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Abstract

Background: RNA secondary structure around splice sites is known to assist normal splicing by promoting

spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA

sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read

coverage and numerical problems.

Results: Our novel software, “ParasoR”, is designed to run on a computer cluster and enables the exact

computation of various structural features of long RNA sequences under the constraint of maximal base-pairing

distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be

computed by a separate computer node without losing the connectivity information between the pieces. ParasoR

directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation

of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high

concordance with those determined by high-throughput sequencing analyses.

Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A

genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic

regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant

preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to

intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more

accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene

expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase

functions.

Conclusions: We have shown that ParasoR is very useful for analyzing the structural properties of long RNA

sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases

in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various

types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely

available at https://github.com/carushi/ParasoR.
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Background
The existence of intronic regions is essential for producing

the proteomic diversity of eukaryotes through alterna-

tive splicing (AS) [1]. To achieve such complex splicing

events, most eukaryotes (except an intron-less nucleo-

morph genome [2]) are equipped with several types of

spliceosomes. These complex molecular machines are

composed of 5 snRNAs and more than 100 proteins

[3]. Spliceosomes recognize splicing motif sites [e.g., two

types of splice sites (SSs), donor and acceptor sites, and

branch points], so that AS is carried out for introns with a

wide range of lengths (from dozens to several tens of thou-

sand nucleotides) in the context of nearly constant exon

sizes [4].

Analytical determination of the features that spliceo-

somes recognize for proper splicing has been an impor-

tant problem in the field of bioinformatics [5, 6], because

AS abnormalities are involved in neuronal disorders and

other diseases [3, 7, 8]. Computational approaches have

revealed that functional SSs contain characteristic RNA

secondary structures around them, in addition to well-

known sequence motifs such as flanked GT-AG dinu-

cleotides within introns [6, 9]. In previous research, such

characteristics of secondary structure were required to

attain a notably high accuracy of AS prediction [10].

An association between splicing and RNA secondary

structure has also been validated by several experiments

[11–13]. For instance, homologous 14-3-3ζ genes of

insects were reported to need two types of complemen-

tary intronic sequence segments for mutually exclusive

splicing, and the alternative exons that were present in

the mature mRNA appeared to depend on the stability of

their base pairings [14]. Accordingly, explaining the roles

of RNA secondary structure in splicing completion and

AS regulation is an important endeavor.

Computational RNA secondary structure analyses around

splice sites

Since mutation experiments with structure probing

methods such as nuclear magnetic resonance spec-

troscopy or gel electrophoresis are time-consuming and

laborious, very few studies have experimentally validated

the complete secondary structures around SSs [12]. High-

throughput structure analyses, such as PARS [15], have

also been rarely applied to pre-mRNAs because of their

paucity of sequencing reads mapped to the intronic

regions [16]. Hence, computational prediction has signifi-

cantly contributed to the comprehensive analyses of RNA

secondary structures surrounding SSs.

These studies have revealed that the density of sta-

ble base pairs is regulated around SSs in complex ways.

Around alternatively spliced exons, stable structures

were shown to be over-represented and conserved rel-

ative to constitutive or skipped exons [17, 18]. At the

same time, a significant enrichment of single-stranded

transcript regions was also observed around splicing

enhancer/silencer motifs [19]. This is presumably because

splicing enhancer and silencer regions tend to contain

binding sites of SR proteins and hnRNPs, which can reg-

ulate the splicing efficiency, and the exposure of such

regions increases the binding efficiency of these splicing

factors [20, 21].

Difficulty in RNA secondary structure prediction of

full-length introns

The ends of introns are known to be subject to com-

plex structural constraints; however, little is known about

the presence of structural constraints deep inside introns.

Although the density of structural motifs of splicing fac-

tors will be low compared to the motif around the SSs,

it is highly plausible that an intronic region far from

the SSs also needs to satisfy various structural require-

ments for the normal progression of transcription, degra-

dation, and splicing. A detailed structural analysis of

intronic sequences would be useful to test the existence

of such structural constraints, and would serve as a valu-

able aid to understanding what makes the introns dif-

ferent from intergenic regions. Nevertheless, very few

studies have examined the structure propensity of full-

length introns and pre-mRNAs, owing to the prohibitive

time complexity of global structure prediction; the orig-

inal mfold and McCaskill’s algorithms require O(N3)

time complexity for input sequence length N [22, 23].

Because it is computationally infeasible to apply the algo-

rithms to long RNAs, some folding programs restrict the

allowed sequence distance between base pairing partners

to within a given value W [24–26], which reduces the

time complexity toO(NW 2). Even with the maximal-span

constraint, the computation time for long transcripts is

prohibitive. A more serious problem is that the magni-

tude of the partition functions grows exponentially with

the input lengthN, which can cause overflow or underflow

errors when computing structural properties such as base-

pairing probabilities and accessibilities (see Additional

file 1: Chapter 3 for detail).

To circumvent these problems, sliding-window-based

approaches have been developed, in which the folding

algorithm is run for each artificial sequence window of

length L in the input sequence [25, 27–29]. Because

such algorithms are easily parallelizable and do not cause

numerical errors as long as L is not excessively large,

they can be a practical tool for genome-wide structure

analyses under the current constraints of computational

resources. For example, in Ref. [28], the authors used the

minimum free energy (MFE) of each sequence window

to investigate the structural preferences of transcribed

regions. However, since it computes only the energy val-

ues of sliding windows and does not predict consistent
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secondary structures or stochastic structural indicators,

detailed structural analyses such as the comparison

with experimental data and investigation of the posi-

tional specificity of structural constraints were difficult.

Other tools for genome-wide MFE-structure prediction

using sliding-window approaches have similar problems

[25, 27], because they were designed to search for uniden-

tified short structural RNAs whose exact boundaries are

unknown but not to analyze the structure propensity of

a section of a continuous long RNA. As such, it has

remained difficult to examine the positional structure

propensity of introns using previous techniques that can-

not handle an ensemble of possible structures for long

transcripts.

Our novel software ParasoR for genome-scale structure

analyses

In this paper, we developed a novel software, “ParasoR”,

which enables the distributed computation of various

structural features of long RNAs based on the Boltzmann

ensemble over globally consistent secondary structures.

ParasoR divides dynamic programming (DP)matrices into

smaller pieces, such that each piece can be computed by

a separate computer node without losing the connectiv-

ity information between the pieces. ParasoR avoids the

numerical problems of previous algorithms by directly

computing the ratios of DP variables whose magnitudes

are bounded independently of N. ParasoR can exhaus-

tively compute structural features such as structural pro-

files [30] and globally consistent γ -centroid structures

[31], as well as conventional base pairing probabilities,

stem probabilities, and accessibilities. Using ParasoR, we

investigated the structural preferences of entire tran-

scribed regions in the human genome. To our knowledge,

there is no exhaustive study examining the landscape

of the structure stability of human introns using these

probabilistic structural indicators. Our analyses demon-

strate the potential of ParasoR to accelerate large-scale

structural analyses performed in silico.

Results
ParasoR: A parallel solution for local RNA secondary

structure analysis

ParasoR is our novel software application to exactly com-

pute various expected values such as stem probability

[23, 26] and accessibility [32–34] from the Boltzmann

ensemble of global secondary structures, with the con-

straint of maximal base-pair span. We consider only the

structures containing short-range base pairs, since it is

well known that the energy model of the secondary struc-

ture is inaccurate for predicting distant base pairings [35].

The maximal span constraint limits the structure ensem-

ble to the set of global secondary structures that contain

only base pairs with spanning lengths ≤ W . In Ref. [29],

it is shown that the constraint of maximal span for the

distance of base pairing can improve the accuracy of struc-

ture prediction. This constraint also reduces the compu-

tational complexity of structure prediction fromO(N3) to

O(NW 2), as described in the Background section.

ParasoR is the only tool developed to date that can

make global structure predictions for long RNAs (even

for ∼3G base sequences). This high scalability of ParasoR

is attained by the following two techniques: (1) solv-

ing numerical error problems by considering only the

ratios of dynamic DP variables, and (2) allowing dis-

tributed computation for a computer cluster. Owing to its

memory- and disk-saving design, ParasoR is also useful for

small-scale studies that use a single computer.

Figure 1 shows a ParasoR’s workflow. In ParasoR, the

structure prediction is carried out based on the Rfold

grammar [26] and Inside–Outside algorithm. For a given

set of sequences, ParasoR constructs a database of local

fold changes of inside and outside DP variables �α and

�β through the Divide and Connect procedures (see the

Methods section). From this database, ParasoR computes

the following features for any queried region: (i) base-

pairing probability; (ii) stem probability, represented as

pstem(i) at i-th position; (iii) accessibility; (iv) structural

profiles pδ(i), which represents the probability that the

position i is a part of specific loop type δ = bulge, exte-

rior, hairpin, multi, or interior [30]; and (v) a globally

consistent secondary structure of credible base pairs (e.g.,

γ -centroid structure [31] with γ ≤ 1).

This database can be used repeatedly for the fast struc-

ture simulation of similar but different sequences, such

as those with point mutations or incomplete RNAs that

appear during transcription elongation. ParasoR can also

be applicable for the fast simulation of co-transcriptional

splicing by using partial DP variables in the database that

correspond to partially transcribed RNAs.

Concordance of ParasoR prediction with validated Rfam

structures and a high-throughput structure analysis

Since ParasoR was developed for the structure predic-

tion of long RNA sequences, we tested its accuracy with

the genome and mRNA sequences, using validated struc-

tures from the Rfam database [36] and a high-throughput

structure analysis [37].

First, to evaluate the performance of structure predic-

tion, we used CisReg data, which was compiled in Ref.

[29] and contains high-quality sub-structures within long

sequences. To construct the dataset, they searched the

Rfam database for structures annotated as cis-regulatory

elements, and obtained 2,500 structures, as well as the

flanking mRNA or genomic sequences of lengths up to

3,000 nt on both sides. Then, we predicted secondary

structures for these whole RNAs and compared them

with known structures only within the region of target
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Fig. 1 ParasoR overview illustration. A target sequence fragment is assigned to K computational nodes, and dαh
k is stored in external memory in the

Divide procedure to solve the dependency problem that exists around the ends of a given fragment. In the Connect procedure, exact local fold

changes �α are computed by the summation of dαh
k for each pairing pattern at the left end of the assigned fragment. In the computation of

expected values, a variety of measures are available using the DP variables whose magnitudes are bounded independently of N, such as u(k, l), �α,

and �β

cis-regulatory elements. As for ParasoR, we used the

γ -centroid structure with γ = 1 [31]. Since RNALfold

[24] does not predict a single consistent structure, we

chose the longest non-overlapping structures for evalua-

tion, and calculated the Matthews correlation coefficient

(MCC) between predicted and correct base pairs (detailed

in the “Methods” section). Figure 2a shows MCC scores

of ParasoR for mRNA and genome datasets, which are

substantially higher than those of RNALfold. It indicates

the efficiency of γ -centroid structure prediction for long

RNA sequences, as well as short RNA sequences [31],

as they predict fewer false positives than the MFE-based

method.

We also tested the accuracy of binary classification,

which predicts whether each base is structural (base-

paired) or accessible (unpaired), based on the stem

probability for each position. This kind of problem is

more meaningful when the input RNA does not take

a single stable structure. For the stem probability pstem

computed by ParasoR LocalFold [29] and RNAplfold

[25], we progressively changed a critical pstem threshold

and classified each position as structured or accessible,

depending on whether pstem was higher than the thresh-

old or not. Then, we evaluated these classifications with

the Rfam reference structure based on the area under the

receiver characteristic operating curves (AUCs) (detailed

in the Methods section and Additional file 1: Figure S19).

Figure 2b shows that the AUC of ParasoR is higher than

the other two tools for both the mRNA and genome

datasets.

In summary, ParasoR is comparable to or better than

the state-of-the-art algorithms for the prediction of stable

motif structures such as cis-regulatory elements in long

RNAs.

Next, we investigated the congruence between compu-

tational predictions and high-throughput structure anal-

ysis, using PARS data [37] in the same way as CisReg.

To compare pstem and PARS data from human mRNAs,
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Fig. 2 Accuracy comparison of single structure prediction. aMCC scores describing the structure predictions of cis-regulatory elements in the

CisReg genome and mRNA dataset for the performance evaluation of ParasoR and RNALfold. b AUC scores describing the predictions of structured

positions of cis-regulatory elements in the CisReg genome and mRNA dataset for stem probabilities of ParasoR and other tools

we divided all nucleotide positions into two groups,

accessible and structured, as determined by PARS scores.

AUCs of three tools were then computed with a pro-

gressively changing pstem threshold for their classification.

Consequently, although all of the prediction methods

showed a high consensus with the PARS-based classifi-

cation, ParasoR had an almost comparable AUC score to

LocalFold and RNAplfold (0.610 versus 0.618 and 0.619,

respectively Fig. 3a (Left)). In addition, when we com-

pared the 32-nt average of pstem with the 32-nt average

of PARS scores, ParasoR showed a slightly higher AUC

than the other tools (0.581 versus 0.578 and 0.578, respec-

tively Fig. 3a (Right)). These results are important, as we

extensively study the distribution of such averaged pstem
in the later sections.

Because PARS scores with low-read depths are sup-

posed to be less reliable, we set a threshold for the min-

imum read depth to filter out less reliable sites. For such

a sample dataset, PARS score distributions were obtained

for two groups, accessible (pstem(i) < 0.5) and structured

(pstem(i) > 0.5) regions according to ParasoR-based pstem.

Figure 3b shows that the PARS scores are more consistent

in structured regions as their median values increase with

the strictness of the threshold, while PARS scores fluctu-

ate around zero in accessible regions, although they are

consistent for a very strict threshold that requires ≥ 40

Fig. 3 Comparison of stem probabilities and PARS scores. a AUC scores describing the prediction of positions with high PARS scores (i.e., structured

regions) by stem probabilities for ParasoR and other tools. bDistribution of PARS scores for accessible and structured regions with varying read-depth

thresholds. Each position was classified into Accessible or Structured depending on the stem probability of ParasoR (pstem < 0.5 or pstem > 0.5) after

filtering of the minimum read-depth. Outliers are excluded from each Tukey boxplot. c Comparison of the average stem probabilities of ParasoR and

the median of filtered PARS scores among 5′-UTR, CDS, and 3′-UTR categories
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read counts to designate a site. Such filtering of low-

depth regions actually increased overall AUCs for predic-

tion methods up to approximately 0.75 (Additional file 1:

Figure S17).

Since ParasoR has been developed to analyze genome-

wide structure propensity, a consensus between ParasoR

and PARS data in terms of structure propensity analyses

was also tested for three categories of transcript region,

5′-UTR, 3′-UTR, and CDS. In Ref. [37], an average PARS

score was used to estimate the likelihood of being struc-

tured for each region, and it was concluded that 5′-UTRs

are less structured than 3′-UTRs and CDS. However, we

found that the average PARS scores are affected by a small

number of outliers with extremely large PARS scores.

We therefore computed median PARS scores after the

read depth filtering, and compared them with the mean

pstem(i) for three categories (Fig. 3c). Both scores consis-

tently indicate that 5′-UTRs have the highest stem density,

whereas the stem density of CDS regions is the lowest.

This high stem density of 5′-UTRs is mostly explained by

their high GC content, as we show in the genome-wide

propensity analysis later.

We have shown that the stem probabilities computed

by the probabilistic folding methods such as ParasoR,

RNAplfold, and LocalFold are highly consistent with

the known structures of cis-regulatory elements and

the PARS data. They also attain AUCs around 0.7-0.8

when ambiguous sites are removed from the PARS data.

The differences of AUC scores among these programs

are of the order of 0.01 and thus very small for these

datasets.

Although ParasoR has similar accuracy to the other two

tools, it is distinctly different from them, because it is

a global folding method and the expected values such

as stem probability and accessibility are computed from

the Boltzmann ensemble of globally consistent secondary

structures, as in McCaskill’s algorithm and RNAfold [38].

The difference between ParasoR and the latter two global

folding algorithms is its scalability to handle long RNAs;

ParasoR can compute the structural properties of the

longest pre-mRNA in the human genome without any

problem, whereas such computation is impossible for the

other global algorithms, owing to the numerical errors and

high time and space complexities.

In contrast to these global folding algorithms,

RNAplfold and LocalFold average the probabilities that

are computed from mutually inconsistent local RNA

structures on different sliding windows. Although these

sliding-window algorithms may capture the effects of

structural obstacles such as bound proteins, introducing

artificial boundaries at every sequence position may also

cause artificial effects on the results. For example, it is

known that accessibilities are artificially high close to the

window boundaries [29], and both the window ends tend

to be paired with each other (see Figures S5, S6, and S12

in the Additional file 1).

Another difference between the sliding-window

methods and the global folding methods is that the prob-

ability distributions they produce are markedly different.

As shown in Additional file 1: Figure S20, the distribution

of ParasoR has bimodal peaks around probability 0 and 1,

while the distributions of the other tools are more even.

Furthermore, ParasoR has additional useful options that

are not available in the other tools. For example, it can

compute globally consistent γ -centroid structures, which

are more accurate than MFE structures (Fig. 2a). The

structural profile for each sequence position was also

shown to be a very powerful means of understanding the

complex structural specificities of RNA-binding proteins

[30]. We therefore conclude that ParasoR is currently the

most suitable program to analyze the structural properties

of a transcriptomic-scale dataset with high confidence.

Prediction of structure profiles for human transcript

We performed positional structure propensity analyses

for human mRNAs and pre-mRNAs using ParasoR. To

extract the common properties of human transcripts,

we computed μp(i), the positional profile of probabili-

ties averaged across all human mRNAs or pre-mRNAs.

Figure 4a shows μpstem(i), the positional profile of stem

probabilities around start codons, the 1st-3rd exon junc-

tions, and the termination codon, which are computed

from mRNA sequences. We consistently observed many

characteristics reported in previous experimental analy-

ses, such as the sudden fall of stem density before start and

termination codons, an increase within start codons, and

3-mer periodicity in coding regions [37]. The higher stem

probabilities upstream of the first SS can be explained by

the GC-rich regions, such as CpG islands, around the first

exons (Additional file 1: Figure S35).

Next, we analyzed the positional specificity for struc-

tural profiles μpδ
(i) (δ = bulge, exterior, hairpin, or

interior) computed from pre-mRNA sequences. Because

the magnitude of μpδ
(i) strongly depends on the loop

type, we averaged μpδ
across the 300 nt surrounding each

SS on both sides to compute μpδ
and normalize the dif-

ferences among loop types. In Fig. 4b, log(μpδ
(i)/μpδ

) is

plotted to show the specific increase of loop probabili-

ties around the donor and acceptor sites. Around donor

sites, pbulge and pinternal increase at position 1–3 nt, con-

sistently with the two μpstem peaks located at both sides of

the donor sites (Additional file 1: Figure S34). Previously,

several studies have reported the presence of conserved

stable stem structures around donor sites [17, 39], and a

stem-bulge structure upstream of the donor site is associ-

ated with the induction of Rex protein binding in HTLV-2

[40, 41] or the reduction of U1 snRNP binding in exon

10 of tau [42]. In contrast, the structural profiles around
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Fig. 4 Structure profile of mRNA and pre-mRNA. a μpstem (i) around start codons (Left), exon junctions (Center), and stop codons (Right). Profiles of

the first, second, and third exon junctions are drawn in black, green, and red, respectively. b Log relative probability around donor sites (Left) and

acceptor sites (Right) for Bulge (B), Exterior (E), Hairpin (H), Multi (M), and Internal (I) loops, which are represented by orange, light green, purple, dark

green, and blue lines, respectively. Each position shows log(μpδ
(i)/μpδ

) for the loop type δ. A 0 position indicates the starts of introns for donor sites,

and the starts of exons for acceptor sites

acceptor sites contain three separate peaks: phairpin at

3–9 nt upstream of the acceptor site, pmulti at 10–30

nt upstream of the acceptor site, and pexterior at 13–40

nt upstream of the acceptor site. These peak locations

are roughly within the polypyrimidine tract, which is the

known binding site for U2AF and PTB [43]. In a previous

study, the existence of loop structures was predicted to

change the activity of the neighboring alternative accep-

tor sites in yeast [44]. Accordingly, such preferences for

loop types generated by sequential motifs may help opti-

mize the binding efficiency of constitutive splicing factors.

As these preferences for specific loop types around motif

sites have not been investigated in previous studies, iden-

tifying them and the splicing activity of each site can

reveal unknown loop preferences optimized for binding a

particular splicing factor.

Genome-wide simulation to detect structural constraints

on transcribed regions

Since the energy scale of secondary structure folding is

high enough to influence the efficient progression of vari-

ous biological processes, such as transcription elongation

and translation, we expect many transcribed regions in

the genome to be subject to various structural constraints.

To study the structural preferences of transcribed regions

relative to untranscribed regions, we computed the dis-

tributions of average stem probabilities p̄stem(i) for 32-nt

windows over both the strands of entire human chromo-

somes, and compared those of the different functional

regions. This window size was chosen because it produced

distributions that were close to the normal distribution

for which statistical analyses are easier. Also, p̄stem are

expected to represent local structural features better than

single-base stem probabilities (see the Methods section

and Additional file 1: Chapter 3 and Additional file 1:

Figure S8 for more discussion on choosing this window

size).

Figure 5a shows the distributions of p̄stem among

five types of genomic regions: 5′-UTR, 3′-UTR, CDS,

Intron, and Intergenic regions. Here, we removed repeat

sequences elements from these regions. Further, the Inter-

genic regions are defined as the genomic regions that

contain no repeat regions, no sense or antisense sequences

of transcribed regions, and no sequences close to their

boundaries (see the Methods section). All annotation cat-

egories exhibit a similar unimodal distribution. The 5′-
UTR category apparently has the highest median, which

is consistent with the elevated GC content around 5′-UTR

regions [37]. The descending order of the stem prob-

ability medians (5′-UTR, 3′-UTR, and CDS categories)
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Fig. 5 Structure propensity of genomic and transcriptomic regions. Intergenic regions, Intron, CDS, 5′-UTR, and 3′-UTR are represented by black,

green, blue, orange, and pink, respectively. a Distributions of raw p̄stem(i) for each annotation category. b Distributions of normalized average stem

probabilities �p̄stem(i). c Log ratios of densities log(ft(x)/fIntergenic(x)), where ft(x) is the probability density of �p̄stem(i) at x for

t = Intron, 5′-UTR, CDS, 3′-UTR. d is similar to (c), except that �p̄stem(i) was computed for the true boundaries of pre-mRNAs

is the same as that of their structural strengths com-

puted from mRNAs (Fig. 3c) in the previous subsection.

It also shows all transcribed regions have higher median

stem probabilities than those of the Intergenic regions,

whichmay suggest the hypothesis that transcribed regions

are constrained by their secondary structure. However,

it should be noted that genomic sequences are also sub-

ject to various constraints that are unrelated to RNA

secondary structure, and various characteristics of stem

probabilities in transcribed regions may be side effects of

sequence biases caused by such constraints. Therefore, we

modeled the influences of sequence biases by training a

linear regression model with p̄stem(i) as targets and 4-mer

frequencies as features. We then computed the normal-

ized stem probability �p̄stem(i), which is the difference

between p̄stem(i) and its regressed value. This normal-

ization mostly eliminated the differences in the medians

among annotation groups so that the distinct difference

in p̄stem median values was explained by a sequence

bias (Fig. 5b). Then, we focused on the residual part

�p̄stem, because large �p̄stem values represent structural

preferences that are not merely explained by 4-mer

frequencies.

To extract a faint structural propensity of each tran-

scribed region in �p̄stem(i) compared to Intergenic

regions, we plotted the log ratios log
(

ft(x)/fIntergenic(x)
)

,

where ft(x) is the probability density of �p̄stem(i) at x

for t = Intron, 5′-UTR, CDS, 3′-UTR (Fig. 5c). As for the

CDS regions, the density of this ratio is more concentrated

around the center (Conover test, p < 10−1586, n ∼ 105;

the sample size is detailed in the Methods section), which

indicates that the structural strengths in the CDS regions

are more strongly determined by their base composi-

tions than Intergenic regions. Additionally, introns and

3′-UTRs contain a higher rate of structured regions than

that of Intergenic sequences, while 5′-UTRs, 3′-UTRs,

and introns all exhibit lower rates of accessible regions.

Figure 5d is similar to Fig. 5c, except that �p̄stem was cal-

culated for pre-mRNAs, rather than for chromosomes.

In this analysis, the distributions of introns, CDS, and

3′-UTR regions are qualitatively similar to those in Fig. 5c.

In contrast, 5′-UTRs exhibit increased accessible regions
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in a wide range (−0.3 < �p̄stem < 0.0) as compared

to that shown in Fig. 5c, which is presumably because

5′-UTRs are shorter and more proximal to the transcript

boundaries than are other regions.

To estimate the statistical significance of structural pref-

erences of each annotation category relative to Intergenic

regions, Wilcoxon’s rank sum test was applied to the dis-

tribution of �p̄stem for each annotation group, as well as

their antisense sequences. Figure 6 shows the Z-scores

of Wilcoxon’s rank sum tests; a positive (negative) value

indicates the region contains a higher (lower) ratio of

structured regions than that of Intergenic regions. We

observed that the number of structured regions of introns

is significantly higher than that of Intergenic regions at

a significance level of p < 10−7940 (n ∼ 107, calcu-

lated from Z-score with a one-sided test, hereafter). In

contrast, the antisense sequences of introns significantly

contain more accessible positions than Intergenic regions

(p < 10−13655, n ∼ 107). Antisense and sense sequences

have the same GC content, but they can show a dif-

ferent strength of 4-mer normalization as well as p̄stem.

Hence, such a different tendency of sense and antisense

sequences cannot be explained by systematic differences

in GC content or other strand-symmetric sequence fea-

tures between the intron and intergenic regions. Addi-

tionally, 3′-UTRs exhibit the same trend, but at a lower

significance level (sense: p < 10−151, antisense: p <

10−940, n ∼ 106). The 5′-UTR sequences possess more

accessible positions than do Intergenic regions, which is

consistent with Fig. 5d. When pre-mRNA and mRNA are

compared, we observe that the Z-scores of CDS change

from positive to negative (pre-mRNA: p < 10−13, n ∼
106, mRNA: p < 10−1301, n ∼ 106), while 5′-UTRs and

3′-UTRs do not exhibit notable changes. The increased

accessibility after splicing in the part of CDS regions

suggests the existence of structural constraints in the par-

ticular mRNAs for translational efficiency or resistance to

degradation [45].

Positional dependency for these structural preferences

was examined by computing the Z-scores for each 32-

nt positional bin around the donor and acceptor sites in

pre-mRNAs using Wilcoxon’s rank sum statistics (Fig. 7).

Both sense and antisense strands exhibited a positive peak

around the donor (p < 10−10054 for 342,755 SSs) and

acceptor (p < 10−13512 for 326,618 SSs) sites. This pat-

tern indicates structural constraints for splicing regulation

[46], which is not easily explained by primary sequence

biases. Inside exons, both sense and antisense Z-scores

approach zero as the distance from SSs increases. In con-

trast, Z-scores for the sense strand remain positive within

introns (8,000 nt downstream of the donor site, p ∼ 10−28

for 26,970 SSs; 8,000 nt upstream of the acceptor site, p ∼
10−9 for 27,126 SSs), and those for the antisense strand

become negative. As the Z-score for each bin was inde-

pendently computed, the entire range of introns appears

to be subject to structural constraints.

We note that a significant structural preference can be

caused by only a small portion of transcribed regions,

owing to the large degrees of freedom of the hypothe-

sis tests. For example, our results suggest that the entire

intronic regions are dispersed with small intronic ele-

ments that tend to be more structured as compared to

controls, but this does not necessarily mean that the

majority of introns forms highly stable structures. Despite

these technical intricacies, we confirmed the same stem

preference of intronic regions by different normalization

methods, such as regression using GC content instead

of 4-mer frequencies and block-wise-shuffled genome

Fig. 6 Z-score of structure propensity for each genomic annotation category relative to Intergenic regions. Wilcoxon’s rank sum tests were used to

assess the structural preference of each genomic annotation category. A positive (negative) y-axis value indicates the annotation category has a

higher (lower) stem density than that of Intergenic regions. Filled and shaded bars represent Z-scores of sense and antisense sequences of each

annotation, respectively
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Fig. 7 Positional profiles of structural preferences around splicing donor (Left) and acceptor (Right) sites. Z-scores of Wilcoxon’s rank sum statistics

for the normalized average stem probability are drawn in black for sense and in red for antisense sequences. Dotted lines represent Z-scores that

correspond to the Bonferroni-corrected p-values (< 0.05) in a one-sided test

sequences instead of Intergenic regions as background

(Additional file 1: Figures S28 and S32). Furthermore, we

also found comparable results for the mouse genome,

which implies that these trends are conserved among

mammals (Additional file 1: Figure S33).

Conformational changes caused by splicing events

As described in the previous subsection, we investi-

gated the structural preferences of transcribed regions

by elaborate normalization procedures, such as masking

repeat sequences, subtracting contributions from k-mer

frequency bias by linear regression, and comparisons of

functional regions with Intergenic and antisense regions.

In this subsection, we investigate the structural changes

after splicing performed by directly computing the differ-

ence of stem probabilities betweenmRNA and pre-mRNA

as �qstem(i) = pstem,mRNA(i) − pstem,pre-mRNA(i) for each

exonic site upstream and downstream of SSs individually.

Although this method cannot analyze intronic sequences,

it has the advantage of constancy in the primary sequences

for which stem probabilities are compared (detailed

in Additional file 1: Chapter 7 and Additional file 1:

Figure S36-39). Figure 8 shows the positional Z-scores of

Wilcoxon’s signed rank test for �qstem(i) of pstem aver-

aged by a 32-nt sliding window, where a negative (posi-

tive) Z-score indicates that a nucleotide position changes

to be more accessible (structural) after splicing. Both

human and mouse analyses show that splicing causes

a significant reduction in stem density within approxi-

mately 100 bases around the SSs (p < 10−1111 at the

start position of the left side exon for 343,403 SSs).

We also showed a consistent tendency in the case of

pstem using a single nucleotide window (Additional file 1:

Figure S37).

To determine the gene features that are correlated with

structural changes, we first computed the median and

median absolute deviation of �qstem computed for each

single exonic site within the 200-nt window around each

SS. Then, we computed their correlation coefficients with

the gene expression level, GC content of mRNA and pre-

mRNA, and intron length (Table 1). A highly significant

correlation with structural changes was found for gene

expression and mRNA GC content. The magnitude of

Fig. 8 Z-score for structural differences caused by splicing events

around SSs in human and mouse genomes. The difference of stem

probability was averaged for a 32-mer sliding window separately for

the upstream and downstream regions of SSs. The dotted line

represents a Z-score of Wilcoxon’s signed rank test that corresponds

to a significant Bonferroni-corrected p-value (< 0.05) in a one-sided

test
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Table 1 Correlation coefficients between conformational

changes and gene features

Feature Median Median absolute deviation

Gene expression -0.013** 0.010

mRNA GC% 0.008** -0.007*

pre-mRNA GC% 0.029* -0.004

Intron length -0.004 -0.001

We tested statistical significance by Pearson’s correlation test. (*: p < 0.05, **:

p < 1.0 × 10−3 after Bonferroni multiple correction.) The total number of tested SSs

was 108,668 for the features of gene expression correlation coefficient and 261,161

for the other correlation coefficients

conformational changes also has a significant negative

correlation with mRNA GC content.

Finally, we studied enriched functional terms in gene

sets that contain the SSs whose structure is dramati-

cally changed through splicing events. We refer to the

sites with the median of �qstem(i) <0 and �qstem(i) > 0

as post-accessible and post-structural sites, respectively;

then, we selected the top 10 % of post-accessible and

post-structural SSs. We used the DAVID web tool [47]

for an enrichment analysis of these groups, and identified

several gene clusters with common functional categories.

Table 2 shows the top three clusters for each test, where

the expression analysis systematic explorer (EASE) score

represents a significance measure for enrichment and cor-

responds to the negative log of the average p-value over

the functional terms in a cluster. In the human genome,

most post-accessible and post-structural genes are related

to cytoskeleton and kinase, respectively, and the pattern

is the same in the mouse genome. This may suggest that

the genes associated with cytoskeleton, kinase, and other

Table 2 Enriched GO terms in post-accessible and

post-structural genes

Gene set EASE score Keyword and GO term

Human 16.2 Cytoskeleton

post- 11.9 Kinase, ATP-binding

accessible 9.2 Centrosome

Human 8.2 Serine/threonine protein kinase

post- 5.5 C2 domain

structural 4.3 VWFA domain

Mouse 14.6 Cytoskeleton

post- 13.1 ATP-binding

accessible 7.3 Centrosome

Mouse 16.6 Kinase, ATP-binding

post- 6.1 Serine/threonine protein kinase

structural 4.2 C2 domain

ATP-binding proteins are often post-transcriptionally reg-

ulated by the changes to their secondary structures.

Conformational changes of the mRNA that encodes the

F-actin binding protein

Figure 9 shows the gene that has the most post-accessible

SS in the cytoskeleton cluster according to the DAVID

analysis. This NEXN gene (NM_144573) encodes nexilin,

which is a filamentous actin-binding protein that func-

tions in cell adhesion and migration. It has 12 SSs and

several alternative splicing patterns, such as exon skip-

ping at the 3rd, 6th, and 11th exons (Fig. 9b) [48]. Our

analysis of stem probabilities suggests a large increase

of accessibility through splicing at the 3rd SS (Fig. 9b).

Figure 9c shows the secondary structures around the third

and fourth exons of the NEXN gene, where we have

depicted only the credible base pairs with probability ≥
0.5. Before splicing, both the donor and acceptor sites

form stems with intronic bases, while they are unpaired in

the spliced mRNA structure. It is possible that the strong

stems between exonic and intronic regions around the 3rd

SS have important roles in regulating the observed AS

patterns.

Discussion
Comparison between computational structure prediction

and experimental structural analyses

The stem probabilities computed for human mRNAs

agreed well with a large-scale experimental structural

analysis in terms of both global characteristics (Figs. 3c

and 4a) and statistical correlations between the scores

(Fig. 3b). Although there are many reasons why compu-

tational folding fails to predict true secondary structures,

most disagreement with experimental analyses currently

seems to result from insufficient read depths. Thus, we

expect more agreement with experiments as sequenc-

ing coverage continues to increase. We have also shown

that the concordance of the prediction tool can be sig-

nificantly increased by selecting appropriate averaging-

window sizes or energy parameters that are suited to the

experimental design and other conditions. It may even

be possible to study the effects of pseudoknots or 3D

structures by looking at the differences between compu-

tational predictions and experimental data that cannot be

eliminated by such optimization.

The influence of sequence biases on the analysis of

structural constraints

A genome-wide comparison of thermodynamic structure

stability would clarify the kinds of structural selection that

act on the target regions. Simultaneously, such an analy-

sis needs to employ an appropriate normalization scheme

to eliminate primary composition biases. For example, the

high GC content of CDS regions may lead to erroneous
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Fig. 9 Gene structure and conformational change of the NEXN gene. a Gene structure of the NEXN gene. The GSDS tool has been used for

visualization [57]. bMedian difference of stem probability around each SS. The third SS shown with a red arrow is the most post-accessible SS

among the genes in the cytoskeleton cluster. c Partial γ -centroid structure of pre-mRNA and mRNA (base pairs whose probability ≥ 0.5) around the

third SS in the NEXN gene. For visualization, we only extracted the region of the substructure enclosed by the outermost pair or exterior loops

around the 3rd intron in pre-mRNA and the 3rd exon junction in mRNA

significance of selection pressure toward stable structures

over the entire CDS regions, because the stability of RNA

secondary structure is generally correlated with the GC

content of a target sequence. Although there are sev-

eral proposed methods to normalize such sequence biases

(e.g., shuffling at a 4-fold degenerate site or preserving

di-codon counts) [45, 49], they are mostly CDS-specific

and could not be used in the present analysis. Intronic

sequences are also known to possess several sequence

biases, including the asymmetry of A/T and G/C around

SSs [50], which does not cancel out by simply normalizing

GC contents. As there is no perfect method to accom-

plish the normalization, we have taken a very conservative

approach; we masked repeat regions, removed the contri-

bution of k-mer frequency bias using a regression model,

and compared the regions of interest with the Intergenic

and antisense sequences. We have shown that the anti-

sense sequences of introns are more different from the

sense sequences than Intergenic regions in terms of struc-

tural propensity, which implies that the analyses that use

only antisense sequences as background would overesti-

mate the selection pressure. To complement this elaborate

normalization approach, we have also carried out direct

comparison between the same regions of mRNA and pre-

mRNA to evaluate structure propensity inside exons, as

they trivially do not possess any difference in the sequence

composition bias.

Structure propensity of genome sequences beyond k-mer

composition effects

We determined that the stem density within CDS

regions is better predicted by their sequence compositions

(Figs. 5b and c) than are the stem densities of other

regions, while introns and 3′-UTRs contain a significantly

larger number of regions with higher stem densities

than expected (Fig. 6). The strand-asymmetric prefer-

ence for higher stem density persisted over entire intronic

regions (Fig. 7), which cannot merely be explained by

k-mer compositions or strand-symmetric sequence fea-

tures. Such asymmetric preference is possible due to the

strand-asymmetric pairing rules of the Turner energy

model and other asymmetric sequence characteristics;

G-U base pairing is not conserved in the complemen-

tary sequence and the appearance of different pairing

patterns in loop regions such as the change from AAA

to UUU. In Additional file 1: Section 7.4, we investi-

gated the strand asymmetry of partition function and

stem probabilities. They show a significant correlation

between the strand asymmetry and the “GU” content

of sequence (Additional file 1: Figures S40 and S41).

We have also shown two examples in Additional file 1:

Figure S42 and S43, in which strong stems in the sense

strand are destabilized and decomposed into multi-loops

in the antisense strand. The differences of folding energies

between sense and antisense strands are also studied in

Ref. [28].

As described previously, a significant structural pref-

erence can be caused by only a small portion of the

transcribed regions, owing to the large degrees of free-

dom of the hypothesis tests. Therefore, our results sug-

gest that the entire intronic regions are dispersed with

small intronic elements that tend to be more structured

than Intergenic and antisense sequences, but this does

not necessarily mean that the entire regions of introns
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are highly structured. It should also be noted that we

did not investigate the raw stem probabilities but the

residual structural preferences remained after remov-

ing the sequence bias using linear regression. Therefore,

the obvious correlation between stem probability and

local GC content is normalized before the main anal-

ysis. Thus, the significant p-values supposedly reflect

the intrinsic structural preferences beyond the obvi-

ous correlation between stem probability and local GC

content.

One important future goal will be determining whether

the known asymmetric mutation patterns in intronic

regions [50] can explain this asymmetric structural

preference. It will also be interesting to study various

biological causes of the higher stem density within

introns. It may prevent stalling of PolII (as in translation

[51]), help splicing by shortening the physical distance

between the donor and acceptor sites, or prohibit

the splicing machine from accessing wrong acceptor

sites.

A direct comparison of stem probabilities between

mRNA and pre-mRNA showed a clear reduction in stem

density around the SSs (Fig. 8). Our analyses indicate that

this reduction is significantly correlated with the strength

of gene expression. Together with the observation that

SSs exhibit a strong structural preference (Fig. 7), these

findings suggest that gene expression is mediated by the

efficient use of secondary structures that disappear after

pre-mRNA splicing.

Conclusions
Using our novel software “ParasoR” and k-mer regression

method, we extracted structure profiles of human tran-

scripts and inferred the genome-wide structure propen-

sity beyond sequence composition biases. The structure

profiles predicted by ParasoR showed a high concordance

with Rfam structures and high-throughput sequencing

analyses. A genome-wide simulation using ParasoR indi-

cated that a structure propensity of transcribed regions

is strongly regressed by k-mer composition. By focusing

on the residual part of such regression, intronic regions

were shown to contain a significantly higher rate of

structured regions compared to antisense and intergenic

regions, not only around the ends of introns but also

throughout entire regions. Furthermore, a comparison

between pre-mRNAs and mRNAs suggested that coding

regions become more accessible after splicing, presum-

ably because of biological constraints such as translational

efficiency.

Methods
ParasoR overview

For a given RNA sequence, ParasoR exactly computes

various expected values from the Boltzmann ensemble

of secondary structures under a maximal pair-distance

constraint. It avoids numerical errors by dealing with

only the ratios of DP variables, which do not change in

magnitude as the sequence length N changes. To allow

distributed computing, ParasoR divides the DP matrices

into smaller pieces without losing their mutual depen-

dencies. The computational complexities are given by

either

1. O(NW 2/K + NW ) time,O(N/K + W 2) memory

for each node, andO(NW ) disk space or

2. O(NW 2/K + KW 2) time,O(N/K + W 2) memory

for each node, andO(N + KW 2) disk space, which

requires less disk space than (i) but twice the

computational timeO(NW 2/K) for DP matrices

construction.

Here, N denotes the input sequence length; W denotes

the maximal span of base pairs; and K denotes the num-

ber of available computer nodes. We first analyze the

dependency structures of DP variables on N and then

rewrite the expected values using the ratios of DP vari-

ables, which do not change scales with N. Next, we

describe how the computation of these variables is dis-

tributed across different computer nodes. For brevity,

the explicit algorithms are described in Additional file 1:

Chapter 1.

Any secondary structure ζ of sequence x is specified

by a list of base pairs. In the conventional Turner energy

model, a base pair of xk and xl must be one of the

canonical base pairs {AU, UA, CG, GC, GU, UG}, and the

distance between them should satisfy 5 ≤ (l − k + 1).

We designate a position pair (i, j) an outermost pair if

(xi+1, xj) forms a base pair and there is no base pair

that encloses (i, j) in ζ . Since we impose the maximal

span constraint, the outermost pair (i, j) also satisfies

(j − i) ≤ W . Then, the structure ζ is uniquely decom-

posed into the set of non-overlapping substructures that

are enclosed by an outermost pair for each and frag-

ments of exterior loops between or flanking them. We

define the set of potential outermost pairs of x as P =
{(i, j) | (xi+1, xj) is one of the canonical base pairs and 5 ≤
j − i ≤ W }.

Stem probability in Rfold algorithm

Throughout this article, we use a grammatical formula-

tion of secondary structure developed in the Rfold model

[26] (reproduced in Additional file 1: Section 1.1). In the

Rfold model, there are 6 non-terminal symbols, in which

the transition between Outer and Stem state corresponds

to the transition from an exterior loop to the outermost

base pair (see Fig. 10).

A partition function Z is calculated by an inside variable

of Outer state αOuter and Stem state αStem as follows.
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αOuter(j) =
∑

ζ∈�(1,j)

edG(ζ ,x1,j)/RT =
∑

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if j = 0

αOuter(j − 1) · t(Outer → Outer)

αOuter(k) · αStem(k, j) · t(Outer → Outer · Stem)

for (j − W ) ≤ k < j

βOuter(j) =
∑

ζ∈�(j+1,N)

edG(ζ ,xj+1,N )/RT

Z =
∑

ζ∈�0

edG(ζ ,x1,N )/RT = αOuter(N) = βOuter(0)

Here, dG(ζ , x) represents the free energy for sequence

x with structure ζ ; R represents the gas constant; T

represents the absolute temperature; t represents the

Boltzmann factor for the transition; �0 and �(k, l) repre-

sent the set of all secondary structures of sequence x and

subsequence xk,l between k and l, respectively.

The expected values we consider are assumed to

be given by the sum of state transition probabilities

p
(

σ , k, l → σ ′, k′, l′
)

:

p
(

σ , k, l → σ ′, k′, l′
)

=
∑

ζ∈�(σ ,k,l→σ ′,k′,l′)

edG(ζ ,x)/RT/Z

= βσ (k, l)t
(

σ , k, l → σ ′, k′, l′
)

ασ ′
(

k′, l′
)

/Z (1)

where σ and σ ′ represent non-terminal symbols of the

Rfold grammar; k, l, k′, and l′ represent sequence posi-

tions;�(σ , k, l → σ ′, k′, l′) represents the set of secondary
structures containing the transition (σ , k, l → σ ′, k′, l′);
ασ ′(k′, l′) represents the inside variable; and βσ (k, l) rep-

resents the outside variable.

A type of expected values called the stem probability

was extensively examined in this paper. The stem prob-

ability pstem(i) (which is equal to 1 − accessibility(i)) at

sequence position i is the probability that the base at

position i is within a stem and is defined as pstem(i) =
∑

j(>i) p(i, j) +
∑

j(<i) p(j, i), where p(i, j) represents the

base-pairing probability [23].

Avoiding numerical problems by using a ratio of DP

variable and partition function

In Eq. 1, the magnitudes of α and t do not change with N,

since they are computed from the subsequence xk,l whose

length does not exceed W. Z and β are, however, the

sums of Boltzmann factors for the subsequences of length

O(N), and grow exponentially with N. On the other hand,

the probability p(σ , k, l → σ ′, k′, l′) should be between 0

and 1, and so a large cancellation between βσ (k, l) and Z

must occur, which reduces the numerical precision. The

cancellation is assured because the contributions from the

structures far outside of (k, l) are almost the same. This

can be seen from the following decompositions.

Fig. 10 Schematic illustration of the decomposition of partition function and ParasoR algorithm. One example structure is expressed by the arcs

representing the base pairs. By the summation of expected values for structures with each outermost pair, ParasoR can calculate an expected value

from the ensemble of global structures
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βσ (k, l) =
∑

(i,j)∈P, i≤k<l≤j

αOuter(i)βσ (k, l; i, j)βOuter(j) (2)

Z =αOuter(i
′)t(Outer → Outer)βOuter(i

′ + 1)+
∑

(i,j)∈P, i≤i′<j

αOuter(i)t(Outer, i, j → Outer · Stem, i, j)αStem(i, j)βOuter(j) (3)

=
∑

(p,q)∈S(i′)
αOuter(p)u(p, q)βOuter(q)

u(p, q) =
{

t(Outer → Outer) if p + 1 = q

t(Outer, p, q → Outer · Stem, p, q)αStem(p, q) otherwise

Here, i′ can be set to any position, the set S(i′) is

defined as
{

(i, j) ∈ P | i ≤ i′ < j}
⋃

{(i′, i′ + 1)
}

for posi-

tion i′, and βσ (k, l; i, j) are the outside variables for the

subsequence located between the outermost pair (i, j), sat-

isfying the initial condition βStem(i, j; i, j) = t(Outer, i, j →
Outer · Stem, i, j). Equation 2 follows, because the out-

side variables are the sum of the contributions of all

possible patterns of outermost pairs. Equation 3 also

follows, because a base represented by the position i′

is either within the outermost pair (i, j) or is an exte-

rior base (illustrated in Fig. 10). It should be noted that

the dynamic range (i, j) ∈ P in Eqs. 2 and 3 can be

simplified to the set {(i, j) | i ≤ j, (j − i) ≤ W },
when the values of βσ (k, l; i, j) and αStem(i, j) are zero for

(i, j) /∈ P.

For those who are familiar with the partition function

algorithms, it is noted that Eq. 3 for any position i′ is also
represented by the decomposition of the partition func-

tion Z into the sum of those of smaller subsequences for

any nucleotide position j′, as below.

Z = Z
(

1, j′ − 1
)

Z
(

j′ + 1,N
)

+
∑

(i,j)∈P′, i≤j′≤j

Z(1, i − 1)Zpair(i, j)Z(j + 1,N)

Here, P′ is the set {(i, j) | (xi, xj) is one of the canonical

base pairs, 5 ≤ (j − i + 1) ≤ W }, Z(k, l) is the partition

function for subsequence xk,l, and Zpair(k, l) is the parti-

tion function of subsequence xk,l with an outermost pair

between xk and xl (note thatZ(1, i−1) andZ(j+1,N), etc.,

actually need to include the contributions of dangling or

mismatch scores that depend on the exterior bases outside

of the sequence ranges).

Next, we define the ratio of the DP variables and par-

tition function r(i, j) for any position pair (i, j) such that

i ≤ j, (j − i) ≤ W :

r(i, j) :=
Z

αOuter(i)βOuter(j)

=
∑

p,q∈S(i) αOuter(p)u(p, q)βOuter(q)

αOuter(i)βOuter(j)

=
∑

p,q

{

αOuter(p)

αOuter(i)
u(p, q)

βOuter(q)/βOuter(i)

βOuter(j)/βOuter(i)

}

=
∑

p,q

⎧

⎨

⎩

i−1
∏

h=p

�α(h)

⎫

⎬

⎭

u(p, q)

⎧

⎨

⎩

q−1
∏

h=i

�β(h)

⎫

⎬

⎭

/

⎧

⎨

⎩

j−1
∏

h=i

�β(h)

⎫

⎬

⎭

�α(h) := αOuter(h + 1)/αOuter(h)

�β(h) := βOuter(h)/βOuter(h + 1)

In our implementation, �α and �β are stored as log-

arithmic values; hence, the summations in the above

formula are replaced by logsum operations. In Additional

file 1: Chapter 1, we show a DP algorithm that directly

computes these values without recourse to αOuter and

βOuter. On the other hand, inner variables u(p, q) can

be computed without numerical difficulties by using the

ordinary inside algorithm. In this manner, we can avoid

the computation of variables that exponentially increase

with N for r. Then, the fold change βσ (k, l)/Z can be

represented by the outside variable for a subsequence

between i and j (|j − i| = O(W )) and r(i, j), as below.

βσ (k, l)/Z =
∑

(i,j)∈P, i≤k<l≤j

βσ (k, l; i, j)/r(i, j)

In this way, we can compute an expected value only by

the variables whose absolute values are bounded indepen-

dently of N.

Dividing computation into small jobs for parallelization

If we have a database of �α and �β for a given sequence,

we can obtain any probability of Eq. 1 for any subse-

quence with O(W 3) time by locally reconstructing r(i, j).

The computation of fold changes �α and �β , however,

requires O(NW 2) time, which is equivalent to that for

computing αOuter and βOuter. We divide this computation
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into smaller pieces and process them in parallel (via the

Divide procedure). Then, we merge the results and build

the fold-change variables �α and �β (via the Connect

procedure).

In the Divide procedure, we break the input sequence

into K subsequences and assign them to K computer

nodes. To see how this can be done, we note the following

formula that applies to any given position s (0 ≤ s ≤ k),

which is an extension of Eq. 3.

αOuter(k) =
∑

(i,j)∈S(s), i≤s<j≤k

αOuter(i)u(i, j)βOuter(j)
(k)

=
min(W ,s)

∑

h=0

αOuter(s − h)αh
k ,

where βOuter(j)
(k) is βOuter(j) computed for sequence

xj+1,k . For h > 0, αh
k
is the inside variable that starts from

an outermost pair (s−h, j), such that j > s. For h = 0, αh
k =

βOuter(j)
(k). For each assigned subsequence xs,e, the values

αh
k (0 ≤ h ≤ W , s ≤ k ≤ e) are computed independently

of other nodes, and in the Connect procedure, the com-

plete αOuter is recovered using the above formula. ParasoR

combines this parallelized algorithm using the ratio of DP

variables and partition function outlined in the previous

subsection by directly computing the ratios dαh
k = αh

k /α
0
k

using a DP procedure (Additional file 1: Chapter 1). The

time complexities are O(NW 2/K) to compute dαh
k and

O(NW ) to construct �α. To store dαh
k
, the memory com-

plexity is O(NW/K + W 2), and the disk complexity is

O(NW ).

We can consider a more elaborate computational proce-

dure to reduce the necessary disk space from O(NW ) to

O(N + KW 2). Briefly, we retain dαh
k only for 0 ≤ h ≤ W

and e − W ≤ k ≤ e on the disk for each node. They

are used to reconstruct �α only in the range e − W ≤
k ≤ e. They are then used to compute �α for the entire

segment in the second round of DP computation, taking

O(NW 2/K) time.

ParasoR is written in the C++11 language, and it uses a

portion of the source code of the ViennaRNA package [38]

for energy parameters and Centroid fold for visualization

[31]. The ParasoR source code and a detailed manual are

available at https://github.com/carushi/ParasoR/.

Validation of our implementation

To validate our algorithm and implementation, we used

the RNAplfold program (ViennaRNA package v2.0.7)

with its sliding-window feature turned off. Although

RNAplfold is mainly designed for the averaging sliding-

window method, it computes the probabilities of the

global folding model with the maximal span constraint

when its window size parameter is set to the input

sequence length. Additional file 1: Figure S9 shows

the consistency of stem probabilities between ParasoR

and RNAplfold up to around 3,000 bases. When input

sequences are longer than 3,000 bases, the difference

increases as RNAplfold returns invalid probabilities > 1.0

due to numerical problems or overflow errors (Additional

file 1: Figure S10). On the other hand, the probabilities of

ParasoR are within the range [0, 1] even when the length

of input sequence is increased to 3G bases (Additional

file 1: Figure S4). We also compared the stem probabili-

ties of ParasoR calculated for human chromosome 1 and

the probabilities of RNAplfold calculated for a gene within

chromosome 1, and found that they are sufficiently close,

which indicates that the accuracy of ParasoR does not

degrade in the midst of long input sequences (Additional

file 1: Figure S11). We also computed the probabilities

with varying precisions of real numbers (i.e., we used 32-

bit float, 64-bit double, and 128-bit long double

types as variable declaration in the C++ program). While

the 32-bit version returned different values (by ≈ 10−2)

from those of the 128-bit version for a long sequence of

length 10K bases, the difference between 64-bit and 128-

bit was very small (≈ 10−13) (Additional file 1: Figure S13).

Hence, we concluded that using 64-bit double is sufficient

to avoid numerical problems. We compared the compu-

tational time of ParasoR with those of RNAplfold and

LocalFold. Additional file 1: Table S5.2 shows that ParasoR

is faster than LocalFold but it is about 80 times slower than

RNAplfold. Presumably, this is because we use logsum()

function for all the sum operation of Boltzmann factor,

while RNAplfold uses the elementary plus operator for

speed.We leave the optimization of computational time of

the ParasoR software to future work. In Additional file 1:

Figure S26 and Section 5.2.3, we compared the computa-

tion time of ParasoR with a different number of computer

nodes, which shows that ParasoR can use multiple nodes

efficiently to drastically reduce the computational time

for realistic lengths (10k to 1 million bases) of human

transcripts.

k-mer frequency linear regression

We designed a normalization method for genome-wide

comparisons of stem probabilities using GC content and

other, more complex features. Using Python 2.7 and the

NumPy library, we implemented a linear regression using

the average stem probability pstem(i) with a ridge penalty.

A least-squares method is used to estimate a parameter

vector w with regularization term λ, and its error function

is formulated as below.

1

2

N
∑

n=1

(

yn − wTxn

)2
+

λ

2
wTw (4)

In this formula, λ is a constant, and w is a parame-

ter vector in the same dimension as x. This equation is

https://github.com/carushi/ParasoR/
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differentiable with respect to w, and we obtain w to min-

imize this error function. In this paper, we calculated

4-mer composition (#AAAA, #AAAC, . . . ) and average

stem probability for each 32-mer fragment (p̄stem), then

set xn and yn to
(

1
32 ,

#AAAA
32 ,

#AAAC
32 ,

· · · #UUUU
32

)

and p̄stem,

respectively.

The model was trained with the stem probabilities on

both strands of the entire human genome. The maximal

span W for computing stem probabilities is set to 200 for

all the experiments in the main text. In the Additional

file 1, we have shown a histogram of stem probabilities

for W = 200 and W = 1, 000 (Additional file 1: Figure

S7 Right). The correlation coefficient of stem probabili-

ties between W= 200 and W= 1, 000 is 0.713. The stem

probability gradually increases with W as the number of

possible base pairs increases. However, the accuracy of

structure prediction is not much affected by the value of

W. As shown in Additional file 1: Table S4.1 in Additional

file 1: Section 4.2, a large maximal span (W=1,000) only

slightly decreased the accuracy of prediction against PARS

score dataset.

We subtracted the average probability predicted by

regression from p̄stem(i), which is denoted by �p̄stem(i).

In Additional file 1: Figure S24, we show that this subtrac-

tion greatly reduces the correlation between neighboring

32-nt windows, ensuring independence between samples.

As such, we used �p̄stem(i) of all non-overlapping 32-nt

windows as independent degrees of freedom for hypothe-

sis testing. We describe the details of this regression, such

as selection of sequence features, parameter optimiza-

tion, and the statistical independence of each normalized

�p̄stem, in Additional file 1: Section 5.1 and Additional

file 1: Figure S21, S22, S23, S24, S25, S26, S27, S28, S29

and S30. Also, we re-implemented a few hypothesis test-

ing algorithms (Additional file 1: Chapter 8) for cases in

which popular statistical tools such as R cannot handle

the necessarily large number of data points such as Figs. 5

and 6.

Comparison with other tools

The accuracy of ParasoR in local secondary structure pre-

diction was compared with that of RNALfold. However,

since RNALfold predicts multiple overlapping structures,

we extracted the longest structures in ascending order of

free energies without any overlap, in accordance with the

post-processing described in Ref. [26].

We also compared the stem probabilities of ParasoR

with two average-sliding-window methods, RNAplfold

(ViennaRNA package v2.0.7) and LocalFold (v1.0).

According to the previous study [29], in which optimal

parameter sets were investigated, we set the parameter

as follows: a maximal span of pairing L to 150, average

window size W to 200, and skip size b to 10 (only for

LocalFold).

Since RNALfold has no appropriate parameters that

control the balance between sensitivity and specificity, we

used the MCC scores to evaluate the accuracy of Para-

soR and RNALfold for prediction with one condition,

MCC = TP×TN−FN×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, where TP, TN,

FP, and FN correspond to the numbers of true positive,

true negative, false positive, and false negative predictions,

respectively. For validation of stem probabilities, we used

the area under the receiver operating characteristic curve,

which plots false positive rates ( FP
FP+TN ) for x-axis and true

positive rates ( TP
TP+FN ) for y-axis with varying threshold

scores.

Datasets and data manipulation

We downloaded assemblies hg19 and GRCm38 of the ref-

erence human and mouse genomes, respectively, from

the UCSC Genome Browser database [52]. We annotated

the genomes using the output of RepeatMasker and the

RefSeq genes [53], which represent 45,377 human and

33,988 mouse genes. Where there were overlapping anno-

tations, we prioritized them according to the strength

of their biases in base compositions (in the following

descending order): Repeat, CDS, 3′-UTR, 5′-UTR, Intron,

Non-coding RNA exon,Non-coding RNA intron,Antisense,

and Intergenic regions. Here, Repeat annotations repre-

sent the sense and antisense strands of all the repeat

elements reported by RepeatMasker containing retro-

transposons, tandem repeats, and so forth. We carefully

removed these repeat elements because our regression

method does not take account of the mutual dependen-

cies of 4-mer sequences in the same 32-mer window

(Figures S1 and S2). For example, a simple repeat of Ade-

nine (AAAAAAAAAAAA. . . ) cannot bind to the other As

in this window, but the linear regression may evaluate the

component of AAAA to have a weak binding efficiency

because AAAA in other contexts can form a stem. Actu-

ally, we have shown in Additional file 1: Figures S27 and

S31 that low complexity elements contained in the Repeat

category tend to have large |�p̄stem|, that is, the prediction
of stem probabilities by linear regression is systematically

poor for such sequences. Since the repeat regions occupy

a large part of non-coding regions, such bias will make

the hypothesis testing extremely difficult. Therefore, our

analyses only studied non-repetitive sequences.

The Antisense category contains all the antisense

sequences of transcribed regions except Repeat and any

transcribed sequences (Additional file 1: Figure S3). For

computation of structural preferences (Figs. 5 and 6),

we assigned one of the annotation categories to all the

non-overlapping 32-mers. If a 32-mer contains a bound-

ary of different annotations, we labeled the 32-mer with

the “Multiple” annotation category. The fraction of each

sequence annotation for the human genome is shown in

Fig. 11. Thus, the Intergenic regions contain no Repeat
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Fig. 11 Fractions of 32-mers categorized by the genome annotations

regions, no sense or antisense strands of transcribed

regions, and no sequences close to their boundaries. The

total sample sizes used for hypothesis testing were as

follows: Intergenic 41,764,604, Intron 17,004,161, CDS

843,820, 5′-UTR 86,026, and 3′-UTR 631,546 for the

genomic sequence; Intron 34,544,536, CDS 1,469,721,

5′-UTR 201,267, and 3′-UTR 1,278,476 for pre-mRNA;

CDS 1,772,283 5′-UTR 215,658 and 3′-UTR 1,279,508 for

mRNA. Our annotation rule and any additional informa-

tion such as the ratio of repetitive regions are detailed in

Additional file 1: Section 2.2.

To compare ParasoR with high-throughput experi-

mental structural analyses, we used a PARS dataset

(GSM1226157 and GSM1226158, a renatured sample)

[37]. Among human RefSeq genes, 33,603 were extracted

as mappable mRNAs in the GM12878 sample. We com-

pared the PARS scores with stem probabilities pstem(i)

using the CG energy model [54] (see Additional file 1:

Chapter 4 and Additional file 1: Figure S14, S15, S16, S17

and S18). The number of mapped reads was used to filter

out inconclusive regions.

To compare the structural preferences of different

genomic regions, we first computed stem probabilities

for all genomic positions using chromosome sequences

as input RNA sequences. As shown in Additional file 1:

Figure S11, this roughly corresponds to computing the

(unaveraged) stem probabilities for sequence windows of

∼ 2, 000 bases in length.We also computed the stem prob-

abilities for RefSeq pre-mRNAs and RefSeq mRNAs with

the true boundaries. These probabilities were used for

the calculation of the average stem probabilities p̄stem(i)

for non-overlapping 32-nt sequence windows. This length

was chosen because the raw stem probabilities exhibit a

bimodal distribution with peaks around 0 and 1, while the

average stem probabilities exhibit a distribution close to

normal when the averaging length is more than 32 bases

(Additional file 1: Figure S7). The unimodality of p̄stem(i)

is important for the normalization of k-mer frequency

bias below, as the linear regression requires unimodal

objective variables for its high efficiency. Also, we expect

that the distribution of average stem probabilities better

represents local structural preferences than does the dis-

tribution of single-base stem probabilities. Even though

a larger window size could also give a unimodal distri-

bution, too large a window size leads to a highly peaked

distribution around 0.5, in which no region-specific struc-

tural features will remain. A large window size also causes

a reduction in the degrees of freedom for the hypoth-

esis tests and thus reduces the significance of p-values

(detailed in Additional file 1: Chapter 3).

To investigate structural changes around SSs after

splicing, we computed the difference in stem probabil-

ities between mRNA and pre-mRNA as �qstem(i) =
pstem,mRNA − pstem,pre-mRNA for each site and each 32-mer

sliding window in mRNA. For �qstem(i) of each site, we

then computed the median and median absolute devia-

tion of �qstem(i) values within a 200-nt window around

each SS. We computed the correlations of them with gene

expression levels, GC contents around SSs, and intron

lengths. For gene expression levels, we used the CAGE

promoter FANTOM5 expression data [55, 56]. We used

average mRNA expression levels across all tissues and

removed tissue-specific mRNAs that satisfy log10(median

normalized expression)≤ 0.5. To summarize GC content,

we used the GC content of 200 bases around each SS in

the mRNA, as well as the averaged GC contents for the

200-nt sequences around the donor and acceptor sites in

the pre-mRNA.

In the gene set enrichment analysis, we ranked all SSs

according to the median of �qstem(i) for each SS, and

the functional enrichment among the top 10 % of the

most post-accessible or post-structural genes was ana-

lyzed using the DAVID web tool [47].

For genome-wide computation, we used a super com-

puter system at the Human Genome Center (HGC, http://

hgc.jp), which consists of Intel Xeon E7 8837, Intel Xeon

X5675, and AMD Opteron 6276 CPUs and has a total

memory of 2 TB. Average elapsed times and required

memory sizes on HGC super computer for human chro-

mosomes are shown in Additional file 1: Figure S25.
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(hg19.cage_peak_counts_ann.osc.txt) [56]. Although the

part of raw data underlying the conclusions of this article

such as pstem and �pstem is not available in an open access

repository, please contact the corresponding author (RK)

if there is interest. Our novel software, ParasoR, is freely

available at https://github.com/carushi/ParasoR under the

GNU GPL. ParasoR is written in the C++11, which can

run on multi-platform. We tested ParasoR running in OS

X 10.9 with Apple LLVM 6.0, and Cygwin environment

with GCC4.6.
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Additional file 1: This supplement provides details of ParasoR algorithm,

manipulation of dataset, benchmarking, statistical testing, and so on. It also

contains Supplementary figures cited in the main text. (PDF 4640 kb)
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