Topic 08
Parallel Computer Architecture

Silvia Miiller, Per Stenstrom, Mateo Valero, and Stamatis Vassiliadis

Topic Chairpersons

Computer architecture is a truly fascinating field in that improvements in the
basic technology and innovations how to make best use of the underlying tech-
nology has yielded a performance growth exceeding a million times over the past
50 years. What is even more amagzing is the fact that the pressure on maintain-
ing this rate of performance growth shows no decline. In fact, as performance
thresholds are passed, application designers face new opportunities that give new
challenging problems to work on for computer architects.

Parallelism and locality are the two fundamental concepts from an architec-
ture point of view that have contributed to the impressive performance growth.
Exploitation of parallelism has led to an increased pressure on the memory sys-
tem. The increased speed-gap between processor and memory has in turn fueled
innovations in memory hierarchy research that exploit locality.

Until now, the major form of parallelism that has been exploited at the
microprocessor level is across instructions. Coarser-grained, or thread-level par-
allelism, is becoming increasingly important to consider for the following two
reasons: First, there are always computational problems at any one time whose
performance demands can not be accommodated by a single processor, such as
various forms of transaction and database processing and scientific/engineering
computing. Second, exploiting instruction-level parallelism is yielding diminish-
ing returns owing to the complexity involved in considering larger instruction
windows. Both of these observations prompt towards also exploiting thread-level
parallelism and are the major motivating factors for parallel computer architec-
ture — the topic of this session.

Thread-level parallelism can be exploited at the chip as well as at the sys-
tem level. Two architectural styles at the chip level are currently being debated:
chip multiprocessors and multithreaded architectures. Independent of the archi-
tectural style chosen at the chip level, how thread-level parallelism is exploited
across microprocessor chips, which act as processing nodes, is an important issue
in the area of parallel computer architecture.

Historically, message passing (or distributed memory) and shared-memory
multiprocessors are the prevailing parallel computer architectural styles at the
system level. In message passing, the software abstraction forces threads to ex-
plicitly exchange messages between disjoint address spaces whereas in shared-
memory threads exchange messages implicitly in a common address space. In
implementing any of these abstractions, a fundamental issue is to reduce the
impact of inter-thread message communication latency on the execution time of
parallel programs. All the papers in this session address in one or another way

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 537-B638] 2000.
© Springer-Verlag Berlin Heidelberg 2000



538 Silvia Miiller et al.

this fundamental problem by either proposing innovative solutions to reduce or
tolerate the message latency, or by making important observations regarding
the nature of the inter-thread communication pattern in parallel programs to be
used to identify new approaches for efficient communication.

In shared-memory multiprocessors inter-thread communication results in co-
herency interactions between threads that may hurt performance. In the first
paper, Acquaviva and Jalby study the nature of these interactions based on
analysis of a suite of scientific codes and make interesting observations regard-
ing what program behavior causes performance problems. These observations
are important in order to find more efficient coherency mechanisms.

In message-passing systems, the thread that sends the message often has to
wait until the receiver has copied the data into its address space. One interesting
contribution in the second paper by May et al. is the introduction of a new
message passing protocol that allows the sender to copy the data directly into
the address space of the receiver.

Replication of data is an effective means to avoid some of the communication
in shared-memory machines and the COMA concept enables replication also at
the memory level. In the third paper, Ferraris et al. use the COMA concept
to propose a multiprocessor architecture using workstations as building blocks.
They report on a COMA protocol that reduces the overhead associated with
replication.

For small-scale systems, bus-based multiprocessors have dominated the mar-
ket for some time and are also considered for chip multiprocessors. A problem
with these systems is that inter-thread communication can cause severe bus con-
tention. In the fourth paper, Milenkovic and Milutinovic propose an innovative
solution, called cache injection, to reduce the bus traffic.

Finally, the topic of the last paper by Talbot and Kelly is again on replica-
tion at the memory level in cache-coherent NUMA machines. In these machines,
widely shared memory blocks can cause performance problems if the cache space
is not sufficient. In their proposal, called adaptive proxies, a mechanism is pro-
posed that adaptively replicates only the data that is simultaneously shared by
a large number of nodes.

We hope you will enjoy and learn a lot from this collection of papers.



