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Abstract-Cone beam geometries are increasingly of 
interest for x-ray CT applications to improve imag- 
ing efficiency. In this paper, we describe our practi- 
cal experience implementing circular orbit cone beam 
backprojection on workstation clusters. The recon- 
struction problem is computationally intensive, par- 
ticularly for arrays of 512 voxels in each direction. A 
voxel driven approach is described where the recon- 
struction volume is partitioned into variable width 
slabs and each slab given to a workstation. Each pro- 
jection is filtered by one workstation and then sent 
to the others for backprojection. While most com- 
putation is done in the backprojection step, a signif- 
icant amount of time must be spent in sending pro- 
jectional data. A method is detailed to further re- 
duce the communication overhead by restricting the 
amount of projection sent to only what is required by 
each backprojecting workstation. Furthermore, if the 
shape of the backprojection slabs is made as square 
as possible, the total communication requirement can 
be minimized. By the reduction of communication re- 
quirement, an overall improvement in processor uti- 
lization was observed, and the crossover point where 
communications dominates was improved. 

Introduction 
Cone beam geometries are increasingly of interest for 

x-ray CT applications. The use of a cone beam geometry 
allows more efficient x-ray tube heat loading and simpler 
mechanics (rotate only). The Feldkamp [l] algorithm has 
been shown to provide superior resolution over both the 
Grangeat and VOIR methods [2]. Despite the incomplete 
sampling of the Feldkamp algorithm, it has been shown 
to  have good resolution for small cone angles. Because 
of the computational efficiency and high quality of recon- 
structions obtained in our laboratory 31, we have used 

quirements are particularly important in our work where 
we are interested in reconstructing arrays from 2563 to  
5123 voxels. 

We have developed a system for 3D cone beam 
computed tomography, consisting of a microfocus x-ray 
source and x-ray image intensifier coupled to  a CCD cam- 
era [3]. The application of the principles of CT at a mi- 
croscopic level, or microtomography, allows quantitative 
investigation of objects in three dimensions. The concept 
of microtomography has existed since the early develop- 
ment of CT [4, 51, however, only recently have practical 
systems been developed. Applications for this technology 
are primarily in the biological and material sciences. Vis- 
ibly opaque calcified tissues such as bones and teeth are 
an excellent match for x-ray microtomography systems 

the Feldkamp algorithm exclusively. d omputational re- 

and many investigations have been reported [6, 7, 8, 9, 
10, 111. Imaging applications in material microstructure 
have also been reported [12, 131. The full width at half 
maximum resolving power of our system has been exper- 
imentally measured to  be 70 pm when imaging 10 mm 
diameter objects. The 3D nature of the resulting im- 
age data can be used to  visualize internal structure and 
compute parameters such as volume, surface area, and 
surface/volume orientation. 

The large computation time for reconstruction algo- 
rithms is the major factor limiting reconstruction size. 
Dedicated hardware implementations have been proposed 
[14, 15, 16, 17, 18, 19, 20, 21, 22, 231. A dedicated hard- 
ware chip for backprojection has been recently developed 
which can backproject a 512 x 512 image in 4 seconds 
[16]. Many of these chips can be used in parallel to  fur- 
ther reduce reconstruction times. It is doubtful if any 
of these systems are currently in use, either because of 
newer hardware solutions, or the hardware is not yet fully 
integrated. Furthermore, none of these systems was de- 
veloped for cone beam tomography. Another drawback 
to  a dedicated hardware system is the relatively low mar- 
ket demand and the lack of scalability of such a system. 
Another active area of research has been in the area of 
employing commercially available parallel systems to the 
reconstruction problem. Several investigators have evalu- 
ated the Transputer [24, 25, 26, 27, 281. The MasPar has 
been used [29, 30, 311. One investigator used a Cray-1 
[32]. The iPSC/2 has been used [33, 34, 35, 361. Still 
others have used other specialized multiprocessors [37, 
38, 39, 401. Parallel efficiencies of greater than 88% have 
been reported [33]. These systems require a large invest- 
ment ($50,000 - $300,00) compared with general purpose 
workst at ions. 

Our previous work has shown greater than 80% pro- 
cessor utilization when reconstructing a 2563 volume from 
100 views of 256?- pixels each by balancing load amon 
workstations [41]. We improved this to  greater than 9 
processor utilization by performing asynchronous com- 
munication [42]. We have used a voxel driven approach 
where the reconstruction volume is partitioned into vari- 
able width slabs and each slab given to  a WO 
Each projection is filtered by one workstation 
sent to  the others for backprojection. 

In this paper, we describe our practical experience im- 
plementing circular orbit cone beam backprojection. Re- 
sults using clusters of workstations and SMP’s have been 
obtained. We have used MPI [43] as the parallel com- 
puting library. In particular, we detail a method to  fur- 
ther reduce the communication overhead by restricting 
the amount of projection sent to  only what is required 
by each backprojecting workstation. Furthermore, if the 
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shape of the backprojection slabs is made as square as 
possible, the total communication requirement can be 
minimized. 
Methods 

The cone beam tomography problem has a high degree 
of independent operations, and is therefore well suited to  
parallel implementations. The major nontrivial aspect of 
the problem is the data sizes needed. An acquisition can 
be as large as 800 views of 5122 16 bit integer images. 
These projectional images are used to create a volumet- 
ric data set on the order of 5123 32 bit floating point 
voxels. The use of 32 bit floating point voxels is required 
to provide sufficient accuracy in the result. The memory 
requirement to store the entire 5123 32 bit volume is 512 
MB, which is at the upper limit of available memory on 
most tightly coupled parallel systems currently available. 
However, dividing this memory among 16 workstations 
requires only 32 MB per workstation. The large amount 
of memory must be considered in the implementation. 

A voxel driven approach taken was used, where the 
volume is distributed over several workstations and each 
view is sent to the voxel workstations. Each workstation 
sees every projection, but only a small1 subset of the re- 
constructed voxels. The voxel driven Epeldkamp algorithm 
can be pseudo-coded as 

1 Initialize each PE 
2 
3 Partition and allocate memory 
4 Allocate memory 
5 Precomputation of weights 
6 
7 if (PE is ROOT) 
8 Read Projection 
9 Weight and Filter Projection 
10 Broadcast Projection Pl(u,  U) 
11 Backproject Projection 
12 Gather Reconstructed Voxels on ROOT PE 
where each workstation is represented by a processing 
element (PE).  The total memory required for this imple- 
mentation is approximately equal to ithe total number of 
voxels. One advantage of this method is that  the data is 
acquired in a serial fashion and processing could be done 
in concert with acquisition. 

While most computation is done in the backprojec- 
tion step, a significant amount of time must be spent 
in broadcasting the projection. Overlapping computa- 
tion and communication allows higher utilization for low 
numbers of processors. Because the communication time 
only increases and backprojection time decreases as the 
number of PE's increase, eventually there comes a point 
where communication time dominates. This is a func- 
tion of both the communication channel speed and total 
computational power. 

By partitioning the volume into slabs, one really only 
needs to be concerned with the projection of the slab. 
There is much wasted communications when a full pro- 
jection is sent, and only a portion is used. By restrict- 
ing the communication to  send only the portion of the 
physical projection which is required, this waste can be 
avoided, as shown in Figure 1. The extent of the projec- 
tion required to backproject into the subvolume can be 
computed by taking the minimum and maximum of the 
horizontal positions where the four corners of the subvol- 
ume project. 

Read and Broadcast problem specifications 

for each 13 (Ne views): 

A further reduction in communication can be made if 
the slabs are made as close to  squares as possible. This 
minimizes the total projection over all angles, and there- 
fore minimizes the communication requirement. Again, 
only a piece of the projection is needed in the reconstruc- 
tion. Partitions can be made squarer by combining adja- 
cent slabs and re-dividing perpendicular to  their original 
cuts as long as increasing the size improves the overall 
squareness, as shown in Figure 2. 

Figure 1: Reconstruction Column Projection. A column of 
data in the reconstruction volume projects only on a subset 
of each projection. By changing from slabs to columns and 
sending the required data, a significant reduction in the com- 
munications can be made. 

...................................... 

...................................... --IE ...................................... 

Figure 2: Squarish Partitioning of Reconstruction Volume. 
The overall squareness of the partitioned subvolumes is im- 
proved, reducing the total communications requirements. An 
example of repartitioning the zy plane is shown. 

To help solve the problem of portability of parallel 
programs, a group of computer vendors, software engi- 
neers, and parallel applications scientists developed the 
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Message Passing Interface (MPI) Library. The MPI li- 
brary, or simply MPI, was designed to take the useful 
feature of other parallel libraries and provide a common 
programming interface. The portability of this library 
allows excellent support for comparisons among various 
hardware architectures and between hardware architec- 
tures and theoretic models. The goal of MPI was to  define 
precise semantics and bindings to allow third party imple- 
mentation of the standard. The extensibility of the stan- 
dard allows future improvements. The Feldkamp algo- 
rithm was implemented using the freely available MPICH 
implementation of MPI. 
Results 

A volume of 2563 was reconstructed from 200 views 
of 680 x 572 pixels each. A slab of memory is allocated 
to  each processor as shown in Figure 3. The root node 
provides all the filtering of the projections and writing 
of the final result. Computations were done on a DEC 
Alphaserver 2000 41233. This machine is an SMP with 2 
processors, 256 MB of RAM, and a 2 GB disk. The serial 
version ran in 1713.3 seconds and the parallel version ran 
in 1063.2 seconds. The speedup is therefore 1.61 and the 
efficiency is 80.6%. Using this architecture, it is feasible 
to  reconstruct large volumes in reasonable times. 

Discussion 
Making the slabs as square as possible further reduces 

the overhead compared to long and narrow slabs. How- 
ever, optimal packing of squares is related to  other pack- 
ing problems which have been shown to be unsolvable 
in polynomial time. Our partitioning method should be 
useful in other 3D imaging applications such as volume 
rendering. The partitioning presented is also applicable 
to  pixel driven planar tomography. 

A future goal is to  fully develop a theoretic model 
of the voxel and ray driven backprojection algorithms. 
A comparison of theory with actual timings would give 
insight into architecture specific problems one may en- 
counter on various systems. 
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