
❉✉r❤❛♠ ❘❡s❡❛r❝❤ ❖♥❧✐♥❡

❉❡♣♦s✐t❡❞ ✐♥ ❉❘❖✿

✶✼ ◆♦✈❡♠❜❡r ✷✵✶✺

❱❡rs✐♦♥ ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

❆❝❝❡♣t❡❞ ❱❡rs✐♦♥

P❡❡r✲r❡✈✐❡✇ st❛t✉s ♦❢ ❛tt❛❝❤❡❞ ✜❧❡✿

P❡❡r✲r❡✈✐❡✇❡❞

❈✐t❛t✐♦♥ ❢♦r ♣✉❜❧✐s❤❡❞ ✐t❡♠✿

❯❧❧❛❤✱ ❩✳ ❛♥❞ ❈♦♦♠❜s✱ ❲✳ ▼✳ ❛♥❞ ❆✉❣❛r❞❡✱ ❈✳ ❊✳ ✭✷✵✶✻✮ ✬P❛r❛❧❧❡❧ ❝♦♠♣✉t❛t✐♦♥s ✐♥ ♥♦♥❧✐♥❡❛r s♦❧✐❞ ♠❡❝❤❛♥✐❝s
✉s✐♥❣ ❛❞❛♣t✐✈❡ ✜♥✐t❡ ❡❧❡♠❡♥t ❛♥❞ ♠❡s❤❧❡ss ♠❡t❤♦❞s✳✬✱ ❊♥❣✐♥❡❡r✐♥❣ ❝♦♠♣✉t❛t✐♦♥s✳✱ ✸✸ ✭✹✮✳ ♣♣✳ ✶✶✻✶✲✶✶✾✶✳

❋✉rt❤❡r ✐♥❢♦r♠❛t✐♦♥ ♦♥ ♣✉❜❧✐s❤❡r✬s ✇❡❜s✐t❡✿

❤tt♣✿✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✽✴❡❝✲✵✻✲✷✵✶✺✲✵✶✻✻

P✉❜❧✐s❤❡r✬s ❝♦♣②r✐❣❤t st❛t❡♠❡♥t✿

❚❤✐s ❛rt✐❝❧❡ ✐s ❝© ❊♠❡r❛❧❞ ●r♦✉♣ P✉❜❧✐s❤✐♥❣ ❛♥❞ ♣❡r♠✐ss✐♦♥ ❤❛s ❜❡❡♥ ❣r❛♥t❡❞ ❢♦r t❤✐s ✈❡rs✐♦♥ t♦ ❛♣♣❡❛r ❤❡r❡
❤tt♣✿✴✴❞r♦✳❞✉r✳❛❝✳✉❦✴✶✻✽✷✵✴✳ ❊♠❡r❛❧❞ ❞♦❡s ♥♦t ❣r❛♥t ♣❡r♠✐ss✐♦♥ ❢♦r t❤✐s ❛rt✐❝❧❡ t♦ ❜❡ ❢✉rt❤❡r ❝♦♣✐❡❞✴❞✐str✐❜✉t❡❞ ♦r
❤♦st❡❞ ❡❧s❡✇❤❡r❡ ✇✐t❤♦✉t t❤❡ ❡①♣r❡ss ♣❡r♠✐ss✐♦♥ ❢r♦♠ ❊♠❡r❛❧❞ ●r♦✉♣ P✉❜❧✐s❤✐♥❣ ▲✐♠✐t❡❞✳

❆❞❞✐t✐♦♥❛❧ ✐♥❢♦r♠❛t✐♦♥✿

❯s❡ ♣♦❧✐❝②

❚❤❡ ❢✉❧❧✲t❡①t ♠❛② ❜❡ ✉s❡❞ ❛♥❞✴♦r r❡♣r♦❞✉❝❡❞✱ ❛♥❞ ❣✐✈❡♥ t♦ t❤✐r❞ ♣❛rt✐❡s ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠✱ ✇✐t❤♦✉t ♣r✐♦r ♣❡r♠✐ss✐♦♥ ♦r ❝❤❛r❣❡✱ ❢♦r
♣❡rs♦♥❛❧ r❡s❡❛r❝❤ ♦r st✉❞②✱ ❡❞✉❝❛t✐♦♥❛❧✱ ♦r ♥♦t✲❢♦r✲♣r♦✜t ♣✉r♣♦s❡s ♣r♦✈✐❞❡❞ t❤❛t✿

• ❛ ❢✉❧❧ ❜✐❜❧✐♦❣r❛♣❤✐❝ r❡❢❡r❡♥❝❡ ✐s ♠❛❞❡ t♦ t❤❡ ♦r✐❣✐♥❛❧ s♦✉r❝❡

• ❛ ❧✐♥❦ ✐s ♠❛❞❡ t♦ t❤❡ ♠❡t❛❞❛t❛ r❡❝♦r❞ ✐♥ ❉❘❖

• t❤❡ ❢✉❧❧✲t❡①t ✐s ♥♦t ❝❤❛♥❣❡❞ ✐♥ ❛♥② ✇❛②

❚❤❡ ❢✉❧❧✲t❡①t ♠✉st ♥♦t ❜❡ s♦❧❞ ✐♥ ❛♥② ❢♦r♠❛t ♦r ♠❡❞✐✉♠ ✇✐t❤♦✉t t❤❡ ❢♦r♠❛❧ ♣❡r♠✐ss✐♦♥ ♦❢ t❤❡ ❝♦♣②r✐❣❤t ❤♦❧❞❡rs✳

P❧❡❛s❡ ❝♦♥s✉❧t t❤❡ ❢✉❧❧ ❉❘❖ ♣♦❧✐❝② ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✳

❉✉r❤❛♠ ❯♥✐✈❡rs✐t② ▲✐❜r❛r②✱ ❙t♦❝❦t♦♥ ❘♦❛❞✱ ❉✉r❤❛♠ ❉❍✶ ✸▲❨✱ ❯♥✐t❡❞ ❑✐♥❣❞♦♠
❚❡❧ ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✸✵✹✷ ⑤ ❋❛① ✿ ✰✹✹ ✭✵✮✶✾✶ ✸✸✹ ✷✾✼✶

❤tt♣s✿✴✴❞r♦✳❞✉r✳❛❝✳✉❦

https://www.dur.ac.uk
http://dx.doi.org/10.1108/ec-06-2015-0166
http://dro.dur.ac.uk/16820/
https://dro.dur.ac.uk/policies/usepolicy.pdf
https://dro.dur.ac.uk


1

Parallel computations in nonlinear solid mechanics using adaptive
finite element and meshless methods

Z. Ullaha1, W. M. Coombsb, C. E. Augardeb

aSchool of Engineering, Rankine Building, The University of Glasgow, Glasgow, G12 8LT, UK
bSchool of Engineering and Computing Sciences, Durham University, Durham, DH1 3LE, UK

Structured abstract

Purpose

A variety of meshless methods have been developed in the last twenty years with an intention

to solve practical engineering problems, but are limited to small academic problems due to

associated high computational cost as compared to the standard finite element methods (FEM).

The main purpose of this paper is the development of an efficient and accurate algorithms based

on meshless methods for the solution of problems involving both material and geometrical

nonlinearities.

Design/methodology/approach

A parallel two-dimensional linear elastic computer code is presented for a maximum entropy ba-

sis functions based meshless method. The two-dimensional algorithm is subsequently extended

to three-dimensional adaptive nonlinear and three-dimensional parallel nonlinear adaptively

coupled finite element, meshless method cases. The Prandtl-Reuss constitutive model is used

to model elasto-plasticity and total Lagrangian formulations are used to model finite deforma-

tion. Furthermore, Zienkiewicz & Zhu and Chung & Belytschko error estimation procedure

are used in the FE and meshless regions of the problem domain respectively. The MPI library

and open-source software packages, METIS and MUMPS are used for the high performance

computation.

Findings

Numerical examples are given to demonstrate the correct implementation and performance of

the parallel algorithms. The agreement between the numerical and analytical results in the case

of linear-elastic example is excellent. For the non-linear problems load displacement curve are

compared with the reference FEM and found in a very good agreement. As compared to the

FEM, no volumetric locking was observed in the case of meshless method. Furthermore, it is

shown that increasing the number of processors up to a given number improve the performance

1Correspondence to: Z. Ullah, E-mail: Zahur.Ullah@glasgow.ac.uk

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk


2

of parallel algorithms in term of simulation time, speedup and efficiency.

Originality/value

Problems involving both material and geometrical nonlinearities are of practical importance in

many engineering applications, e.g. geomechanics, metal forming and biomechanics. A family of

parallel algorithms has been developed in this paper for these problems using adaptively coupled

finite-element, meshless method (based on maximum entropy basis functions) for distributed

memory computer architectures.

1 Introduction

In almost every scientific field including academia and industry, complexity and size of problems

increases with time. For solution of these problems, computers with very large memory and very

high computational power are required. Conventional sequential computers cannot handle these

large and complicated problems due to their limited memory and computational power. Parallel

computations have been used to solve these problems very conveniently, working on the “divide-

and-conquer” strategy (Pacheco, 1997). Using this strategy a very large and computationally

demanding problem is divided into small manageable subproblems and each is then assigned to

a different computer. Parallel computations are now commonly used in almost every scientific

field. Different types of parallel computers are now widely available, mostly based on either

shared memory or distributed memory computer architectures.

The finite element method (FEM) is the most prominent used numerical technique for the

solution of practical problems in different scientific fields. In the FEM, the memory requirement

and corresponding computational demand increases with the number of degrees of freedom,

therefore, parallel computations have been used extensively in the FEM, the details of which

can be found in many references, including (Grosso and Righetti, 1988; Becene, 2003; Yagawa

et al., 1991; Luo and Friedman, 1990; Chiang and Fulton, 1990; Carter et al., 1989). The

domain decomposition method is the traditional way to divide a large FEM problem into smaller

subproblems, in which load balancing and inter-processor communication are two important

parameters. For good performance of parallel programs, equal computational load must be

assigned to each processor to minimise the waiting, or idle, whilst minimising inter-processor

communication. Different strategies have been used in the literature for domain decomposition,

including graph-based techniques (Karypis and Kumar, 1998; Walshaw et al., 1995; Leland and

Hendrickson, 1995) and geometry-based techniques (Jones and Plassmann, 1994; Danielson

et al., 2000). Graph based techniques are normally used in the FEM due to reasons of accuracy
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and efficiency.

As compared to the FEM, meshless methods are ideal for modelling certain types of problems,

e.g. problems with large deformation, material damage, projectile penetration, fragmentation,

crack growth and moving boundaries (Zhuang et al., 2012a), their computational inefficiency

restricts their use in practice to date to simple academic problems. Here one of the most

commonly used meshless methods, the element-free Galerkin method (EFGM) (Belytschko

et al., 1994), is adopted. However, maximum entropy basis functions (max-ent) (Sukumar,

2004; Arroyo and Ortiz, 2006; Sukumar and Wright, 2007) are used instead of the standard

moving least squares basis functions. This provides direct imposition of the essential boundary

conditions and also provides a natural way to couple the meshless methods with the FE regions

as compared to the use of moving least squares basis functions, which need extra care to properly

couple the same regions. Furthermore, as compared to the corresponding MLS counterparts,

construction of basis functions and corresponding basis function derivatives are more efficient

in the case of max-ent. Recent use of the max-ent method, e.g. in fracture mechanics, can be

found in Amiri et al. (2014b,a), while other recent examples of the use of max-ent in meshless

methods can be found in (Ortiz et al., 2010, 2011; Millán et al., 2011; Quaranta et al., 2012;

Rosolen et al., 2012; Millán et al., 2015; Peco et al., 2015).

Meshless methods are superior to the finite element method (FEM) in terms of accuracy and

convergence but are computationally more expensive. Therefore, it is more practical to use

a meshless method only in regions of a problem domain requiring its high accuracy, where it

can outperform the FEM, while using the FEM in the remaining part of the problem domain.

For this combined method, proper coupling between the FEM and the meshless method is

essential for accurate results. Previous research has used interface elements between EFG and

FE regions (Belytschko et al., 1995). This approach was motivated by the incompatibility

between the MLS basis functions within the EFG region for the approximation of the field

variables, and the standard polynomial shape functions in the FE region. The FE-EFGM

coupling procedure of Belytschko et al. (1995) has since been extended for the case of EFG

nodal integration by Belytschko et al. (1998). A continuous blending method for the FE-EFGM

coupling was introduced by Fernández-Méndez and Huerta (2000) and Huerta et al. (2004) with

some advantages compared to the FE-EFGM coupling procedure of Belytschko et al. (1995)

since ramp functions and the use of the FE nodes as the EFG nodes are not required, therefore,

EFG nodes can also be added within the transition region. Lagrange multipliers were used

for linear elastic analysis with the same type of coupling in Hegen (1996), an idea that was

later extended to nonlinear reinforced concrete problems in Rabczuk and Belytschko (2006),

where reinforcement was modelled with the FEM and concrete with the EFGM. In Gu and

Zhang (2008), a transition (or bridging region) was used for coupling between the FEM and a
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meshless method. The transition region was discretized by particles, which were independent

of both the FE and meshless nodes. A detailed review of this type of coupling between the

EFGM and the FEM can be found in Rabczuk et al. (2006). A coupled FE-EFGM was also

proposed in Wang et al. (2009) for the simulation of automotive crash tests, in which areas of

very high deformation were modelled with the EFGM. This work used constraints to ensure

the continuity of the field variables across the FE-EFGM interface without using interface

elements. A slight variation of the FE-EFGM coupling with interface elements (Belytschko

et al., 1995), in which there was no need for a pre-existing transition region between the FE

and EFG regions, was proposed in Rao and Rahman (2001). The method was applied to the

simulation of linear elastic fracture mechanics problems, including mode-I, mode-II and mixed

mode problems. The area near the crack was modelled with the EFGM, while the FEM was

used in the remaining part of the problem domain. A coupled FE-EFGM procedure based on

a collocation approach was proposed by Xiao and Dhanasekar (2002), in which at the interface

between the FE and the EFG regions, fictitious nodal values were converted to real nodal

displacements using the MLS basis functions and were assigned back to the FE nodes. Meshless

methods have also been with other numerical methods, e.g. isogeometric analysis (IGA), in

which IGA was used on the problem boundaries for exact geometry representation. In Wang

and Zhang (2014) and Valizadeh et al. (2015) RKPM was coupled with IGA and the method was

used for two- and three-dimensional linear-elastic problems, while in Rosolen and Arroyo (2013)

max-ent was coupled with IGA and was applied to two-dimensional heat conduction, linear

and non-linear elasticity examples. Other related numerical method for fracture modelling

are extended isogeometric element formulation (XIGA) (Nguyen-Thanh et al., 2015) and a

continuous/discontinuous deformation analysis (CDDA) method (Cai et al., 2013).

In this paper, a parallel algorithm is presented based on distributed memory computer archi-

tecture for linear and adaptive nonlinear meshless method (based on maximum entropy basis

functions), which is then extended to nonlinear adaptively coupled FE-meshless method. The

details of the sequential version of these methods can be found in our recent publications Ullah

and Augarde (2013) and Ullah et al. (2013a,c) respectively. A total Lagrangian formulation is

used to model finite deformation and the Prandtl-Reuss constitutive model is used to model

elasto-plasticity. Codes were developed based on these algorithms in FORTRAN 90 with other

supporting libraries, including NAG, Voro++ (Rycroft, 2007; Rycroft et al., 2006) and kd-tree

(Cormen et al., 2009; Moore, 1991; Kennel, 2004; Barbieri and Meo, 2012; Ullah, 2013). NAG

library is used for simple linear algebra, including multiplication of small matrices, matrix in-

version and calculation of eigen values and eigen vectors. For three-dimensional problems with

unstructured nodes, results from an adaptive analysis, calculation of the proper nodal domains

of influence is very challenging. For these problems, three-dimensional Voronoi diagrams are
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very useful to calculate the influence domains, for which Voro++ library is used here, further

detail of this procedure is given in Ullah (2013). Voro++ is an open-source software library for

the calculation of three-dimensional Voronoi diagrams for a set of particles in space, written

in C++. The Message passing interface(MPI) library was used for inter-processor commu-

nication, further details of which can be found in more specialised references, such as (Slim,

2010; Gropp et al., 1999a,b,a; Snir et al., 1998; Gropp et al., 1998; Pacheco, 2011; Rauber and

Rünger, 2010). Furthermore, the open-source software packages, METIS (Karypis, 2011) and

MUltifrontal Massively Parallel Solver (MUMPS) (MUMPS, 2011) were used to automatically

divide the problem domain and for the solution of the final system of linear equations in parallel,

respectively. The codes have been run successfully on the Durham University high performance

cluster, Hamilton. Performance parameters used for the parallel programs are simulation time,

speedup and efficiency.

Parallel computing has been attempted in a number of references for the EFGM. In Vacharas-

intopchai (2000), parallel three-dimensional EFGM code was developed for linear-elastic prob-

lems. In this study Parallel computer was constructed by joining several low cost computers

with a high-speed network and the MPI library was used for the inter-processor communication.

Accuracy, run time, speedup and efficiency were used to measure the performance of the parallel

program for benchmark numerical problems. Several numerical examples were solved and good

accuracy was obtained for stresses and displacements relative to the analytical and sequential

counterpart solutions. However, the approach was limited to linear elastic problems and was

shown to give promising results for problems up to only 1000 degrees of freedoms. In Singh and

Jain (2005), EFGM code is described using a sparse linear solver based on data decomposition

strategy. The code was validated on three-dimensional heat transfer problems with the same

performance parameters. The dual finite element tearing and interconnecting (FETI) (Farhat

and Roux, 1991), was used for the EFGM in Metsis and Papadrakakis (2012). In Rabczuk and

Belytschko (2005) h-adaptivity is implemented for linear and non-linear dynamics problems for

a structured particle coinciding with background integration mesh, which leads to simple data

structures. The method proposed in Rabczuk and Belytschko (2005) is later used in Rabczuk

and Belytschko (2007) for arbitrary oriented cracks in three-dimensions and in Rabczuk and

Samaniego (2008) for modelling shear band with cohesive surfaces.

In the reproducing kernel particle method (RKPM) (Liu et al., 1995), parallel computation has

also been used in a number of references. In Wang et al. (2007), a parallel code was developed

for the RKPM to simulate three-dimensional bulk metal forming. Integration cells were divided

among the processors using the domain decomposition method and nodes/particles were then

duplicated accordingly. As compared to the FEM, the high communication cost in the case

of meshless methods was also mentioned in this study. A von-Mises constitutive model with
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linear isotropic hardening was used to model elasto-plasticity. Taylor bar impact and backward

extrusion were used as test problems to show the performance of the parallel algorithm and

results were compared with the reference FEM approach using 8-node hex elements. For explicit

dynamics analysis, a parallel code based on the MPI library was developed in Danielson et al.

(2000). Integration points were used for partitioning instead of the background cells because

of the different number of nodes in the support of each Gauss point, which leads to different

computational loads associated with each Gauss point. Nodes/particles were then duplicated

accordingly. It was shown that the METIS partitions were almost perfectly balanced. It was

also mentioned that the communication cost in the case of the parallel RKPM algorithm is

larger than the corresponding parallel FEM algorithm. Three-point bending of a notched beam

and three-dimensional shear band simulation in a tensile specimen were used as numerical

examples to show the performance of this parallel code. In Günther et al. (2000), a parallel

RKPM code based on the distributed memory computer architecture was developed to solve

viscous compressible flow problems. In Rabczuk and Eibl (2003), concrete fragmentation under

explosive loading is modelled by SPH and is implemented in FORTRAN 90 with MPI library.

Parallel computing has also been used for other meshless methods for example see Shirazaki

and Yagawa (1999), Medina and Chen (2000) and Hu et al. (2007). In the current paper, a

family of parallel computer algorithms is developed based on distributed memory computer

architecture for two-dimensional linear elastic meshless method, three-dimensional adaptive

nonlinear meshless method and three-dimensional nonlinear adaptively coupled finite element-

meshless method. The meshless method algorithms including error estimation, adaptivity,

adaptive FE-meshless method coupling were already covered in our previous publications (Ullah

and Augarde, 2010; Ullah et al., 2011, 2012, 2013b; Ullah and Augarde, 2013; Ullah et al.,

2013a,c; Ullah, 2013), but for completeness aspects, the main components pertinent to the

parallel implementation are repeated here.

This paper is organised as follows. A short summary of the basic equations of the max-ent basis

functions based meshless method is given in §2. Comparison of the computational cost for the

construction of MLS and max-ent basis functions and corresponding derivatives are given §3.

Performance indicators of the parallel computer program, including speedup and efficiency are

introduced in §4. The parallel linear elastic meshless method algorithm and its implementation

are described in §5. The parallel linear elastic meshless method algorithm is extended to parallel

adaptive nonlinear meshless method case in §6, which is further extended to parallel nonlinear

adaptively coupled FE-meshless method in §7. Finally, the three developed parallel algorithms

are validated with numerical examples in §8. Concluding remarks to this paper are given in §9.
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2 Max-ent basis function based meshless method

For completeness of the paper, a short summary of the basic equations of the max-ent basis

functions based meshless method is provided here, details of which can be found in Ullah (2013)

and Ullah et al. (2013c). A three-dimensional formulations is given, but it is straightforward to

modify this for one- and two-dimensional cases. The final discrete system of linear equations

is written as

Ku = f , (1)

where

Kij =

∫

Ω

BT
i DBjdΩ, (2)

fi =

∫

Γt

φitdΓ +

∫

Ω

φibfdΩ, (3)

Bi =




∂φi

∂x
0 0

0
∂φi

∂y
0

0 0
∂φi

∂z
∂φi

∂y

∂φi

∂x
0

∂φi

∂z
0

∂φi

∂x

0
∂φi

∂z

∂φi

∂y




, (4)
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and

D =
E

(1 + ν) (1− 2ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2




. (5)

Where ν is the Poisson’s ratio and E is the modulus of elasticity. To perform the integrations

in (2) and (3) numerically, the problem domain Ω and traction boundary Γt are divided into a

number of non-overlapping background cells. In Equation (1) u are known as fictitious nodal

values or nodal parameters and φi is a matrix of the max-ent basis functions for node i at a

point x, where

φi =




φi 0 0

0 φi 0

0 0 φi


 . (6)

The max-ent shape functions can be defined as

φi =
Zi

Z
(7)

where

Zi = wie
−λ1x̃i−λ2ỹi−λ3z̃i and Z =

n∑

j=1

Zj, (8)

in which wi is the weight function associated with node i, evaluated at point x = (x, y)T ,

x̃i = xi − x, ỹi = yi − y and z̃i = zi − z are shifted coordinates. n is the number of nodes in

support of Gauss point x (nodes, the influence domains of whose encompass the Gauss point)

and λ1, λ2 and λ3 are Lagrange multipliers which can be found from

(λ1, λ2, λ3) = argminF (λ1, λ2, λ3) where F (λ1, λ2, λ3) = log(Z). (9)

F is a convex function and Newton’s method is used to solve (9) to find the Lagrange multipliers

which can then be used in the expressions for the shape functions (Sukumar, 2004; Arroyo and
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Ortiz, 2006; Sukumar and Wright, 2007). The shape function derivatives follow as

∇φi = φi

(
∇fi −

n∑

i=1

φi∇fi

)
, (10)

where

∇fi =
∇wi

wi

+ λ+ x̃i

[
H−1 −H−1A

]
and A =

n∑

k=1

φkx̃k ⊗
∇wk

wk

. (11)

Where H is the Hessian matrix and the dyadic product ⊗ of two vector a and b is a second

order tensor, i.e. a ⊗ b defined as a ⊗ b = abT . In the case of nonlinear problems, a total

Lagrangian formulation is used to model finite deformation and for modelling elasto-plasticity,

the Prandtl-Reuss constitutive model is used, details of which can be found in Ullah et al.

(2013c).

3 Computational cost of max-ent versus MLS basis func-

tions

To compare the computational cost for construction of MLS and max-ent basis functions and

corresponding basis function derivatives, a cube is considered with 10 unit dimensions in the

x, y and z directions. Seven different discretisations are considered in this case with 125, 343,

729, 1331, 2197, 3375 and 4913 uniformly distributed nodes in the consecutive discretizations,

while the number of background cells used in the consecutive discretisations are 64, 216, 512,

1000, 1728, 2744 and 4096. Three sample discretizations with 125, 729 and 2197 nodes are

shown in Figures 1(a-c) respectively. Furthermore, 64 (4 × 4 × 4) Gauss points are used in

each background cell and the scaling parameter used for the domain of influence is dmax = 1.5.

For the calculation of MLS basis functions, linear polynomial basis functions are considered

while the max-net basis functions are calculated using the Newton-Raphson method with a

convergence criterion of 10−6 (Ullah, 2013). The computational cost for the construction of MLS

and max-ent basis functions and corresponding derivatives for all the Gauss points are shown

in Table 1, which clearly demonstrate the computational efficiency of max-ent basis functions

and corresponding derivates over MLS counterpart for given polynomial basis function in MLS

and convergence criterion of Newton’s method for the max-ent.
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Figure 1: Sample discretizations used for the run time comparison of max-ent and MLS basis
functions

Nodes Background Cells Number of Gauss points max-ent (sec) MLS (sec)
125 64 4096 0.83 0.83
343 216 13824 3.15 3.34
729 512 32768 8.21 8.71
1331 1000 64000 14.5 16.84
2197 1728 110592 26.15 28.02
3375 2744 175616 47.06 53.49
4913 4096 262144 72.25 78.18

Table 1: Comparison of computational cost of max-ent and MLS basis functions

4 Performance indicators for parallel programs

Computational efficiency is one of the main purposes of writing a parallel program. Therefore,

run time of a parallel program must be compared with the corresponding run time of a sequential

equivalent. Speedup and efficiency are the two measures that are commonly used to evaluate

the performance of a parallel program, the detail of which can be found in Pacheco (2011),

Rauber and Rünger (2010) and Slim (2010); Gropp et al. (1999a). Run/simulation time and

cost of parallel computation are also important parameters required for understanding speedup

and efficiency. For a sequential program, run time is the time between the start and end of

simulation, while for a parallel program, it is the time between the start of simulation and end

of computation on the last processor. The cost of a parallel computation Cn is the time taken

by all processors involved in the computation, i.e.

Cn = nTn, (12)
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where n is the number of processors and Tn is the time the program spends on n processors

(parallel run time) (Rauber and Rünger, 2010). Speedup Sn is the ratio of the time a parallel

program spends on one processor T1 to the time the same program spends on n processors Tn,

that is

Sn =
T1

Tn

. (13)

In an ideal situation Sn = n but generally Sn ≤ n due to additional work done by a parallel

program, known as overhead. This overhead consists of communication between the processors,

synchronization, idle time for some processors due to unbalanced load and redundant calculation

to avoid data transfer. Furthermore, it is impossible to 100% parallelize a code due to its

sequential parts, especially input and output. Efficiency En is the ratio of the total simulation

time by all the processors to the simulation time by a single processor, or alternatively it is

defined as the ratio of the number of processors to speedup, i.e.

En =
nTn

T1

=
n

Sn

. (14)

In an ideal situation En = 1 but generally En ≤ 1.

5 Parallel linear elastic algorithm

The parallel algorithm for the meshless method for linear elastic problems is described here, and

is extended to the adaptive nonlinear and nonlinear adaptively coupled FE-meshless method

cases in the following sections. Before explaining the parallel meshless method algorithm,

a comparison is given of the computation involved in the parallel meshless method and the

parallel FEM algorithm. Sample partitions for two processors for the FEM and the meshless

method are shown in Figures 2(a) and 2(b) respectively. In the FEM case, the boundary

nodes between the two processors are required on both processors for the calculation of the

basis functions and corresponding basis function derivatives. These nodes are shown as solid

black circles in Figure 2(a) and should be duplicated on both processors. These shared nodes

represent the communication cost, i.e. the information required to be transferred between the

two processors. As compared to the FEM, in the meshless method case, more nodes are required

for the calculation of basis functions and corresponding basis function derivatives as shown in

Figure 2(b), therefore more nodes need to be shared between the processors in the meshless

method case. As Figure 2(b) shows, the influence domains of nodes shown in red covers Gauss

points that belong to the other processor, therefore, these nodes must be duplicated. This
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increase in the shared nodes as compared to the FEM case, increases the communication cost

in the meshless method case.

The flow chart for the parallel algorithm for the meshless method for linear elastic problems

is shown in Figure 3, all of which have been implemented from scratch by the first author in

FORTRAN with NAG, MPI, METIS, MUMPS, KDTREE and Voro++ supporting libraries.

The two computationally expensive parts, i.e. assembly of the stiffness matrix and the solution

of the final system of linear equations, are performed in parallel. At the start of the analysis,

the MPI library is initialized and the problem is set up on each processor involved in the compu-

tation, to reduce the inter-processor communication. The problem setup includes the definition

of nodal coordinates, background cells, Gauss points and influence domains. Input data is then

prepared for METIS for domain decomposition, the detail of which can be found in Karypis

(2011). METIS library subroutine "METIS PartMeshDual" is used here for this purpose, which

directly divides the background integration cells into the user defined number of subdomains.

The output of "METIS PartMeshDual" is "epart" is a vector of length equal to the number

of background cells where each entry shows the processor number to which the background

cell belongs. For each Gauss point, the Kd-tree with background mesh algorithm (Barbieri

and Meo, 2012; Ullah, 2013) is used to search nodes whose influence domains encompass the

Gauss point (here referred to as nodes in the support of Gauss point). The subsequent step is

the assembly of stiffness matrices on each processor using the MUMPS distributed assembled

matrix format. The size of the stiffness matrix on each processor depends on the nodes, which

are in support of its Gauss points, see Figure 2(b). Shared nodes must be included in the list

of nodes for both processors. The stiffness matrix on each processor is then calculated and

assembled. Force vector f is assembled only on the host or master processor. Input data are

then prepared for MUMPS for the solution of the final system of linear equations, the detail of

which can be found in MUMPS (2011). Finally, output data, e.g. displacements and stresses,

are calculated before finalizing the MPI library and ending the analysis.

6 Parallel adaptive nonlinear algorithm

In this section, the parallel algorithm described previously for the meshless method for lin-

ear elastic problems is extended to three-dimensional adaptive problems with both material

and geometrical nonlinearities. A total Lagrangian formulation is used here to model finite

deformation and the Prandtl-Reuss constitutive model is used to model elasto-plasticity. The

algorithm given here is based on the sequential two-dimensional adaptively nonlinear meshless

method given in our previous publications Ullah and Augarde (2013) and Ullah (2013) where

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk


13

Meshless

Figure 2: Sample partitions on two processors for (a) FEM and (b) Meshless method

the mathematical background can be found, which is not repeated here for the sake of brevity.

The flow chart of the parallel algorithm in this case is shown in Figure 4. A total Lagrangian

formulation is used here to model finite deformation and the Prandtl-Reuss constitutive model

is used to model elasto-plasticity. Here the start of the algorithm is almost the same as given

for the linear elastic case, i.e. the definition of the problem and METIS partitioning. Nodal

influence domains for analysis (used to calculate the basis functions and derivatives used to as-

semble the stiffness matrices) and projection (used to calculate the strains and stresses for the

error estimation based on the procedure given in Chung and Belytschko (1998) and Ullah and

Augarde (2013)) are calculated on the host and are broadcast to all other processors involved

in the computation. Kd-tree with background mesh algorithm is then used to calculate nodes

in support of each Gauss point, for both analysis and projection. The Kd-tree is also used to

find nodes in support at each node location for the calculation of nodal strains and stresses

used in the calculation of the error estimates. For each processor, basis functions and corre-

sponding basis function derivatives are calculated for analysis at each Gauss point belonging

to it and are stored in separate files. The same procedure is repeated for the calculation of

basis functions at each Gauss point for projection, and the calculation of basis functions and

corresponding basis function derivatives at each node for the calculation of nodal strains and

stresses. Determination of the size of the stiffness matrix on each processor and calculation
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Figure 3: Linear elastic parallel algorithm
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and assembly of the stiffness matrix is then performed in parallel in the same way as explained

previously for the linear elastic case.

For load step n, systems of linear equations are solved in parallel with MUMPS, using the

distributed assembled matrix input format. Internal and reaction forces are calculated next

in parallel separately on each processor and are combined on the host to calculate the out-of-

balance force, which is then used to control the Newton-Raphson iteration procedure. After

convergence of the Newton-Raphson iterations, the next step is the calculation of nodal strains

and stresses for error estimation. METIS also gives nodal partitions, which are used here to

calculate the nodal strains and stresses in parallel. The error is also estimated in parallel here

because the Chung & Belytschko error estimation procedure works cell-wise. Therefore, error

is calculated separately on each processor and then combined to calculate the global error. The

global error is then used to control the adaptive process, as already explained in Ullah and

Augarde (2013). Transfer of the path dependent variables both for the nodes and the Gauss

points is performed in parallel. After each refinement, METIS is used for automatic domain

decomposition.

7 Parallel nonlinear adaptively coupled FE-meshless method

algorithm

The final step is to extend the method described in the previous section to include adaptive

FE-meshless method coupling. The details of the sequential version are given in Ullah et al.

(2013c) and are not repeated here. In this new algorithm, a coupled FE-meshless method

discretisation consisting of both FEs and meshless method background cells is partitioned with

METIS, where each METIS partition can consist of both FEs and meshless method background

cells. Kd-tree with background mesh algorithm is then used to find nodes in the support of those

Gauss points, which belong to the meshless method region of the problem domain. The error

for the coupled FE-meshless method discretisation, is calculated using both the Zienkiewicz

& Zhu (Zienkiewicz and Zhu, 1992a,b; Boroomand and Zienkiewicz, 1999) and the Chung &

Belytschko error estimators for the FE and meshless method regions of the problem domain

respectively. The combined procedure using both the Zienkiewicz & Zhu and the Chung &

Belytschko error estimation procedure for the coupled FE-meshless method discretisation is

given in detail in our previous publication (Ullah et al., 2013c) and is not repeated here. Nodal

incremental strains and stresses are calculated sequentially in contrast to the previous parallel

nonlinear adaptive meshless method algorithm. The superconvergent patch recovery method
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Figure 4: Nonlinear adaptive parallel algorithm
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(Zienkiewicz and Zhu, 1992a) is used in the FE region of the problem domain to calculate the

nodal incremental strains and stresses, a method that is difficult to parallelize. After sequential

calculation of the nodal incremental strains and stresses, the error is then calculated in parallel.

The rest of the algorithm is the same as described in §6, with all the relevant changes associated

with the adaptively coupled FE-meshless method algorithm described in Ullah et al. (2013c).

8 Numerical examples

Three numerical examples are now given to demonstrate the implementation and performance

of the three different parallel algorithms described in the previous sections.

8.1 Two-dimensional linear elastic beam problem

The first numerical example is a two-dimensional cantilever beam problem subjected to parabolic

traction at the free end (Timoshenko and Goodier, 1970). The geometry, coordinate system,

loading and boundary conditions for the problem, which are more complicated than is often

appreciated (Augarde and Deeks, 2008), are given in Figure 5. The analytical solution for the

Figure 5: Geometry, boundary condition and loading for 2D beam problem

displacement field is given as (Zhuang et al., 2012b)

ux (x, y) =
Py

6EI

[
(6L− 3x) x+ (2 + ν) y2 −

3D2

2
(1 + ν)

]
, (15a)

uy (x, y) = −
P

6EI

[
3νy2 (L− x) + (3L− x) x2

]
, (15b)
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while the analytical solution for the stress field is

σxx =
P (L− x) y

I
, (16a)

σyy = 0, (16b)

σxy = −
P

2I

[
D2

4
− y2

]
, (16c)

where E is the modulus of elasticity, ν is the Poisson’s ratio and I is the second moment of area.

The problem was solved under a plane stress condition with P = 1000 , ν = 0.3 , E = 30× 106

, D = 12 , L = 48 and unit thickness, all in compatible units. Two different discretisations,

coarse and fine, were used. In the fine discretisation, 6,601 nodes (DOFs=13,202) and 6,400

background cells were used, while in the coarse discretisation, nodes and background cells were

decreased to 1,701 (DOFs=3,402) and 1,600 respectively. (4 × 4) Gauss quadrature was used

in each background cell and dmax = 3.0 was used as the scaling parameter for the domain of

influence. The problem was run on the Hamilton cluster with 1-25 processors. Sample METIS

partitions for the fine discretisation for 2, 5, 10, 16, 20 and 25 processors are shown in Figures

6(a-f), respectively. In these figures, each color represents a separate METIS partition, for which

the calculations are performed on a different processor. A comparison between the numerical

and analytical displacement solution for selected nodes shown as blue circles in Figure 7(a) are

shown with red crosses and black circles respectively in the same figure. Furthermore, on the

neutral axis, comparison of the numerical and analytical displacement is shown in Figure 7(b).

The agreement between the numerical and analytical results in this case is excelent, validating

the implementation of the parallel linear elastic algorithm.

The performance indicators are shown in Figure 8. The timing results for the fine case are

shown in Figure 8(a). The timings reported here for the stiffness matrix formation includes

calculation of the basis functions and corresponding basis function derivatives and calculation

and assembly of the stiffness matrix. The time spent on the solution of the final system of

linear equations using MUMPS is tagged as “MUMPS” in Figure 8(a). The total time reported

is the sum of the stiffness matrix and MUMPS times. In this problem the time spent in the

solution of the system of linear equations is very small compared with the time spent in the

assembly of the stiffness matrices. It is clear from Figure 8(a), that increasing the number of

processors reduces all the three reported times. The timing results for the coarse case are also

given in Figure 8(b) showing the same decreasing trend with increasing number of processors.

A comparison between the actual speedup and ideal speedup for both the discretisations versus

the number of processors is shown in 8(c). For this problem the fine discretisation performs

relatively better than the coarse discretisation. For 25 processors, a speedup of 12 is obtained
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for the fine discretisation, while a speedup of 9.4 is obtained for the coarse discretisation. A

comparison between the actual and ideal efficiencies for both discretisations versus the number

of processors is shown in Figure 8(d). For 25 processors, 48.0% and 37.6% efficiencies are

recorded for fine and coarse discretisations respectively.

8.2 Adaptive nonlinear three-dimensional plate with a hole problem

The problem solved here is a three-dimensional plate with a hole subjected to unidirectional

loading, considering both material and geometrical nonlinearities. Geometry and loading for

this problem are shown in Figure 9. Due to symmetry only one-eighth of the problem (shown

in gray in Figure 9). The material is modelled using a von-Mises constitutive model with the

following material properties E = 1.0 × 105, ν = 0.3 and σy = 1.0 × 103, all in compatible

units. The problem is solved here using two different strategies: without adaptivity and with

adaptivity. In the first case, all the subroutines related to adaptivity are switched off, includ-

ing calculation of nodal stresses, error estimation, refinement and data transfer between the

consecutive discretisations. In the following these two cases are described separately.

8.2.1 Without adaptivity

A total displacement of 0.15 units is applied to the top face of the plate in 15 equal steps.

The scaling parameter used here for the domain of influence is dmax = 1.5 and the problem is

solved with two different discretisations (coarse with 2,793 DOFs and fine with 6,075 DOFs).

The problem was run on the Hamilton cluster with 1-8 processors. Sample METIS partitions

for 2, 4, 6 and 8 processors for the fine case are shown in Figures 10(a-d) respectively and for

the coarse case in Figures 11(a-d). The same problem is also solved with the FEM, using a

relatively fine eight-node hexahedral mesh with 18,759 DOFs to serve as a reference solution,

for which the mesh is shown in Figure 12(a). A plot showing the top face reaction versus

displacement for both the fine and coarse discretisations and the reference FEM is shown in

Figure 12(b). They are in good agreement.

The performance indicators are shown in Figure 13. Simulation time versus the number of

processors for both the discretisations are shown in Figure 13(a). The timings reported here

are the total simulation times. It is clear from Figure 13(a) that for this problem with a

fine discretisation, the code spends 1,008 seconds on one processor but on eight processors,

it spends only 298 seconds and in the case of the coarse discretisation, it spends 277 and 91
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Figure 6: Selective METIS partitions for the discretisation with 13202 DOFs for the two-
dimensional beam problem
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Figure 8: Performance on the Hamilton cluster using 1-25 processors for the two-dimensional
beam problem
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Figure 9: Geometry, boundary condition and loading for the 3D plate with a hole problem
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seconds on one and eight processors respectively, a significant reduction in simulation time. A

comparison between the actual speedup versus the number of processors for both discretisations

and the ideal speedup is shown in Figure 13(b). For eight processors speedups of 3.38 and 3.04

are obtained for the fine and coarse discretisations respectively. A comparison between the

efficiencies for both discretisations and the ideal is shown in Figure 13(c). For eight processors

42.26% and 37.95% efficiencies are obtained for the fine and coarse discretisations respectively.

Figure 10: Selective METIS partitions for 6075 degrees of freedom for the 3D plate with a hole
problem

Figure 11: Selective METIS partitions for 2,793 degrees of freedom for the 3D plate with a hole
problem
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Figure 12: FEM reference mesh and reaction versus displacement for the 3D plate with a hole
problem

8.2.2 With adaptivity

In the adaptive case, a total displacement of 0.5 units was applied to the top face of the plate

in 20 equal steps. The scaling parameters for the analysis and projection domains of influence

were damax = 1.5 and dpmax = 1.1 respectively. A relative error of 15% was permitted in the

analysis. A very coarse discretisation was used at the start of the analysis with only 189

DOFs, which was subsequently adaptively refined and the number of DOFs in the second and

third discretisations was 852 and 3,486 respectively. This problem was run on the Hamilton

cluster using 1-6 processors. The maximum number of processors was restricted here by the

coarse initial discretisation, as METIS cannot divide the mesh into more than six subdomains.

Sample METIS partitions of the adaptively refined discretisations for two processors are shown

in Figures 14(a-c), while the final deformed configuration is shown in Figure 14(d). The same

METIS partitions and the final deformed configuration in the case of five processors are shown

in Figures 15(a-d) . The number of processors was kept constant during the analysis and

specified at the start of simulation. METIS repartitions the problem domain into the same

number of subdomains as processors after each refinement. The final displacement contours in

the x and y directions over the full plate are shown in Figures 16(a) and 16(b) respectively.

Necking of the centre of the plate is obvious in both figures. The same problem was also solved

with the same FEM reference mesh as in the previous section (see Figure 12(a)). A comparison
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Figure 13: Performance on the Hamilton cluster using 1-8 processors for the the 3D plate with
a hole problem

of the top face reaction versus displacement for this problem with the reference FEM solution

is shown in Figure 16(c). The jumps in the adaptive load-displacement path represent points

where rediscretisation is taking place and mapping has been carried out. The jumps are due to

changes in the equilibrium state of the domain due to the altered discretisation. These plots

show results from successive analyses, not a single calculation.

Performances indicators of the method run on the Hamilton cluster are shown in Figure 17.

Simulation time against the number of processors is shown in Figure 17(a). The timings

reported here are full simulation times. On one processor, simulation took 614 seconds, while

for six processors, the simulation took 190 seconds. Comparisons of speedup and efficiency

with the corresponding ideal values are given in Figures 17(b) and 17(c). In the case of six

processors speedup and efficiency achieved were 3.23 and 53.76% respectively.
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Figure 14: Step by step METIS partitions for two processors for the adaptive 3D plate with a
hole problem

Figure 15: Step by step METIS partitions for five processors for the adaptive 3D plate with a
hole problem
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Figure 17: Performances on the Hamilton cluster using 1-6 processors for the adaptive 3D plate
with a hole problem
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8.3 Adaptively coupled nonlinear three-dimensional plate with a

hole problem

The same problem as used in the previous section was solved with the parallel nonlinear adap-

tively coupled FE-meshless method code. Again only one-eighth of the problem was modelled

and a total displacement of 1.5 units was applied to the top face of the plate in 60 steps. Scaling

parameters used for the domains of influence of analysis and projections were damax = 1.5 and

dpmax = 1.1 respectively and the permissible relative error was 15%. The problem was first

analysed using a FE mesh with 6,075 DOFs as shown in Figure 18(a). During the analysis,

those FEs which violated a specified error measure, based on the Zienkiewicz & Zhu error esti-

mation procedure, were converted into a meshless method zone. The second discretisation, or

the first coupled FE-meshless method discretisation, is shown in Figure 18(b). During this first

conversion, the number of degrees of freedom remained the same. The third (21609 DOFs) and

fourth (52386 DOFs) discretisations are shown in Figures 18(c) and 18(d) respectively, which

were obtained from adaptive refinement based on the combined Zienkiewicz & Zhu and Chung

& Belytschko error estimatiors. Contours of ux and uy on the final deformed configurations

are shown in Figures 19(b) and 19(c) respectively. For comparison, the original undeformed

configuration is also shown in Figure 19(a). Top face reaction versus displacement is shown

in Figure 22. The path for this case is tagged as “adaptive”. This problem was solved on

the Hamilton cluster using 50 processors with a total simulation time of 9,391 seconds. It is

clear from Figures 19 and 22, that the developed algorithm, can efficiently handle very large

deformation problems.

For comparison, the same problem was also solved with the FEM, with eight-node hexahedral

elements using three different meshes as shown in Figures 20(a-c). The first mesh is very coarse

with only 975 DOFs, the second one is relatively fine with 42,483 DOFs and the third one

is very fine with 154,128 DOFs. For the coarse case, the analysis was run on the Hamilton

cluster using 10 processors, and the total simulation time was 242 seconds. The final deformed

configuration for the full plate with uy contours is shown in Figure 21(a). In this case, due

to volumetric locking, material on both sides of the hole moves rigidly towards the centre of

the hole. Although, some necking can be seen near the centre of the hole, it is less obvious as

compared to the previous adaptively coupled FE-meshless method case. The top face reaction

versus displacement path for this case is shown in Figure 22, tagged as “FEA (DOFs=975)”.

Although, some geometric softening can be seen in this case, the response is very rigid as

compared to the adaptively coupled FE-meshless method cases, and is unrealistic. For the

second and third FE meshes, the final deformed configurations with uy contours are shown

in Figures 21(b) and 21(c) respectively. In the fine FEM case, the analysis was run on the
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Hamilton cluster using 40 processors with 100 load steps, with a total simulation time of 14,579

seconds. In the very fine FEM case, the analysis was run on the Hamilton cluster on 100

processors with 50 load steps, with a total simulation time of 48,680 seconds.

In Figure 21(b), necking is more prominent and rigid material movement toward the centre of

the hole is less obvious as compared to the response of the coarse FEM model, shown in Figure

21(a). For the very fine FEM case shown in Figure 21(c), the response is even better than

that shown in Figure 21(b) with very prominent necking as one would expect physically, and

almost no rigid material movement near the centre of the hole. The top face reaction versus

displacement curve for the second and third FEM cases are also shown in Figure 22, which are

tagged as “FEA (DOFs=42,483)” and “FEA (DOFs=154,128)” respectively. These reaction

versus displacement curves show more geometric softening as compared to the coarse FEM

discretisation.

A summary of the results for this final demonstration problem, with four different discretisa-

tions, is given in Table 2. Due to the use of different load steps and numbers of processors for

each analysis, work done per load step is calculated for each analysis as

Work done per load step =
Run time× No of processors

Load steps
, (17)

and is also given in the table for comparison. As compared to the fine FEA case, work done per

load step associated with the adaptive case is very small. Work done per load step associated

with the first two FEA cases is also very small, but as shown above in these cases the results

are not realistic.

Cases DoFs Load steps Number of Run time Work per
processors used (sec) load step

Adaptive-1 6,075 21,609 52,386 60 50 9,391 7825.8
FEA-1 975 100 10 242 24.2
FEA-2 42,483 100 40 14,579 5831.6
FEA-3 154,128 50 100 48,680 97360

Table 2: Results summary for the adaptively coupled nonlinear three-dimensional plate with a
hole problem
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Meshless

Meshless Meshless Meshless

Figure 18: Step by step discretisations for the “adaptive” case for the final demonstration
problem

Figure 19: Contours of ux and uy over the final deformed geometry for the “adaptive” case for
the adaptively coupled nonlinear three-dimensional plate with a hole problem
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Figure 20: Reference FEM meshes for the adaptively coupled nonlinear three-dimensional plate
with a hole problem

Figure 21: Contours of uy over the final deformed geometry for the reference FEM meshes for
the adaptively coupled nonlinear three-dimensional plate with a hole problem

9 Concluding remarks

Meshless methods are of considerable interest in the computational mechanics community at

present, however it is recognised that they can be computationally inefficient. In this paper
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Figure 22: Reaction versus displacement for the adaptively coupled nonlinear three-dimensional
plate with a hole problem

parallel algorithms for distributed memory computer architectures have been presented for a

linear and adaptive nonlinear meshless method (the EFGM with max-ent basis functions). The

method has then been extended to the case of a coupled adaptive FE-meshless method. A

number of numerical examples have demonstrated the accuracy and efficiency of the methods

on some challenging nonlinear problems.
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Rauber, T. and Rünger, G. (2010), Parallel Programming for Multicore and Cluster Systems.

Springer, 1st edition.

Rosolen, A. and Arroyo, M. (2013), “Blending isogeometric analysis and local maximum entropy

meshfree approximants”. Computer Methods in Applied Mechanics and Engineering, 264:95

– 107.

Rosolen, A., Millán, D., and Arroyo, M. (2012), “Second-order convex maximum entropy

approximants with applications to high-order PDE”. International Journal for Numerical

Methods in Engineering, pages n/a–n/a.

Rycroft, C. H. (2007),Multiscale modeling in granular flow. PhD thesis, Massachusetts Institute

of Technology.

Rycroft, C. H., Grest, G. S., Landry, J. W., and Bazant, M. Z. (2006), “Analysis of granular

flow in a pebble-bed nuclear reactor”. Physical Review E, 74 (2):021306.

Shirazaki, M. and Yagawa, G. (1999), “Large-scale parallel flow analysis based on free mesh

method: a virtually meshless method”. Computer Methods in Applied Mechanics and Engi-

neering, 174:419 – 431.

Singh, I. V. and Jain, P. K. (2005), “Parallel EFG algorithm for heat transfer problems”.

Advances in Engineering Software, 36(8):554 – 560.

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk


38

Slim, H. An introduction to parallel programming, Guide 48, Version: 2.0. Durham Uni-

versity (Available at: https://www.dur.ac.uk/resources/its/info/guides/48ParallelProg.pdf),

(10 2010), (Accessed date: 2 Jan 2013).

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1998), MPI-The Complete

Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised)

edition. ISBN 0262692155.

Sukumar, N. (2004), “Construction of polygonal interpolants: a maximum entropy approach”.

International Journal for Numerical Methods in Engineering, 61:2159–2181.

Sukumar, N. andWright, R. W. (2007), “Overview and construction of meshfree basis functions:

from moving least squares to entropy approximants”. International Journal for Numerical

Methods in Engineering, 70:181–205.

Timoshenko, S. P. and Goodier, J. N. (1970), Theory of Elasticity. McGraw-Hill, New York.

Ullah, Z. (2013), Nonlinear solid mechanics analysis using the parallel selective element-free

Galerkin method. PhD thesis, School of Engineering & Computing Sciences, Durham Uni-

versity, United Kingdom.

Ullah, Z. and Augarde, C. E. Solution of elasto-statics problems using the element-free galerkin

method with local maximum entropy shape functions. In 18th UK Conference of the As-

sociation for Computational Mechanics in Engineering (ACME), Southampton University,

Southampton, UK, pages 161–164, (2010).

Ullah, Z. and Augarde, C. E. (2013), “Finite deformation elasto-plastic modelling using an

adaptive meshless method”. Computers & Structures, 118:39–52.

Ullah, Z., Augarde, C. E., Crouch, R. S., and Coombs, W. M. FE-EFGM coupling using

maximum entropy shape functions and its application to small and finite deformation. In 19th

UK Conference of the Association for Computational Mechanics in Engineering (ACME),

Heriot-Watt University, Edinburgh, UK, pages 277–280, (2011).

Ullah, Z., Augarde, C. E., and Coombs, W. M. Adaptive modelling of finite strain shear band

localization using the element-free galerkin method. In 20th UK Conference of the Asso-

ciation for Computational Mechanics in Engineering (ACME), University of Manchester,

Manchester, UK, pages 251–254, (2012).

Ullah, Z., Augarde, C. E., and Coombs, W. M. (2013)a, Local maximum entropy shape func-

tions based FE-meshless coupling. Technical Report ECS-TR 2013/07, School of Engineering

& Computing Sciences.

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk


39

Ullah, Z., Augarde, C. E., and Coombs, W. M. Three-dimensional FE-EFGM adaptive coupling

with application to nonlinear adaptive analysis. In International Conference on Computa-

tional Mechanics (CM13), University of Durham, Durham, UK, (2013)b.

Ullah, Z., Coombs, W. M., and Augarde, C. E. (2013)c, “An adaptive finite element/meshless

coupled method based on local maximum entropy shape functions for linear and nonlinear

problems”. Computer Methods in Applied Mechanics and Engineering, 267:111–132.

Vacharasintopchai, T. (2000), A parallel implementation of the element-free Galerkin method

on a network of PCs. Master’s thesis, School of Civil Engineering, Asian Institute of Tech-

nology, Bangkok, Thailand.

Valizadeh, N., Bazilevs, Y., Chen, J., and Rabczuk, T. (2015), “A coupled IGA–Meshfree

discretization of arbitrary order of accuracy and without global geometry parameterization”.

Computer Methods in Applied Mechanics and Engineering, 293:20 – 37.

Walshaw, C. H., Cross, M., and Everett, M. G. (1995), “A Localized Algorithm for Optimiz-

ing Unstructured Mesh Partitions”. International Journal of High Performance Computing

Applications, 9(4):280–295.

Wang, D. and Zhang, H. (2014), “A consistently coupled isogeometric–meshfree method”.

Computer Methods in Applied Mechanics and Engineering, 268:843 – 870.

Wang, H., Li, G., Han, X., and Zhong, Z. H. (2007), “Development of parallel 3D RKPM

meshless bulk forming simulation system”. Advances in Engineering Software, 38(2):87 –

101.

Wang, H. P., Wu, C. T., Guo, Y., and Botkin, M. E. (2009), “A coupled meshfree/finite ele-

ment method for automotive crashworthiness simulations”. International Journal of Impact

Engineering, 36:1210 – 1222.

Xiao, Q. and Dhanasekar, M. (2002), “Coupling of FE and EFG using collocation approach”.

Advances in Engineering Software, 33:507 – 515.

Yagawa, G., Soneda, N., and Yoshimura, S. (1991), “A Large scale finite element analysis using

domain decomposition method on a parallel computer”. Computers & Structures, 38:615 –

625.

Zhuang, X., Augarde, C., and Mathisen, K. (2012)a, “Fracture modeling using meshless meth-

ods and level sets in 3D: Framework and modeling”. International Journal for Numerical

Methods in Engineering, 92(11):969–998.

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk


40

Zhuang, X., Heaney, C., and Augarde, C. E. (2012)b, “On error control in the element-free

Galerkin method”. Engineering Analysis with Boundary Elements, 36(3):351 – 360.

Zienkiewicz, O. C. and Zhu, J. Z. (1992)a, “The superconvergent patch recovery and a posteriori

error estimates. Part 2: Error estimates and adaptivity”. International Journal for Numerical

Methods in Engineering, 33(7):1365–1382.

Zienkiewicz, O. C. and Zhu, J. Z. (1992)b, “The superconvergent patch recovery and a poste-

riori error estimates. Part 1: The recovery technique”. International Journal for Numerical

Methods in Engineering, 33(7):1331–1364.

This article is c© Emerald Group Publishing and permission has been granted for this version to appear here (dro.dur.ac.uk).
Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express
permission from Emerald Group Publishing Limited.

dro.dur.ac.uk

