John von Neumann Institute for Computing NICMM

A Framework for Prototyping and Reasoning
about Distributed Systems

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick

published in

Parallel Computing: Architectures, Algorithms and Applications ,

C. Bischof, M. Blcker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 235-242, 2007.

© 2007 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

A Framework for Prototyping and Reasoning about
Distributed Systems

Marco Aldinucci', Marco Danelutto’, and Peter Kilpatrick®

! Dept. Computer Science — University of Pisa — Italy
E-mail: {aldinuc, marcod} @di.unipi.it

2 Dept. Computer Science — Queen’s University Belfast — United Kingdom
E-mail: p.kilpatrick@qub.ac.uk

A framework supporting fast prototyping as well as tuning of distributed applications is pre-
sented. The approach is based on the adoption of a formal model that is used to describe the
orchestration of distributed applications. The formal model (Orc by Misra and Cook) can be
used to support semi-formal reasoning about the applications at hand. The paper describes how
the framework can be used to derive and evaluate alternative orchestrations of a well know par-
allel/distributed computation pattern; and shows how the same formal model can be used to
support generation of prototypes of distributed applications skeletons directly from the applica-
tion description.

1 Introduction

The programming of large distributed systems, including grids, presents significant new
challenges. For example, the “invisible grid” and “service and knowledge utility” (SOKU)
concepts advocated in the EU NGG expert group documents'? both identify new chal-
lenges to be addressed. In particular, an increasingly substantial programming effort is re-
quired to set up appropriate “computing structure” for a distributed application: significant
efforts have to be invested in the development of a suitable, manageable and maintainable
distributed application skeleton, and, ideally, this skeleton should be validated, at least in-
formally, before starting actual coding to avoid spending large amounts of time coding only
to discover when running application tuning experiments that one or more of the original
skeleton features is inappropriate.

What is needed is a framework that allows the application programmer to develop a
specification of a distributed system using a user-friendly formal notation. Existing formal
tools such as the 7-calculus® are usually perceived as being distant from the “reasoning
schemas” which are typical of programmers, and, moreover, their usage requires signifi-
cant formal calculus capability and experience combined with substantial effort. Therefore,
an approach is required that can replace full formal reasoning about a system’s properties
with “lightweight” reasoning combining properties of the notation with the developer’s do-
main expertise and experience. Typically such reasoning will allow focus on the particular
case rather than the general and, in this way, significantly reduce the overhead of formal de-
velopment. In addition, the availability of such a specification will afford the possibility of
generating automatically a skeletal implementation that may be used for experimentation
prior to full implementation.

This research is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commis-
sion (Contract IST-2002-004265).

235

A site, the simplest form of Orc expression, either returns a single value or remains silent. Three operators
(plus recursion) are provided for the orchestration of site calls:

1. > (sequential composition): E; > x> FEs(x) evaluates F1, receives a result z, calls Fo with
parameter x.

The abbreviation 21 > FEs is used for E1 > x> E> when evaluation of Es is independent of x.

2. | (parallel composition): (E4 | E2) evaluates E1 and Fs in parallel. Evaluation of the expression
returns the merged output streams of £1 and Fo.

3. where (asymmetric parallel composition): E; where z :€ Es begins evaluation of both £y and
x :€ E> in parallel. Expression £ may name x in some of its site calls. Evaluation of £ may
proceed until a dependency on x is encountered; evaluation is then delayed. The first value delivered
by E is returned in x; evaluation of Ej can proceed and the thread E is halted.

Orc has a number of special sites, including RTimer(t), that always responds after ¢ time units (can be used
for time-outs). The notation (|2 : 1 < ¢ < 3 : w;) is used as an abbreviation for (w1 |wa|ws).

In Orc processes may be represented as expressions which, typically, name channels which are shared with
other expressions. In Orc a channel is represented by a site*. c.put(m) adds m to the end of the (FIFO)
channel and publishes a signal. If the channel is non-empty c.get publishes the value at the head and
removes it; otherwise the caller of c.ger suspends until a value is available.

Figure 1. Minimal Orc compendium

Earlier work by the authors identified Orc by Misra and Cook*> as a suitable nota-
tion to act as a basis for the framework proposed above. There it was shown how Orc is
particularly suitable for addressing dynamic properties of distributed systems, although in
the current work, for the sake of simplicity, only static examples/properties are considered.
Subsequent work demonstrated how an Orc-based framework can be developed to support
large distributed application development and tuning®®. Figure 1 outlines the main fea-
tures of Orc, in particular those related to the Orc specifications used here. In the current
work these previous results are extended by two further contributions.

First it is shown that a cost analysis technique can be described and used to evaluate
properties of alternative implementations of the same distributed application. Orc models
of two (functionally equivalent) implementations of a typical distributed use-case are pre-
sented. For each, the number and kind of communications performed is determined and the
overall communication cost is estimated using a measure of communication cost. To eval-
uate the communication patterns of the two implementations metadata denoting locations
where parallel activities have to be performed is considered. The metadata is formulated
in accordance with the principles stated in earlier work presented at the CoreGRID Sym-
posium®. While metadata can be used to describe several distinct aspects of a system,
here only metadata items of the form (site/expression,location) representing the fact
that site/expression is run on the resource location are considered. A methodology is
introduced to deal with partial user-supplied metadata that allows labelling of all the sites
and processes appearing in the Orc specification with appropriate locations. The location
of parallel activities, as inferred from the metadata, is then used to cost communications
occurring during the application execution.

Second a compiler tool that allows generation of the skeleton of a distributed appli-
cation directly from the corresponding Orc specification is described. The user can then
complete the skeleton code by providing the functional (sequential) code implementing
site and process internal logic, while the general orchestration logic, mechanisms, sched-

236

Compute state
contributions

Compute state
contributions

Accumulate local ;
state updates + /
periodically send ;

global update

TaskPool

Provide input stream items Performs state updates Provide input stream items Performs global state updates

Figure 2. Logical schema corresponding to the two Orc specifications (grey boxes represent sites, white ovals
represent processes)

ule, etc. are completely dealt with by the compiler generated code. Finally, results are
presented which demonstrate that the code generated from the Orc specifications given
here perform as expected when executed on a distributed target architecture.

These two further developments complete a framework supporting design, develop-
ment and tuning of distributed grid applications.

2 Use Case: Parallel Computation of Global State Updates

A use case is now introduced as a vehicle to demonstrate how a costing mechanism can be
associated with Orc, via metadata, in such a way that alternative implementations/orches-
trations of the same application can be compared. A common parallel application pattern
is used for illustration: data items in an input stream are processed independently, with
the results being used to update a shared state (see Fig. 2). For simplicity, only the easy
case where state updates are performed through an associative and commutative function
o : State x Result — State is considered. This kind of computation is quite common.
For example, consider a parallel ray tracer: contributions of the single rays on the scene
can be computed independently and their effect “summed” onto the final scene. Adding
effects of a ray on the scene can be performed in any order without affecting the final re-
sult. Two alternative designs of this particular parallelism exploitation pattern, parametric
in the type of actual computation performed, are modelled in Orc.

2.1 Design 1: No Proxy

The first design is based on the classical master/worker implementation where central-
ized entities provide the items of the input stream and collate the resulting computations
in a single state. The system comprises a taskpool (modelling the input stream), TM, a
state manager, SM and a set of workers, W,;. The workers repeatedly take tasks from
the taskpool, process them and send the results to the state manager. The taskpool and
state manager are represented by Orc sites; the workers are represented by processes (ex-
pressions). This specification corresponds to the logical schema in Fig. 2 left and can be
formulated as follows:

system(TP,SM) £ workers(TP,SM)

237

workers(TP,SM) = |i:1<i<N:W;(TP,SM)
W;(TP,SM) & TP.get >tk> compute(tk) >r> SM.update(r) > W;(TP, SM)

2.2 Design 2: With Proxy

In this design, for each worker, W;, a proxy, proxy;, is interposed between it and the state
manager to allow accumulation of partial results before forwarding to the state manager.
A proxy executes a ctrlprocess in parallel with a commit process. The control process
receives from its worker, via a channel wc;, a result and stores it in a local state manager,
LSM,. Periodically, the commit process stores the contents of the LSM; in the global state
manager, SM. A control thread (and control process) is represented by a process; a local
state manager is a site. This corresponds to the schema in Fig. 2 right.

system(TP,SM,LSM) = prozies(SM,LSM) | workers(TP)
proxies(SM,LSM) £ |i:1<1i< N : proxy;(SM, LSM,)

proxy;(SM, LSM;) & ctriprocess;(LSM;) | commit(LSM;)
ctriprocess;(LSM;) & we;.get >r> LSM;.update(r) > ctriprocess;(LSM;)
commit;(LSM;) & Rtimer(t) > SM.update(LSM;) > commit;(LSM;)
workers(TP) = |i:1<i<N:W;(TP)

Wi(TP) & TP.get >tk> compute(tk) >r> we;.put(r) > W;(TP)

3 Communication Cost Analysis

A procedure is now introduced to determine the cost of an Orc expression evaluation in
terms of the communications performed to complete the computation modelled by the
expression.

First some basic assumptions concerning communications are made. It is assumed that
a site call constitutes 2 communications (one for the call, one for getting the ACK/result):
no distinction is made between transfer of “real” data and the ACK. It is also assumed that
an interprocess communication constitutes 2 communications. In Orc this is denoted by
a put and a get on a channel. (Note: although, in Orc, this communication is represented
by two complementary site (channel) calls, this exchange is not considered to constitute 4
communications.) Two cases for sequential composition with passing of a value may be
identified: site > x> site represents a local transfer of x (cf. a local variable) and so is
assumed not to represent a communication, while site > x> process, process > x> site
and process > x> process all constitute 2 communications. Finally, care must be taken
in treating communications that may overlap in a parallel computation. A simple and ef-
fective model is assumed: for Orc parallel commands the communication cost mechanism
should take into account the fact that communications happening “internally” to the par-
allel activities overlap while those involving shared external sites (or processes) do not.
Thus, when counting the communications occurring within an Orc expression such as:

Wi(TP) & TP.get >tk> compute(tk) >r> we;.put(r) > W;(TP)
a distinction is drawn between calls to site 7P which are calls to external, shared sites,
and calls to wc; which are related to internal sites. When assessing the calls related to the
execution of N processes W; computing M tasks, all the calls to 7T'P are counted while
it is assumed that the communications related to different wc; are overlapped. Therefore,
assuming perfect load balancing, the total will include M calls to TP and % calls to wc;.

238

To evaluate the number and nature of communications involved in the computation of
an Orc expression two steps are performed.

First the metadata associated with the Orc specification is determined. It is as-
sumed that the user has provided metadata stating placement of relevant sites/processes
as well as strategies to derive placement metadata for the sites/processes not explicitly
targeted in the supplied metadata (as discussed in previous work®). Thus, for the first
design given above, with initial metadata M = {(site, TP), (site, SM), (system,
strategy(FullyDistributed))}, the metadata

M = {{(site, TP), (site, SM), (TP, freshLoc(M)), (SM, freshLoc(M)),

(workers, freshLoc(M)) (worker;, freshLoc(M))}
can be derived, where freshLoc returns a resource name not previously used (thus im-
plementing the strategy(Fully Distributed) policy). The strategy FullyDistributed indi-
cates that all processes/sites should be placed on unique locations, unless otherwise stated
(by explicit placement). This metadata is ground as all sites and all non-terminals have as-
sociated locations. For details of metadata derivation see the CoreGRID technical report’.

The second step counts the communications involved in evaluation of the Orc specifi-
cation, following the assumptions made at the beginning of this Section.

Consider the first design above. In this case, assume N worker processes, computing
M tasks, with two sites providing the taskpool and the state manager (7P and SM). The
communications in each of the workers involve shared, non-local sites, and therefore the
total number of communications involved is 20 + 2M, the former term representing the
communications with the taskpool and the latter to those with the state manager. All these
communications are remote (as the strategy is FullyDistributed), involving sending and
receiving sites/processes located on different resources, and therefore are costed at r time
units. (Had they involved sites/processes on the same processing resources the cost would
have been [time units.) Therefore, the overall communication cost of the computation
described by the first Orc specification with M input tasks and NV workers is 4 Mr. This is
independent of N, as expected, as there are only communications related to calls to global,
shared sites.

For the version with proxy, there are N W, N ctriprocess; processes and N LSM,;
sites, plus the globally shared T'P and S M sites. Assume, from the user supplied metadata,
that each (ctriprocess;, LS M;) pair is allocated on the same processing element, distinct
from the processing element used for worker;, and that all these processing elements are in
turn distinct from the two used to host 7P and SM. (Again, see the CoreGRID technical
report’ for details of the metadata determination.) The communications involved in the
computation of M tasks are 2 non-local communications (those taking tasks out of the
TP), 2% non-local communications (those sending partial contributions to SM, assuming
k state updates are accumulated locally before invoking a global update on SM) and 2 x
2x % local communications (those performed by the ctriprocesses to get the result of W
computations and perform local LSM updates, assuming an even distribution of tasks to
workers). Therefore the cost of the computation described by the second Orc specification
with M input tasks and NV workers is 2Mr + QkM + %.

Now the two designs can be compared with respect to communications. Simple al-
gebraic manipulation shows that the second will “perform better”, that is will lead to a
communication profile costing fewer time units, if and only if £ > ﬁ That is, if and
only if the number of local state updates accumulated at the LS M;s before sending update

239

a Eclipse File Edit Source Refactor Navigate Search Project Rur

e 06 Java - DummyWorker.java - Eclipse
ORC (It L&) 0 Q- | BBHE- [SO |G- [IB]&-§ ¢
program

1] StateProxySite java ‘nl *DummySite java ‘

a public void run() {
while(true) {

Qo ;
SITE/PROCESS 1 maifi-., |

OrcMessage taskMsg = call(taskPool,new OrcMessage());
iF(taskMsg. isNu110))
stop();
"

launcher RTS user

OrcMessage answ = taskMsg;
M. upd

call(stateManager,answ);

Figure 3. Orc2Java compiler tool (left) and user code implementing a dummy worker process (right)

messages to SV is larger than one (typically [< 7). In Section 4 experimental results
that validate this statement are presented.

4 Automatic Distributed Code Framework Generation

To support experimentation with alternative orchestrations derived using the methodology
discussed above a tool for the generation of distributed Java code from an Orc specification
was developed (Fig. 3 (left)). Being a compiler producing actual Java distributed code, the
tool is fundamentally different from the Orc simulator provided by the Orc designers on
the Orc web page’.

In particular, the tool takes as input an Orc program (that is a set of Orc expression
definitions plus a target expression to be evaluated) and produces a set of Java code files
that completely implement the “parallel structure” of the application modelled by the Orc
program. That is, a main Java code is produced for each of the parallel/distributed entities
in the Orc code, suitable communication code is produced to implement the interactions
among Orc parallel/distributed entities, and so on. Orc sites and processes are implemented
by distinct JVMs running on either the same or on different machines and communications
are implemented using plain TCP/IP sockets. A “script” program is also produced that
takes as input a description of the target architecture (names of the nodes available, fea-
tures of each node, interconnection framework information, and so on) and deploys the
appropriate Java code to the target nodes and finally starts the execution of the resulting
distributed application.

The Java code produced provides hooks to programmers to insert the needed “func-
tional code” (i.e. the code actually implementing the sites for the computation of the
application results). The system can be used to perform fast prototyping of grid appli-
cations, and the parallel application skeleton is automatically generated without the need
to spend time programming all of the cumbersome details related to distributed application
development (process decomposition, mapping and scheduling, communication and syn-
chronization implementation, etc.) that usually takes such a long time. Also, the tool can
be used to run and compare several different skeletons, such that users may evaluate “in
the field” which is the “best” implementation.

Using the preliminary version of the Java code generator®, the performances of

“The authors are indebted to Antonio Palladino who has been in charge of developing the prototype compiler

240

the alternative designs of the application described in Section 2 were evaluated. Fig-
ure 3 (right) shows the code supplied by the user to implement a dummy worker pro-
cess. The method run of the class is called by the framework when the correspond-
ing process is started. The user has an OrcMessage call (String sitename,
OrcMessage message) call available to interact with other sites, as well as one-way
call mechanisms such as void send(String sitename, OrcMessage msg)
and OrcMessage receive (). If a site is to be implemented, rather than a pro-
cess, the user must only subclass the Site framework class providing an appropriate
OrcMessage react (OrcMessage callMsg) method.

Fig. 4 shows the results obtained when running several versions of the application,
automatically derived from the alternative Orc specifications previously discussed. The
version labelled “no proxy” corresponds to the version with a single, centralized state
manager site which is called by all the workers, while the version labelled “with proxy”
corresponds to the version where workers pass results to proxies for temporary storage,
and they, in turn, periodically call the global state manager to commit the local updates.
The relative placement of processes and sites is determined by appropriate metadata as
explained in previous sections. The code has been run on a network of Pentium based
Linux workstations interconnected by a Fast Ethernet network and running Java 1.5.0_06-
b05.

As expected, the versions with proxy perform better than the one without, as part of
the overhead deriving from state updates is distributed (and therefore parallelized) among
the proxies.

This is consistent

14

with what was pre- Design 1 (no proxy) ——
dicted in Section 3. On i Design 2 (with proxy) ——— |
the target architecture =

considered, values of § 10l X |
r = 653usecs and °

Il = 35usecs were ob- % gl]
tained and so the proxy 2

implementation is to g 6f 1
be preferred when k is 38

larger than 1.12 to 1.02 4r X 1
depending on the number

of workers considered 2 0 1 2 3 ‘4 5
(1 to 4, in this case). In #Workers

this experiment, LSM;

performed an average of Figure 4. Comparison among alternative versions of the grid application
2.5 local updates before ~ described in Section 3

calling the SM site to perform a global state update and therefore the constraint above
was satisfied.

5 Conclusions

The work described here shows how alternative designs of a distributed application
(schema) can be assessed by describing them in a formal notation and associating with

241

this specification appropriate metadata to characterise the non-functional aspect of inter-
est, in this case, communication cost. Cost estimations were derived that show that the
second implementation, the one including the proxy design pattern, should perform better
than the first one, in most cases. Then, using the prototype Orc compiler two versions
of the distributed application were “fast prototyped” and run on a distributed set of Linux
workstations. The times measured confirmed the predictions. Overall the whole proce-
dure demonstrates that 1) under the assumptions made here, one can, to a certain degree,
evaluate alternative implementations of the same application using metadata-augmented
specifications only, and in particular, without writing a single line of code; and 2) that the
Orc to Java compiler can be used to generate rapid prototypes that can be used to evaluate
applications directly on the target architecture.

Future work will involve 1) (semi-)automating the derivation of metadata from user-
specified input (currently a manual process) and 2) investigating the use of the framework
with a wider range of skeletons!?: experience suggests that skeletons potentially provide a
restriction from the general that may prove to be fertile ground for the approach.

References

1. Next Generation GRIDs Expert Group, NGG2, Requirements and options for Euro-
pean grids research 2005-2010 and beyond, (2004).

2. Next Generation GRIDs Expert Group, NGG3, Future for European grids: GRIDs
and service oriented knowledge utilities. Vision and research directions 2010 and
beyond, (2006).

3. R. Milner, Communicating and Mobile Systems: the Pi-Calculus, (Cambridge Uni-
versity Press, 1999).

4. J. Misra and W. R. Cook, Computation orchestration: a basis for wide-area comput-
ing, Software and Systems Modeling, DOI 10.1007/s10270-006-0012-1, (2006).

5. D. Kitchin, W. R. Cook and J. Misra, A language for task orchestration and its se-
mantic properties, CONCUR, in LNCS 4137, pp. 477-491. (Springer, 2006).

6. M. Aldinucci, M. Danelutto and P. Kilpatrick, Adding metadata to Orc to support
reasoning about grid programs, in: Proc. CoreGRID Symposium 2007, pp. 205-214,
Rennes (F), Springer, 2007. ISBN: 978-0-387-72497-3

7. M. Aldinucci, M. Danelutto and P. Kilpatrick, Prototyping and reasoning about
distributed systems: an Orc based framework, CoreGRID TR-0102, available at
www.coregrid.net, (2007).

8. M. Aldinucci, M. Danelutto and P. Kilpatrick, Management in distributed systems:
a semi-formal approach, in: Proc. Euro-Par 2007 — Parallel Processing 13th Intl.
Euro-Par Conference, LNCS 4641, Rennes (F), Springer, 2007.

9. W. R. Cook and J. Misra, Orc web page, (2007). http://www.cs.
utexas.edu/users/wcook/projects/orc/.

10. M. Cole, Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming, Parallel Computing, 30, 389406, (2004).

242

