of a cellular automaton is simulation of a forest fire. Every cell 
represents a tree that is either alive, burning, or dead. In each time step, the next 
state of every tree is defined by probabilistic rules similar to the ones proposed by 
Bak and Chen [1990]: 

1. If a live tree is next to a burning tree, it burns; otherwise, it catches fire with 
probability p1 . 

2. A burning tree dies. 

3. A dead tree has probability p2 of being replaced by a live tree. 

Parallel simulation of a forest fire requires only minor changes of the model pro
gram: 

1. The possible states are: 

type state= (alive, burning, dead) 
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2. The initial states may, for example, be: 

u1 = u2 = u3 = u4 = dead u5 = alive 

3. Algorithm 4.1 defines state transitions. 

function next( uc, un, us, 
ue, uw: state): state; 

const p1 = 0.01; p2 = 0.3; 
begin 

if uc = alive then 
if (un =burning) or 

(us = burning) or 
( ue = burning) or 
( uw = burning) 

then next :=burning 
else if random<= p1 

then next := burning 
else next := alive 

else if uc = burning then 
next:= dead 

else { uc = dead} 

end 

if random <= p2 
then next := alive 
else next := dead 

Algorithm 4.1 

4. A random number generator is added. 

10. EXAMPLE: LAPLACE'S EQUATION 

19 

A cellular automaton can also solve Laplace's equation for equilibrium temperatures in 
a square region with fixed temperatures at the boundaries. Every cell represents the 
temperature at a single point in the region. In each time step, the next temperature 
of every cell is defined by a simple deterministic rule. 

Parallel simulation of heat flow requires the following changes of the model pro
gram: 

1. The states are temperatures represented by reals. 

2. A possible choice of initial temperatures is: 
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Ut - 0 
U2 - 100 
ua - 100 
U4 - 0 
Us - 50 

3. Algorithm 4.2 defines the next temperature of an interior cell. 

function next( uc, un, us, 
ue, uw: real): real; 

var res: real; 
begin 

res:= (un +us+ ue + 
uw)/4.0 - uc; 

next := uc + fopt*res 
end 

Algorithm 4.2 

20 

In steady state, the temperature of every interior cell is the average of the neigh
boring temperatures: 

Uc = (un + u, + Ue + Uw)/4.0 

This is the discrete form of Laplace's equation. The residual res is a measure of how 
close the temperatures are to satisfying this equation. The correction of a tempera
ture Uc is proportional to its residual. 

4. A relaxation factor /opt is added: 

For a large square grid relaxed in parity order, the relaxation factor 

/opt = 2- 271" /n 

ensures the fastest possible convergence towards stationary temperatures. In numeri
cal analysis, this method is called successive overrelaxation with parity ordering. The 
method requires n relaxation steps to achieve 3-figure accuracy of the final tempera
tures [Young 1954, Press et al. 1989]. 

The complete algorithm for parallel simulation of steady state heat flow is listed in 
the Appendix. The corresponding sequential program is explained in [Brinch Hansen 
1992b). Numerical solution of Laplace's equation on multicomputers is also discussed 
in [Barlow and Evans 1982, Evans 1984, Pritchard et al. 1987, Saltz et al. 1987, Fox 
et al. 1988]. 
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11. COMPLEXITY 

In each time step, every node exchanges overlapping elements with its neighbors in 
O(m) time and updates its own subgrid in O(m2 ) time. The final output takes O(n2 ) 

time. The parallel run time required to relax an n X n grid n times on p processors is 

T(n,p) = n(am2 + O(m)) + O(n2 ) 

where a is a system-dependent constant of relaxation and 

n=m-vP (1) 

The complexity of parallel simulation can be rewritten as follows: 

T(n,p) = n2(anfp + 0(1) + 0(1/ JP)) 

For 1 :5 p < n, the communication times are insignificant compared to the 
relaxation time, and we have approximately 

T(n,p) R:: an3 fp for n > p (2) 

If the same simulation runs on a single processor, the sequential run time is ob
tained by substituting p = 1 in (2): 

T(n, 1) R:: an3 for n > 1 (3) 

The processor efficiency of the parallel program is 

E( ) _ T(n, 1) 
n,p -

p T(n,p) 
(4) 

The nominator is proportional to the number of processor cycles used in a sequen
tial simulation. The denominator is a measure of the total number of cycles used by 
p processors performing the same computation in parallel. 

By (2), (3), and (4) we find that the parallel efficiency is close to one, when the 
problem size n is large compared to the machine size p: 

E(n,p) R:: 1 for n > p 

Since this analysis ignores communication times, it cannot predict how close to one 
the efficiency is. 

In theory, the efficiency can be computed from ( 4) by measuring the sequential 
and parallel run times for the same value of n. Unfortunately, this is not always 
feasible. When 36 nodes relax a 1500 x 1500 grid of 64-bit reals, every node holds a 
subgrid of 250 x 250 x 8 = 0.5 Mbytes. However, on a single processor, the full grid 
occupies 18 Mbytes. 
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A more realistic approach is to make the O(n2 ) grid proportional to the machine 
size p. Then every node has an O(m2) subgrid of constant size independent of the 
number of nodes. And the nodes always perform the same amount of computation 
per time step. 

When a scaled simulation runs on a single processor, the run time is approximately 

T(m, 1) R1 am3 form> 1 

since p = 1 and n = m. 
From (1), (3), and (5) we obtain 

T(n, 1) R1 p312T(m, 1) form> 1 

The computational rule we need follows from (4) and (6): 

.JP T(m, 1) 
E(n,p) R1 T(n,p) form> 1 

(5) 

(6) 

(7) 

This formula enables us to compute the efficiency of a parallel simulation by running 
a scaled-down version of the simulation on a single node. 

12. PERFORMANCE 

We reprogrammed the model program in occam 2 and ran it on a Computing Surface 
with T800 transputers configured as a square matrix with a master node [Inmos 1988, 
Meiko 1987, Trew and Wilson 1991]. The program was modified to solve Laplace's 
equation as explained in Section 10. The complete program is found in the Appendix. 

Table I shows measured (and predicted) run times T(n,p) in seconds for n re
laxations of an n X n grid on p processors. In every run, the subgrid dimension 
m = 250. 

Table I 
p n T(n,p) E(n,p) 
1 250 278 (281) 1.00 
4 500 574 (563) 0.97 
9 750 863 (844) 0.97 

16 1000 1157 (1125) 0.96 
25 1250 1462 (1406) 0.95 
36 1500 1750 (1688) 0.95 

The predicted run times shown in parentheses are defined by (2) using 

a= 18 p,s 

The processor efficiency E(n,p) was computed from (7) using the measured run 
times. 
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SUMMARY 

We have developed a model program for parallel execution of cellular automata on a 
multicomputer with a square matrix of processor nodes. We have adapted the model 
program for simulation of forest fires and numerical solution of Laplace's equation 
for stationary heat flow. On a Computing Surface with 36 transputers the program 
performs 1500 relaxations of a 1500 x 1500 grid of 64-bit reals in 29 minutes with an 
efficiency of 0.95. 

APPENDIX: COMPLETE ALGORITHM 

The complete algorithm for parallel solution of Laplace's equation is composed of Al
gorithms 1-12. 

const q = 6; m = 250 {even}; 
n = 1500 {m*q}; 

type row = array [L.n] of real; 
grid = array [L.n] of row; 

procedure laplace(var u: grid; u1, u2, 
u3, u4, u5: real; steps: integer); 

const pi = 3.14159265358979; 
type subrow = array [O .. m+1] of real; 

subgrid =array [O .. m+1] of subrow; 
var fopt: real; 

procedure master(inp: channel; 
var u: grid); 

var i, j: integer; 
begin 

for i := 1 to n do 
for j := 1 ton do 

inp?u[i,j] 
end; 

procedure copy(no: integer; 
inp, out: channel); 

var k: integer; uk: real; 
begin 

fork:= 1 to no do 
begin 

inp?uk; out!uk 
end 

end; 
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procedure output(qi, qj: integer; 
inp, out: channel; var u: 
subgrid); 

var i, j: integer; 
begin 

fori := 1 tom do 
begin 

for j := 1 tom do 
' [" . ] out.u I,J ; 

copy((q- qj)*m, inp, out) 
end; 

copy((q- qi)*m*n, inp, out) 
end; 

procedure phase1(qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

var k, last: integer; 
begin 

k := 2- b; 
last:= m- b; 
while k <= last do 

end; 

begin 
par begin 

if qi > 1 then n?u[O,k) I 
if qi < q then s!u[m,k) I 
if qj < q then e!u[k,m) I 
if qj > 1 then w?u[k,O) 

end; 
k := k + 2 

end 

24 
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procedure phase2(qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

var k, last: integer; 
begin 

k := b + 1; 
last := m + b - 1; 
while k <= last do 

begin 
par begin 

if qi > 1 then n!u[1,k) I 
if qi < q then s?u[m+1,k) I 
if qj < q then e?u[k,m+1) I 
if qj > 1 then w!u[k,1) 

end; 
k := k + 2 

end 
end; 

procedure exchange(qi, qj, b: 
integer; n, s, e, w: channel; 
var u: subgrid); 

begin 
phase1(qi, qj, b, n, s, e, w, u); 
phase2(qi, qj, b, n, s, e, w, u) 

end; 

function initial(i, j: integer) 
: real; 

begin 
ifi = 0 then 

initial := ul 
else if i = n + 1 then 

initial := u2 
else if j = n + 1 then 

initial := u3 
else if j = 0 then 

initial := u4 
else 

initial := u5 
end; 

25 
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function next( uc, un, us, 
ue, uw: real): real; 

var res: real; 
begin 

res:= (un +us+ ue + 
uw)/4.0 - uc; 

next := uc + fophres 
end; 

procedure newgrid( qi, qj: 
integer; var u: subgrid); 

var i, iO, j, jO: integer; 
begin 

iO := (qi- l)*m; 
jO := (qj - 1)*m; 
for i := 0 to m + 1 do 

for j := 0 to m + 1 do 
u[i,j] := initial(iO+i, jO+j) 

end; 

procedure relax( qi, qj: integer; 
n, s, e, w: channel; var u: 
subgrid); 

var b, i, j, k, last: integer; 
begin 

forb:= 0 to 1 do 
begin 

exchange( qi, qj, 1 - b, 
n, s, e, w, u); 

fori:= 1 tom do 
begin 

k := (i +b) mod 2; 
j := 2- k; 
last:= m- k 
while j <=last do 

end 
end 

end; 

begin 
u[i,j] := next(u[i,j], 

u[i-l,j], u[i+1,j], 
u[i,j+1], u[i,j-1]); 

j := j + 2 
end 

26 
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procedure node(qi, qj: integer; 
n, s, e, w: channel); 

var u: subgrid; k: integer; 
begin 

newgrid(qi, qj, u); 
for k := 1 to steps do 

relax(qi, qj, n, s, e, w, u); 
output(qi, qj, e, w, u) 

end; 

procedure simulate(var u: grid); 
type 

line = array [1. .q] of channel; 
matrix = array [O .. q] of line; 

var h, v: matrix; i, j, k: integer; 
begin 

par begin 
master(h[O,q], u) I 
parfor k := 1 to q do 

node(k, 1, v[k-1,1], v[k,l], 
h[k,l], h[k-l,q]) I 

parfor i := 1 to q do 
parfor j := 2 to q do 

node(i, j, v[i-lj], v[ij], 
h[ij), h[ij-1]) 

end 
end; 

begin 
fopt := 2.0 - 2.0*pi/n; 
simulate( u) 

end 
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