
PARALLEL COMPUTING OF OVERSET GRIDS FOR
AERODYNAMIC PROBLEMS WITH MOVING OBJECTS

20000608 099

By

NATHAN C. PREWITT

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1999

DTXC QUALITY BJSK3CTED 4

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per respon
gathering and maintaining the data needed, and completing and reviewing the collection of informi
collection of information, including suggestions for reducing this burden, to Washington Headquart
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Bm

AFRL-SR-BL-TR-00-
18

I data sources,
■ aspect of this
1215 Jefferson
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1999

REPORT TYPE AND DA I to

Final Technical Report 1 Aug 95 to 31 Jul 99

4. TITLE AND SUBTITLE

Parallel Computing of Overset Grids for Aerodynmaic Problems with Moving Objects

6. AUTHOR(S)

Nancy C. Prewitt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Florida
Department of Aerospace Engineering, Mechanics & Engineering Science

231 Aerospace Bldg
Gainesville, FL 32611-6250

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
801 N. Randolph St, Rm 732
Arlington, VA 22203-1977

5. FUNDING NUMBERS

F49620-c")?-j'00i-l^

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-9£-/^a^2-

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBLITION CODE

13. ABSTRACT (Maximum 200 words)^ ^

When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces
and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage
to the aircraft anderidanger the life of the crew. Therefore, store separation analysis is used to certify the safety of any
proposed drop. This analysis is often based on wind tunnel aerodynamic data or analogy with flight test data from similar
configurations. Time accurate computational fluid dynamics (CFD) offers the option of calculating store separation

trajectories from first principles.
In the Chimera grid scheme a set of independent, overlapping, structured grids are used to decompose the domain of interest.
This allows the use of efficient struc-tured grid flow solvers and associated boundary conditions, and allows for grid motion
without stretching or regridding. However, these advantages are gained in exchange for the requirement to establish
communication links between the overlapping grids via a process referred to as "grid assembly."

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18 _ „ „.
Designed using Perform Pro, WHS/DIOR, Oct 94

Happy is the man that findeth wisdom, and the man that getteth under-
standing.

Proverbs 3:13

v?gg%?0^'%

ACKNOWLEDGEMENT

Where no counsel is, the people fall: but in the multitude of counselors
there is safety.

Proverbs 11:14

That said, I would like to thank my counselors. Dr. Wei Shyy has been an

excellent advisor, always enthusiastic and willing to help in anyway possible. Likewise,

Dr. Davy Belk has always been encouraging and supportive of my work. I am glad to

be able to count them both as friends, as well as mentors. I would also like to thank

the rest of my committee, Dr. Bruce Carroll, Dr. Chen Chi Hsu, and Dr. B. C. Vemuri.

They have all been my allies.

I also want to thank Dr Milton, who was the head of the GERC when I started

this endeavor, and Dr Sforza, who is now head of the GERC, and whom I have gotten

to know better through AIAA. And since I am mentioning the GERC, thanks go to

Cathy and Judy. I must also thank Mr. Whitehead, who has been my manager and an

excellent supporter (even if he is an Alabama fan), since I came to work for QuesTech

and now CACI. And, let me not forget Dr. Darryl Thornton (it gets worse, he's an

Ole Miss grad), who has been my department director for many years now.

I have been very fortunate to receive funding from AFOSR. Without this funding

and the time it allowed me away from my other task duties, I am sure that I would not

have been able to complete my degree. I would like to thank everyone that helped to

obtain this funding including Mr. Jim Brock and Maj. Mark Lutton of the Air Force

Seek Eagle Office, and Mr. Dave Uhrig.

To be nice and legal, support was provided in part by a grant of HPC time from

the DoD HPC Distributed Center, U.S. Army Space and Strategic Defense Command,

iii

SGI Origin 2000. Additional support was provided by the Air Force Office of Scientific

Research, Air Force Materiel Command, USAF, under grant number F499620-98-1-

0092. The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the author and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or

implied, of the Air Force Office of Scientific Research or the U.S. Government.

I hope that my presentation clearly shows which part of this work is my own.

The original development of the Beggar code, including the unique algorithms for

grid assemly, was done by Dr. Davy Belk and Maj. Ray Maple. The original work

done to parallelize the Beggar flow solver was done by Dr. Davy Belk and Mr. Doug

Strasburg. I owe a large debt to these gentlemen. There are now two others that

continue the development of Beggar. Dr. Ralph Noack has been a tremendous asset

to our group and has been most helpful in my work. It is from Ralph that I learned

of the latency issues associated with the Origin 2000 and Ralph is the author of the

load balancing algorithm used to distribute the grids in order to load balance the

flow solver. Dr. Magdi Rizk came to Eglin at the same time that I did and we have

worked together since. Magdi has been the sole developer of the Beggar flow solver

for several years and has made significant contributions in that area. Magdi has also

been my teacher at the GERC and a great friend. I would like to thank my other

friends and colleagues and hope they will accept this thank you en masse.

Most importantly, I would like to thank my family. My in-laws have been very

helpful (during births and hurricanes, pouring the patio and eating at Hideaway's)

and have always been willing to take the wife and kids when I really needed to study

(sometimes for weeks). My parents have always been supportive in innumerable ways,

from driving for hours and then sitting in the car for hours at honor band tryouts,

to attending MSU football games just to see the halftime show, to buying a house

for us when Tracye and I got married in the middle of college, to doing my laundry

iv

and fixing the brakes on the car over the weekend so I could get back to school. My

brother Stephen has been a lot of help to my parents the last few years. Taking

care of them is something that I don't think I could do. Jay and Josh are too much

like me at times; but they are welcomed diversions and are stress relievers (our dog,

Dudy Noble Polk, also fits into this category). And Tracye is a wonderful person. My

roommate in college once said, "You are very lucky. You've found someone that you

love, who is also a friend." She puts up with a lot. I am no picnic. We spent a lot of

time apart during this, and I always get depressed whenever they are gone for a long

time. Some of her bulldog friends, that she talks to over the internet, asked "How do

you live with someone that is so positive all of the time?" "Who Tracye?", I replied.

"No..., it's great!"

TABLE OF CONTENTS

page

ACKNOWLEDGEMENT Hi

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT xii

CHAPTERS

1 Introduction 1
Overview 1
Related Work 7

Grid Assembly 7
Store Separation 9
Parallel Computing 14

Dissertation Outline 16

2 Grid Assembly 18
Polygonal Mapping Tree 19
Interpolation Stencils 22
Hole Cutting 25
Donors and Receptors 26
Boundary Condition Identification 27

3 Flow Solution 28
Governing Equations 28
Vector Form 33
Non-Dimensionalization 35
Coordinate Transformation 37
Flux Vector Splitting 40
Flux Difference Splitting 45
Newton Relaxation 47
Fixed-Point Iteration 48
Parallel Considerations 50

VI

4 6DOF Integration 52

Equations of Motion 52
Coordinate Transformations 54
Quaternions 57
Numerical Integration 60

5 Parallel Programming 62
Hardware Overview 62
Software Overview 64
Performance 68
Load Balancing 73
Proposed Approach 79

6 Parallel Implementations 81
Phase I: Hybrid Parallel-Sequential 81
Phase II: Function Overlapping 83
Phase III: Coarse Grain Decomposition 88
Phase rV: Fine Grain Decomposition • • 92
Summary 97

7 Test Problem 98

8 Results 106

Phase I: Hybrid Parallel-Sequential 106
Phase II: Function Overlapping 108
Phase III: Coarse Grain Decomposition 113
Phase rV": Fine Grain Decomposition 121
Summary 132

9 Conclusions and Future Work 135

BIOGRAPHICAL SKETCH 145

Vll

LIST OF TABLES

Table page

1.1 Grid assembly codes 8
1.2 Store separation modeling methods 10
1.3 Grid generation methods 12
1.4 Significant accomplishments in parallel computing in relation to overset

grid methods 17

6.1 Summary of the implementations of parallel grid assembly 97

7.1 Store physical properties 99
7.2 Ejector properties 99
7.3 Original grid dimensions 100
7.4 Dimensions of split grids 101
7.5 Load Imbalance Factors 102
7.6 Summary of the final position of the stores calculated from the two

different grid sets 103

8.1 Summary of results from the phase I runs including the final position
of the bottom store 107

8.2 Summary of results from the phase II runs including the final position
of the outboard store 113

8.3 Summary of results from the phase III runs including the final position
of the inboard store 121

8.4 Summary of results from the runs that used fine grain hole cutting
including the final position of the bottom store 132

8.5 Summary of best execution times (in minutes) from runs of the different
implementations (number of FE processes shown in parentheses) . . . 133

vin

LIST OF FIGURES

Figure page

1.1 History of three store ripple release 1
1.2 Solution process 4
1.3 Example of overlapping grids with holes cut 5
1.4 Grids for single generic store trajectory calculation 13
1.5 Mach 0.95 single store trajectory calculated (left) CG position and

(right) angular position versus wind tunnel CTS data . 13
1.6 Mach 1.20 single store trajectory calculated (left) CG position and

(right) angular position versus wind tunnel CTS data 14

2.1 Example quad tree mesh 21
2.2 Example PM tree structure 22

4.1 Transformation from global to local coordinates 55

5.1 Unbalanced work load 71
5.2 Limitations in load balance caused by a poor decomposition 72
5.3 Imbalance caused by synchronization 73

6.1 Phase I implementation 82
6.2 Comparison of estimated speedup of phase I to Amdahl's law 83
6.3 Basic flow solution algorithm 85
6.4 Phase II implementation 86
6.5 Insufficient time to hide grid assembly 87
6.6 Comparison of estimated speedup of phases I and II . 88
6.7 Duplication of PM tree on each FE process 90
6.8 Distribution of PM tree across the FE processes 91
6.9 Phase III implementation 92
6.10 Comparison of the estimated speedup of phases I, II, and III 93

6.11 Phase rV implementation 95
6.12 Comparison of estimated speedup of phases I, II, III and IV 96

7.1 Bottom store (left) CG and (right) angular positions 104
7.2 Outboard store (left) CG and (right) angular positions 105
7.3 Inboard store (left) CG and (right) angular positions 105

8.1 Actual speedup of phase I 107

ix

8.2 Bottom store (left) force coefficient and (right) moment coefficient vari-
ation between dt iterations history 108

8.3 Outboard store (left) force coefficient and (right) moment coefficient
variation between dt iterations history 109

8.4 Inboard store (left) force coefficient and (right) moment coefficient vari-
ation between dt iterations history 109

8.5 Actual speedup of phase II Ill
8.6 Effect of using average execution time 112
8.7 Actual speedup of phase III 114
8.8 History of grid assembly load imbalance based on execution times of

hole cutting, stencil search, and health check 115
8.9 Grid assembly process 117
8.10 History of grid assembly load imbalance based on execution time of

the stencil search 117
8.11 Grid assembly execution timings for four FE processes 118
8.12 Grid assembly execution timings of (left) hole cutting and (right) sten-

cil searching with load balance based on measured execution time of
stencil searching. Each curve represents a separate process 119

8.13 History of grid assembly load imbalance based on number of IGBP's . 120
8.14 Grid assembly execution timings of (left) hole cutting and (right) sten-

cil searching with load balance based on number of IGBP's. Each curve
represents a separate process 121

8.15 Speedup due to fine grain hole cutting and load balancing of hole cut-
ting separate from the stencil search 123

8.16 Grid assembly execution timings of (left) hole cutting and (right) sten-
cil searching with fine grain hole cutting and the stencil search load
balanced based on execution time. Each curve represents a separate
process 124

8.17 Grid assembly execution timings of (left) hole cutting and (right) sten-
cil searching with fine grain hole cutting and the stencil search dis-
tributed across 5 FE processes. Each curve represents a separate process. 125

8.18 Grid assembly execution timings of (left) hole cutting and (right) sten-
cil searching with fine grain hole cutting and the stencil search dis-
tributed across 6 FE processes. Each curve represents a separate process. 126

8.19 Grid assembly execution timings of (left) hole cutting and (right) sten-
cil searching with fine grain hole cutting and the stencil search dis-
tributed across 7 FE processes. Each curve represents a separate process. 126

8.20 Grid assembly execution timings of (left) hole cutting and (right) sten-
cil searching with fine grain hole cutting and the stencil search dis-
tributed across 8 FE processes. Each curve represents a separate process. 127

8.21 Use of additional processors continues to reduce time for hole cutting 128
8.22 Execution times for load balanced fine grain hole cutting distributed

across 4 FE processes 129
8.23 Execution times for load balanced fine grain hole cutting distributed

across 5 FE processes 130

8.24 Execution times for load balanced fine grain hole cutting distributed
across 6 FE processes 130

8.25 Execution times for load balanced fine grain hole cutting distributed
across 7 FE processes 131

8.26 Execution times for load balanced fine grain hole cutting distributed
across 8 FE processes 131

8.27 Summary of the increasing speedup achieved through the different im-
plementations 134

XI

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

PARALLEL COMPUTING OF OVERSET GRIDS FOR
AERODYNAMIC PROBLEMS WITH MOVING OBJECTS

By

Nathan C. Prewitt

December 1999

Chairman: Dr. Wei Shyy
Major Department: Department of Aerospace Engineering, Mechanics,
and Engineering Science

When a store is dropped from a military aircraft at high subsonic, transonic,

or supersonic speeds, the aerodynamic forces and moments acting on the store can

be sufficient to send the store back into contact with the aircraft. This can cause

damage to the aircraft and endanger the life of the crew. Therefore, store separation

analysis is used to certify the safety of any proposed drop. This analysis is often

based on wind tunnel aerodynamic data or analogy with flight test data from similar

configurations. Time accurate computational fluid dynamics (CFD) offers the option

of calculating store separation trajectories from first principles.

In the Chimera grid scheme, a set of independent, overlapping, structured grids

are used to decompose the domain of interest. This allows the use of efficient struc-

tured grid flow solvers and associated boundary conditions, and allows for grid motion

without stretching or regridding. However, these advantages are gained in exchange

for the requirement to establish communication links between the overlapping grids

via a process referred to as "grid assembly."

xii

The calculation of a moving body problem, such as a store separation trajec-

tory calculation, using the Chimera grid scheme, requires that the grid assembly be

performed each time that a grid is moved. Considering the facts that time accurate

CFD calculations are computationally expensive and that the grids may be moved

hundreds of times throughout a complete trajectory calculation, a single store trajec-

tory calculation requires significant computational resources.

Parallel computing is used regularly to reduce the time required to get a CFD

solution to steady state problems. However, relatively little work has been done to use

parallel computing for time accurate, moving body problems. Thus, new techniques

are presented for the parallel implementation of the assembly of overset, Chimera

grids.

This work is based on the grid assembly function defined in the Beggar code,

currently under development at Eglin Air Force Base, FL. This code is targeted at

the store separation problem and automates the grid assembly problem to a large

extent, using a polygonal mapping (PM) tree data structure to identify point/volume

relationships.

A logical succession of incremental steps are presented in the parallel implemen-

tation of the grid assembly function. The parallel performance of each implementation

is analyzed and equations are presented for estimating the parallel speedup. Each

successive implementation attacks the weaknesses of the previous implementation in

a effort to improve the parallel performance.

The first implementation achieves the solution of moving body problems on mul-

tiple processors with minimum code changes. The second implementation improves

the parallel performance by hiding the execution time of the grid assembly function

behind the execution time of the flow solver. The third implementation uses coarse

grain data decomposition to reduce the execution time of the grid assembly func-

tion. The final implementation demonstrates the fine grain decomposition of the grid

assembly through the fine grain decomposition of the hole cutting process. Shared

xm

memory techniques are used in the final implementation and appropriate dynamic

load balancing algorithms are presented.

xiv

CHAPTER 1
INTRODUCTION

The knowledge of forces and moments induced by the addition of stores to an

aircraft is vital for safe carriage. Once a store is released, knowledge of the interference

aerodynamics and the effects on the trajectory of the store is vital for the safety of the

pilot and aircraft. Such aerodynamic data has traditionally been provided by wind

tunnel testing or flight testing; however, these techniques can be very expensive and

have limitations when simulating time accurate, moving body problems such as the

ripple release depicted in figure 1.1. Computational Fluid Dynamics (CFD) provides

a way to supplement wind tunnel and flight test data.

Figure 1.1: History of three store ripple release

Overview

The primary problem to be considered is store separation from fighter aircraft

configurations. The goal is to compute store separation trajectories in a timely fashion

using CFD and parallel computing. Due to the geometric complexity of aircraft/store

configurations and the requirement to handle moving body problems, the Chimera

grid scheme [1] is being used. This approach uses a set of overlapping structured

grids to decompose the domain of interest. The Chimera grid scheme offers several

advantages: 1) the use of structured grids allows the use of efficient block structured

grid flow solvers and the associated boundary conditions; 2) the generation of over-

lapping grids which best fit a particular component geometry eases the burden of

structured grid generation; and 3) the use of interpolation for communication be-

tween overlapping grids allows grids to be moved relative to each other. However,

the communication between overlapping grids must be reestablished whenever a grid

is moved. This process of establishing communication between overlapping grids will

be referred to as grid assembly.

Whenever the grid around a physical object overlaps another grid, there is the

probability that some grid points will lie inside the physical object and thus will be

outside of the flow field. Even if no actual grid points lie inside the physical object,

if a grid line crosses the physical object, there will be neighboring grid points that

lie on opposite sides of the physical object. Any numerical stencil that uses two

such neighboring grid points will introduce errors into the solution. This situation

is avoided by cutting holes into any grids overlapping the physical surfaces of the

geometry.

During hole cutting, regions of the overlapping grids are marked as invalid. This

creates additional boundaries within the grid system. The flow solver requires that

some boundary condition be supplied at these boundaries. Likewise, some boundary

condition is also needed at the outer boundaries of embedded grids. Collectively, the

grid points on the fringe of the holes and the grid points on the outer boundaries of

the embedded grids are referred to as Inter-Grid Boundary Points (IGBP's) [2]. The

boundary conditions required at the IGBP's are supplied by interpolating the flow

solution from any overlapping grids.

The Beggar code [3], developed at Eglin Air Force Base, is capable of sov-

ing three-dimensional inviscid and viscous flow ploblems involving multiple moving

objects, and is suitable for simulating store separation. This code allows blocked,

patched, and overlapping structured grids in a framework that includes grid assem-

bly, flow solution, force and moment calculation, and the integration of the rigid body,

six degrees of freedom (6D0F) equations of motion. All block-to-block connections,

patched connections, freestream boundary conditions, singularity boundary condi-

tions, and overlapped boundaries are detected automatically. All holes are defined

using the solid boundaries as cutting surfaces and all required interpolation stencils

are calculated automatically. The integration of all necessary functions simplifies the

simulation of moving body problems [4]; while the automation and efficient imple-

mentation of the grid assembly process [5] significantly reduces the amount of user

input and is of great benefit in a production work environment.

The basic solution process consists of an iterative loop through the four func-

tions shown in figure 1.2. The blocked and overset grid system is first assembled.

Once this is done, the flow solution is calculated in a time-accurate manner. Aerody-

namic forces and moments are then integrated over the grid surfaces representing the

physical surfaces of the moving bodies. The rigid body equations of motion are then

integrated with respect to time to determine the new position of the grids considering

all aerodynamic forces and moments, forces due to gravity, and all externally applied

forces and moments (such as ejectors).

Multiple iterations of this loop are required to perform a complete store sep-

aration trajectory calculation. The accuracy of the trajectory predicted from the

itegration of the equations of motion is affected by the time step chosen; however,

stability contraints on the flow solver are normally more restrictive. In typical store

separation calculations, the time step has been limited to 0.1-1.0 milli-second; thus,

hundreds or even thousands of iterations are often required.

As the complexity of flow simulations continues to increase it becomes more

Grid Assembly -^

Flow Solution

I
Forces & Moments

Yes

6D0F Integration

Figure 1.2: Solution process

critical to utilize parallel computing to reduce solution turnaround times. The parallel

implementation of the Beggar flow solver was first presented in reference [6]. This

flow solver uses a finite volume discretization and flux difference splitting based on

Roe's approximate Riemann solver [7]. The solution method is a Newton-Relaxation

scheme [8]; i.e. the discretized, linearized, governing equations are written in the form

of Newton's method and each step of the Newton's method is solved using symmetric

Gauss-Seidel (SGS) iteration. The SGS iterations, or inner iterations, are performed

on a grid by grid basis; while the Newton iterations, or dt iterations, are used to

achieve time accuracy and are performed on all grids in sequence. In this reference,

the separate grids are used as the basis for data decomposition. The grids, which

represent separate flow solution tasks, are distributed across multiple processors and

the flow solver is executed concurrently. The only communication between processes

is the exchange of flow field information at block-to-block, patched, and overlapped

boundaries between dt iterations. The grid assembly is performed only once and thus,

only static grid problems axe addressed.

It is also desireable to utilize parallel computing to reduce the turnaround time

of moving body problems such as the ripple release configuration. In order to do so,

the grid assembly function must be executed each time grids are moved. An efficient,

scalable parallel implementation of any process requires that both the computation

and the required data be evenly distributed across the available processors while

minimizing the communication between processors. The movement of the grids and

the time variation in the holes being cut, as illustrated in figure 1.3 indicates the

dynamic and unstructured nature of the grid assembly work load and data structures.

This makes an efficient implementation a challenging task.

Figure 1.3: Example of overlapping grids with holes cut

Thus, the primary focus of this work is the parallel implementation of the grid

assembly function so that store separation trajectories can be calculated using time-

accurate CFD and parallel computers. A logical succession of incremental steps is

used to facilitate the parallel implementation of the grid assembly function. The initial

implementation (phase I) uses a single process to perform the entire grid assembly in

a serial fashion with respect to the parallel execution of the flow solver. This requires

that proper communication be established between the flow solution function and

the grid assembly friction; however, it does not require any consideration of load

balancing or partitioning of the grid assembly function. The grid assembly function

is not accelerated, but the flow solution is.

. In the second implementation (phase II), parallel efficiency is gained by over-

lapping the grid assembly function and the flow solution function. This overlapping

of work is possible because of the use of the Newton-Relaxation method within the

flow solver. Each step of the approximate Newton's method produces an approxi-

mation to the flow solution at the next time step. Approximate aerodynamic forces

and moments are calculated from the flow solution after the first Newton step and

are used to drive the grid assembly function, while additional Newton steps are being

calculated to achieve time accuracy.

As long as there is sufficient time to hide the work of the grid assembly function,

the speedup is affected only by the performance of the flow solver. However, as the

processor count increases, the time of the flow solution available to hide the grid

assembly decreases and the rate of change of speedup with respect to processor count

decreases. Therefore, it is important to distribute the work of the grid assembly

function to make the entire process scalable to higher processor counts.

The third implementation (phase III) uses data decomposition of the grid assem-

bly function to reduce its execution time and thus allows the grid assembly time to be

more easily hidden by the flow solution time. The basis for the data decomposition

is the superblock, which is a group of grids that contain block-to-block connections

and are overlapped with other superblocks. In this implementation, the work and

data structures associated with a superblock are distributed over multiple processors.

Dynamic load balancing is used to improve the performance by moving superblocks

between processes.

The relatively small number of superblocks used in most problems places a limit

on the number of processors that can be effectively utilized. Thus, in order to improve

scalability, the fourth implementation (phase IV) uses a fine grain decomposition of

the work associated with grid assembly. The work of the grid assembly function can

be associated with the facets that cut holes into overlapping grids and the cell centers

7

that require interpolation. Therefore, the hole cutting facets and the IGBP's form

the basis for the fine grain distribution of the work associated with grid assembly.

This dissertation gives complete details of the implementation options for in-

cluding the grid assembly function into the parallel execution of moving body CFD

computations. Each implementation builds upon the previous implementation, at-

tacking the limitations in order to improve performance. Details of the performance

analysis are included. Equations for estimating the performance are also presented.

With practical experience and some further development, these implementations and

performance estimators could offer optimum execution guidelines for particular prob-

lems.

Related Work

Grid Assembly

Table 1.1 lists some of the codes that are currently available for assembling over-

set grid systems. Some of the advantages and disadvantages of each code are listed.

Since the author is not completely familiar with the operation of all of these codes,

some of the disadvantages (or advantages) may only be perceived. In general, finding

the root cause of a failure in the grid assembly process is a difficult task. Therefore,

it is a disadvantage of overset grids in general and is not listed as a disadvantage

for any of the codes although some of the codes provide better aids for debugging

than do others. Likewise, the use of orphan points (points that fail to be properly

interpolated and are given averaged values from neighbors) can help to ensure that

grid assembly does not fail. However, orphan points are not listed as an advantage

for any code since they can adversely affect the flow solution.

PEGSUS [9] is the first and one of the more widely used codes for handling

the grid assembly problem. It relies on a set of overlapping grids (block-to-block

connections are not allowed). PEGSUS is completely separate from any flow solver

Table 1.1: Grid assembly codes

Code Advantage Disadvantage

PEGSUS First code; large user base Slow; requires alot of user
input

DCF3D Fast; large user base; well
supported

Requires significant user
input

CMPGRD Modern programming
techniques; well defined
algorithms

Not widely distributed

BEGGAR Automated grid assembly;
allows block-to-block con-
nections; small user input
geared toward production
work environment; complete
flow solution environment

Slower than DCF3D; mono-
lithic code; limited user
base; has difficulties with
overset viscous grids

but will produce interpolation information for either finite difference or finite volume

flow solvers. The amount of user input required is often rather large: each hole cutting

surface has to be identified, all overlapping boundaries must be identified, and a set

of links must be specified to tell the code which grids to cut holes into and where to

check for interpolation coefficients.

DCF3D (Domain Connectivity Function) [2] is another code used to accomplish

the grid assembly task. DCF3D is not coupled directly with any flow solver but

it has been used extensively with the OVERFLOW flow solver [10]. DCF3D uses

several alternative approaches in order to improve the efficiency of the grid assembly

process. DCF3D uses analytic shapes for hole cutting which allows grid points to

be compared directly to the hole cutting surface. It also uses Cartesian grids, called

inverse maps, to improve the efficiency of selecting starting points for the search for

interpolation stencils. These techniques improve the efficiency of the grid assembly

process; however, an additional burden is placed on the user to define the analytical

shapes and the extent and density of the inverse maps.

More recently, improvements to DCF3D have been proposed in order to reduce

the burden placed on the user. These improvements include the use of hole-map tech-

9

nology and the iterative adjustment of the connectivity information [11]. Hole-map

technology uses Cartesian grids to map the hole cutting surfaces in an approximate,

stair stepped fashion. This would allow the automatic creation of the hole cutting

surfaces and an efficient means of identifying hole points. The iterative process of ad-

justing the connectivity information by expanding and contracting the holes in order

to minimize the overlap between grids also offers benefits.

Yet another code that addresses the grid assembly problem is CMPGRD [12].

This code is an early version of the grid assembly process that has been included in

OVERTURE [13]. This tool does not appear to be highly optimized; moreover, its

strengths seem to be in its well defined algorithms for the grid assembly process. The

algorithms can produce minimum overlap between grids and other quality measures

are considered in the donor selection process.

In comparison to the above mentioned codes, Beggar is unique in that its devel-

opment has been geared towards the store separation problem and a production work

environment. As such, Beggar attempts to automate the entire solution process while

reducing the burden of input that is placed on the user. Beggar also uses unique data

structures and algorithms in order to maintain the efficiency of the grid assembly

process.

Store Separation

Table 1.2 lists some of the techniques that have been used to calculate store sep-

aration trajectories. Some of the advantages and disadvantages from each technique

are listed. The techniques range from simple curve fits of data from similar configu-

rations, to wind tunnel experimental methods, to the calculation of the complete flow

field from first principles.

Engineering level methods (see [14] for example) derive aerodynamic data from

data bases of experimental data, simple aerodynamic correlations, and panel meth-

ods with corrections for nonlinear effects such as vortical flow. Such methods are

10

Table 1.2: Store separation modeling methods

• Method Advantage Disadvantage

Engineering
Level Methods

Computationally inexpen-
sive; provide quick data for
preliminary design

Limited applicability

Captive Trajec-
tory Support

Wind tunnel accuracy of
flow phenomenon

Limited range of motion;
quasi-steady; high cost; tun-
nel interference

Influence Func-
tion Method

Fast solution allows sta-
tistical investigation of
trajectories

Mutual interference effects
can be lost

Computational
Fluid Dynamics

Completely time accurate;
flexible; unlimited in config-
uration; provides data for vi-
sualization of the complete
flow field

Grid generation can be labor
intensive; requires signifi-
cant computing resources;
weaknesses in modeling
some flow phenomena such
as turbulence

computationally inexpensive but have very limited applicability. These methods are

most useful in preliminary design, but have been applied to the calculation of store

separation trajectories.

Store separation events have been simulated in wind tunnels using the Captive

Trajectory Support (CTS) system [15]. This technique places a sting mounted store

in the flow field of an aircraft wing and pylon. The store is repositioned according to

the integration of measured aerodynamic loads and modeled ejector loads. Since the

store can not be moved in real-time, an angle-of-attack correction is made based on

the velocity of the moving store. This technique is quasi-steady and often limited in

the range of motion due to the sting mechanism.

Store separation trajectories have also been calculated using wind tunnel data

and an Influence Function Method (IFM) [16]. This method uses wind tunnel data to

define flow angularity near an aircraft wing and pylon. This data is used to apply a

delta to the freestream forces and moments of the store assuming that the store does

not affect the aircraft flow field. Another correction is made for mutual interference

using wind tunnel data of the store in carriage position. Jordan [17] gave a detailed

11

comparison of loads calculated from IFM and CFD versus loads measured in the

wind tunnel. IFM was shown to be inaccurate due to mutual interference that is not

directly related to flow angle. The distance at which mutual interference becomes

insignificant must also be well known.

Such semi-emperical techniques can also be used with CFD data replacing part

or all of the wind tunnel data. In a recent special session at the AIAA Aerospace

Sciences Meeting, most of the papers [18, 19, 20] presented used this technique. One

paper [21] used quasi-steady CFD. Of the two time-accurate CFD simulations slated

to be presented, one was withdrawn and the other was prevented from being presented

due to the failure to get clearance for public release.

When considering time-accurate CFD calculations for moving body problems,

the decomposition of the domain (grid type) has a significant impact on the solution

process. Table 1.3 lists several of the different grid methods in use. Some of the

advantages and disadvantages of each grid method are listed.

Cartesian grids (see [22] for example) have been used for moving body problems,

but the treatment of boundary counditions can be complicated. Boundary conforming

block structured grids have been used to calculate store separation trajectories [23];

however, the motion of a store within a block structured grid requires grid stretching

and deformation. This places a limit on the motion before regridding is required due to

errors introduced by grid skewness. Unstructured grids have also been applied to the

store separation problem (see [24] for example). The flexibility of unstructured grid

generation eases the grid generation burden but complicates the flow solver. Octree

grids have also been used to ease the grid generation burden and allow adaptive grid

refinement. SPLITFLOW [25] represents a compromise between these unstructured

grid techniques. A prismatic grid is used near solid surfaces to simplify boundary

conditions and an octree grid is used away from the solid surfaces and offers adaption

and some organizational structure. Chimera grid methods are also a compromise and

have been applied extensively to the store separation problem (see for example [4, 26,

12

Table 1.3: Grid generation methods

• Grid Type Advantage Disadvantage

Cartesian Small memory require-
ments; fast flow solver

Difficult treatment of
boundary conditions; poor
viscous solution capabilities

Structured General treatment of
flow solver and boundary
conditions

Restricted to simple
geometries

Block Structured Extension to complex
geometries

Grid generation is time con-
suming; grid motion or
adaption is difficult

Quad Tree Easily adapted Difficult treatment of
boundary conditions;
connectivity information
required

Unstructured Automatic grid generation;
easily adapted

Larger memory require-
ments; slower flow solvers;
connectivity information
required; weak viscous
solution capabilities

Chimera Structured grid flow solvers
and boundary conditions;
eases grid generation bur-
den; allows grid movement

connectivity (only at
IGBP's) must be con-
structed separate from the
grid generation process

27, 28, 29, 30]). They can be viewed as locally structured, but globally unstructured.

Time accurate CFD has been validated for use in calculating store separation

trajectories. Lijewski [28] presented the first complete system for calculating store

separation trajectories. In reference [28], Lijewski also presented the first use of a

particular set of wind tunnel CTS data for store separation code validation. The

configuration is a single, sting mounted, ogive-cylinder-ogive store under a generic

pylon and wing. Grids for the generic store are shown in figure 1.4.

Data, first presented in reference [4], for the subsonic and supersonic trajectories

of the single generic store are shown in figures 1.5 and 1.6. The CTS data is shown

by the symbols and the time accurate CFD calculations are shown by the curves.

These comparisons show excellent agreement between the wind tunnel data and time

13

Figure 1.4: Grids for single generic store trajectory calculation

O)
<D

in a>
c

-1.0
0 00 0.05 0.10 0.15 0.20 0.25 0.30

time (sec)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (sec)

Figure 1.5: Mach 0.95 single store trajectory calculated (left) CG position and (right)
angular position versus wind tunnel CTS data

accurate CFD calculations for this test problem.

More complex configurations have also been used for validation cases. Cline [31]

presented store separation trajectories from an F-16 aircraft configuration including a

fuel tank, pylon, and an aerodynamic fairing at the junction of the pylon and the wing.

Coleman [32] presented separation trajectories for the MK-84 from the F-15E aircraft.

This configuration included a centerline fuel tank, a LANTIRN targeting pod, an

inboard conformal fuel tank (CFT) weapons pylon with attached MK-84, forward and

middle stub pylons on the outside of the CFT, LAU-128 rail launchers with AIM-9

missiles on both sides of the wing weapons pylon, and the MK-84 to be released from

14

4.0

3.0

£• 2.0
c g

I 1.0
Q.

-1.0

0.0 oofrBooooQe^o^

10.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (sec)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (sec)

Figure 1.6: Mach 1.20 single store trajectory calculated (left) CG position and (right)
angular position versus wind tunnel CTS data

the wing weapons pylon. Both references compared trajectory calculations to wind

tunnel data and were instrumental in the approval of the use of CFD by engineers in

evaluating the store separation characteristics of weapons.

Parallel Computing

Although much work has been done on the parallel execution of CFD flow solvers,

including Chimera method flow solvers, little work has been done on the efficient par-

allel implementation of Chimera methods for moving body problems. In particular,

there are very few references on the parallel treatment of the grid assembly problem.

Table 1.4 gives a list of references of some of the more important developments in

parallel computing as related to Chimera grid methods and grid assembly.

Smith [33] presents the parallel implementation of an overset grid flow solver for

a network based heterogeneous computing environment. This flow solver was derived

from OVERFLOW and uses coarse grain parallelism with the component grids being

distributed among the available processors. A master/slave model is used. The master

process performs all i/o functions, maintains all of the interpolated flow solution data,

and communicates with each of the slave processes. The slave processes calculate the

flow solution and perform the interpolation of flow solution data. A load balancing

15

technique is used and the interpolation of flow solution data is overlapped with the

calculation of the flow solution to reduce load imbalances. The grid communication

information was supplied as an input and only static problems were addressed.

Wissink and Meakin [34] presented the application of a Chimera grid flow solver

based on OVERFLOW and DCF3D. This code uses overlapping structured grids

near the solid boundaries in order to resolve viscous effects and uses spatially refined

Cartesian blocks in the rest of the domain. Parallel performance was presented but

only static problems were addressed. The same code was again presented in reference

[35]. Two dynamic problems were presented in this reference; however, the focus was

on the ability to adapt the Cartesian blocks due to flow solution and body motion.

Some parallel performance data is presented based on an iteration of the flow solver.

No performance data was presented for an entire simulation which would include the

performance of the grid assembly.

The first presentation of the parallel implementation of grid assembly for dy-

namic, overset grids was by Barszcz [36]. DCF3D was parallelized and used in con-

nection with a parallel version of OVERFLOW on a distributed memory parallel

machine. A coarse grain parallelism was implemented with the data decomposition

based on component grids. A static load balance was used based on balancing the

load of the flow solver. Since the flow solver represented a large portion of the total

work, load balancing the flow solver is important to achieving a good overall load bal-

ance; however, significant imbalances were seen in the grid assembly processes. Donor

cell identification was found to be the most time consuming part of grid assembly and

algorithm changes were implemented to reduce this part of the work load.

In reference [37], Weeratunga et al. again used DCF3D and OVERFLOW on a

distributed memory parallel machine. Again, the component grids are used for data

decomposition and load balancing is based on the work load of the flow solver. No

consideration is given to the distribution of donor elements or IGBP's. The primary

focus in this reference is on demonstrating the scalability of the processes used. In

16

this study, the donor search method scaled well; however, the hole cutting and the

identification of points requiring interpolation did not scale well.

In reference [38], Wissink and Meakin present the first attempt to load balance

the grid assembly process. However, the data decomposition is still based on the

component grids and affects the load balance of both the flow solver and the grid

assembly function. A static load balance is initially performed to equally distribute

the numbers of grid points which helps to load balance the flow solver. A dynamic

load balancing routine is then used during a calculation to redistribute the grids

to improve the load balance of grid assembly. This, in turn, creates an imbalance

in the flow solver. This algorithm offers a method of improving performance if an

imbalance in the grid assembly work load is a major deterent. However, in the

problems presented, the flow solver represented the major part of the work load and

any redistribution of grids in order to improve the grid assembly load balance actually

decreased the overall code performance.

Dissertation Outline

Chapter 2 presents details of the algorithms and data structures of the grid

assembly process. For completeness, chapter 3 presents the flow solution algorithm

and chapter 4 presents the integration of the 6DOF rigid body equations of motion.

Chapter 5 presents an overview of programming parallel computers and outlines the

approaches used in the current work. Chapter 6 gives some details of the proposed

implementations including equations for estimating speedup. Chapter 7 presents the

ripple release test problem used for all timings of the implementations. The results of

the timings are presented in chapter 8. The final conclusions and some possibilities

for future work are presented in chapter 9.

17

Table 1.4: Significant accomplishments in parallel computing in relation to overset

grid methods

Reference Accomplishment Limitation

Smith and Pallis,
1993 [33]

Parallel implementation
of OVERFLOW for het-
erogeneous computing
environments

Restricted to static
problems

Baxszcz, Weer-
atunga, and
Meakin, 1993 [36]

First parallel implementa-
tion of grid assembly

Data decomposition and
static load balance tied to
flow solver

Weeratunga and
Chawla, 1995 [37]

Detailed study of scalabil-
ity of parallel implementa-
tion of DCF3D

Data decomposition and
static load balance tied to
flow solver

Belk and Stras-
burg, 1996 [6]

First parallel implementa-
tion of Beggar

Restricted to static
problems

Wissink and
Meakin, 1997 [38]

First attempt to load bal-
ance grid assembly

Decomposition of grid as-
sembly tied to flow solver
means any improvement in
the load balance of grid as-
sembly adversely affects the
load balance of the flow
solver

Wissink and
Meakin, 1998 [34]

Small, near body, curvilin-
ear grids used in combina-
tion with adaptive Cartesian
grids

Only static problems were
presented

Prewitt, Belk,
and Shyy, 1998
[39]

First parallel implementa-
tion of Beggar for dynamic
problems; overlapping of
grid assembly and flow solu-
tion time

Limited scalability

Meakin and
Wissink, 1999
[35]

Included dynamic problems
with combined overset grids
and adaptive Cartesian grids

No performance of dynamic
grid assembly was presented

Prewitt, Belk,
and Shyy, 1999
[40]

Coarse grain decomposition
and dynamic load balancing
of grid assembly based on
superblocks independent of
flow solver

Major functions within the
grid assembly are not indi-
vidually well balanced

CHAPTER 2
GRID ASSEMBLY

Although Beggar is useful for general external compressible fluid flow problems,

its primary focus during development has been on the simulation of store carriage

and separation events. A typical grid system includes grids for an aircraft, pylons,

launchers, and stores. The grids are often placed inside a large rectangular grid

which serves as a background grid that reaches to freestream. Due to disparity in

grid spacing between overlapping grids, it is often necessary to introduce other grids

that serve as an interface to aid communication. The stores are often bodies of

revolution with attached wings, canards, and/or fins. Blocked grid systems are used

for these relatively simple geometries; however, in order to allow grid movement, such

blocked grids are treated as overlapping grids with respect to other grids.

The superblock construct is introduced to aid in grid assembly. The superblock

is a collection of non-overlapping grids which are treated as a single entity. Block-to-

block connections are allowed only within a superblock; thus a superblock is often used

to implement a blocked system of grids for part of the solution domain. Overlapping

connections are allowed only between different superblocks.

A dynamic group is a collection of one or more superblocks that is treated as

a single entity by the 6D0F. The dynamic group is used primarily to group grids

which are part of the same moving body. There is always at least one dynamic group:

the static dynamic group. This holds the static grids like the background grid, the

aircraft grid, pylon grids, or store grids that do not move relative to the aircraft.

Other dynamic groups are created for each store that will move relative to the static

dynamic group. Since a dynamic group may contain one or more superblocks, each

18

19

moving body can be constructed from a system of blocked grids in a single superblock,

a system of overlapping grids in multiple superblocks, or a combination of the two.

Polygonal Mapping Tree

In order to establish overlapped grid communications the following questions

must be answered: does this point lie inside a grid, and if so, what is an appropriate

interpolation stencil? These questions represent point-volume geometric relation-

ships. In order to determine such relationships, Beggar uses a polygonal mapping

(PM) tree, which is a combination of the octree and binary space portioning (BSP)

tree data structures [41, 42].

An octree is a data structure in which a region of space is recursively subdivided

into octants. Each parent octant is divided into eight children which can be further

subdivided. This forms a hierarchy of ancestor and descendant octants. Each octant

in the tree is termed a node with the beginning node (lowest level) being the root

node and the most descendent nodes (highest levels) being the leaf nodes. Such a

data structure allows a domain to be divided into 8n subdomains using just n levels.

Associated with each node are the Cartesian coordinates of the center of the octant.

Which child octant a point lies in can be identified by comparing the coordinates of

the point against the coordinates of the center of the parent octant. With such a

data structure, a point can be identified as lying within a particular octant out of 8"

octants by using at most n comparisons (if the tree is perfectly balanced).

The BSP tree is a binary tree data structure in which each node of the tree

is represented by a plane definition. Each node has two children representing the

in and out sides of the plane. For a faceted representation of a surface, each facet

defines a plane that is inserted into the BSP tree. While being inserted the facet may

be clipped against existing planes in the BSP tree placing pieces of the same plane

definition into different branches of the tree. Using a given point, the BSP tree is

traversed by comparing the point against a plane definition at each level to determine

20

which branch to descend into. Once a leaf node is reached, the point is identified as

being inside or outside of the faceted surface.

In theory, a BSP tree of the cell faces on the boundaries of a grid block could be

used to determine whether a point is in or out of that particular grid. However, due

to the clipping process, the BSP tree can be prone to roundoff error. Likewise, the

structure of the tree is dependent on the order in which facets are inserted and it is

not guaranteed to be well balanced. If the tree were to become one-sided, a point may

have to be compared against all or most of the facets on a surface to determine its

relationship to that surface. Therefore, Beggar uses a combination of the octree and

BSP tree data structures. The octree, which stays well balanced, is used to quickly

narrow down the region of space in which a point lies. If a point lies in a leaf node

that contains an overlapping boundary grid surface, it must be compared to a BSP

tree that is stored in that leaf node to determine its relationship to that boundary

surface and therefore its relationship to the grid itself.

The PM tree data structure is built by refining the octree in a local manner until

no octant contains more than one grid boundary point from the same superblock. This

produces a regular division of space that adapts to grid boundaries and grid point

density. The boundary cell faces of the grids are then used to define facets which

are inserted into BSP trees stored at the leaf nodes of the octree. Since each grid

boundary point is normally shared by four cell faces and each octant contains only

one grid boundary point, the BSP trees stored at the octree leaf nodes should be very

shallow.

Once the basic data structure is complete, all of the octants of the leaf nodes are

classified relative to the grid boundaries. Each octant is classified as inside or outside

of each superblock or as a boundary octant. Then points can be classified efficiently

relative to the superblocks. To do so, the octant in which the point lies is found. If

the octant has been classified as IN or OUT, the point can be immediately classified

as IN or OUT. However, if the point lies in a boundary octant, the point must be

21

compared against the BSP tree that is stored in that octant.

Figure 2.1 represents a quadtree (2d equivalent of an octree) for a 4 block O-grid

around an airfoil. Only the grid points on the boundaries are used to define the level

of refinement, so only the boundaries of the grid are shown. The grid boundaries are

inserted into the leaf octants as BSP trees to form the PM tree. A portion of the

PM tree that might result is shown in figure 2.2. The leaf octants are represented by

squares; while the other nodes are represented by circles. The four branches at each

node represent the four quadrants of an octant. The line segments shown in some

of the leaf octants represent portions of the grid boundaries that would be placed in

BSP trees. If a point being classified against the PM tree falls into one of these leaf

octants, it must be compared against the facets to determine its relationship to the

grid. The empty leaf octants that are drawn with solid lines are completely inside the

grid; while the leaf octants that are drawn with dashed lines are completely outside

the grid. Points that fall into either of these types of octants can immediately be

classified relative to the grid.

/

/

f

\.

Figure 2.1: Example quad tree mesh

The PM tree is expensive to construct and would be very inefficient to use if

22

I...X \...i

Figure 2.2: Example PM tree structure

it had to be reconstructed each time a grid moved. Therefore, for each dynamic

group, a set of transformations are maintained between the current position and

the original position in which the PM tree was built. Whenever the PM tree is

used to find an interpolation stencil in one grid for a grid point in another grid,

the transformations are used to transform the grid point to the original coordinate

system. The transformed grid point can then be used with the PM tree constructed

in the original coordinate system of the grids. Thus the PM tree must be constructed

only once.

Interpolation Stencils

The primary function of the PM tree is to help find interpolation stencils for

grid points which require interpolated flow field information. When an interpolation

stencil is required, the PM tree is used to classify the corresponding grid point relative

to each superblock. This quickly identifies which superblocks the grid point lies in

and therefore which superblocks might offer a source of interpolation information.

This answers the in/out question directly. However, once a point is identified as

being inside a given superblock, the exact curvilinear coordinates corresponding to

the Cartesian coordinates of the grid point must be found.

For a curvilinear grid defined by the coordinates of the intersections of three

families of boundary conforming grid lines denoted by (£,77, Q, the coordinates at

23

any point within a cell can be calculated from tri-linear interpolation

Ä& i?, 0 = (1 - «)(1 " »)(1 - «0 r(7> JiK) +

(1-u)(l-t;)u; »■(/,./,#+ 1)+

(l-u)v(l-w)r(I,J+l,K) +

(l-u)vwr(I,J + l,K+l) +

u(l-v)(l-w)r(I+l,J,K) +

u{l-v)wr(I+l,J,K + l) +

uv{l-w)r(I + l,J + l,K) +

uvwr(I + l,J+l,K + l) (2.1)

where r(7, J, K), r(I + 1, J, K),... are the known coordinates of the eight corners of

a cell. The index (/, J, K) denotes the three dimensional equivalent of the lower left

corner of a two dimensional cell; while, (u, v, w) vary between 0 and 1 throughout the

cell so that

£ = / + Uj 7=1,2,... ,iV/-l, 0<u<l

rj = J + v, J=l,2,...,NJ-l, 0<t;<l

C = K + w, K=l,2,...,NK-l, 0<u;<l (2.2)

and R(£, r/, () is a piecewise continuous function over the entire grid.

For every known point r that lies within a grid, there exists some (£, t], () such

that r = Ä(f, 77, C). However, in order to find (£, 77, C) that corresponds to a known

r, the nonlinear function F = fi(<f,T7,C) - r must be minimized. Newton's method

can be used to minimize this function iteratively using

£T7l+l _ £fl or1"1
F"1 (2.3)

where £ is the curvilinear coordinate vector (f,77,C), m is tne Newton iteration

24

counter, and the jacobian matrix is calculated from the equations

^ = d + vC3 + w[C5 + vC7]

r)F
^- = C2 + uC3 + w[C6 + uC7]
OX]

^- = C4 + uC5 + v [C6 + uCr] (2.4)

where

C2=r(I,J+l,K)-r(I,J,K)

Cz =r(/ + 1,J + 1,K)- r(I, J + l,K)-d

C4=r(I,J,K + l)-r(I,J,K)

C5=r(/+l,J,/ir + l)-r(/,J,A'+l)-Ci

C6=r(I,J+l,K + l)-r(I,J,K+l)-C2

C7=r(I+l,J + l,K + l)-r(I,J+l,K + l)-

r(I + l,J,K + l) + r(I,J,K+l)-C3 (2.5)

Newton's method needs a good starting point; therefore, stored in the leaf nodes

of the octree and the BSP trees are curvilinear coordinates at which to start the

search. Although the PM tree classifies a point relative to a superblock, a starting

point identifies a particular cell within a particular grid of the superblock. If the octree

is sufficiently refined, the starting point should be close enough to ensure that stencil

jumping will converge. As the curvilinear coordinates £ are updated with equation

2.3, if A£ exceeds the range of 0 -> 1 then the search proceeds to a neighboring

cell and the jacobian matrix, as well as the corners of the containing cell, must be

updated. This algorithm is commonly called stencil jumping.

25

Hole Cutting

Beggar uses an outline and fill algorithm for cutting holes. In this algorithm, the

facets of the hole cutting surface are used to create an outline of the hole. The cells

of a grid through which a hole cutting facet passes are located by using the PM tree

to locate the cells containing the vertices of the facet. These cells are compared to

the facet and are marked as being either on the hole side or the world side of the hole

cutting surface. If the cells containing the facet vertices are not neighbors, the facet is

subdivided recursively and new points on the hole cutting facet are introduced. These

new points are processed just like the original facet vertices to ensure a continuous

outline of the hole cutting surface. Once the complete hole cutting surface is outlined,

the hole is flood filled by sweeping through the grid and marking as hole points any

points that lie between hole points or between a grid boundary and a hole point. The

marking of holes is capped off by the world side points created from the outline. This

process is able to mark holes without comparing every grid point against each hole

cutting surface and it places no special restrictions on how the hole cutting surfaces

are defined as long as they are completely closed. It also allows holes to be cut using

infinitely thin surfaces.

During the search for interpolation stencils, it is possible that a stencil may

be found that is in someway undesirable. If no other interpolation stencil can be

found for this point, then the point is marked out and an attempt is made to find an

interpolation stencil for a neighboring point. This process essentially grows the hole

in an attempt to find a valid grid assembly.

There are several weaknesses in this hole cutting algorithm. During the flood

fill, if the hole outline is not completely surrounded by world side points, a leaky hole

can result and the complete grid can be marked out. Conversely, the use of recursive

subdivision of facets to ensure that a complete hole is outlined can dramatically

increase execution time when hole cutting surfaces cut across a singularity or a region

of viscous spacing. In such cases, it is possible to coarsely outline the hole and to

26

use the natural process of marking out points which fail interpolation rather than

doing the flood fill. This option is often referred to as the "nofill" option based on

the command line argument that is used to invoke this option and the fact that the

holes are outlined but are not filled.

Donors and Receptors

One of the more important concepts is how to handle block-to-block and over-

lapped communications. Beggar introduces the concept of donors and receptors to

deal with the communication introduced by these two boundary conditions. Since

the flow solver uses a finite volume discretization, flow field information is associ-

ated with the grid cells or cell centers. A receptor will grab flow field information

from one cell and store it in another cell. The receptor only needs to know which

grid and cell from which to get the information. A donor will interpolate flow field

information from a cell and then put the interpolated data into another storage lo-

cation. The donor needs to know the grid from which to interpolate data, as well

as an interpolation stencil for use in interpolating data from eight surrounding cell

centers. Thus, block-to-block connections can be implemented using only receptors.

Overlapped connections are implemented with donors.

If all of the grids' data is stored in core, a donor can be used to interpolate

the flow data from one grid and to store the interpolated values into another grid.

However, if all of the grids' data is not available, a small, donor value array (DVA)

is needed to store the intermediate values. A donor, associated with the source grid,

is used to perform the interpolation and to store the result into the DVA. Then a

receptor, associated with the destination grid, is used to fetch the values from the

DVA and store it into the final location.

27

Boundary Condition Identification

" The automatic identification of most of the boundary conditions centers around

several interdependent linked lists. The first of these is a list of the points on the

boundaries of the grids in each superblock. A tolerance is used to decide if two points

are coincident, so that the list contains only one entry for each unique boundary point.

Another tolerance is used to decide if a point lies on a user specified reflection plane.

Another list is constructed using the unique cell faces on each grid's boundaries.

While building this list, degenerate cell faces and cell faces that lie on a reflection

plane are identified. The order of the forming points for a cell face is not important for

identification, therefore the forming points are sorted using pointers into the points

list. The cell faces can then be associated with the first point in its sorted list of

forming points. For a finite volume code, each cell face on a block-to-block boundary

connects exactly two cells from either the same grid or from two different grids. Thus,

for a given boundary point, if its list of associated cell faces contains two faces that

are built from the same forming points, a block-to-block connection is defined.

CHAPTER 3
FLOW SOLUTION

Although the flow solver is not the focus of this work, this section is included

for completeness. The flow solution algorithm supplies some opportunities for paral-

lelization that affect the total performance of the code. The governing equations are

presented, the unique solution algorithms are presented, and the general numerical

solution techniques are presented.

Governing Equations

The equations governing the motion of a fluid are the statements of the con-

servation of mass, momentum, and energy. As an example, Newton's second law of

motion describes the conservation of momentum. However, Newton's second law, as

presented in most dynamics textbooks, is written to describe the motion of a particle,

a rigid body, or a system of particles i.e. a well defined quantity of mass whose motion

is described in a Lagrangian reference frame. For the motion of a fluid, it is often

more useful to consider flow through a region of space or a control volume, i.e. an

Eulerian reference frame. Considering a control volume V(t) that is bounded by a

surface S(t), Reynolds' Transport Theorem (see [43, pages 72-87] for an example of

the derivation) is used to convert the time rate of change of an extensive property of

a system into integrals over the control volume, i.e.

jt f cf>(x, t)dV = f ^dV + J4m-hdS (3.1)
V(t) V(t) S(t)

28

29

These two terms represent a variation in the conserved property within a volume

V(t) due to some internal sources (the volume integral) and a variation due to flux

across the boundary surface S(t) (the surface integral). The variable <f> represents any

conserved quantity (such as /?, pu, pE for mass, linear momentum, and total energy,

all per unit volume), u is a local velocity vector, and h is the unit vector normal to

dS. The surface integral is converted to a volume integral using the vector form of

Gauss's Theorem

<f<fm-ndS = jv-(fmdV (3.2)
5 V

which assumes that V • u exists everywhere in V. Thus, the time rate of change of

the conserved property can be written as

| J </>(x, t)dV = J ^ + V • (<fm)dV (3.3)
V(t) V(t)

The time rate of change of the conserved quantity is dependent upon source

terms that can act on the volume or on the surface of the volume. If we can represent

the source terms by a volume integral of a scalar quantity $ and a surface integral of

a vector quantity ip, the general conservation law can be written as

/ |£ + V • (^u)dV = f^ + V-tpdV (3.4)

V(t) V(t)

Since an arbitrary volume is assumed, the integrand must apply for an infinites-

imal volume. The integral can be removed to yield the differential form

^ + V.(0ti) = V + V.V (3-5)
at

For the conservation of mass, mass is conserved and there are no source terms.

Replacing <f> by the density p in equation 3.5, the differential, continuity equation is

d± + V • (pu) = 0 (3.6)

30

or, written in Cartesian coordinates

at dx dy dz

where u, v, and w are the three Cartesian components of the velocity.

For the conservation of momentum, the source terms are the forces acting on the

control volume. Ignoring the gravitational and inertia! forces, the sum of the forces

acting on the system can be written as

X)F = - f pndS+ I rdS (3.8)

S(t) S(t)

where r is the viscous stress vector and p is the pressure. Note that the pressure

has been separated from the viscous stress, whereas it is often included as a spherical

stress term. The differential form is

dp drxx dryx drzx
x ~ dx dx dy dz

F = -^l + ?!k + Üüm + dTzy
y dy dx dy dz

tz ~ dz+ dx + dy + dz (d-9j

where TXX, r^, etc are elements of the viscous stress tensor (see reference [43, pages

171-174] for the derivation). This tensor is symmetricso that ryx = rxy, rzx = TXZ, and

Tzy = Tyz. Using these equations as the source terms and substituting pu into equation

3.5 as the conserved quantity, the three Cartesian components of the conservation of

momentum are

d(pu) d(pu2 + p) d(puv) d(puw) _ drxx drxy drxz

dt dx dy dz dx dy dz

d(pv) d(puv) d(pv7 + p) d(pvw) _ drxy dryy dryz

dt dx dy dz dx dy dz

d{pw) d(puw) d(pvw) d(pw2 + p) _ drxz dryz drzz

~dT + ~dx~ + ^y~+ dz -~dx~ + 'W + ~dT (3J0)

where the pressure terms have been moved to the left hand side. Formally, these

equations are the Navier-Stokes equations. However, in general, the term Navier-

Stokes equations is used to refer to the complete set of conservation laws when the

viscous terms are included as shown here.

31

For the conservation of energy, the source terms are the rate of heat transfer to

the system minus the rate of work done by the system. Substituting pE into equation

3.4, the conservation of energy is written as

d(pE)

V(t)

or, in differential form

/ dt
+ V • (PEu)dV = Q - W (3.11)

d(pE)

dt
+ V • (pEu) = Q - W (3.12)

(3.13)

Ignoring any internal heat sources, the heat transfer rate can be written as

Q = — / q • ndS

5(t)

where q is the heat flux vector. This integral can be converted to a volume integral

and then written in the differential form

A _ _dq dq dq
y~ 8x

(3.14)
dy dz

The work rate is due to the forces acting on the surface of the control volume.

Ignoring any work by gravitational or inertia forces, the work rate is written in the

form

W = pu- hdS — T • udS

5(0 5(0

(3.15)

The differential form is

dpu dpv dpw
W =^— + ^r- + -= TV-- r<

dx dy

'xy
du dv

dy dx

dz

— TT

du

dx

dv

'dy

dw
wa» Tzzdz

du dw

dz dx
— T, yz

dv dw

dz dy
(3.16)

Plugging equations 3.14 and 3.16 into equation 3.12 yields the final differential form

of the conservation of energy equation

dq dq dq d{pE) du(pE + p) dv(pE + p) , dw(pE + p) _l _ 1 |-
dt ' dx ' dy ' dw ~ dx dy dz

d (rxxU + TxyV + TXZW) d(TxyU + TyyV + Tyzw) | d{rxzu + Tyzv + Tzzw)

dx dy

+

+
dz

(3.17)

32

Counting the primitive variables p, u, v, w, E, p, and T and the 6 unique

elements of the viscous stress tensor, there are 13 unknowns and only 5 equations

(the conservation laws). In order to make a solution tractable, 8 more equations are

needed.

Fortunately, a relationship between the components of the stress tensor and

the velocity gradients is possible. The velocity gradients are directly related to the

rate-of-strain tensor and the vorticity tensor. Constitutive equations then define

the relationship between the stress components and the rate-of-strain components.

For a Newtonian fluid, a linear relationship between the stress and the strain rate is

assumed. Since the strain rate tensor is symmetric, there are only 6 unique strain rate

components. Assuming a linear relationship between the 6 unique stress components

and the 6 unique strain rate components, there are 36 material constants that must

be defined. The assumption of an isotropic material reduces this to 2 constants. For

fluids, these two constants are the dynamic viscosity u and the second coefficient of

viscosity A. From Stoke's hypothesis, the relationship

A = -|/* (3.18)

can be used for the compressible flow of air. For a Newtonian, isotropic fluid, the final

relationships between the components on the stess tensor and the velocity gradients

are

du dv dw^

dx dy dz j

Tw -Zfi\~dx~ + 2dy'~~dz~)

2 (du

= 3" \-Tx -
(du

(du

P + 2:
dy

dv\
dx)
dw\

TVZ

33

With the original 5 conservation equations and the 6 relationships between the

viscous stesses and the velocity gradients, only 2 more equations are needed. If a

perfect gas is assumed, the thermodynamic state can be specified by only two ther-

modynamic variables. If p and p are choosen as the two independent thermodynamic

variables, the perfect gas law

p = pRT (3.20)

(where R is the gas constant) can be used to calculate the temperature T. The

relationship for the internal energy e per unit mass is

e =
P (3.21)

P(7 " 1)

where 7 is the ratio of specific heats (7 = 1.4 for air) and the total energy per unit

mass is related to the internal energy by

E = e+l-U2 (3.22)

where U is the magnitude of the velocity vector u.

Vector Form

The three conservation laws, written in differential form, can be combined in the

vector differential equation

^,^i + ^i + ^i = ^ + ^i + ^ (3.23)
dt + &r öy dz dx ^ dy T dz K J

where

34

Q =

' > ' > f •>

p pu 0

pu pu2+p Txx

pv > , fi=< puv S fv = < Txy

pw puw T~xz

pE

pv

u{p>
1

E + P),
r

UTXX + VTxy + WT

>

0

xz -qx

pvu 'ry

9i=< pv2 + p

pvw

v(pE + p)

pw

pwu

> , 9v = <

ryZ

UTXy + VTyy + lüTyZ ~ %

(>

0

Txz

>

hi = < pwv

pw2 + p

> , hv= <

Tzz

>

w(pE + p) UTXZ +
<

VTyz + WTZZ - qz

(3.24)

The first component of the vector equation represents the conservation of mass. The

next three components represent the conservation of momentum. The fifth component

represents the conservation of energy.

The terms /;, #, and /i, represent the inviscid flux vectors and /„, gv, and hv

represent the viscous flux vectors. Setting fv = gv = hv = 0 recovers the equations

governing inviscid fluid flow, i.e. the Euler equations. The elements of the vector q

are the conserved variables, as opposed to the primitive variables p, u, v, w, and p.

The use of subscripts on the terms qx, qy, and qz represents the components

of the heat transfer vector as opposed to partial derivative notation. Considering

only heat conduction, Fourier's law can be used to relate the heat flux vector to the

35

temperature gradient

q = -kVT (3.25)

where k is the heat conductivity and T is the temperature. The Prandtl number,

defined as

Pr = ^ (3.26)
k

is used to compute the heat conductivity k from the viscosity fj, (for air at standard

conditions, Pr = 0.72). Using the relationship

7R
C
P= 1 7-1

for a perfect gas, the components of the heat flux vector can be written as

- *fR H dT
qx~~1-\Prdx

- 7R ft dT
*iy~ -r-lPrdy

- 7R n dT
qz~~1-\Prdz

Non-Dimensionalization

(3.27)

(3.28)

The governing equations are non-dimensionalized by freestream conditions so

that

P - u - v w z p P- E

poo Ooo Ooo Gtoo PooOSo «,

y ._ z_ - _ Jf_ r_ to.
00

00
* = - y=T, z = y, ß = -^, t = ^ (3.29)

where the " denotes non-dimensional quantities, the subscript 00 denotes freestream

conditions, L is some dimensional reference length and a is the speed of sound, which

is defined by the relations

a=./^=x/7Rr (3.30)
V P

36

The Mach number is the non-dimensional velocity. The freestream Mach number

is

Moo = — (3.31)

where Uoo is the magnitude of the freestream velocity. Therefore, the non-dimensional

velocity components become

Ü = -^-Moo, v = —Moo, w = —Moo (3.32)
Uoo ^oo I'oo

The terms u/Uoo, etc represent scaled direction cosines; therefore, the non-dimensional

velocities are scaled values of the Mach number.

The Reynolds number is the non-dimensional parameter

Re = PooU°°L (3.33)

which arises from the non-dimensionalization of the conservation of momentum equa-

tion. This parameter represents the ratio of inertia forces to viscous forces.

The non-dimensional governing equations can be written in the same form as

equations 3.23 and 3.24 by replacing the dimensional quantities by the correspond-

ing non-dimensional quantities. However, in the process of non-dimensionalizing the

equations, the non-dimensional term Moo/Re arises from the viscous flux vectors.

Therefore, the definition of the viscous stresses and the heat flux components must

be modified as

_ 2.Moo (Jdü dv dw\
Txx=3^1te\dZ~dj)~~dIJ

_ 2.Moo f du dv dw\
Tyv ~ 3P Tfe \di + d§ ~ ~di)

_ 2.Moo (du dv dw
Tzz~3^~te\~dl~~dlj+~dl

_ -Moo (du dv\
Txy " * Re \dy + dx)

Trz_/i Re \dz dx)

.Moo (dv dw\ T" = ^I^{TZ
+
 W

(3-34)

37

and

1 fiM^df

<**- 1-\pr Re dx

1 fi M^df
%~ 7 - 1 Pr Re dy

3 = _J_AM^ (3.35)
qz 7 -1 Pr Re dz V '

The non-dimensional equation of state becomes

p = ^ (3.36)
7

and the non-dimensional energy is related to the non-dimensional density and pressure

by the equation

E=~P-— + hü2 + v' + w2) (3.37)
pin -1) 2

The non-dimensional viscosity coefficient is related to the non-dimensional tempera-

ture by the power law

fi = f2/3 (3.38)

Coordinate Transformation

The use of a general, boundary conforming, structured grid introduces an ordered

set of grid points represented by Cartesian coordinates given at the integer curvilinear

coordinates f, 77, £. In order to solve the governing equations in this curvilinear

coordinate system, the partial derivatives with respect to the Cartesian coordinates

must be converted into partial derivatives with respect to the curvilinear coordinates.

This requires a transformation of the form

£ = £0,y,M)> r1 = r1(x,y,z,t), C = C(*,y,M), r = r{t) (3.39)

38

Applying the chain rule, the partial derivatives with respect to the Cartesian coordi-

nates can be written as

9 -c 9 ± i^i

9 -c±. i^i
dy~*ydt+rhdr,+t"dC
9 -*±M iL + r9-
dz~*'d£+r,'dri + (tZd(

9 d^tdA. 9±r9 rt/uH
m = Ttd-T

+^ + T1% + Ctdc (3-40)

where the term £x represents the partial derivative of £ with respect to x, etc. Thus,

the metric term £x represents the variation in £ with a unit variation in x while y, z,

and t are held constant. These terms are not easily evaluated. However, the partial

derivatives of the Cartesian coordinates with respect to the curvilinear coordinates

that arise from the inverse transformation represented by

X = X(Z,T1,(,T), y = y(£,77,C,r), z = 2(^,17, C,r), t = t(r) (3.41)

are easily evaluated. Applying the chain rule again, the partial derivatives with

respect to the curvilinear coordinates can be written as

d d d d

dl = Hdx-Vy^zWz
d _ d d_ d_

d^~Xr'dx+y,1dy + Zr'dz
d d d d

Tc = Xcdx- + y% + z<:dz'

d^ = tTäi + X^ + y^ + ^d-z (3'42)

Comparing equations 3.40 and 3.42 the Jacobian matrix of the transformation 3.39

is seen to be the inverse of the Jacobian of the inverse transformation 3.41 (see [44,

39

appendix A] for a complete derivation). This yields the relationships

& = (VvzC ~ ZvVdlJ

ty = (Zr,XC - Xr,ZC)/J

& = {xnVC ~ VnH)lJ

£t = -TtXT£x - TtVriy ~ TtZT(z

T]x = {ztva - y^yj

T)y = (XiZC - Zpü/J

f]z = (y&c - xm)/J

r]t = -Ttxrr)x - Ttyrr)y - TtzTrjz

Cx = faz* - HVv)/J

Cy = {zixn - Xtzv)/J

(z = (X&r, - ytXri)JJ

Ct = -TtXrCx - nyrCy ~ TtZrCz (3-43)

W here J is the determinant of the Jacobian matrix of the inverse transformation

J = xt(yvzc - ZM) - ydxr,zC - znxc) + H{
X

IV<. ~ y*x<) C3-44)

The governing equations are then written in the form

ÖQ , dFj-Fv dGj-Gv 8Hj-Hv , .
dr+ at + drj + dc v * ;

40

where

Q = Jq

Fi = J{q£t + f& + Qity + hi£z)

d = J{qr\t + /,-Tfe + gfly + hjqz)

Hi = J(qCt + /,Cx + £7,4 + hid)

Fv = J(fvZx+gM + hvZz)

Gv = J(fvVx + 9vVy + hvVz)

Hw = J(/„Cr + g„Cf + ^Ci) (3-46)

Flux Vector Splitting

The model hyperbolic equation is the one-dimensional linear convection equation

du du . ,n ._v

m+aTx = o (3-47)

If a > 0, this equation describes the propogation of a wave in the +x direction at the

velocity a. The use of a backward time difference and a forward space difference or a

central space difference to produce the explicit discretized finite difference equations

,,"+1 ,,n ,.n ,.n
"'• A "* + a"'+1

A ' = 0 (3.48)
At Ax v

and

u?+1 - u? . v?+l - tx?_! i. + a" «+i '-* = o (3.49)

yields unconditionally unstable solution schemes. Instead, with a > 0, a backward

space difference of the form

"' A "'• + a^-^ = 0 (3.50)
At Ax K J

is required to produce a stable scheme. Since the wave is propogating in the +x

direction, the backward space differencing represents "upwind" differencing. If the

41

wave speed a were negative, a forward space difference, again representing upwind

differencing, would be required to produce a stable scheme.

The goal of "flux vector splitting" [45] is to split the flux vector into components

which are associated with the positive and negative direction propogation of informa-

tion so that upwind differencing can be used. This produces a stable scheme without

the addition of any artificial dissipation that is often done with central difference

schemes.

Consider the one-dimensional Euler equations in Cartesian coordinates

Since the flux vector is a homogeneous function of degree one of Q, the governing

equations can be written in quasi-linear form

£+*£=« (3-52)
at ox

(this looks alot like the model equation). The matrix A = dF/dQ, is the flux Jacobian

matrix. This matrix can be decomposed in the form

A = RAR-1 (3.53)

here the columns of R are the right eigenvectors of A, the rows of /?_1 are the left w

eigenvectors of A, and the matrix A is a diagonal matrix with the eigenvalues of A

along the diagonal. The eigenvalues are of the form

Ai = A2 = A3 = u

A4 = u + a

X5 = u-a (3.54)

where a is the speed of sound. For locally subsonic flow, some of the eigenvalues will

be positive and some will be negative. Thus the matrix A can be written as

A = A++A- (3.55)

42

where A+ contains only the positive eigenvalues and A" contains only the negative

eigenvalues. Substituting this into equation 3.53, the Jacobian matrix is split into

A = RA+R'1 + RA~ R'1

= A+ + A- (3.56)

and the split flux vectors are denned from the homogeneity property as

F+ = A+Q

F- = A-Q (3.57)

so that

F = F+ + F~ (3.58)

Upwind differencing is then used appropriately with the split flux vectors in the

discretized governing equations. The complete form of the split flux vectors can be

found in reference [46].

An implicit discretization of the governing equations can be written as

AQn+1 + Ar (^F"+1 + S^GT*1 + ScH
n+1) = 0 (3.59)

where the superscript n denotes the time step,

AQn+1 = Qill ~ QM (3-6°)

and

S"G= Ä5
ScH = HitjMl,2-H^k_ll2 (3 61)

For a finite volume discretization, the indices i,j, k represent a cell in which the

dependent variables Q are assumed to be constant, and indices i + 1/2,j, k and

43

i - l/2J,k, for example, axe opposing cell faces at which the flux is evaluated. The

changes in the curvilinear coordinates A£, Ä77, and AC are unity.

A first order time linearization of the flux terms [47, 48], leads to the equation

AQn+1

Ar ■^♦©"^♦«■MS)"*
0
*"

+SC
'-<%)'

AQ ,n+l = 0 (3.62)

Introducing the split flux vectors, produces the form

AQn+1

Ar

+Sr,
fdG
mr^ + s.

\dQj
AQ ,n+l + 8n (m\Q~'

dQ
AQ lTl+1 ^VAO- +Ml^JAQr + Sc

\dQj

(iff"?"

= -5e (F
+ + F-y + 5, (G+ + G-)n + Sc (H

+ + H~)n (3.63)

or

where

AQ

_\n+l

+ Si [(A+y (AQ+)n+1 + (A-y (AQ-)

+5, [(B+y (AQ+)n+1 + (B-y (AQ-)

+SV [(C+)n (AQ+)n+1 + (C-y (AQ-)

_\n+l

-\n+l = -Rn

_in
R» = 6^ [F+ + F~]n + 8, [G+ + G-]n + 8C [H+ + H~)

(3.64)

(3.65)

It should be noted that the Jacobian matrices A+,A~, etc axe not the same as the split

flux Jacobian matrices A+,A~, etc that were presented in equation 3.56. Instead, the

notation A+ is used to represent dF+/dQ, for example. This is required to preserve

the conservation form of the equations. The final form of these Jacobian matrices,

and the derivation thereof, can be found in reference [44, appendix B].

In evaluating the split flux vectors at the cell faces according to the difference

operators defined in equation 3.61, dependent variables from cells upwind of the cell

face are used. For a first order spatial discretization, only the neighboring cell is used.

44

For second order accuracy, the dependent variables from the two neighboring cells are

extrapolated to the cell face. As an example, the (+) flux is evaluated using cells to

the left of the cell face

Ff+l/2,j>k = F+ (Qf+1/2,,fc) (3.66)

where

Qf+i/Tj* = QiJ,k (3-67)

for a first order accurate scheme, and

Qf+i/2,i,* = \QM ~ \Qi-u,k (3-68)

for a second order accurate scheme. Likewise, the (—) flux is evaluated using cells to

the right of the cell face

F«i/2j,k = F- (Qf+1/2^) (3-69)

where

Qf+i/2j,* = Qi+ijjk (3-70)

for a first order accurate scheme, and

3 1
Qi+i/2,j,k = 2*2«'+IJ.* ~~ 2®i+2>i'k (3-71)

for a second order accurate scheme. The extrapolation of the conserved variables to

the cell face and their use to calculate the flux is often referred to as MUSCL extrap-

olation [49]. Alternatively, the primative variables can be extrapolated and used to

calculate the flux or the flux can be evaluated at the cell centers and extrapolated to

the cell center.

In the higher order schemes, flux limiters, applied to the flux, conserved variables,

or the primitive variables, are used to selectively reduce the scheme to first order to

avoid oscillations in the solution near discontinuities. The flux limiters available

include the minmod, van Leer, and van Albada limiters.

45

Flux Difference Splitting

" Hirsch [46] describes upwind methods as methods in which physical properties of

the flow equations are introduced into the discretized equations. Flux vector splitting

introduces the direction of propogation of information through consideration of the

sign of the eigenvalues in the discretization. Another method that handles discontinu-

ities well is due to Godunov [50]. In Godunov's method, the conserved variables are

considered constant throughout each cell and a one-dimensional exact solution of the

Euler equations is computed at each cell boundary. The two constant states on either

side of a cell boundary define a Riemann (or shock tube) problem that can be solved

exactly. An integral average of the exact solutions to the Riemann problems at each

cell is taken to determine the solution at the next time step. Other methods have

replaced the computationally expensive exact solution of the Riemann problem with

an approximate Riemann solution. These methods, including the popular method

due to Roe [7], are often referred to as "flux difference splitting" methods.

Considering the quasi-linear form of the one-dimensional Euler equations shown

in equation 3.52, the elements of the Jacobian matrix A are not constant. Roe pro-

posed replacing this non-linear equation with the linear equation

£ + *£ = <> (3-72)
at ox

where A is a constant matrix. This equation is solved at the interface between two cells

to determine the flux at the interface. The matrix A is chosen so that the solution

of this linear equation gives the correct flux difference for the non-linear Riemann

problem. The properties required of A are

i It constitutes a linear mapping from Q to F

n limQ^QH-K? KQL,QR) = A(Q) = §g

iii F(QR) - F{QL) = A(QL, QR) • (QR - QL)

iv The eigenvectors of A are linearly independent

46

The superscript ()L and ()R represent quantities on the left and right sides of the

interface.

The matrix A for the approximate Riemann problem is constructed from the

flux Jacobian matrices where the primitive variables are replaced by the Roe averaged

variables

sffuL + yffuR

\fpTvL + \ftPvR

U =

V =

W =

where H is the total enthalpy per unit mass, which is related to the total energy per

unit mass by the relationship

= £ + - (3.74)
P

The solution of the approximate Riemann problem yields the following equation

for the flux at a cell interface

Fi+\/2J,k = 2 \Fi+l/2jJt + Ft+l/2j,k) ~ 2 |Ä+1/2,J,*| (Qt+l/3j,fc _ Qi,j,k) (3-75)

where

|Ä| =/? |Ä|/T1 (3.76)

where the (~) notation is used to denote that the Roe averaged variables are used in

the evaluation. The assumption is made that the wave from the solution of the

one-dimensional Riemann problem move normal to the interface. For the three-

dimensional problem, the one-dimensional solution is repeated for the three directions.

47

For first order spatial accuracy, the primitive variables used in the Roe averaged vari-

ables come from the cells neighboring the interface. For second order accuracy, the

values are extrapolated as shown in equation 3.71.

Newton Relaxation

Newton's method for a non-linear system of vector functions

F{x) = 0 (3.77)

can be written as

F(x) (xm+1 - xm) = -F(xm) (3.78)

This defines an iterative procedure for which m is the iteration counter and Fix) is

the Jacobian matrix defined by

Following the presentation of Whitfield [51], the discretized governing equation

3.59 leads to the function

AT

AQ ,n+l
_ A +fi(Qn+1) (3-80)

AT

for which a solution is sought by Newton's method. Here, the vector Q contains the

dependent variables for every cell throughout the entire grid system. The Jacobian

. matrix is defined by

:FwQn+1) = _l + dJW|1) (3.81)
'^v > AT dQn+1

which yields the iterative scheme

^7 + \dQj
AQ in+l.m+l _ _

yi+l,m /-»n ■/-)n+l,m _ rx
^— 5£_ + Ä(Qn+l.»»)

i^Tmin
(3.82)

48

where

pn+l.m+l _ Qn+l,m , ^Qn+l,m+l

gn+1,0 = gn

n denotes the time level, m is the Newton iteration counter, Ar/ is the local time

step, and Armtn is the minimum time step. Flux vector splitting is used on the

left-hand-side and flux difference splitting with Roe averaged variables is used on

the right-hand-side. Steger-Warming jacobians, Roe analytical jacobians, or Roe

numerical jacobians can be used.

Each iteration of the Newton's method is solved using Symmetric Guass-Seidel

(SGS) iteration. The SGS iterations, or inner iterations, are performed on a grid by

grid basis; while the Newton iterations, or dt iterations, are used to achieve time accu-

racy and are performed on all grids in sequence. This procedure eliminates synchro-

nization errors at blocked and overset boundaries by iteratively bringing all dependent

variables up to the rn+1 time level. The fixed time step, Armtn, is used to maintain

time accuracy and a local time step, Ar/, is used for stability and convergence of the

Newton iterations. Steady state calculations do not use Newton iterations. The first

term on the right-hand-side of equation 3.82 becomes zero and local time stepping is

used during the inner iterations.

Explicit boundary conditions (BC) can be used or implicit BC's can be achieved

by updating the BC's during the SGS relaxation solution of Equation 3.82 [52]. An

under-relaxation factor is applied to the implicit BC update to improve stability.

Fixed-Point Iteration

A linear system of equations of the form

Ax = b (3.83)

49

can be solved using the general fixed-point iteration scheme

xm+i = xm + c(fc _ Axmj m = 1,2,3,... (3.84)

(see, for example, reference [53, pages 223-233]). This iteration function is in quasi-

Newton form. The function for which a zero is being sought is f(x) = Ax - b.

However, the matrix C is an approximate inverse of A rather than the inverse of the

derivative of /. This approximate inverse is defined by the requirement that

||/-CA||<1 (3-85)

for some matrix norm.

The coefficient matrix A can be written as

A = L+D+U (3.86)

where L is the lower triangluar elements of A, D is the diagonal elements of A, and

U is the upper triangluar elements of A. If A is diagonally dominant, D_1 is an

approximate inverse of A and the iteration function

xm+l =xm + 0-1 (6 _ Axm) (3.87)

will converge. This is Jacobi iteration. It can be rewritten as

Dxm+1=b-(L+U)xm (3.88)

or as

?+1 = U - £ «,;? - E <**?) ^ *'= *' • •''n (3-89)

to explicitly show how each element of x is updated. The distinquishing characteristic

of Jacobi iteration is that the iteration function only uses values of x from the previous

iteration.

Gauss-Seidel iteration comes from the choice of C = (L + D)"*1. This gives the

iteration function

xm+l = xm + ^ + Dyl (6 _ ^m) (3.90)

This can be rewritten as

50

(L + D)xm+1=b-UxT (3.91)

or

Dx m+l _ = b - Lxm+1 - Ux (3.92)

To explicitly show how each element is computed, this is written as

x«+i = L - £ aijX^
1 - J2 aHx?) ~ » = 1, • ■ ■ ,» (3-93)

As each element of x is updated, the previous elements of x, which multiply the lower

triangular elements of A, have already been updated. Thus, for the summation that

represents — Lx, the elements of x are evaluated at iteration m + l. In other words,

when updating an element of x, the most up to date values of x are used.

If Gauss-Seidel iteration is guaranteed to converge, it will converge faster than

Jacobi iteration. It also has the side benefit that only one array is needed to store x

during the iterations.

Parallel Considerations

Following the analysis presented in reference [37], the solution algorithm could

be written as a global system of linear equations

Ai,i Ah2

^2,1 -^2,2

AN,I AN,2

AIJJ

f

A2,N
<

AQ2
» = <

ANJ! AQN
h

-F2(QI,Q2,'~,QN)
(3.94)

The diagonal, block matrix elements, An, represent the coupling within a grid due to

the implicit time discretization. These elements are banded, sparse matrices defined

by the spatial discretization. The off-diagonal, block matrix elements, Aij(i / j),

51

represent the coupling between grids i and j due to block-to-block and/or overlap-

ping boundary conditions. The coupling between grids is dependent on the relative

positions of the grids. Thus, some of the off diagonal elements will be zero.

Together, these elements form a large, sparse matrix. This large system of linear

equations could be solve directly; however, this would not be efficient and does not

lend itself well to parallel computing. Instead, the off-diagonal terms are moved to

the right-hand-side. Thus, block-to-block and overlapped boundary conditions are

treated explicitly. This gives a decoupled set of equations of the form

Ahi 0

0 A2)2

0 0

0 AQ/ -Rx

0
<

AQ2
> = <

-R2

AN,N AQN —RN

(3.95)

where -Ri = -F,(Q1,Q2,...) - £j* AJAQJ. Each decoupled equation can be

solved using Gauss-Seidel iteration.

CHAPTER 4
6DOF INTEGRATION

In order to solve store separation problems, we must be able to simulate the

general motion of bodies under the influence of aerodynamic, gravitational, and ex-

ternally applied loads. We will ignore structural bending; therefore, we can limit

ourselves to rigid body motion. This chapter presents the basis for the 6D0F rou-

tines in Beggar that were written by Belk [4]. This is similar to the method presented

by Meakin in reference [54]. The equations of motion, the coprdinate systems used,

and the techniques used to integrate the equations of motion are presented.

Equations of Motion

The unconstrained motion of a rigid body is modeled by Newton's second law

of motion

F = ma (4.1)

where F is the total force acting on the body, m is the mass of the body, and a is the

resulting acceleration of the body. This can be written as the conservation of linear

and angular momentum

F = L (4.2)

M = H (4.3)

where L = mV is the linear momentum, H = Iw is the angular momentum, and

M is the total applied moments about the body CG. The dot notation represents

52

53

the derivative with respect to time, V is the translational velocity vector, a; is the

rotational velocity vector, and / is the rotational inertia tensor

/ =

lxx 'xy '■xz

~*xy lyy ~'yz

-/TZ ^lv

(4.4)

constructed from the moments (/«, Im, IZz) and products (Ixy, IXz, Iyz) of inertia of

the body. The six degrees-of-freedom (6D0F) of the motion are represented by the

translational position of the CG and the rotation of the body about its CG.

Equations 4.2 and 4.3 can only be applied in an inertial reference frame (IRF);

therefore, the derivatives of the linear and angular momentum must be taken with

respect to an IRF. However, the body moments of inertia and products of inertia will

vary with time (due to body motion) if they are defined relative to a fixed, global

coordinate system. Thus, it is easier to use a non-inertial, local coordinate system

that is fixed relative to the body, so that the moments and products of inertia will

remain constant.

In order to apply equations 4.2 and 4.3 in a moving, local coordinate system,

we need to relate the derivatives with respect to this non-inertial reference frame to

derivatives with respect to an IRF. This relationship is defined by the equation

ä/xYZ=ä/Tyz + "xa (45)

for any vector a denned in a coordinate system xyz that is rotating by u> relative

to an IRF XYZ. Applying this relationship to L and assuming that the mass m is

constant, equation 4.2 becomes

-=V/ +u>xV (4.6)
m / xyz

or

yj =£_o,xy (4.7)
/ xyz TfX

54

Applying 4.5 to H, equation 4.3 becomes

M = lu/xyz + w x H (4.8)

or

w/^rz/^M-r^x/w (4.9)

Equations 4.7 and 4.9 are the equations of motion written with respect to the

local coordinate system (see Etkin [55] for a more complete derivation of the equations

of motion). These equations can be integrated twice with respect to time to get a

time history of the translational and rotational position of the rigid body. However,

since the equations of motion are written with respect to the local coordinate system,

the change in position coming from the integration of the equations of motion is of

little use for tracking the body motion since the local coordinate system is always

changing. Instead, the changes in body position must be transformed back to the

global coordinate system so that the position and orientation of the body relative to

the global coordinate system can be maintained.

Coordinate Transformations

The local coordinate system is represented by the lower case letters xyz, while

the global coordinate system is represented by the upper case letters XYZ as shown in

figure 4.1. The origin of the local coordinate system is placed at the CG of the body,

the +x axis extends forward along the longitudinal body axis, the +y axis extends

laterally along what would be an aircraft's right wing (from the pilot's perspective),

and the +z axis extends downward in the direction defined by the right-hand rule.

The rotation of the local coordinate system relative to the global coordinate

system can be represented by the three Euler angles of yaw (ip), pitch (#), and roll

((f)). As shown in figure 4.1, the local coordinate axes, which are initially aligned with

the global coordinate axes, are first rotated by xj> about the Z axis to produce the x'y'Z

55

Figure 4.1: Transformation from global to local coordinates

axes. These axes are then rotated by 9 about the y' axis to produce the xy'z" axes.

These axes are then rotated by <f> about the x axis to produce the local coordinate

axes xyz (see Blakelock [56] for another description of the coordinate systems). These

transformations are written in matrix form as

(4.10)

(4.11)

(4.12)

With the notation [/?*(<£)] representing a rotational transformation matrix constructed

for rotation about the x axis by an angle <j), the complete transformation from local

56

coordinates to global coordinates can be written as

X
(\
X

/W). Ry(0) RM_ < y

z

, = i

Ü

i \

X

(4.13)

or

(cos i\) sin 6 sin <f>— (cos ijj sin 9 cos (f>+

sin ip cos 4>) sin ip sin 4>)

(sin ^ sin 6 sin <£+ (sin ^ sin 9 cos <£—

cos ip cos 0) cos ^> sin (f>)

sin 0 cos 6 sin 0 cos 0 cos <f>

Since the rotational transformations are orthonormal, the inverse transform is equal

to the transpose. Thus, the complete transformation from global coordinates to local

coordinates can be written as

cos ip cos 9

sin V> cos 9
y

z

> = < (4.14)

/W)]Tfa(»)]T['W)]T< ['1 Y ...

X

z ['}

(4.15)

which is equivalent to the transpose of the matrix shown in equation 4.14.

If the Euler angles i>,9,(f> are used to track the angular position of the body

relative to the global coordinate system, a relationship is required to convert the

rotational velocity vector u> in local coordinates (calculated from the integration of

equation 4.9) to the rate of change of the Euler angles. However, the Euler angles

are not applied about the global coordinate system axes and thus the transformation

from local to global coordinates can not be applied. Referring back to figure 4.1, ^ is

applied about the Z axis, 9 is applied about the y' axis, and <j> is applied about the

x axis. Therefore, the rotational velocity vector can be decomposed as

u> = pex + qey + rez (4.16)

57

or

u = ij>ez + 9ey> + j>ex (4.17)

Decomposing the unit vectors ey> and ez into the xyz coordinate system yields

eyi = cos (f>ey — sin <f)ez (4-18)

and

ez = - sin 6ex + cos 9 sin (f>ey + cos 0 cos <f>ez (4.19)

as can be seen from the transformation matrices in equations 4.12 and 4.14. Com-

bining equations 4.16-4.19 yields the relationships

p = (j> — ip sin 6

q = xj) cos 0 sin (j> + 0 cos ^

r = ^ cos 0 cos <f> — 9 sin (f> (4.20)

which can be inverted to give

$ = p + q tan 0 sin 0 + r tan 0 cos ^

9 = q cos (j> — r sin <^

ip = (q sin cf> + r cos <ß)/ cos 9 (4-21)

As 0 -»■ 7T/2, cos -»• 0 and tan ->■ oo; therefore, 0 -*■ oo and j> -)• oo. This singularity

is called "gimble lock" [57].

Quaternions

Quaternions were developed by Hamilton [58] as an extension to complex num-

bers and have been used in 6DOF simulations [59] because their use avoids the gimble

lock problem. They have properties similar to both complex numbers and vectors.

58

Like a complex number, which has a real part and an imaginary part, a quaternion

has a scalar part and a vector part and is often written as

Q = e0 + eii + e2j + e3k (4.22)

where i, j, and k are unit vectors in the three Cartesian coordinate directions.

The multiplication of two quaternions requires the additional rules of quaternion

algebra

ij = -ji = k

jk = —kj = i

ki = -ik = j (4.23)

which are similar to the rules of complex math and vector cross products. The

multiplication of two quaternions is simplified if we rewrite equation 4.22 as

Q = Qo + Q (4.24)

which emphasizes the scalar and vector components. Following the distributive prop-

erty, the multiplication of two quaternions is

PQ = (Po + P)(Qo + Q)

= P0Qo + PoQ + QoP + P 0 Q (4.25)

The ® operator can be shown to be equivalent to

P®Q = PxQ-PQ (4.26)

Similar to complex arithmetic, the conjugate of a quaternion is defined as

Q* = Qo-Q (4.27)

The product of a quaternion and its conjugate is thus

QQ* = Q*Q = el + el + t\ + t\ = |Q|2 (4.28)

59

or the square of the magnitude of the quaternion. A unit quaternion is a quaternion

of unit magnitude.

For the unit quaternion of the form

Q = cos(a/2) + A sin(a/2) (4.29)

the transformation

QVQ* = V (4.30)

rotates the vector V about the axis denned by the unit vector A by an angle a to

produce the vector V. Since this is a unit quaternion, Q* is the inverse of Q. Thus

the inverse transformation

CTV'Q = V (4.31)

rotates the vector V about the axis denned by A by an angle of -a to recover V.

If the unit vector A is defined to be equivalent to ex of our local coordinate

system, a is equivalent to the roll angle 4> and the rotational position of the body can

be represented by the quaternion

Q = cos(<£/2) + exsin((£/2)

= cos(0/2) + [cos tp cos 6i + sin xp cos Oj - sin 9k] sin(</>/2) (4.32)

where », j, k represent the three cartesian coordinate directions ex, ey, ez of the IRF.

Then equation 4.30 represents the transformation from local coordinates to global

-coordinates and equation 4.31 represents the transformation from global coordinates

to local coordinates. Equation 4.32 gives the relationship between the Euler angles

and the components of the quaternion. Alternatively, the transformation in equation

4.31 can be compared to a general transformation matrix to find the relationship

between the components of the quaternion and the elements of the transformation

matrix.

60

The only other relationship needed in order to use quaternions to track rigid

body motion is the knowledge of how to update the quaternion. Without going

through a derivation, the following derivatives of the scalar and vector components

of a quaternion were presented in reference [60]

Qo = -|w • Q (4.33)

Q = l"Qo + l"xQ (4-34)

These equations are integrated with respect to time along with the equations of

motion.

The quaternion must remain a unit vector to ensure that the transformation

represents pure rotation with no scaling or shearing. Therefore, the quaternion needs

to be normalized during the integration.

Numerical Integration

A fourth order Runge-Kutta scheme is used to integrate the equations of mo-

tion. Runge-Kutta schemes are an attractive option for solving initial value problems

governed by first order differential equations of the form

y' = f(x,y), y(x0) = yo (4.35)

because they can achieve higher order accuracy without the evaluation of higher

order derivatives. Reference [53, pages 362-365] defines the fourth order Runge-Kutta

scheme as

t/n+i = yn + g (fci + 2k2 + 2k3 + k4) (4.36)

61

where

ki = hf(xn,yn)

k2 = hf(xn + -,yn + -h)

k3 = hf(xn + -,yn + -k2)

. k4 = hf(xn + h,yn + k3)

The integration time step is represented by h, x represents the time, y represents the

position, velocity, and quaternion, f(x, y) represents the derivative of y (right hand

side of the equations of motion), and the subscripts n and n + 1 are used to denote

quantities are the current and next iteration (or time step), respectively.

The aerodynamics solution comes into the equations of motion through the in-

tegrated forces and moments. Since the aerodynamics are a function of position, the

use of four different positions in the evaluation of f(x,y) in equation 4.36 requires

the calculation of the flow solution four times for each integration of the 6D0F. How-

ever, this would be very expensive. Therefore, the aerodynamics are assumed to be

constant over the complete time step and are evaluated only once.

Since the translational equation of motion is written relative to the local coordi-

nate system, the integrated aerodynamic forces (and moments) will be independent

of position. However, the gravitational force, which is constant in global coordinates,

is not constant in local coordinates. Thus, care should be taken when decompos-

ing the gravitational force into local coordinates with each step of the Runge-Kutta

integration.

CHAPTER 5
PARALLEL PROGRAMMING

Computing power has increased many orders of magnitude over the last decade.

This trend is expected to continue in the near future. However, the shift appears

to be away from sequential processing and towards parallel processing. This chapter

presents an overview of parallel computing hardware, the options and some consider-

ations for programming parallel computers, some methods for judging and improving

parallel performance, and the proposed approach taken in this work.

Hardware Overview

The performance gains that are being achieved with single processors is di-

menishing as they approach physical limitations such as the speed of light. With

this in mind, VLSI design principles have been used to conclude that it is possible to

increase potential computing power more cost effectively by utilizing multiple, slower,

less expensive components rather than a single, faster, more costly component [61].

Therefore the trend in computing hardware is towards multiple processors. Machines

that utilize high performance vector processors are shipping with modest numbers of

-vector processors, and massively parallel processors (MPP) are utilizing existing, low

cost RISC processors (for example, the Cray T3D which uses DEC Alpha processors

or the IBM SP2 which uses the IBM RS6000 processors) in ever increasing numbers

to achieve greater potential processing power.

Another trend that is affecting the way computing is being done is the increase

in network transfer rates. This allows physically separated resources to be utilized

62

63

for solving a single problem. Since many MPP's utilize the same processors found in

high end workstations, a group of workstations connected by a high speed network can

be viewed as a distributed parallel computer with the main differences being in the

speed of the inter-processor connections and the possible differences in processors and

operating systems. This type of computing is often referred to as "cycle harvesting."

This is due to the fact that networked computers that are used for routine computing

during business hours often sit idle at night. These unused computing cycles can be

harvested for scientific computing.

A relatively new form of parallel computing takes the use of commercially avail-

able off-the-shelf components to the extreme. Personal computers, based on Intel or

compatible microprocessors, running a freely available UNIX clone operating system

such a LINUX, are linked together using low cost ethernet networking. Such parallel

computers are often referred to as Beowulf clusters [62]. Such a distributed computing

environment can represent a sizeable computational resource with very low associated

cost.

Parallel computer architectures are often classified according to the number of

instructions that can be executed in parallel, as well as, the amount of data that can be

operated on in parallel. The most common of these classifications range from multiple

instruction, multiple data or MIMD computers to single instruction, multiple data or

SIMD computers. SIMD systems offer reduced program complexity, but can greatly

reduce the available algorithms than can be implemented on such an architecture.

Parallel computers are often further classified according to their memory layout as

distributed memory, in which case each processor has its own local memory, or as

shared memory, for which each processor has direct access to a single, global memory

address space. Most of the machines being produced today are of the MIMD type.

The Cray T3D and IBM SP2 are distributed memory MIMD machines; while the SGI

Onyx is a shared memory MIMD machine.

The SGI Origin 2000 represents a unique memory architecture referred to as

64

CC-NUMA, i.e. cache-coherent, nonuniform memory access. It is made of multiple

node cards that contain two processors and local shared memory. However, any

processor on any node card can access any of the memory in the machine. This

hybrid organization of memory is called distributed shared memory (DSM). There is a

latency associated with accessing memory located off of a node card; therefore, access

times to memory are nonuniform. However, hardware is used to maintain coherency

of data held in cache between different processors. This architecture has been shown

to perform well for many irregular applications and scales well to moderate numbers

of processors [63].

Software Overview

Logically, parallel computers can be viewed as a set of sequential processors,

each with its own memory, inter-connected by some communication links [61]. Each

processor executes a sequential set of instructions and communicates with other pro-

cessors and accesses remote memory through the communication links. Distributed

memory and shared memory systems, as well as distributed computing environments

fit this model. The processors of a shared memory system simply have a more effi-

cient way of accessing remote memory than do the processors of a distributed memory

system or a distributed computing environment. This model of a parallel computer

and the use of messages for all communication between processors forms the basis of

the message passing paradigm of parallel programming.

Due to the model used for the parallel computer, it is conceivable that the user

could write, compile, and execute a different program on each processor, with each

program communicating with the others via messages. It is more often the case

that the same source is compiled and executed on each processor with control flow

statements in the code used to determine the path executed or the data manipulated

at run time. This programming model is referred to as single process multiple data

or SPMD. The SPMD model of programming aids in code maintenance and provides

65

a simplified path for converting an existing sequential code for parallel execution.

• Many libraries exist for implementing message passing. Two of the more predom-

inant libraries are PVM [64] and MPI [65]. PVM, which stands for Parallel Virtual

Machine, is a defacto standard message passing interface due to its popularity and

widespread use. It is the product of Oak Ridge National Lab and several university

contributions. PVM consists of two parts: a library consisting of the functions that

implement the application programming interface (API) and a daemon which runs

in the background and actually handles the communication between processes. MPI,

which stands for Message Passing Interface, is a proposed standard message passing

interface. It was developed out of a series of meetings of a committee of experts from

the parallel computing community. MPI draws features from other message passing

libraries and provides a common API that the vendors can optimize for their ma-

chines. PVM evolved out of a research project on distributed computing and places a

higher priority on portability than on performance. MPI is expected to provide bet-

ter performance on large MPP's but does not provide for heterogeneous distributed

computing and lacks many task management functions [66].

Other models are available for parallel programming. One of the more popular

is the shared memory programming model. Pthreads [67] is a POSIX standard imple-

mentation for shared memory programming using threads. A thread is a light weight

process that shares memory with other threads, but has its own program counter,

registers, and stack so that each thread can execute a different part of a code. The

sharing of memory between threads is automatic and communication between threads

is accomplished through cooperative use of shared variables. Mutual exclusion or mu-

tex variables are used to ensure that only one thread changes the value of a variable

at a time. Signals are sent between threads using condition variables. OpenMP [68]

is an alternative library that attempts to avoid the low level programming constructs

required by Pthreads. OpenMP is used to identify loops that can be executed in par-

allel similar to vectorization of loops on vector processors. OpenMP automatically

66

handles all communication.

. These techniques all require shared memory and thus can not be used on dis-

tributed memory parallel computers. However, Pthreads or OpenMP can be mixed

with PVM or MPI to take advantage of both programming models when clusters of

shared memory multi-processor (SMP) machines are linked together. Likewise, other

techniques for using shared memory can be mixed with the message passing model.

POSIX also defines a standard for specifying the use of shared memory explicitly [69]

as opposed to the automatic use of shared memory as with Pthreads.

When approaching a parallel programming task, the key issues to be addressed

are concurrency, scalability, locality, and modularity [61]. Concurrency relates to the

need for algorithms which subdivide larger problems into a set of smaller tasks that

can be executed concurrently. An intimate knowledge of the data structures and data

dependencies in an algorithm is required to identify such concurrencies. Scalability

relates to the behavior of an algorithm in terms of parallel efficiency or speedup as a

function of processor count. Since the number of processors being utilized in MPP's

appears to be continually increasing, the efficiency of a good parallel program design

should scale with increased processor counts to remain effective throughout its life

cycle. Locality relates to the desire to enhance local memory utilization since access

to local memory is less expensive than access to remote memory. Raw communication

speeds are typically orders of magnitude slower than floating-point operations; thus,

communication performance strongly influences the parallel run time. Modularity is

important in all software development. It allows objects to be manipulated without

regard for their internal structure. It reduces code complexity and promotes code

reuse, extensibility, and protability.

The algorithm design process can be broken down into four phases: partition-

ing, communication, agglomeration, and mapping [61]. Machine independent issues,

such as concurrency, are considered early in the design process; while machine specific

issues are delayed until late in the design. Partitioning and communication address

67

the issues of concurrency and scalability; while agglomeration and mapping address

locality and performance. Partitioning falls into two major categories: functional de-

composition and data decomposition. Functional decomposition focuses on the com-

putation; while data decomposition focuses on the data. A good partition will divide

both the data and the computation. The communication phase of a design deals with

identifying the inter-process communication requirements. This is complicated when

the communication patterns are global, unstructured, dynamic, and/or asynchronous.

Agglomeration seeks to reduce communication costs by increasing computation and

communication granularity. Tasks can be combined and data and/or computation

can be duplicated across processors in order to reduce communication. The mapping

phase is a machine specific problem of specifying where each task will execute. A

mapping solution is highly dependent on the communication structure and the work

load distribution. A load balancing algorithm is often needed. If the communication

structure is dynamic, tradeoffs must be made between a load imbalance and repeated

application of a possibly expensive load balancing algorithm.

A good algorithm design must optimize a problem-specific function of execution

time, memory requirements, implementation costs, and maintenance costs, etc. [61].

Furthermore, when solving coupled systems of partial differential equations, issues

unique to the problem must be considered. For example, on a distributed memory

machine, a minimum number of processors may be required in order to hold a specific

problem; however, the use of additional processors must be balanced against its effect

on the solution convergence [70]. Likewise, since communication cost is proportional

to surface area and computational cost is proportional to volume, the desire for a

high ratio of volume to surface area places a lower limit on the subdivision of the

computational domain. Communication through messages has an associated cost of

the latency time for message startup and a cost per word of data transferred in the

message; therefore, it is generally desireable to use a small number of larger messages

rather than a large number of small messages. However, the use of small messages

68

may allow an algorithm change that would allow communications to be overlapped

by computation. An efficient parallel implementation will require the consideration

of all such factors.

Performance

Performance of a parallel algorithm is normally measured via speedup. This

is the ratio of the execution time on a single processor and the execution time on

multiple processors. Thus, the speedup s can be computed by

* = £ (5-1)

where T\ denotes the execution time on a single processor and Tn denotes the exe-

cution time on n processors. Ideally, 7\ should represent the execution time of the

best sequential algorithm available to do the job. When parallelizing a sequential

algorithm, the best sequential algorithm may not parallelize well; and, vice versa, the

best parallel algorithm may not perform well sequentially. Likewise, when paralleliz-

ing a given sequential algorithm, some overhead will be introduced. If the parallel

algorithm is executed on a single processor to measure T\, this value may be artifi-

cially high due to the use of a poor sequential algorithm or due to the existence of

parallelization overhead. However, the definition of the best sequential algorithm may

be unattainable. Thus, there exists some ambiguity in how T\ should be measured in

order to judge the performance of a parallel algorithm. At the least, when converting

an existing sequential algorithm for execution in parallel, T\ should be measured using

-the original sequential algorithm. Likewise, if any algorithm changes are made during

parallelization that would also decrease the sequential execution time, T\ should be

updated so as to isolate improvements due to the algorithm change from improve-

ments due simply to the use of multiple processors.

One source of overhead that exists in all parallel programs is time spent in com-

munication between multiple processors. Following the analysis presented in reference

69

[71], the total execution time of a parallel algorithm executed on n processors can be

approximated as

where Tcaic denotes the actual computation time and Tcomm denotes the time spent

in communication due to parallelization. If the work is perfectly balanced and there

is no time spent in communication during a sequential run, then the execution time

of the sequential run will be

T1 = nTcalc (5.3)

Hence, the speedup would be

Tl J-caic
S =

J-calc T -*comm

(5.4)
1 +

Thus, the ratio of the communication time and the computation time can have a large

effect on the speedup.

In general, for CFD flow solvers, the communication time is proportional to the

area of (number of grid points on) the boundaries of the domain, and the computation

time is proportional to the volume of (total number of grid points in) the domain.

Thus, as the problem size increases, the ratio of communication to computation de-

creases. The characteristics of a particular computer, the form of the communication,

the algorithm used, and the partitioning of the domain can also affect this ratio.

In general, a parallel computer with n processors can execute n instructions at

the same time. Thus, if the instructions in a sequential algorithm could be evenly

divided among the n processors, so that each processor executed l/nth of the total

instructions, the execution time would be decreased by a factor of n. Therefore, linear

speedup is the ideal case, and speedup is limited to s < n. However, there are other

factors that place additional limits on the speedup that can be achieved.

70

If we consider the entire work load of a complete simulation to be broken down

into part that can be executed in parallel and part that must be executed serially,

the speedup that can be achieved is limited by Amdahl's law [72]:

3 < TT^ (5.5)

where /, is the serial fraction of the work, fp is the parallel fraction of the work, and

n is the number of processors on which the parallel portion of the code is running.

The factors f3 and fp are fractions so that

0 < /, < 1

0 < fP < 1

and

/. + fP = 1 (5-6)

Since the parallel work will be distributed across multiple processors, the execution

time of the parallel work will be decreased, but the execution time of the serial work

will not.

Amdahl's law shows the significant penalty that the serial fraction of the work

load can place on the parallel performance. For example, consider a case where 5%

of an executable code must be performed serially. Therefore, fa = .05 and fp = .95.

If only 4 processors are used, the speedup will be limited to 3.48, nearly 90% of the

ideal speedup. However, if 32 processors are used, then the speedup will be limited

to 12.55, less than 40% of the ideal speedup. Although the processor count was

-increased by a factor of 8, the speedup increased by less than a factor of 4. In fact, as

the number of processors n —> oo, the term fp/n —> 0. Thus, the speedup is limited

to l/f3, or 20 in this case, no matter how many processors are used.

This could be used to argue that parallel processing does not hold the answer to

the need for increased computing power. However, the potential from multiple proces-

sors and the increased memory often available with MPP machines allows larger and

71

larger problems to be addressed. With CFD solutions, as the problem size increases,

the computation to communication ratio usually increases and the serial fraction of

the work load decreases.

Even the limit specified by Amdahl's law is not always reached. The major

contributor to this behavior is an imbalance in the distribution of the work to be

executed in parallel. Consider figure 5.1. The left side of the figure shows the serial

execution of a function that operates on four grids; while the right side shows the

parallel execution of the function on four processors with one grid per processor. The

serial execution time and thus the total work is represented by the time T5-T1. On

four processors, the average work per processor is represented by the time (T5-Tl)/4.

However, the total execution time in parallel is dictated by the maximum execution

time of any process. This time, T2-T1, is larger that the average execution time by

a factor related to the imbalance in the work load or execution times.

Time Serial Parallel
Tl

TAVG
T2

T3

T4

T5

Ol 01 02 03
04

sr2

03

g4

Figure 5.1: Unbalanced work load

Since the term fp/n in equation 5.5 represents the average parallel work per

processor, this work must be increased by a factor proportional to the load imbalance.

Generalizing equation 5.5 to include the effect of a load imbalance, the speedup

becomes

1
s ~ (5.7)

where /< is the load imbalance factor. The load imbalance is often judged by the ratio

72

of the maximum execution time of any process and the minimum execution time of

any process. However, as used here, the load imbalance factor is used to increase the

average execution time per process to the maximum execution time of any processor.

Thus, the imbalance is equal to the ratio of the maximum execution execution time

of any process to the average execution time per process.

The load balance is further complicated by the basis for the decomposition of the

work. If each division in the decomposition does not represent a nearly equal piece of

the work, the load balance can vary significantly with the process count. Obviously,

if there are not enough pieces of work, some of the processes would sit idle. Likewise,

if there is one piece of work that is significantly larger than the other pieces, it can

dominate the execution time. Consider figure 5.2. The left side of the figure shows

the serial execution of a function that operates on four grids. When the function is

duplicated and the grids are distributed across two processes (shown in the middle of

the figure), the work is well balanced and the execution time is cut in half. However,

when four processes are used (shown on the right side of the figure), no improvement

in the execution time is seen. The work associated with grid gl is one half of the

total work; thus, the execution time is dominated by the execution time of gl.

Time Serial
■PI

2 PE's 4 PE'S

T3

sri ffl

02

ffl

?2 S3 S4

03

g4

g2

T4 ff3

T5
g4

Figure 5.2: Limitations in load balance caused by a poor decomposition

Another common cause for the degredation in the speedup achieved is synchro-

nization between processes. Synchronization is enforced by the placement of barriers

in the execution path. No process may pass the barrier until all of the processes have

reached the barrier. This can ensure that every process has completed a particular

73

portion of the work load before any process starts on the next portion of work. This

may be required if one function is dependent on the results from a previous function.

How this can cause an increase in execution time is illustrated in figure 5.3. This

diagram shows two functions (A and B) operating on separate grids on separate pro-

cessors. Without synchronization, the total work per process may be well balanced;

but if synchronization is required between the functions, wait time can be introduced

if each function is not well balanced.

Time

Tl

T2

T3

T4

T5

Independent
processors

Synchronized
processors

A(gl)
A(g2)

B(g2)
B(srl)

A(gl)
A(g2)

wait

B(gl)
B(g2)

wait

Figure 5.3: Imbalance caused by synchronization

This illustrates the fact that each piece of work between any two synchronization

points must be well balanced in order to achieve a good overall load balance for the

entire code. To take this into account, equation 5.7 should be written as

(5.8)

where the terms within the summation represent each section of code between syn-

chronization points that is executed in parallel.

Load Balancing

The most important part to achieving good parallel performance is load bal-

ancing. The problem of load balancing is similar to the computer science problems

referred to as the "knapsack problem" [73] and the "partition problem" [74]. These

74

problems are NP-complete, which is the set of all problems for which no algorithm ex-

ists that is guaranteed to produce the exact solution through nondeterministic means

in polynomial time. The input to the knapsack problem is defined by a set of items

with specified sizes and values and a knapsack of a specified capacity. The problem

is to maximize the value of the subset of items that will fit into the knapsack at one

time. The input to the partition problem is a set of blocks of varying heights. The

problem is to stack the blocks into two towers of equal heights.

The input to the load balancing problem consists of a set of pieces of work,

a measure of the cost of each piece of work, and the number of processors across

which the pieces of work are to be distributed. The problem is to associate each

piece of work with a processor while minimizing the ratio of the maximum total work

associated with any processor and the average work per processor. The amount of

work associated with each piece of work is similar to the value of the items to be

placed in the knapsack or the height of the blocks. The processors are similar to the

knapsack or the towers. The average work per processor corresponds to the capacity

of the knapsack or the average height of the towers. However, each piece of work

must be associated with a processor, each processor must have at least one piece of

work, and there is no limit on the amount of work that can be associated with each

processor.

The algorithm used to balance the work of the flow solver is a max-min algorithm.

This algorithm, shown below, takes the piece of work with the maximum cost from

the pieces of work that have not yet been assigned to a processor and assigns it to the

processor that has the minimum total work assigned to it. This algorithm distributes

the work across the available processors with only a single pass through the list of the

pieces of work, thus the execution time is bounded. With sufficient partitioning of

the work, this algorithm produces a good load balance, although it may not produce

the best possible distribution of the work.

The array W^orfcQ is an estimate of the cost associated with each piece of work

75

(each grid, in this case). Since the work of the flow solver is closely associated with the

number of grid points, the cost associated with a grid can be defined as the number

of points in the grid. However, there are other factors that can affect the execution

time that are not directly related to the number of grid points. Thus, a user defined

weight can be associated with each grid and it is the weighted number of grid points

that is fed into the load balancing routine as the cost of each piece of work. The

output from the load balancing routine is an array GridToPeft that specifies which

processor will execute the flow solver for each grid.

MAP_GRlDS_To_PES(WorfcO)
1 for i <r- 1 to npes
2 do PeWork[i\ <- 0
3
4 for i <- 1 to ngrids
5 do PeNum f- FIND_MIN_VALÄNDEX(PeWork\\)
6 GridNum «- FIND_MAX_VALJNDEX(WOTA;Q)

7 PeWark[PeNum] <- PeWark[PeNum) + Wark[GridNum]

8 GridToPe[GridNum] <- PeNum
9 Work[GridNum] <- 0

10
11 return GridToPe\\

This load balancing algorithm is applied to the flow solver, for which there is an

initial estimate of the value of each piece of work. In grid assembly, there is no apriori

knowledge of the amount of work associated with a grid or superblock. In fact, the

amount of work associated with a grid or superblock depends on the location of the

grids and thus changes as the grids move. In such a case, a dynamic load balancing

algorithm is needed that can redistribute the work based on some perception of the

current work distribution.

The algorithm implemented for dynamic load balancing, shown below, consists

of two iterative steps. The algorithm requires as input, some numerical measure of

the cost associated with each piece of work in the partition and the current mapping

of those pieces of work to the available processes. The first step in the algorithm is

to move work from the process with the maximum work load to the process with the

76

minimum work load in order to improve the load balance. The second step is to swap

single pieces of work between two processes in order to improve the load balance.

The output from this algorithm is a new mapping of the pieces of work to the set of

processes. This mapping must be compared to the previous mapping to determine

which data has to be transferred from one process to another.

OPTIMIZE_MAPPING(Workf], WorkToPe\\)
1 TotalWark <- CALCJSVM(Work\})
2 AvgWork <— TotalWork/npes
3 PeWork\\, PeWarkList\} <- BuiLD_PE_WORKXlSTS(WorfcroPeO)
4
5 MoVE.WORK(Work\\,WorkToPe\})
6 SWAP JNORK(Wark\\,WorkToPe\\)

MoVE.WORK^orfcQ, WarkToPeW)
1 repeat
2 pemin <- FlND_MlN_VALJNDEX(Peiyork\\)

3 pemax <- FlND_MAX_VALJNDEX(PeWorfc[])
4
5 WorkLimit <- (PeWork\pemax] — PeWork\pemin}) * 0.99
6 WarkToPut f- CHOOSE_MAX_LIMITED_VAL(

7 PeWorkList\pemax], WorkLimit)

8
9 if WarkToPut

10 then WorkToPe[WorkToPut] «- pemin
11 PeWork\\, PeWorkListW <- BUILD_PE_WORKXISTS(

12 WarkToPeW)
13 until WarkToPut = NIL

In line 3 of OPTIMIZEJVIAPPING, BUILD_PE_WORK_LISTS calculates the total

work per process (PeWork\\) and also builds an array of the lists of pieces of work

that are mapped to each process (PeWark List]]) from the mapping of work to pro-

cesses (WarkToPeW). In MOVE-WORK, if any piece of work can be moved from one

process to another and decrease the maximum amount of work on any process, then

it will improve the load balance. Therefore, in line 5, WorkLimit is set based on a

percentage of the difference in the work assigned to the processes with the least and

most work. CHOOSE_MAX_LIMITED_VAL chooses the piece of work from the list of

77

work associated with pemax (PeWorkList\pemax]) that has the largest cost and also

is less than WorkLimit. This piece of work is assigned to pemin in line 10 and the

work lists are updated in line 11.

SWAP_WORK(jyorÄ;Q, WorkToPe\\)
1 repeat
2 for i <- 1 to npes
3 do PeWarkImb[i) <- PeWork[i] - AvgWork
4 pemax <- FIND_MAX_VAL jNDEX(FeVForfc/m60)
5
6 for each i in PeWorkList\pemax]
7 do WorfcToPu*«- »
8 for pemin <— 1 to npes
9 do if pemin ^ pemax

10 then WorkLimit <- (W^orfc[PForfcroPu^]
11 —PeWorA:7m&[pema£]
12 +PeWorJfc/m6[;"]) * 1.001

13
14 WorkToGet«- CH00SE_ANY_LIMITED_VAL(

15 PeWorkList [pemin])

16
17 if VyorifcroGei
18 then VForfcroPe[jyorfcToGef] <- pemax
19 WorfcToPeiWorfcToPu*] f- pemin
20 PeWorA;0,PeJyorfcLis<0<-
2i BUILD_PE_WORK_LISTS(

22 WorfcToPeö)
23 break

24
25 until WorkToGet = NIL

In SWAP_WORK, one piece of work on one process is swapped for a piece of

work on another process. Therefore, there is an upper and lower bound on the

-cost of the WorkToGet. If WorkToGet is larger that WorkToPut, then the to-

tal work on pemax will increase. However, if WorkToGet is less than WorkToPut

by more than the difference between the imbalance on the two processes, then the

imbalance on pemin will increase beyond the original imbalance of pemax. The

routineCHOOSE_ANY_LlMITED_VAL chooses a piece of work from the list of work as-

sociated with pemin (PeWorkList\pemin\) that costs less than the work represented

78

by WorkToPut and is greater than WorkLimit. It is not important that the opti-

mum piece of work be chosen. Any piece of work that improves the load imbalance

will do. The work represented by WorkToGet is assigned to pemax and the work

represented by WorkToPut is assigned to pemin. The work lists are updated by

BuiLD_PE_WORK_LlSTS. The break at line 23 causes control to jump out of the

loop that started at line 6 so that the load imbalances and pemax can be recalculated.

Each step of this algorithm attempts to decrease the load imbalance caused by

the process with the maximum work load. However, the search for pieces of work to

swap is exhaustive. This algorithm is used to redistribute the superblocks based on

the work of grid assembly; therefore, this algorithm is not too expensive, since there

are not many superblocks. This algorithm could be extended to swap multiple pieces

of work on one process for one or more pieces of work on another process. However,

this would probably require more efficient ways of sorting the pieces of work so that

the pieces to be swapped could be selected more efficiently.

Another situation that often arises is a large set of pieces of work that can be

treated as an array. This array can be evenly divided among the processes with each

getting an equal number of elements of the array. However, if each element of the

array does not represent the same amount of work, there will be a load imbalance.

It could be expensive to treat each element as a separate piece of work, measure its

cost, and use the previous algorithms to distribute this large number of pieces of

work. Instead, the total cost of the work can be associated with the processor and

used as a weight. Load balancing can then be achieved by dividing the array so that

the weighted number of elements is equally divided among the processes.

This algorithm requires as input, the number of elements of the array mapped

to each process (A^O) and the execution time of each process (T\\). A weight for

each process (WQ) is calculated as the execution time per array element. The excess

number of elements assigned to the process with the maximum load is calculated as

the delta between the process execution time and the average process execution time

79

divided by the process weight: Since this number of elements will be assigned to

another process, the weight of the receiving process must be updated. The execution

times of the two processes are updated and the loop is repeated if there are other

processes with excess array elements.

OPTIMIZE_ARRAY_MAPPING(iV[], TQ)
1 for i«- 1 to npes
2 do W[i\ <r- T[i\/N\i]
3 imin <- FlND_MlN_VALjNDEX(r[])
4 imax f- FIND_MAX_VAL JNDEX(TQ)

5 Tavg«- CALCULATE_AVG_VAL(TO)

6
7 repeat
8 Nexcess f- (T[imax] - Tavg)/W[imax]

9 if Nexcess = 0
10 then break
11 TotWeight <r- N[imin] * W[imin) + Nexcess * W[imax]
12 W[imin] f- TotWeightf(N[imin] + Nexcess)
13 N[imin] 4- N[imin] + Nexcess
14 N[imax] f- N[imax] — Nexcess
15 T[imin] <- N[imin] * W[imin]
16 T[imax] f- N[imax] * W[imax]
17 imin 4- FIND_MIN_VALJNDEX(TQ)

18 imax «- FIND_MAX_VAL JNDEX(rQ)
19 until r[imax]/raup < 1.005

Proposed Approach

Since this work builds on the initial parallel implementation of the Beggar flow

solver [6], the same methods used there will be continued here. The message passing

paradigm is used within an SPMD programming model. PVM is used for the mes-

sage passing environment. The code is geared toward MIMD machines with either

distributed or shared memory. The ultimate goal is to allow heterogeneous computing

although homogeneous computing environments are the primary focus. A functional

decomposition of the entire simulation process is used with the flow solution, force

and moment calculation, 6DOF integration, and grid assembly being the primary

functions. Coarse grain domain decomposition of the flow solver based on grids is

80

used. The degree to which domain decomposition of the grid assembly function can

be used is determined. Load balancing is treated as the primary contributor to good

parallel performance. The most efficient implementation requires consideration of

both the flow solver and the grid assembly process during data partitioning and load

balancing.

For parallel algorithm design, Foster [61] recommends a process denoted by the

acronym PCAM, referring to partitioning, communication, agglomeration, and map-

ping, as mentioned previously. In this approach, Foster recommends that the finest

grained partitioning of the work be defined along with all of the required communica-

tions. Then the partitions are agglomerated to reduce the communications required

and thus increase the computation to communication ratio. The final step is to map

the work to processors based on the particular computer architecture. In this work,

a nearly opposite approach is taken. The work is partitioned using coarse grain de-

composition first. This allows a parallel implementation to be achieved with minimal

code changes and with less expertise in the existing sequential code, as well as parallel

programming itself. This also allows the users to receive and to start using the code

earlier. As the code performance is analyzed, the granularity of the decomposition is

refined as required. Mapping of work to processes is done dynamically to achieve a

good load balance; however, no machine specific issues of mapping work to specific

processors are addressed.

CHAPTER 6
PARALLEL IMPLEMENTATIONS

Phase I: Hybrid Parallel-Sequential

The simplest approach to achieving a parallel version of Beggar for moving body

problems is to use a separate front-end (FE) process that performs the grid assembly

function for the complete domain in a serial fashion with respect to the parallel

execution of the flow solver across multiple back-end (BE) processes. This requires

that proper communication be established between the flow solution function and

the grid assembly function; however, this does not require any consideration of load

balancing or partitioning of the grid assembly function.

This implementation is referred to as phase I and is depicted in figure 6.1. This

diagram and the others like it that follow are referred to as timing diagrams. The

major functions are represented and the diagram serves as a template of one iteration

of the solution process. The vertical direction represents time and this template can be

stamped out in a vertical manner to construct a complete time history of the solution

process. The boxes on the left represent the functions running in the FE process,

while the boxes on the right represent the functions running in the BE processes.

The arrows represent communication between specific functions on the FE and BE.

Communication between functions on the same process is not shown explicitly. The

vertical lines through a function indicates that it is spread across multiple processors.

Although these diagrams are not drawn to scale, the work of a particular function

is represented by the area of the box drawn for that function. Thus, as a function

is spread across multiple processors, the width increases and the height decreases

81

82

representing the decrease in the time for executing the function.

Referring to figure 6.1, the solution process is started at time Tl. Once the

grid assembly function is completed at time T2, the interpolation stencils, iblank

arrays, etc. are communicated from the FE to the BE so that the flow solution

function can proceed. Once an iteration of the flow solver is completed, the forces

and moments are integrated and are passed from the BE to the FE. The 6D0F

function is then executed to reposition the grids and to calculate motion rates. Since

the 6DOF function executes quickly, it is duplicated on the FE and the BE rather

than communicating the resulting information.

Ignoring the cost of the force and moment calculation and the 6DOF integration,

the flow solver represents the parallel work and the grid assembly represents the serial

work. Based on the fractions of the total execution time represented by the flow solver

and the grid assembly, equation 5.7 can be used to estimate the performance that can

be achieved with this implementation. However, instead of using the notation fp, /,•

and /s, we will use the uppercase letters F and G to represent the flow solver and

grid assembly functions and the subscripts p, s and i to represent the fractions of the

work executed in parallel or serial and the load imbalance factors, respectively. Thus,

for the phase I implementation, the speedup can be approximated as

(6.1)

where nbes is the number of BE processes. Since the work of the flow solver is closely

Time

Tl

Front End
(serial)

Back End
(parallel)

T2

T3

T4

Grid Assembly
1

wait timm

mit timm

i i i
i i >

FJ.OW Splutipn
i i i

Forces fr Momenta

6DOF 6DOF

Figure 6.1: Phase I implementation

83

Amdahl's Law

L~>

■■'■"" ^-Fp=.95, Fi=1.05
Gs=.05

(6.2)

0 5 10 15 20 25 30 35 40
processor count

Figure 6.2: Comparison of estimated speedup of phase I to Amdahl's law

related to the number of grid points, the equation

max(no. points on each processor)

* — avg no. points per processor

can be used to obtain an approximation for the load imbalance factor for the flow

solver. There are other factors, such as boundary conditions and the distribution of

communication between processors, that affect the load balance. They will be ignored

at this point.

Figure 6.2 shows a comparison of the estimated speedup from the phase I im-

plementation to Amdahl's law. The estimated speedup of phase I is plotted using

equation 6.1 with Fp = 0.95, G3 = 0.05, and F, = 1.05 representing a nominal load

imbalance of 5% in the distribution of the work of the flow solver. This plot shows the

significant drop off in speedup with increased processor counts due to the serial frac-

tion of the work. A small decrease in the performance of the phase I implementation

(as compared to Amdahl's Law) due to the load imbalance can also be seen.

Phase II: Function Overlapping

Some parallel efficiency can be gained by overlapping the grid assembly function

with the flow solution function. This overlapping could be achieved by updating the

84

6D0F and the interpolation stencils at the same time that the flow solver is updated

by using the forces and moments calculated from a previous iteration of the flow

solution as an approximation to the current forces and moments. Thus, the updating

of the grid assembly would be based on a flow solution that is lagged behind the

current flow solution. This is similar to the technique used for sequential processing

in references [28] and [29]. In these references, store separation events were simulated

with the grid assembly recomputed once after every 20 iterations of the flow solver

and 6DOF integration. The grids were moved and the grid motion time metrics were

fed into the flow solver every iteration although the interpolation stencils were not.

Time accurate forces and moments were used, although the flow solution could be

affected since the interpolation stencil locations were not time accurate. The variation

in stencil locations due to this time lag (.004 seconds in their case) is justified by the

assumption that the grids will not move by an appreciable amount during the delay.

Good results were achieved for the problems addressed.

Some parallel efficiency may be gained without lagging the grid assembly behind

the flow solution. This is possible due to the Newton-Relaxation scheme used in the

flow solution function. The discretized, linearized, governing equations are written

in the form of Newton's method. Each step of the Newton's method is solved using

Symmetric Gauss-Seidel (SGS) iteration. The SGS iterations, or inner iterations,

are performed on a grid by grid basis; while the Newton iterations, or dt iterations,

are used to achieve time accuracy and are performed on all grids in sequence. This

procedure eliminates synchronization errors at blocked and overset boundaries by

iteratively bringing all dependent variables up to the next time level.

Figure 6.3 is a diagram of the flow solution process. The inner loop represents

the inner iterations or iterations of the SGS solution of the linear equations from one

step of the Newton's method. The outer loop represents the dt iterations or steps of

the Newton's method.

For time accurate flow calculations with Beggar, it is normal to run more than

85

Setup Linear Eqns

of approximate

Newton Solver H
Exchange Info
Between Grids

SOS Solution of

Linear Eqns

Update
Implicit BCi

Figure 6.3: Basic flow solution algorithm

one dt iteration to eliminate synchronization errors between grids and to achieve time

accuracy. Each dt iteration produces an updated approximation to the flow solution

at the next time step. Forces and moments can be calculated after each dt iteration

using this approximate solution. If the forces and moments calculated after the first

dt iteration are a good approximation to the final forces and moments, these values

can be forwarded to the grid assembly process. This allows the computation of the

grid assembly to proceed during the computation of additional dt iterations. If the

computation time for the flow solver is sufficiently large, the computational cost of

the grid assembly process can be hidden.

This implementation is referred to as phase II and is depicted in figure 6.4.

Rather than calculating forces and moments only after a complete time step of the

.flow solver, they are calculated after each dt iteration. The node labeled 1 in figure

6.3 represents the point where the forces and moments are calculated.

Referring to figure 6.4, the solution process is started at time Tl. After the first

dt iteration, initial approximations to the forces and moments are calculated and are

passed from the BE to the FE at time T2. The 6D0F and grid assembly functions

proceed while the remaining dt iterations of the flow solver are completed. Once the

86

ne

T1

Front End
(serial)

Back End
(parallel)

mit tin*
DT; Iteration; #1

T7
Forces fit Momeints

•n
6D0F DT; Iteration; #2

T4
Grid Assembly Fozlces Si Momeints

• i i

T5
6D0F

^
6DOF

Figure 6.4: Phase II implementation

final forces and moments are calculated, they are passed to the FE process and the

6D0F is repeated. This allows the grids to be moved using the most accurate forces

and moments, although the interpolation stencils are updated using grid positions

calculated from approximate forces and moments.

The fraction of time spent in computing the flow solution after the first dt

iteration is

\nbesj ' \ ndt
(6.3)

where ndt is the number of dt iterations being run per time step. If Ft is greater

than Gs, the time to do the grid assembly can be completely hidden by the time to

compute the flow solution and the speedup is based only on the time to compute the

flow solution in parallel. If the time to compute the grid assembly is only partially

hidden by the time to compute the flow solution, the speedup is degraded by the

portion of the grid assembly process that is not hidden. Thus, the speedup can be

approximated by the equation

1
s ~

G£.)** + G«
(6.4)

where,

Gt =
G3-Ft \iFt<G3

(6.5)
0 otherwise

and thus Gt represents the fraction of the grid assembly time that is not hidden by

the flow solution. If the grid assembly time is completely hidden, this is the best

87

possible situation. No matter what technique is used to decompose the work of grid

assembly, nothing will do better than reducing the effective execution time to zero.

However, as more and more processors are used to reduce the execution time of the

flow solver, the time available to hide the execution time of grid assembly decreases.

In figure 6.4, the grid assembly function is finished before the flow solution;

therefore, the flow solution proceeds without any delays. However, in figure 6.5, the

grid assembly function does not finish before the flow solution. This creates delays

in the flow solution function as it waits on information to be communicated from the

grid assembly function.

Tims

Tl

T2

T3

T4

T5

T6

Front End
(serial)

Back End
(parallel)

DTJ Iteration; #1
nit tiaa

Forces Si Moments
1 1 ■

6DOF

i
DT< Iteration; #2

Grid
Assembly

Forices Si Moments

mit eia*

6DOF 6DOF

Figure 6.5: Insufficient time to hide grid assembly

By hiding the cost of the grid assembly process, the execution time should be

almost equal to that of an equivalent static case in which no grids are moving. In

fact, if Gt = 0 in equation 6.4, then the speedup is based only on the parallel fraction

of the work and a superlinear speedup can be expected, although a decrease in effi-

ciency would be seen since an additional processor is needed to run the grid assembly

function.

Figure 6.6 shows a comparison of the estimated speedup versus processor count

for the phase I and phase II implementations as defined by equations 6.1 and 6.4.

The curves correspond to work fractions of Fp = .95 and G3 = .05, a load imbalance

factor of Fi = 1.05, and ndt = 2. The additional processor needed for the grid

assembly function in the phase II implementation is better used to do part of the flow

solution as long as less than 5 processors are available. Above this point, the phase

88

0 2 4 6 8 10 12 14 16 18 20
processor count

Figure 6.6: Comparison of estimated speedup of phases I and II

II implementation outperforms the phase I implementation. The change in slope of

the phase II curve at around 11 processors is the point where the grid assembly time

fails to be hidden by the flow solution time. Above this point, there is a significant

dropoff in performance.

Phase III: Coarse Grain Decomposition

As long as the grid assembly time is completely hidden, the optimum speedup

is achieved. However, as the number of processors increases, the time to compute

the flow solution decreases, the execution time of the grid assembly process is not

completely hidden, and the overall performance suffers.

In order to continue to see the optimum speedup, multiple processors must be

used to decrease the total execution time of the grid assembly process. This requires

consideration of how the grid assembly work and data structures can be distributed

across multiple processors.

The work associated with the flow solution is well associated with the grids;

therefore, the grids form a good basis for data decomposition of the flow solution.

However, the work of the grid assembly function is associated with the number of hole

cutting surface facets, the number of cells that are cut, and the number of IGBP's.

89

This work is not evenly distributed among the grids and the distribution of work

varies as the grids are moved.

For parallel implementation, the primary data structure to be concerned with is

the PM tree. This data structure is used during hole cutting and during the search

for interpolation stencils. All of the boundaries of the grids are represented by BSP

trees stored at the leaf nodes of a single octree. A point is classified against all of

the superblocks in the PM tree with a single descent of the octree. This classification

identifies if the point is IN or OUT of each superblock. If the point is IN a superblock,

then a starting point for stencil jumping is identified (including the correct grid within

the superblock).

Since the PM tree is used to classify points relative to superblocks, superblocks

were chosen as the basis for coarse grain data decomposition. The superblocks are

distributed across multiple FE processes in an effort to equally balance the grid as-

sembly work load. The work load is divided among the processes by cutting holes

only into the superblocks mapped to a given process, and only the stencils either

donating to or interpolating from these superblocks are identified.

A single octree is used to reduce storage requirements when the complete PM

tree is stored with a single process. However, the PM tree is still a major consumer

of memory for the grid assembly process. The excess memory requirements must be

weighed against the advantages offered by duplicating the entire PM tree on each

of the FE processes. If the complete PM tree is available, all possible interpolation

stencils for every IGBP within the superblocks mapped to a process can be identified

without any communication between processes. Figure 6.7 represents this situation.

In this figure, four superblocks axe mapped to four FE processes. The superblock rep-

resented by the solid line is mapped to the corresponding process. The superblocks

represented by the dotted lines are mapped to another process. However, since the

complete PM tree is duplicated on each FE process, each process has knowledge of the

space occupied by each superblock and can identify all of the interpolation sources

90

available for the IGBP's in any of the superblocks. Thus, all of the interpolation

stencils (represented by the arrows) that donate to IGBP's in superblocks on each

processor are identified and the best interpolation source is chosen without any com-

munication. The only communication requirement is the global distribution of the

cell state information so that hole points and IGBP's can be identified.

Figure 6.7: Duplication of PM tree on each FE process

Logically, each superblock is represented by a separate PM tree. Therefore, a

separate PM tree could be constructed for each superblock and only the PM trees

for the superblocks mapped to a process would be stored with that process. This

would reduce the memory required per process, but would also increase the amount

of communication required. Figure 6.8 represents this situation. With a limited piece

of the complete PM tree, a process can only classify points against its superblocks.

•Thus, only the interpolation stencils from its superblocks which donate to IGBP's

in other superblocks can be identified. All of the possible interpolation stencils must

then be communicated to the process which owns the superblocks that will receive the

donations so that the best source can be identified. The increase in communications

and the coding changes required to implement separate PM trees have driven the

decision to duplicate the complete PM tree on each of the FE processes.

91

SBO SB1 ^

INI

FEO FE1

n

"

FE2 FE3

mr

SB2 SB3

Figure 6.8: Distribution of PM tree across the FE processes

The phase III implementation is shown in figure 6.9. This is essentially the

same as figure 6.4 except that the grid assembly function is distributed across mul-

tiple processors. A load balancing function has also been added. Since the work

load is dynamic, the grid assembly function is monitored to judge the load balance

and dynamic load balancing is performed by moving superblocks between processors.

The monitoring required to judge the load balance is accomplished by measuring the

execution time of the grid assembly using system calls. These execution times are

measured on a superblock by superblock basis and are passed into the dynamic load

balancing function described in chapter 5. The load balancing function is executed

during the calculation of the initial dt iteration; therefore, if the load balancing func-

tion is cheap, its execution time will be hidden and will not adversely impact code

performance.

Since the grid assembly is now executed in parallel, the grid assembly execution

time is represented by

G„
nfes

*d (6.6)

where Gp is the parallel fraction of the work represented by the grid assembly func-

92

Time

Tl

T2

T3

T4

T5

Front End
(parallel)

Back End
(parallel)

Load Balance
1 1 1—

DT jIterationJ#l

wait tim» Fozices fil Moments

6DOF DT|Iteration|#2

Gri'd Assembly Forces S Mometnts
1 1 1

6DOF ^v 6D0F

Figure 6.9: Phase III implementation

tion, Gi is the load imbalance in distributing the grid assembly work, and nfes is

the number of FE processors that are executing the grid assembly function. Func-

tional overlapping of the flow solution and grid assembly functions is still being used;

therefore, the speedup is still estimated using equation 6.4 with

Gt={
Gv fc*Gi-Ft UFt<%i*Gi

0 otherwise
(6.7)

Figure 6.10 compares the estimated speedup of the phase III implementation to

that of phases I and II. The curve plotted for phase III is for Gv = 0.05, nfes = 4,

and Gi — I. (ideal load balance). The curves plotted for phases I and II are the same

as those plotted in figure 6.6. Since the grid assembly is executed on 4 processors,

at least 5 processors are required to execute the phase III implementation. About 12

processors are needed before phase HI outperforms phase I and about 16 processors

are needed before phase III outperforms phase II. More than 40 processors are required

before the grid assembly time fails to be hidden by the flow solution time; however,

if the grid assembly function stays well balanced, more FE processes could be added

to produce solutions that scale to higher processor counts.

Phase IV: Fine Grain Decomposition

The relatively small number of superblocks used for most configurations limits

the ability to achieve a good load balance of the grid assembly work load. The splitting

of grids, which is used to help balance the load of the flow solver, does not introduce

93

0 10 20 30 40 50 60
processor count

Figure 6.10: Comparison of the estimated speedup of phases I, II, and III

new superblocks and therefore, is of no help in load balancing the grid assembly work

load. Instead, a finer grain decomposition of the work of the grid assembly function

must be used to ensure the possibility of load balancing the grid assembly work load

on any large number of processors.

The two most expensive components of the grid assembly function are hole cut-

ting and the search for interpolation stencils. The work of the hole cutting function

is associated with the number of hole cutting facets. The work of the search for inter-

polation stencils is associated with the number of IGBP's that require interpolation.

Therefore, a fine grain decomposition of the grid assembly function may be based on

the view that the smallest piece of work is a single hole cutting facet or an IGBP.

Load balancing is achieved by equally distributing the total number of hole cutting

facets and IGBP's across the available FE processes. Each facet and each IGBP is

independent of its neighbors, therefore there is no communication between neighbor-

ing facets or IGBP's. The only area of concern is the access and updating of several

data structures by multiple processes.

The hole cutting facets are defined by the solid surface boundary conditions

as specified by user input. These boundary conditions are specified as grid surface

segments and the specifications are stored as a linked list. The facets are not stored

94

as a single array, but the total number of facets can be counted and as the linked

list of specifications is traversed, each process will cut holes into all of the overlaping

grids using its share of the facets.

As described in chapter 2, each hole cutting facet marks a part of the hole outline

independent of the other facets. The hole cutting algorithm identifies a set of cells

near the facet and compares the cell centers to the plane definition of the facet. Some

cells will be marked as holes, others will be marked as worldside. This information

is called cell state information and is stored in an array associated with each grid.

These two pieces of information are stored separately as bit flags so that a cell can

be marked as a hole and as a worldside point (i.e. a worldside hole). This is because

one facet may mark a cell as a hole and another facet may mark it as worldside. The

worldside status is needed to cap off the holes during the hole filling process, while

the hole status is needed to get the hole filling process started.

When hole cutting is done with two neighboring facets on separate processors,

the two cell state arrays must be merged to define the complete hole outline before

the hole filling can be done. This merge is accomplished by a bitwise OR of the cell

state status bits. This is a reduction operation and involves combining separate cell

state arrays from each process for every grid in the system. This can be a rather

expensive operation. For this reason, the cell state arrays will be stored in shared

memory.

When using shared memory, some facility is often required to make sure that

only one process changes a variable at a time. However, in the case of hole cutting,

it doesn't matter which facet marks a cell as a hole or as worldside. No matter how

many facets mark a cell as a hole or worldside, the cell state information is only a

set of bit flags. It doesn't matter how many processes set a bit as long as it gets set

(no one ever clears these flags during grid assembly). Likewise, the order in which

processes set a cell's status bit is immaterial. Thus, the cell state information is stored

in shared memory and no coordination between processes is needed to ensure that

95

the cell state information is constructed correctly.

The use of IGBP's for fine grain decomposition of the stencil jumping requires

access to the complete PM tree. Without access to the complete PM tree, each

process will be limited as to which IGBP's it can process. However, the duplication

of the PM tree across multiple processes would require a large amount of memory, as

stated before. Therefore, the storage of the PM tree in shared memory is used for the

fine grain decomposition of the stencil search based on IGBP's. Once the PM tree

is built, it does not require any modifications. Each process can access the PM tree

without any need for communication, cooperation, or synchronization.

The use of a fine grain decomposition of the work associated with grid assembly

should allow better load balancing on larger processor counts. Therefore, overlapping

of the grid assembly time and the flow solution time could be used with the increased

number of processors used to decrease the grid assembly time so that it continues to

be hidden. However, if the fine grain decomposition allows for a good load balance

without excess overhead, the execution model could revert back to each function being

spread across all of the available processors as shown in figure 6.11. This would allow

complete time accurate updating of the grid assembly.

Time

Tl

T2

T3

T4

T5

T6

Front End and Back End
(parallel)

i 1 1 1 1—

frlow Solver

Forjcesl & Mometnts

6DOF

G^id JÄsapmb^y

lioad; Balancla

Figure 6.11: Phase IV implementation

Figure 6.12 shows a comparison of the estimated speedup of phases I-IV. The

curves for phases I-III are the same as those shown in figure 6.10 with Fp = 0.95, Ft- =

1.05, G3 = 0.05 for phases I and II, and Gv = 0.05, G, = l.,n/es = 4, and ndt = 2

96

for phase III. The phase IV curve is defined using the equation

s ~
(Jk.) * F. + (JSE.) * G.

(6.8)

where Fp = 0.95, # = 1.05, Gp = 0.05,(7,- = 1.20, and npes is the total number

of processors used. Even with a 20% imbalance in the grid assembly and the lack

of execution time overlapping, this implementation would appear to outperform the

others.

0 10 20 30 40 50 60
processor count

Figure 6.12: Comparison of estimated speedup of phases I, II, III and IV

However, note that as the processor count increases, the slope of the phase IV

curve causes it to diverge from the ideal speedup curve. On the other hand, the phase

III curve runs parallel to the ideal speedup curve up to the point at which the grid

assembly time fails to be hidden by the flow solution time. This behavior is due to

the overlapping of the grid assembly time by the flow solution time rather than any

overhead introduced in the implementation of phase III. Thus, if overhead due to the

fine grain decomposition of phase IV and the distribution of all of the functions across

all of the processors becomes large, the overlapping of the grid assembly time with

the flow solution time may offer some improvements in scalability.

97

Summary

" Table 6.1 gives a summary of the four different implementations. The first im-

plementation was used to begin solving dynamic problems on a parallel computer and

to begin the analysis of the parallel processing performance. The second implementa-

tion improved performance by hiding some of the execution time of the grid assembly

function behind the execution time of the flow solver. The third implementation at-

tempts to decrease the total execution time of the grid assembly function by using

multiple FE processes and a coarse grain decomposition of the grid assembly work

based on superblocks. The final implementation uses a fine grain decomposition of

the work of grid assembly based on hole cutting facets and IGBP's. The goal is to

use all of the available processors for both the grid assembly and the flow solution.

Table 6.1: Summary of the implementations of parallel grid assembly

Phase

II

III

IV

Description

Single process performs complete grid assembly serially
with respect to the parallel execution of the flow solver.
Single process performs complete grid assembly based on
approximate forces and moments. Overlapping of grid
assembly time with flow solution time is used.
Multiple processes perform grid assembly in parallel us-
ing coarse grain decomposition based on superblocks.
Overlapping of grid assembly time and flow solution time
is continued.
Multiple processes perform grid assembly in parallel us-
ing fine grain decomposition. Load balancing of hole cut-
ting is separate from that of the stencil search.

CHAPTER 7
TEST PROBLEM

The three store ripple release case first presented in reference [30] and later

modelled using Beggar in reference [4] is being used as a test case for timing each

of the parallel implementations. The geometric configuration is that of three generic

stores in a triple ejector rack (TER) configuration under a generic pylon attached to a

clipped delta wing. This configuration is depicted in figures 1.1 and 1.3 with the stores

under the right wing. The three generic stores are identical bodies of revolution with

an ogive-cylinder-ogive planform shape and four clipped delta fins with NACA 0008

airfoil cross section. The pylon is an extruded surface of similar ogive-cylinder-ogive

cross section. The wing has a 45 degree leading edge sweep and a NACA 64A010

airfoil cross section.

The mass properties of the three stores are listed in table 7.1. The products

of inertia that are not shown are zero due to symmetry. The CG is located on the

axis of revolution, 4.65 ft aft of the nose. The reference length is equal to the store

diameter of 20 inches and the reference area is equal to the cross sectional area at the

axial location of the CG.

Ejectors are used to help ensure a safe separation trajectory. The properties of

the ejectors are listed in table 7.2. Each store is acted on by a pair of ejectors that

create a nose up pitching moment to counteract a strong aerodynamic nose down

pitching moment seen in carriage. The ejectors are directed downward on the bottom

store of the TER and are directed outward at 45 degrees (with respect to vertical) on

the two shoulder stores. The stores are released in bottom-outboard-inboard order

with a 0.04 sec delay between each release. The ejectors are applied at release for a

98

99

Table 7.1: Store physical properties

Property Value

weight 1000 lb

Ixx 10 slug • fta

-"yy 180 slug • ft*

/« 180 slug • ft*
CG location 4.65 ft aft of the nose
ref. length 1.6667 ft
ref. area 2.1817 ft*

duration of 0.045 sec. In the simulations, the ejectors are defined fixed relative to the

stores so that the ejectors will not create a rolling moment due to store motion.

Table 7.2: Ejector properties

Bottom Outboard Inboard

Release time 0 sec 0.04 sec 0.08 sec

Forward ejector

force 1800 lb 1800 lb 1800 lb

location 4.06 ft aft of the nose
direction +ez +^v + ^z ~j2ev + ^2e*
duration 0.045 sec 0.045 sec 0.045 sec

Aft ejector

force 7200 lb 7200 lb 7200 lb

location 5.73 ft aft of the nose
direction +ez

■ l * i i A

-7T& + 72a*
duration 0.045 sec 0.045 sec 0.045 sec

The original grids for this configuration used separate blocked grid systems

around the stores, pylon, and wing. Each of these blocked grid systems forms a

separate superblock. Additional interface grids were used to improve the flow solu-

tion and to increase the grid overlap required to ensure successful assembly of the

grid system. Each store grid consisted of four blocks, one between each pair of fins,

defining one quarter of the geometry. The wing and wing/pylon interface grids were

generated as single grids. Due to Beggar's use of component grids for coarse grain

decomposition of the flow solver, the large wing and wing/pylon interface grids were

split into three blocks each. Since Beggar allows block-to-block boundary connec-

tions, splitting a grid into smaller blocks introduces new boundary conditions, but

100

does not adversely affect the ability for a grid system to assembly. Table 7.3 lists the

block sizes of these original grids. The largest grid in this grid system has 179,550

grid points. With the load balance determined based solely on the number of grid

points per process, this grid system will load balance well for 12-14 processes. Some

of the initial timing runs were done using this set of grids.

Table 7.3: Original grid dimensions

Superblock Block dimensions Total Points

bottom store 4 @ 116x38x21 4x92,568
outboard store 4 @ 116x38x21 4x92,568
inboard store 4 @ 116x38x21 4x92,568

pylon
149x33x15 73,755
61x10x15 9,150

wing
135x14x95 179,550
135x10x95 128,250

135x9x95 115,425

wing/pylon interface
2 @ 111x28x51 2x158,508

111x27x51 152,847
fin tip interface 49x24x22 25,872

outer bndry interface 58x29x10 16,820
fin tip interface 49x24x22 25,872

outer bndry interface 58x29x10 16,820

10 superblocks 24 blocks 2,172,193

In order to effectively utilize larger numbers of processors, smaller grids are

needed to load balance the flow solver. Table 7.4 lists a new set of grids generated

by splitting the existing grids. This introduces new block-to-block boundaries; thus,

the number of superblocks stayed the same, but the number of blocks increased from

24 to 67. This also increases the total number of grid points, although the number

of grid cells has not increased. The largest grid in this grid system has 62,370 grid

points. Therefore, this set of grids should extend the processor count beyond 32.

No particularly intelligent scheme was used to split up the grids. If a grid is split

along its largest dimension, the block-to-block boundary introduced will represent the

smallest possible surface area, thus the cost of implementing this boundary condition

will be minimized. Conversely, some splittings may have less effects on the flow

101

solution convergence than others. However, in this case, the splitting of the grids

was done by hand and the grids were often split so as to minimize the amount of

work required to change the input files. Since block-to-block boundary conditions are

detected automatically, but solid surface boundary conditions have to be specified,

the splitting was often done to reduce the splitting of solid surface boundaries. This

may also have some beneficial effects on the flow solver since the implicit treatment

of the solid surface boundary conditions can be done in larger pieces.

Table 7.4: Dimensions of split grids

Superblock Block dimensions Total Points

bottom store
4 @ 71x38x21 4x56,658
4 @ 26x38x21 4x20,748
4 @ 21x38x21 4x16,758

outboard store
4 @ 71x38x21 4x56,658
4 @ 26x38x21 4x20,748
4 @ 21x38x21 4x16,758

inboard store
4 @ 71x38x21 4x56,658
4 @ 26x38x21 4x20,748
4 @ 21x38x21 4x16,758

pylon
2 @ 75x33x15 2x37,125

61x10x15 9,150

wing

4 @ 135x14x32 4x60,480
2 @ 135x14x33 2x62,370

5 @ 135x9x17 5x20,655
135x9x15 18,225

wing/pylon interface

4 @ 111x28x18 4x55,944
2 @ 111x28x17 2x52,836

5 @ 19x27x51 5x26,163
21x27x51 28,917

fin tip interface 49x24x22 25,872

outer bndry interface 58x29x10 16,820

fin tip interface 49x24x22 25,872

outer bndry interface 58x29x10 16,820

10 superblocks 67 blocks 2,276,092

Since the work of the flow solver is closely associated with the number of grid

points, the load balance of the flow solver work can be judged by the distribution of

the grid points. Table 7.5 lists the load imbalance factors achieved based solely on

102

numbers of grid points per processor and using the 67 block grid system. The third

column lists the effective number of processors, which is equal to the actual number

of processors divided by the load imbalance factor. As can be seen, the flow solver

should load balance relatively well up to 40 processors. Beyond this point, an increase

in the processor count is offset by the load imbalance.

Table 7.5: Load Imbalance Factors

no. of
processors Fi

effec. no. of
processors

4 1.005 3.98
8 1.04 7.69
12 1.05 11.43
16 1.05 15.24
20 1.07 18.69
24 1.06 22.64
28 1.14 24.56
32 1.07 29.91
36 1.18 30.51
40 1.12 35.71
44 1.23 35.77
48 1.35 35.56

The flight conditions simulated in all of the test runs are for a freestream Mach

number of 0.95 at 26,000 feet altitude. All solutions are calculated assuming inviscid

flow. The flow solver is run time accurately with a time step of 0.0005 sec and a local

time step based on a CFL number of 2 is used to accelerate convergence of the dt

iterations. Two dt iterations are used per time step with six inner iterations per dt

iteration. A total of 600 iterations are run giving a total of 0.3 seconds of the trajec-

tory. The flow solver is run with second order spatial accuracy using Steger-Warming

flux jacobians, primitive variable MUSCL extrapolation, flux difference splitting with

Roe averaged variables, and the van Albada flux limiter. Implicit solid wall boundary

conditions are used with a relaxation factor of 0.6. All solutions are run in double

precision (64 bit) on an SGI Origin 2000 machine. This particular machine is config-

ured with 64 - 195 MHz R10000 processors and 16 Gb of shared memory distributed

103

as 2 processors and 512 Mb per node card.

A single processor simulation was computed to establish the base solution time

of 9384 minutes (about 6.5 days) using the 24 block grid system. The execution

time of the grid assembly function was compared to the total execution time from

the sequential run to establish work fractions of Gs = .05 and Fa = .95 for the grid

assembly and the flow solver, respectively.

The single processor solution was repeated with the 67 block grid system and the

execution time increased to 9434 minutes. This increase is due to a change in the grid

system that is only needed to improve performance for parallel execution. Therefore,

all timings will be compared to the faster sequential time of 9384 minutes. Table 7.6

gives a summary of the final position of the stores after 0.3 seconds of the trajectory

as computed with the 24 block grid and the 67 block grid. This illustrates the order

of magnitude of the changes that can be expected in the final solution by introducing

block-to-block boundaries when splitting up the grids. The largest changes are on

the order of tenths of a degree, while most changes are much smaller.

Table 7.6: Summary of the final position of the stores calculated from the two different
grid sets

24 blocks 67 blocks
bottom outboard inboard bottom outboard inboard

position
X -1.5867 -1.2077 -0.9800 -1.5868 -1.2078 -0.9935

y -0.0007 2.9046 -2.9831 -0.0010 2.9053 -2.9851

z 6.5293 2.9240 2.0040 6.5311 2.9227 2.0075

angles
yaw 8.0665 2.4242 16.6171 8.0537 2.4752 16.4353

pitch 3.4369 0.3671 -18.5046 3.4349 0.1890 -18.6291

roU 1.3669 -0.4678 -4.6363 1.3667 -0.5366 -4.6459

Figures 7.1-7.3 present the trajectories calculated on a single processor and pre-

sented in reference [4]. CG locations and the angular position of the stores during the

ripple release trajectory calculation are presented. All three stores move downward

and downstream. The bottom store shows only a slight sideways motion, while the

outboard store moves further outboard and the inboard store moves further inboard,

104

both due to the ejector forces: The inboard motion of the inboard store is quickly

reversed due to aerodynamic forces. All three stores are pitched nose up by the ejec-

tors before pitching nose down, although the inboard store only pitches slightly nose

up before quickly approaching 25 degrees nose down. The bottom and inboard stores

yaw nose outboard and roll lugs outboard. The outboard store rolls lugs inboard and

yaws nose inboard before turning nose outboard.

The accuracy of the solutions from the parallel runs will be summarized, but

corresponding plots of the trajectory data will not be shown. This is because the

solutions from the parallel runs are nearly identical to the solutions from the sequential

run and the curves are not distinquishable on plots of this scale. The solutions can

be expected to change slightly because the grids are distributed differently based on

the number of processors being used. This affects the explicit passing of information

between grids on different processors and thus can affect the flow solution. However,

the effects seen on the final trajectory are minimal.

10.0 1U.U

%■■■■■■■'""""

5.0 ...--'"
c

c
o

'5>
o
O. 0.0

c n

'7 ._-

 x ■■■--.

0.0 0.1 0.2 0.3
time (sec)

0.4 0.2
time (sec)

Figure 7.1: Bottom store (left) CG and (right) angular positions

105

c

5.0

2.5

0.0

-2.5

C ft

 -"

T ■ 1-" ■■

rr>--~".

in
o
Q.

1

-

0.00 0.10 0.20 0.30
time (sec)

O)
a>

(0

oi c a

10.0

5.0

0.0

-5.0

0.40
-10.0

pitch -j

■ -' ^

'-yaw

:"7 x
/-roll \

\-

Ö.00 0.10 0.20 0.30
time (sec)

0.40

Figure 7.2: Outboard store (left) CG and (right) angular positions

20.0

10.0

I ao
to o
g> -10.0

-20.0

-5.0
0.00 0.10 0.20 0.30

time (sec)
0.40

-30.0

yawy
roll y

-

\
\

N:
L pitch ^

0.00 0.10 0.20 0.30 0.40
time (sec)

Figure 7.3: Inboard store (left) CG and (right) angular positions

CHAPTER 8
RESULTS

Phase I: Hybrid Parallel-Sequential

The ripple release test problem was run on the SGI Origin 2000 using the phase

I implementation and the 24 block grid system. The grid assembly was run in a

single FE process and the flow solver was decomposed and executed using 4, 8, 12,

and 16 BE processes. The timing results are displayed in figure 8.1. The actual

speedup is plotted against the estimated speedup as defined by equation 6.1. In this

implementation, the grid assembly for the entire domain is performed by a single

process that executes sequentially with respect to the parallel execution of the flow

solver. Once an iteration of the flow solver is complete, the grid assembly process is

swapped in to perform the grid assembly. The grid assembly function and flow solver

do not execute at the same time, thus the speedup data is plotted against the number

of BE processes, which is equivalent to the maximum number of processes that are

running at any one time.

For the estimated speedup curve, the load imbalance factor for the flow solver

(F, = 1.05) represents a nominal imbalance of 5%. The speedup for these cases

■is actually better than the predicted value. This is most likely due to a latency

experienced on the SGI Origin 2000 architecture. When a processor accesses memory

off of its node card there is a delay when compared to accessing the memory on its

node card. As more processors are used, the amount of memory that a processor

needs decreases since the grids axe distributed across the available processors. Thus,

the potential that the data can be stored in the memory on the node card increases.

106

107

20

18

16

14
f 12

I 10
Q.
m 8

6

4

2

phase I, actual

^'L phase I, Fi=1.05

0 2 4 6 8 10 12 14 16 18 20
processor count

Figure 8.1: Actual speedup of phase I

The large memory job running on a single processor runs slower due to this latency

and thus an artificial speedup is seen with increased processor counts. The estimated

speedup curve still follows the trends in the data very well.

The accuracy of the solution is demonstrated by the position data shown in

table 8.1. This data represents the position of the CG and angular orientation of

the bottom store after 0.3 seconds of the trajectory. The maximum difference, as

compared to the sequential run, is on the order of 0.002 feet and 0.03 degrees. The

actual execution times in minutes are also listed in table 8.1.

Table 8.1: Summary of results from the phase I runs including the final position of
the bottom store

Seq Phase I

no. of processors 1 4 8 12 16

position
X -1.5867 -1.5867 -1.5867 -1.5868 -1.5871

y -0.0007 -0.0005 -0.0005 -0.0004 -0.0012

z 6.5293 6.5292 6.5292 6.5292 6.5311

orientation
yaw 8.0665 8.0659 8.0659 8.0677 8.0456
pitch 3.4369 3.4347 3.4349 3.4355 3.4295

roll 1.3669 1.3336 1.3343 1.3587 1.3690

exec, time min) 9384 2786 1513 1150 1013

108

1.5

] D O O D a D

-0.5

Drag dtO, dt1
1.0

0.5

0.0

c
g>

%
8
§ -0.5
E o
E

-1.0

"0.0 50.0 100.0 150.0 200.0
iteration no.

-1.5

"■"!■ '

Yaw dtO, dt1

n H n D □ D D n r

Roll dtO, dt1

Pitch dtO, dt1

"A_A

0.0 50.0 100.0 150.0 200.0
iteration no.

Figure 8.2: Bottom store (left) force coefficient and (right) moment coefficient varia-
tion between dt iterations history

Phase II: Function Overlapping

This implementation continues to use a single process to compute the grid as-

sembly for the entire domain. However, some parallel performance is gained by over-

lapping the execution of the grid assembly and the flow solver. The approach of

overlapping the grid assembly and flow solution functions is worthless if the forces

and moments calculated after the first dt iteration are not a good approximation of

the final forces and moments to be calculated. Thus, several test cases were run to

monitor the forces and moments after each dt iteration. Figures 8.2-8.4 show a time

history of the force and moment coefficients for the three stores after each dt iteration

of 200 iterations of the separation trajectory. All of the force and moment coefficients

show good agreement between dt iterations. As an example, the maximum varia-

tion (between dt iterations) in the pitching moment coefficient for the bottom store

throughout the entire trajectory calculation (600 iterations) was only 0.2%.

It might be deduced that the use of implicit solid wall boundary conditions helps

to accelerate the convergence of the flow solution near the walls although additional

dt iterations are required to ensure convergence throughout the domain. Therefore,

the most likely parameters to affect the forces and moments are the number of inner

iterations and the BC relaxation factor; thus, tests were repeated with variations

109

2.0

<D I.U

it
(D
O
O

(D

g 0.0

-1.0

Drag dtO, dt1

O O D □ D D D'O ODD ODBC

Lift dtO, dtl
\

) 0 O 0 0 0 0 0

A A A A A A A-

Z^PP*

Side dtO, dt1

2.0

E 1.0
a>
o
it
a>

8 o.o
**
c
a>
E
o
E -1.0

> 0 0 0 0 <*■

-2.0

Yaw dtO, dt1

■ -00000 <»-^^

Roll dtO, dt1

A A A A A A. A A

Pitch dtO, dt1

"0.0 50.0 100.0 150.0 200.0 0.0

iteration no.

50.0 100.0 150.0

iteration no.

200.0

Figure 8.3: Outboard store (left) force coefficient and (right) moment coefficient
variation between dt iterations history

2.0

§ 1.0
'o
it
8
<D
p

naoooaooooo a o
)O00O0»OO-

0.0

-1.0

Drag dtO, dt1

I/

LiftdtO

■e=#3

Side dtO, dt1

-a A A A 1~"-
,\ A A A-

2.0

1.0

I 0.0
E
o
8 -1.0
*^ c
<D

§ -2.0
E

-3.0

>oooooooooooo,o o—e-

Yaw dtO, dt1

juuuuuuuuuuuuuuuuue

0.0 50.0 100.0 150.0

iteration no.

200.0
-4.0

b A A A A

Roll dtO, dt1

Pitch dtO, dt1

1/ ^ A A A A A I.

"0.0 50.0 100.0 150.0
iteration no.

200.0

Figure 8.4: Inboard store (left) force coefficient and (right) moment coefficient varia-
tion between dt iterations history

no

in the number of inner iterations from 3 to 6 and in the BC relaxation factor from

.6 to 1. For all test cases, the forces and moments behaved similarly. In fact, the

forces and moments are so well behaved for this test problem, it is conceivable that

an extrapolation procedure could be used to give a better approximation to the final

forces and moments using the initial forces and moments and some history of previous

iterations.

The timing results from the phase II runs are presented in figure 8.5. This shows

the actual speedup versus processor count as compared to the estimated speedup

defined by equations 6.4 and 6.5. The ripple release test case was run using 4, 8, 12,

and 16 BE processes for the flow solver and a single FE process for grid assembly.

Since the grid assembly function is executing at the same time that the flow solver

is executing, the total number of processors running at any time must now include

the grid assembly process. Therefore, the actual speedup data points are plotted at

5, 9, 13, and 17 processors. Again an artificial speedup is seen in the results; but

the estimated speedup curve follows the trends of the data. For the phase II runs on

4+1 (4 BE processes and 1 FE process) and 8+1 processors, the grid assembly time

was completely hidden by the execution time of the flow solver. On 12+1 and 16+1

processors, the grid assembly time was not completely hidden and the performance

suffers.

One troublesome result is the speedup of the 12+1 processor run. Why did this

result fall below the estimated speedup curve? This calculation was repeated several

times and the results were consistent. It turns out that this is an artifact of using

-average execution times over the complete simulation to determine the work fractions

of grid assembly and the flow solver. As will be seen later, the execution time of

the grid assembly actually decreases throughout the simulation. When the stores are

in carriage position, the grid assembly work is at a maximum. As the stores move

downward, some of the grids no longer overlap, less holes are cut, less stencil sources

are searched, and the execution time decreases. To see how the use of an average

Ill

20

18

16

14

I 12

1 10
Q.
w 8

6

4

2

phase II, Fi=1.05

phase II, actual

j i —u.

0 2 4 6 8 10 12 14 16 18 20
processor count

Figure 8.5: Actual speedup of phase II

execution time can affect the estimated speedup, consider figure 8.6.

This figure represents the variation in the grid assembly time by the sloping

lines labeled "GA". The average grid assembly time is represented by the dashed lines

labeled "Avg GA". The constant flow solution time available to hide the execution

of the grid assembly is represented by the horizontal lines labeled "Flow". For the

two plots in the upper half of the figure, the flow solution time is always greater than

the grid assembly time or it is always less than the grid assembly time. In these

cases, the relationship between the flow solution time and the grid assembly time is

accurately modelled by the use of average execution times. However, in the lower

two plots, the execution time of the flow solver is sufficient to hide the execution

time of the grid assembly for part of the iterations but is insufficient for the rest. In

the case represented by the plot in the lower left corner of the figure, if the average

■execution time of the grid assembly is compared to the flow solution time, it appears

that the grid assembly is always hidden by the flow solver. However, for the iterations

below what is labeled "il", the grid assembly execution time is not hidden. Thus the

actual speedup would be less than that predicted by equations 6.4 and 6.5. In the

case represented by the plot in the lower right corner of the figure, it appears that

the correct conclusion would be drawn by considering the average execution time.

112

<D
6
4J

GA

Plow

Avg GA

iteration

Flow

il

§
■rl
4J

iteration

5
•H

iteration iteration

Figure 8.6: Effect of using average execution time

However, the speedup estimated would be high because of the use of the iterations

above what is labeled i2 when computing the average grid assembly time.

This exercise points out that the equations developed to estimate the speedup

are only applicable for constant execution times (i.e. work fractions). If the execution

times are not constant, the equations should be applied on an iteration-by-iteration

basis, where the work fractions are a function of the iteration. However, since the

equations are only used to judge if the actual implementation performs as expected,

they can still be applied. They may also be of use in a production work environment

to estimate code performance on particular problems based on past experience of the

work fractions and load imbalance factors.

113

The accuracy of the solutions from the phase II runs can be judged by the data

shown in table 8.2. This data represents the position of the CG and angular orienta-

tion of the outboard store after the complete trajectory. The maximum difference, as

compared to the sequential run, is on the order of 0.001 feet and 0.15 degrees. The

use of functional overlapping to hide the execution time of the grid assembly function

has not deteriorated the accuracy of the results for this test problem.

Table 8.2: Summary of results from the phase II runs including the final position of

the outboard store

Seq Phase II

no. of processors 1 4+1 8+1 12+1 16+1

position
X -1.2077 -1.2077 -1.2078 -1.2078 -1.2091

y 2.9046 2.9049 2.9050 2.9051 2.9050

z 2.9240 2.9233 2.9235 2.9235 2.9235

orientation
yaw 2.4242 2.4243 2.4252 2.4199 2.4983

pitch 0.3671 0.3840 0.3875 0.3910 0.2103

roU -0.4678 -0.4793 -0.4759 -0.4697 -0.5251

exec, time |min) 9384 1920 1041 920 729

Phase III: Coarse Grain Decomposition

This implementation uses multiple FE processes to reduce the grid assembly

time. Functional overlapping is still being used in an attempt to hide the grid assembly

time behind the execution time of the flow solver. The decomposition of the grid

assembly work is based on superblocks. The relatively small number of superblocks

would classify this as a coarse grain decomposition technique. Dynamic load balancing

as described in chapter 5 is used to shuffle the superblocks between processes in

order to balance the distribution of work based on some measure of the work per

superblock. Since no apriori metric exists for judging the work of grid assembly, the

actual execution time as measured using system calls is used as the measure of the

work associated with a superblock.

The ripple release test problem was run using the phase III implementation and

114

the 67 block grid system. The timing results are presented in figure 8.7. All of

the runs used 4 FE processes and the number of BE processes varied between 16

and 40. Dynamic load balancing of the grid assembly function was performed after

each iteration. The load balance of the grid assembly was judged by measuring the

execution times of the hole cutting, stencil searching, and interpolation health check

routines. Figure 8.8 shows a time history of the grid assembly load imbalance factor

for the 40+4 processor run. The average load imbalance in the grid assembly appears

to be less than 10%. Thus, one of the estimated speedup curves plotted in figure 8.7

is for load imbalance factors of F, = 1.05 and G,- = 1.08. The speedup experienced

followed the estimated speedup up to 24+4 processes; however, for larger processor

counts, the grid assembly time failed to be hidden and the speedup fell well below

the estimated value.

50

40

§-30
©
© o.
en 20

10

Fi=1.05, Gi=1.08

phase III, actual

6, Gi=1.65

10 20 30 40
processor count

50

Figure 8.7: Actual speedup of phase III

The imbalance in the grid assembly work load is obviously worse than the mea-

sured execution times would imply. It appears that the 24+4 processor run is the

last point where the grid assembly time is hidden by the execution time of the flow

solver. If we assume that the grid assembly time from the 24+4 processor run exactly

equals the execution time of the flow solver that is available to hide the grid assembly,

then the imbalance factor can be calculated. Thus, the grid assembly imbalance was

115

100 200 300 400 500 600
iteration count

Figure 8.8: History of grid assembly load imbalance based on execution times of hole
cutting, stencil search, and health check

calculated using equations 6.4 and 6.7 and the timings of the 24+4 processor run.

This showed the actual imbalance in the grid assembly is about 65%.

The second estimated speedup curve in figure 8.7 represents imbalance factors

of Fi = 1.16 and G,- = 1.65. This is based on the imbalance in the grid assembly

calculated from the timing results of the 24+4 run and a more realistic value for the

imbalance factor for the flow solver on larger processor counts (see table 7.5). This

curve matches the four jobs with the larger processor counts more closely.

The cause for the difference in the perceived imbalance as judge by the measured

execution times of the grid assembly functions and the actual imbalance in the grid

assembly function as calculated from the estimated speedup equations is the need

for synchronization. Without synchronization, the total measured execution time

per process may be well balanced; but if synchronization is required between the

functions, wait time can be introduced if each function is not well balanced. This

point was discussed in chapter 5 and illustrated in figure 5.3.

Figure 8.9 represents the grid assembly process. After the holes are cut, control

enters into an iterative loop in which interpolation stencils for IGBP's are identi-

fied. If any IGBP fails to have an interpolation source, it is marked as OUT and

neighboring points become IGBP's requiring interpolation. Once a valid set of inter-

116

polation stencils are identified,' the health of the interpolation stencils is checked to

chose the best interpolation source. The most expensive two functions in the process

are cutting holes and the search for interpolation stencils. The most expensive of the

remaining functions is the check of the interpolation stencil health. Together these

three functions account for 90%-95% of the execution time. Therefore, that is why

the sum of these execution times was chosen to judge the load balance.

This iterative algorithm requires several synchronization points to ensure that

each process has access to the proper cell state information and to ensure that each

process executes the same number of iterations of the loop. The processes are syn-

chronized after the holes are cut so that each process will know which grid points are

IGBP's and which cells can not be interpolated from. Likewise, each iteration of the

loop has to be synchronized whenever an IGBP is marked as OUT because it either

failed to have any interpolation sources or the interpolation stencils did not meet

the health requirements. These synchronization points mean that the total execution

time should not be used to judge the load balance.

Since the stencil search function was the most expensive function for the ripple

release test problem, the execution time of just the stencil search function was used

in subsequent runs to judge the grid assembly load balance. Figure 8.10 shows a plot

of the perceived load imbalance. Again, grid assembly appears to be relatively well

balanced and the overall execution times were nearly equivalent to those plotted in

figure 8.7.

Figure 8.11 shows a time history of the grid assembly times measured on the 4

FE processes of the 40+4 processor run. The data is from a run in which the load

balance was judged by the execution time of the stencil search routine. Each plot

in the figure represents a different process. The curves labeled "total" represent the

total execution time of the grid assembly function, which decreases as the calculation

progresses, since the stores begin to move downward and some of the grids no longer

overlap. The curves that are labeled "flow" represent the time to calculate one dt

117

Cut Holes

Communicate Holes

I
Identify IGBP's

I
Stencil Search

Yes
•»- Hark Failures OUT

Check Health

Yes

Record Stencils

Figure 8.9: Grid assembly process

100 200 300 400 500 600
iteration count

Figure 8.10: History of grid assembly load imbalance based on execution time of the
stencil search

118

iteration of the flow solution. This is the time available to hide the grid assembly

time; thus, the grid assembly time is not completely hidden. There is a lot of noise in

the flow solver execution time; however, the mean value is relatively constant. The

"idle" time was measured around the synchronization points and thus includes both

the time to perform the communications and the time waiting for all of the processes

to reach the barrier. Some runs where made with additional synchronization points

used to separate the communication times from the wait time. Most of the idle time

shown is wait time due to the load imbalance.

25

20

g 15
•2-
CD

,§ 10

total

JIIUL

Mlow

idle -j holes y

lulu»

0 100 200 300 400 500 600
iteration count

0 100 200 300 400 500 600
iteration count

25

20 total

<D

.i io

«4 OJUJUX.

115 I^JUUUTU^
Mlow

stencils -, . .
' holes -

0 100 200 300 400 500 600
iteration count

25

20

8 15
in

CD

.i 10

total

JJUUX.

'-flow
idle y

J—JLuJ-i i ■ . ■ .a i__u

holes

-k stencils

0 100 200 300 400 500 600
iteration count

Figure 8.11: Grid assembly execution timings for four FE processes

To better judge the load balance of the hole cutting and stencil search routines,

the execution times of these two routines are plotted separately in figure 8.12. The left

119

plot shows the execution time of hole cutting and the right plot shows the execution

time of the stencil search. Each curve in the two plots represents a different FE

process. The grouping or separation between the curves represents the variation in

the execution times on the different processes and thus indicates the quality of the

load balance. From these plots, it can be seen that the stencil search routine is much

better balanced than the hole cutting routine. This should be the case since the

execution time of the stencil search routine was used to judge the load balance. The

stencil search imbalance is always less than 10%, while the hole cutting imbalance is

in the range of 50%-70%.

10

■ 8 r

8 6
.52.
CD

.§ 4

-^>^ü^

0 100 200 300 400 500 600
iteration count

100 200 300 400 500 600
iteration count

Figure 8.12: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with load balance based on measured execution time of stencil searching.
Each curve represents a separate process.

Since system calls are being used to measure the execution times needed to judge

the load balance, the time required to obtain the timing information contributes to the

processor idle time. Thus, it would be beneficial to define a metric by which the load

balance could be judged without introducing additional function calls. The number

of IGBP's per process has been used in other references (see [35] for example) to judge

the load balance. Therefore, some runs where made using the number of IGBP's per

superblock as a measure of the grid assembly work associated with the superblock.

Figure 8.13 shows the perceived imbalance. From this plot, the grid assembly is not

120

0 100 200 300 400 500 600
iteration count

Figure 8.13: History of grid assembly load imbalance based on number of IGBP's

well balanced, and the overall performance of the code was significantly worse.

Figure 8.14 shows the execution times for the hole cutting and stencil search

routines when the load balance was judged based on the number of IGBP's per

superblock. Again, each curve represents execution time on a different FE process.

The stencil search routine is still relatively well balanced but the imbalance in hole

cutting has increased significantly. The imbalance in the stencil search is less than

20%, while the imbalance in hole cutting is as much as 160%. This indicates that the

actual execution times of the stencil seach routines does a much better job at load

balancing the work load than does the number of IGBP's.

Table 8.3 summarizes the results from some of the phase III runs. The data

represents the position of the CG and angular orientation of the inboard store after

the complete trajectory. The maximum differences, as compared to the sequential

run, are on the order of 0.001 feet and 0.03 degrees. The use of multiple FE processes

to compute the grid assembly function has no effect on the accuracy of the trajectory

computed.

121

100 200 300 400 500 600
iteration count

100 200 300 400 500 600
iteration count

Figure 8.14: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with load balance based on number of IGBP's. Each curve represents a
separate process.

Table 8.3: Summary of results from the phase III runs including the final position of
the inboard store

Seq Phase III

no. of processors 1 16+4 24+4 28+4 32+4 40+4

position
X -0.9935 -0.9935 -0.9935 -0.9935 -0.9935 -0.9935

y -2.9851 -2.9853 -2.9853 -2.9853 -2.9854 -2.9853

z 2.0075 2.0064 2.0064 2.0064 2.0064 2.0064

orientation
yaw 16.435 16.448 16.450 16.450 16.450 16.450

pitch -18.629 -18.641 -18.641 -18.641 -18.641 -18.641

roll -4.6459 -4.6152 -4.6172 -4.6172 -4.6151 -4.6172

exec, time (min) 9384 557 388 390 350 324

Phase IV: Fine Grain Decomposition

The use of superblocks as a basis for domain decomposition of the grid assembly

function performed relatively well for the ripple release test problem. With only 10

superblocks, it is fortunate that the grid assembly work load balanced relatively well

on 4 FE processes. However, the grid assembly time failed to be completely hidden by

the execution time of the flow solver when more than 24 BE processes were used. To

be able to utilize more FE processes, a fine grain decomposition of the grid assembly

work is required.

122

As was stated in the previous section, the two most expensive routines in the

grid assembly function are the hole cutting and the stencil search routines. The work

of the hole cutting routine is associated with the number of facets doing the hole

cutting; while the work of the stencil search routines is associated with the number

of IGBP's that require interpolation. As a first step, the hole cutting routine was

decomposed separate from the stencil search routine. The number of hole cutting

facets is used as the basis for fine grain decomposition of the hole cutting routine;

while the stencil search routine and the remainder of the grid assembly function are

still decomposed based on superblocks. Since the hole cutting is now decoupled from

the distribution of the superblocks, the redistribution of superblocks for dynamic load

balancing is based on the execution times of the stencil search routine.

As an initial step, the total number of hole cutting facets is equally divided

between the FE processes. Each FE process cuts holes into all of the superblocks with

all of the facets that have been mapped to that process. The cell state information

is stored in shared memory to avoid an expensive reduction operation that would be

required to merge the cell state information after the holes are outlined.

There are two options for cutting holes. As mentioned in chapter 2, the default

option outlines the holes and then fills them with a fast sweep through the grids. The

"nofill" option outlines the holes but does not fill them. With the "nofill" option,

less work has to be done when outlining the holes, because the facets do not have to

be refined to ensure a complete outline. However, more work has to be done when

searching for interpolation stencils, because the points which are actually inside a

-hole will fail interpolation. For the sequential run of the ripple release problem, the

use of either option does not make a significant difference in the execution times.

Therefore, all of the runs up to this point (including the sequential run) were done

using the "nofill" option. However, the new implementation should make it easier to

use more processes to reduce the execution time of hole cutting; therefore, the best

performance should be seen if some of the work of the stencil search can be shifted to

123

the hole cutting function. Thus, the "nofill" option is not used. The default option

of outlining and filling the holes is used.

The ripple release test problem was run with the fine grain hole cutting on 4

FE processes and 28-40 BE processes. The timing results are displayed in figure

8.15 along with the previous results from the phase III runs. The grid assembly time

is now completely hidden by the execution time of the flow solver for the run with

28 BE processes. In fact, the 28+4 process run outperforms the phase III run on

40+4 processors. The 32+4 and 36+4 runs are in the region of the "bend" in the

performance curve and are probably affected by the use of average work fractions to

perdict the performance. However, they actually performed slightly worse than the

28+4 run. Therefore, they may have been affected by uncontrollable machine load

or other conditions. The 40+4 process run performed quite well. Solving for the

grid assembly imbalance using equations 6.4 and 6.7 and the speedup from the 40+4

process run, the imbalance is 38% as compared to the 65% for the phase III run.

50

40

§-30
•o
<D
0
Q.
w 20

10

Fi=1.05,Gi=1.08

fine grain hole cutting-

.#■' L phase I

./'' ^Fi-1.16, Gi=1.65

10 20 30 40
processor count

50

Figure 8.15: Speedup due to fine grain hole cutting and load balancing of hole cutting
separate from the stencil search

The execution of the stencil search routine should be equivalent to that in the

phase III runs. The improvements in speedup seen in figure 8.15 are due to the im-

provement in the load balancing of the hole cutting. Figure 8.16 shows the execution

124

100 200 300 400 500 600
iteration count

100 200 300 400
iteration count

500 600

Figure 8.16: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with fine grain hole cutting and the stencil search load balanced based on
execution time. Each curve represents a separate process.

times of the hole cutting routine and the stencil search routines throughout the 40+4

process run. Each curve represents the execution time on a different FE process.

These plots should be comparable to the plots in figure 8.12, although the total hole

cutting time has increased and the total stencil search time has decreased because of

the use of the "nofill" option in the previous runs. Overall, the load balance of the

hole cutting has improved. However, as the computation progresses, the execution

times of the hole cutting on the different processes tends to spread apart. Thus, the

load imbalance is increasing as the stores move apart.

In order to demonstrate the advantage of the fine grain decomposition in using

more FE processes, runs were made with 40 BE processes and 5, 6, 7, and 8 FE

processes. The execution times for the hole cutting and stencil search routines are

shown in figures 8.17-8.20 for these runs. Each set of plots contains 5, 6, 7, and 8

curves, respectively, representing the execution times on the different FE processes. In

general, the execution times of the hole cutting routine decreases with the additional

FE processes, although some significant load imbalances are seen. This is indicated

by the progressive decrease in the average execution times of the hole cutting on the

different FE processes. The good load balance is indicated by the tight grouping of

125

6.0

5.0

4.0

CD

X 30
CD

E

"~ 2.0

1.0

0.0
100 200 300 400 500 600

iteration count

100 200 300 400 500 600

iteration count

Figure 8.17: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with fine grain hole cutting and the stencil search distributed across 5 FE
processes. Each curve represents a separate process.

the curves in the figures; however, some of the execution times deviate significantly

from the average indicating a load imbalance.

Since there are 10 superblocks, we can continue to distribute the superblocks

over the FE processes. However, there is one superblock that dominates the stencil

search execution time. This superblock is composed of a set of grids in the region

of the pylon and the stores. It is used as a interface between the store grids and

the wing grids and is used to improve the resolution of the flow in the region of the

trajectory of the stores. All of the stores cut holes into this superblock and it provides

the source for many interpolations. The total work associated with this superblock is

about 1/4 of the total grid assembly work; therefore, it does not adversely affect the

load balance on the 4 FE process runs. However, as more FE processes are used, the

work associated with this superblock can not be subdivided and the total execution

time of the stencil search does not decrease (similar to the situation discussed relative

to figure 5.2). This can be seen as the execution time of the stencil search for one

of the processes always starts just above 6 seconds and finishes just below 5 seconds.

Remember, the total execution time of a function distributed over multiple processes

is dictated by the maximum execution time of all of the processes.

126

100 200 300 400 500 600
iteration count

100 200 300 400 500 600
iteration count

Figure 8.18: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with fine grain hole cutting and the stencil search distributed across 6 FE
processes. Each curve represents a separate process.

100 200 300 400 500 600
iteration count

100 200 300 400 500 600
iteration count

Figure 8.19: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with fine grain hole cutting and the stencil search distributed across 7 FE
processes. Each curve represents a separate process.

127

100 200 300 400 500 600
iteration count

100 200 300 400 500 600
iteration count

Figure 8.20: Grid assembly execution timings of (left) hole cutting and (right) stencil
searching with fine grain hole cutting and the stencil search distributed across 8 FE
processes. Each curve represents a separate process.

Figure 8.21 shows the timing results from these runs. The data with the square

symbols is for the runs with 4 FE processes and varying numbers of BE processes. The

data with the circle symbols is the runs with 40 BE processes and 5-8 FE processes.

The 5 FE process execution histories shown in figure 8.17 show some excessive noise

which might indicate some uncontrollable machine load or other condition. This

might account for the dropoff in performance on the 5 FE process run. The 8 FE

process also showed a dropoff in performance. This is most likely due to the large

load imbalance seen in the hole cutting for this case.

The failure to maintain a good load balance in the hole cutting is due to the

fact that no dynamic load balancing is being employed. The total number of hole

cutting facets is equally divided among the available FE processes. However, each

facet does not do an equal amount of work. Some facets will overlap only one grid,

while other facets overlap many grids. Likewise, some facets may overlap a region of

tightly spaced grid cells and will require refinement, while other facets do not require

refinement.

In order to use the same dynamic load balancing algorithm that is used to

redistribute the superblocks, the execution time of each hole cutting facet would have

128

50

40

g-30
TJ
CD
CD
a.
co 20

10

Fi=1.05, Gi=1.08

Fi=1.12,Gi=1.38

■'.'■'fine grain
hole cutting

10 20 30 40
processor count

50

Figure 8.21: Use of additional processors continues to reduce time for hole cutting

to be measured separately. Since there are about 60,000 hole cutting facets in the

ripple release test problem, measuring the execution time of each facet could add

a significant amount of system time. Likewise, the load balancing routine used to

redistribute the superblocks is not optimized to handle the sorting and searching

required by that many individual pieces of work. Therefore, the load balancing of

the fine grain hole cutting is based on an algorithm that uses the execution time of

the hole cutting routine per FE process as a weight. This algorithm was described in

chapter 5. The algorithm varies the number of facets assigned to each FE process so

that the weighted number of facets is evenly distributed.

Figures 8.22-8.26 show the execution times of the hole cutting routine when 4-8

FE processes are used in combination with dynamic load balancing of the hole cutting.

These figures may appear to contain only a single curve; however, each plot actually

contains from 4 to 8 curves representing the execution time for hole cutting on the

different FE processes. The tight grouping of the curves indicates the remarkable load

balance that was achieved. It takes several iterations at the beginning of a run for

the execution times to converge, and small changes in the execution of the computer,

which can cause variations in the execution time of a process, can cause perturbations

in the load balance. The load balance quickly recovers from these; however, some sort

129

100 200 300 400 500 600
iteration count

Figure 8.22: Execution times for load balanced fine grain hole cutting distributed

across 4 FE processes

of limiting or damping of the changes between iterations may help to maintain the

load balance.

Unfortunately, with limited, shared computing resources, the runs using fine

grain hole cutting with dynamic load balancing could not be repeated for overall

speedup measurements. The timings presented in figures 8.22-8.26 were taken while

running the code in a special mode to allow prescribed motion. The flow solution was

not calculated. Instead, the motion was prescribed from a recording of the motion

calculated on previous runs. The work of the grid assembly is the same as if the

motion had been driven by the flow solution because all of the grids are placed in the

appropriate positions throughout the trajectory. However, computing resources are

minimized because only the FE processes are needed.

Table 8.4 summarizes the results from some of the phase IV runs in which the

motion was driven by the flow solution. The data represents the position of the

CG and angular orientation of the bottom store after the complete trajectory. The

maximum differences, as compared to the sequential run, are on the order of 0.005

feet and 0.1 degrees. The use of additional FE processes and fine grain hole cutting

has no affect on the accuracy of the trajectory computed.

130

100 200 300 400 500 600
iteration count

Figure 8.23: Execution times for load balanced fine grain hole cutting distributed
across 5 FE processes

100 200 300 400 500 600
iteration count

Figure 8.24: Execution times for load balanced fine grain hole cutting distributed
across 6 FE processes

131

100 200 300 400 500 600
iteration count

Figure 8.25: Execution times for load balanced fine grain hole cutting distributed
across 7 FE processes

100 200 300 400 500 600
iteration count

Figure 8.26: Execution times for load balanced fine grain hole cutting distributed
across 8 FE processes

132

Table 8.4: Summary of results from the runs that used fine grain hole cutting including
the final position of the bottom store

Seq Phase IV

no. of processors 1 28+4 32+4 36+4 40+4

position
X -1.5868 -1.5883 -1.5883 -1.5883 -1.5883

y -0.0010 0.0010 0.0010 0.0010 0.0010
z 6.5311 6.5268 6.5268 6.5268 6.5268

orientation
yaw 8.0537 8.0579 8.0579 8.0579 8.0579
pitch 3.4349 3.3067 3.3069 3.3065 3.3069
roll 1.3667 1.3878 1.3878 1.3878 1.3877

exec, time 'min) 9384 329 334 331 287

Summary

Table 8.5 gives a listing of some of the best execution times from runs of the

ripple release test problem using the different implementations. The number of BE

processes is listed in the first column and the number of FE processes is listed in

parentheses beside the execution times. All of the phase I runs used a single FE

process to perform the complete grid assembly in a serial fashion with respect to the

parallel execution of the flow solver. The sequential run time is listed in the first row

under phase I although there was only one process containing both the flow solver and

the grid assembly functions. The phase II timings show the improvement gained by

overlapping the grid assembly execution time and the flow solver execution time. The

phase III timings show the continued improvement due to coarse grain decomposition

of the grid assembly function based on the distribution of the superblocks. The

phase IV timings show the improvement due to the distribution of the work of the

stencil search and the hole cutting functions using on separate bases. The stencil

search is still based on coarse grain decomposition based on superblocks; while, the

hole cutting is based on fine grain decomposition based on the hole cutting facets

(without dynamic load balancing for these timings). The best timing is for 40 BE

processes and 7 FE processes using the fine grain hole cutting. The total execution

time was decreased from about 6.5 days to 4.5 hours.

133

Table 8.5: Summary of best execution times (in minutes) from runs of the different
implementations (number of FE processes shown in parentheses)

Phases

NBES I II Ill IV

1 9384 (1) - - -

4 2786 (1) 1920 (1) - -

8 1543 (1) 1041 (1) - -

12 . 1150 (1) 920 (1) - -

16 1013 (1) 729 (1) 557 (4) -

20 - - 498 (4) -

24 - - 388 (4) -

28 - - 390 (4) 329 (4)

32 - - 350 (4) 334 (4)

36 - - 343(4) 331 (4)

40 - - 324 (4) 270 (7)

Figure 8.27 is a combination of figures 8.1, 8.5, 8.7 and 8.15, showing speedup

from most of the data listed in table 8.5. Some estimated speedup curves are also

included to show trends in the data and the performance that can be expected from

the use of different numbers of processors. The four curves and associated data are

from the four phases of implementation. The data labeled "Fine grain GA" is from the

phase IV runs with fine grain hole cutting without dynamic load balancing of the hole

cutting. Overall, the performance has increased with each successive implementation.

134

50

40

§■30
TJ
<D
<D
Q.
w 20

10

Fine grain GA
Coarse grain GA

- Hiding GA time
- Serial GA, parallel FS

10 20 30 40
processor count

50

Figure 8.27: Summary of the increasing speedup achieved through the different im-
plementations

CHAPTER 9
CONCLUSIONS AND FUTURE WORK

The numerical solution of store separation trajectories from first principles is a

computationally expensive task. The use of overlapping, Chimera grids eases the grid

generation burden, makes the flow solution process more efficient, and allows for grid

movement. However, each time a grid is moved, the communication links between the

overlapping grids must be reestablished. This makes the numerical solution of store

separation trajectories even more costly. Therefore, it is important to address the

use of parallel processing to reduce the computation time required to calculate store

separation trajectories. Paramount in this effort is the requirement to parallelize the

execution of the grid assembly function.

The parallel implementation of the grid assembly function was addressed and

four implementations were presented. The performance of each implementation was

analyzed and the weaknesses were attacked, with each successive implementation, in

an effort to improve performance. The first implementation took the easiest approach

to solving dynamic, moving body problems in parallel. One process was used for grid

assembly, while multiple processes were used for the flow solver. The execution time of

the grid assembly function was not decreased; however, multiple processes were used

to decrease the execution time of the flow solver. Thus, the wall clock time needed

to compute store separation trajectories was decreased by using parallel computing.

In the second implementation, the parallel performance was improved by re-

ducing the serial fraction of the work. This was done by hiding some or all of the

execution time of the grid assembly function behind the execution time of the flow

solver. This technique is similar to approaches used in serial implementations; but

135

136

this is the first time that this technique has been used in the parallel implementation

of Chimera grid schemes. The opportunity to hide the grid assembly time arises from

the Newton relaxation scheme used in the flow solver. Therefore, this implemen-

tation also emphasizes the need to consider the entire calculation to achieve better

performance.

The third implementation used multiple processes to decrease the execution time

of the grid assembly function. This makes it easier to hide the execution time of the

grid assembly function behind the execution time of the flow solver. A coarse grain

data decomposition of the grid assembly function was used based on superblocks.

The superblocks were distributed across the available processes. On each process,

holes were cut into and interpolation sources were identified only for the superblocks

mapped to that process. The work load associated with each superblock was mea-

sured by the execution time and a dynamic load balancing algorithm was devised to

redistribute the superblocks in order to achieve a good load balance. This represents

the first time that a grid assembly function has been parallelized and dynamic load

balancing was used based on a decomposition that is separate from that of the flow

solver.

The relatively small number of superblocks in the test problem placed a limit on

the number of processes that could be used effectively to decrease the execution time

of the grid assembly function. Therefore, the final implementation demonstrated the

use of fine grain data decomposition of the work associated with grid assembly to

improve scalability. In this implementation, the hole cutting facets were used as the

basis for the data decomposition of the work associated with the hole cutting portion

of the grid assembly function. The hole cutting facets were distributed across the

available processes, and each process cut holes into all of the grids using the facets

that were mapped to that process. Each facet cuts holes independent of the other

facets; however, the resulting cell state information, used to track the holes, must be

complete for each grid. Therefore, shared memory was used to store the cell state

137

information, and an expensive reduction operation, needed to recombine the cell state

information that would be distributed across multiple processes, was avoided.

The work associated with each facet is not uniform; therefore, a dynamic load

balancing algorithm was devised based on the use of the execution time of a process

as a weight to the cost of the facets mapped to that process. This algorithm proved to

be effective at maintaining a near optimum load balance throughout the test problem

calculation shown. The best performance seen in the calculations presented reduced

the execution time of the test problem from 6.5 days on a single process to 4.5 hours

on 47 processes, representing a 34.8 times reduction in the wall clock execution time.

The distribution of the IGBP's across multiple processes would allow for a fine

grain decomposition of the remaining work of the grid assembly function. This would

allow for the scalable execution of the grid assembly function on larger numbers of

processes. With the significant reduction in the execution time of the grid assembly

function, the grid assembly would be performed after the final forces and moments axe

computed and there would be no question about errors introduced into the trajectory.

All of the available processes could be used for both the flow solver and the grid

assembly. In order to do this, the PM tree must be stored in shared memory so that

all of the processes can access it during grid assembly.

The use of shared memory limits the computing resources that can be effectively

utilized. An alternative method that can effectively use distributed memory machines

should be devised. One method is to use a system level library that mimics shared

memory on distributed memory machines. Several groups have worked on this func-

tionality but there are no production implementations currently available and the

performance is not known. Alternatively, with PVM's abilities for heterogeneous

computing environments, the use of shared memory programming in combination

with message passing can allow clusters of shared memory machines to be used as

one computing resource.

Another item that should be addressed is the decomposition and load balancing

138

of the flow solver. The current method of splitting grids to create smaller pieces of

work that will allow better load balancing is cumbersome. The grids must be split,

flow solutions must be copied from previous grids, and the final solutions reflect the

split grid system which complicates visualization. This process should be automated

so that the user does not have to be involved in the splitting of grids and the visual-

ization tasks can be performed with the original grids. However, as more and more

processes are used, the splitting of grids reduces the implicit nature of the solution

and can adversely affect the solution convergence. Shared memory techniques should

be investigated to decompose the work of the flow solver without splitting the grids

or affecting the solution.

BIBLIOGRAPHY

[1] Benek, J.A., Steger, J.L., Dougherty, F.C., "A Flexible Grid Embedding Tech-
nique with Applications to the Euler Equations," AIAA Paper 83-1944, June

1983.

[2] Meakin, R.L., "A New Method for Establishing Intergrid Communication among
Systems of Overset Grids," AIAA Paper 91-1586, June 1991.

[3] Maple, R.C. and Belk, D.M., "Automated Set Up of Blocked, Patched, and
Embedded Grids in the Beggar Flow Solver," Numerical Grid Generation in
Computational Fluid Dynamics and Related Fields, ed. N.P. Weatherill et al.,
Pine Ridge Press, pp. 305-314, 1994.

[4] Prewitt, N.C., Belk, D.M., Maple, R.C., "Multiple Body Trajectory Calculations
Using the Beggar Code," AIAA Paper 96-3384, July 1996.

[5] Belk, D.M., and Maple, R.C., "Automated Assembly of Structured Grids For
Moving Body Problems," AIAA Paper 95-1680, June 1995.

[6] Belk, D.M., and Strasburg, D.W., "Parallel Flow Solution on the T3D with
Blocked and Overset Grids," 3rd Symposium on Overset Composite Grid and
Solution Technology, November 1996

[7] Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors and Difference
Schemes", Journal of Computational Physics, Vol. 43, No. 2, pp. 357-372, Octo-

ber 1981.

[8] Whitfield, D.L., "Newton-Relaxation Schemes for Nonlinear Hyperbolic Sys-
tems," Engineering and Industrial Research Station Report MSSU-EIRS-ASE-
90-3, Mississippi State University, October 1990.

[9] Suhs, N.E., and Tramel, R.W., "PEGSUS 4.0 USER'S MANUAL," AEDC-TR-
91-8, June 1991.

[10] Buning, P.G. and Chan, W.M., "OVERFLOW/F3D User's Manual, Version 1.5,"
NASA/ARC, November 1990.

[11] Chiu, Ing-Tsau, and Meakin, R.L, "On Automating Domain Connectivity for
Overset Grids," NASA-CR-199522, August 1995.

139

140

[12] Chesshire, G., and Henshaw, W.D., "Composite Overlapping Meshes for the
Solution of Partial Differential Equations," Journal of Computational Physics,

• Vol. 90, No. 1, September 1990.

[13] Chesshire, G., et. al., "Efficient Computation of Overlap for Interpolation be-
tween Moving Component Grids," 3rd Symposium on Overset Composite Grid
and Solution Technology, November 1996.

[14] Dillenius, M., Lesieutre, D., Whittaker, C, and Lesieutre, T., "New Applica-
tions of Engineering Level Missile Aerodynamics and Store Separation Prediction
Methods", AIAA Paper 94-0028, January 1994.

[15] Carman, J.B., Jr., "Store Separation Testing Techniques at the Arnold Engi-
neering Development Center - Volume 1 - An Overview," AEDC-TR-79-1 (AD-
A088583), Vol. 1, August 1980.

[16] Keen, K.S., "New Approaches to Computational Aircraft/Store Weapons Inte-
gration," AIAA Paper 90-0274, January 1990.

[17] Jordan, J.K., "Computational Investigation of Predicted Store Loads in Mutual
Interference Flow Fields," AIAA Paper 92-4570, August 1992.

[18] Witzeman, F., Strang, W., and Tomaro, R., "A Solution on the F-18C for Store
Separation Simulation using COBALT," AIAA Paper 99-0122, January 1999.

[19] Bruner, C, and Woodson, S., "Analysis of Unstructured CFD Codes for the
Accurate Prediction of A/C Store Trajectories," AIAA Paper 99-0123, January
1999.

[20] Welterlen, T., "Store Release Simulation on the F/A-18C Using Split Flow,"
AIAA Paper 99-0124, January 1999.

[21] Benmeddour, A., Fortin, F., and Jones, D., "Application of the Canadian code
to the F/A-18C JDAM Separation," AIAA Paper 99-0127, January 1999.

[22] Bayyuk, S.A., Powell, K.G., and van Leer, B., "A Simulation Technique for 2-D
Unsteady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of
Arbitrary Geometry," AIAA Paper 93-3391, July 1993.

[23] Arabshahi, A., and Whitfield, D.L., "A Multiblock Approach to Solving the
Three-Dimensional Unsteady Euler Equations about a Wing-Pylon-Store Con-
figuration," AIAA Paper 89-3401, August 1989.

[24] Singh, K.P., Newman, J.C., and Baysal, 0., "Dynamic Unstructured Method for
Flows Past Multiple Objects in Relative Motion," AIAA Journal, Vol. 33, No.
4, pp. 641-649, April 1995.

[25] Karman, S.L., "SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid
CFD Code for Complex Geometries," AIAA Paper 95-0343, January 1995.

141

[26] Yen, G., and Baysal, O., "Dynamic-Overlapped-Grid Simulation of Aerodynam-
ically Determined Relative Motion," AIAA Paper 93-3018, July 1993.

[27] Blaylock, T.A., "Application of the FAME method to the Simulation of Store
Separation from a Combat Aircraft at Transonic Speed," Numerical Grid Gener-
ation in Computational Field Simulations; Proceedings of the 5th International
Conference, pp. 805-814, April 1996.

[28] Lijewski, L.E. and Suhs, N.E., "Chimera-Eagle Store Separation," AIAA Paper
92-4569, August 1992.

[29] Lijewski, L.E. and Suhs, N., "Time-Accurate Computational Fluid Dynamics
Approach to Transonic Store Separation Trajectory Prediction," Journal of Air-

craft, Vol. 31, No. 4, pp. 886-891, August 1994.

[30] Thorns, R.D. and Jordan, J.K., "Investigations of Multiple Body Trajectory
Prediction Using Time Accurate Computational Fluid Dynamics," AIAA Paper
95-1870, June 1995.

[31] Cline, D.M., Riner, W., Jolly, B., Lawrence, W., "Calculation of Generic Store
Separations from an F-16 Aircraft," AIAA Paper 96-2455, June 1996.

[32] Coleman, L., Jolly, B., Chesser, B.L., Jr., Brock, J.M., Jr., "Numerical Simula-
tion of a Store Separation Event from an F-15E Aircraft," AIAA Paper 96-3385,

July 1996.

[33] Smith, M.H., and Pallis, J.M., "MEDUSA - An Overset Grid Flow Solver for
Network-based Parallel Computer Systems," AIAA Paper 93-3312, July 1993.

[34] Wissink, A.M., and Meakin, R.L., "Computational Fluid Dynamics with Adap-
tive Overset Grids on Parallel and Distributed Computer Platforms," Interna-
tional Conference on Parallel and Distributed Computing, July 1998.

[35] Meakin, R.L., and Wissink, A.M., "Unsteady Aerodynamic Simulation of Static
and Moving Bodies Using Scalable Computers," AIAA Paper 99-3302, July 1999.

[36] Barszcz, E., Weeratunga, S.K., and Meakin, R.L., "Dynamic Overset Grid Com-
munication on Distributed Memory Parallel Processors," AIAA Paper 93-3311,

July 1993.

[37] Weeratunga, S.K., and Chawla, K., "Overset Grid Applications on Distributed
Memory MIMD Computers," AIAA Paper 95-0573, January 1995.

[38] Wissink, A.M., and Meakin, R.L., "On Parallel Implementations of Dynamic
Overset Grid Methods," SC97: High Performance Networking and Computing,
November 1997.

[39] Prewitt, N.C., Belk, D.M., Shyy, Wei, "Implementations of Parallel Grid Assem-
bly for Moving Body Problems," AIAA Paper 98-4344, August 1998.

142

[40] Prewitt, N.C., Belk, D.M., Shyy, Wei, "Distribution of Work and Data for Par-
allel Grid Assembly," AIAA Paper 99-0913, January 1999.

[41] Samet, H., Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS, Addison-Wesley, 1990.

[42] Samet, H., Design and Analysis of Spatial Data Structures, Addison-Wesley,
1990.

[43] Potter, M.C. and Foss, J.F., Fluid Mechanics, Great Lakes Press, 1982.

[44] Belk, D.M. Unsteady Three-Dimensional Euler Equations Solutions on Dynamic
Blocked Grids, PhD Dissertation, Mississippi State University, August 1986.

[45] Steger, J.L., and Warming, R.F., "Flux Vector Splitting of the Inviscid Gas-
Dynamic Equations with Application to Finite Difference Methods," Journal of
Computational Physics, Vol. 40, No. 2, pp. 263-293, April 1981.

[46] Hirsch, C., Numerical Computation of Internal and External Flows - Volume
2: Computational Methods for Inviscid and Viscous Flow, John Wiley &; Sons,
1990.

[47] Briley, W.R., and McDonald, H., "Solution of the Multi-Dimensional Compress-
ible Navier-Stokes Equations by a Generalized Implicit Method," Journal of
Computational Physics, Vol. 24, pp. 372-397, 1977.

[48] Beam, R.M., and Warming, R.F., "An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation Law Form," Journal of Computational
Physics, Vol. 22, pp. 87-110, 1976.

[49] Van Leer, B., "Towards the Ultimate Conservation Difference Scheme. V. A
Second Order Sequel to Godunov's Method", Journal of Computational Physics,
Vol. 32, No. 1, pp. 101-136, July 1979.

[50] Godunov, S.K., "A Difference Scheme for Numerical Computation of Discountin-
uous Solution of Hydrodynamic Equations," Math. Sbornik, Vol. 47, pp. 271-306,
1959 (in Russian). Translated US Joint Publ. Res. Service, JPRS 7226, 1969.

[51] Whitfield, D. and Taylor, L., "Discretized Newton-Relaxation Solution of High
Resolution Flux-Difference Split Schemes," AIAA Paper 91-1539, June 1991.

[52] Rizk, M.H., "The Use of Finite-Differenced Jacobians for Solving the Euler Equa-
tions and for Evaluating Sensitivity Derivatives," AIAA Paper 94-2213, June
1994.

[53] Conte, S.D. and de Boor, C, Elementary Numerical Analysis - An Algorithmic
Approach, third edition, McGraw-Hill, 1980.

[54] Meakin, R.L., "Computations of the Unsteady Flow About a Generic
Wing/Pylon/Finned-Store Configuration," AIAA Paper 92-4568, August 1992.

143

[55] Etkin, B., Dynamics of Flight - Stability and Control, John Wiley &: Sons, 1982.

[56]. Blakelock, J.H., Automatic Control of Aircraft and Missiles, John Wiley k Sons,

1965.

[57] Nash, J.R., "Derivation Using Quaternions in the Simulation of Rigid Body
Motion," November 1983.

[58] Hamilton, W.R., "On a New Species of Imaginary Quantities Connected with a
Theory of Quaternions," Proceedings of the Royal Irish Academy, Dublin, Vol. 2,
No. 13, pp. 424-434, 1843.

[59] Robinson, A.C., "On the Use of Quaternions in Simulation of Rigid Body Mo-
tion," USAF Wright Air Development Center, TR 58-17, Dayton, OH, December

1958.

[60] Katz, A., "Special Rotation Vectors: A Means for Transmitting Quaternions in
Three Components," AIAA Journal of Aircraft, Vol. 30, No.l, January 1993.

[61] Foster, Ian, "Designing and Building Parallel Programs," Addison-Wesley, 1995.

[62] Sterling, T.L., Salmon, J., Becker, D.J., and Savarese, D.F., How to Build a
Beowulf: A Guide to the Implementation and Application of PC Clusters, MIT

Press, 1999.

[63] Jiang, D., and Singh, J.P., "A Scaling Study of the SGI Origin2000: A Hard-
ware Cache-Coherent Multiprocessor," Proceedings of the SIAM Conference on
Parallel Processing for Scientific Computing, March 1999.

[64] Geist, Beguelin, et al. PVM: Parallel Virtual Machine - A Users' Guide and
Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA, 1994.

[65] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
International Journal of Supercomputing Applications, Vol. 8, No. 3/4, 1994.

[66] McBryan, O.A., "An Overview of Message Passing Environments," Parallel
Computing, Vol. 20, pp. 417-444, 1994.

[67] Nichols, B., Buttlar, D., and Farrel, J.P., Pthreads Programming, O'Reilly, 1996.

[68] Dagum, L., and Menon, R., OpenMP: An Industry-Standard API for Shared-
Memory Programming, IEEE Computational Science and Engineering, Vol. 5,
No. 1, January /March 1998.

[69] Gallmeister, B.O., POSIX.4: Programming for the Real World, O'Reilly, 1995.

[70] Blosch, E.L. and Shyy, W., "Scalability and Performance of Data-Parallel
Pressure-Based Multigrid Methods for Viscous Flows," Journal of Computa-
tional Physics, Vol. 125, No. 2, pp. 338-353, May 1996.

144

[71] Roose, D. and Van Driessche, R., "Parallel Computers and Parallel Algorithms
for CFD: An Introduction," AGARD Report R-807, pp. 1-1-1-23, October 1995.

[72] Amdahl, G., "Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities," in AFIPS Conference proceedings, Vol. 30, Altlantic
City, NJ, pp. 483-485, 1967.

[73] Sedgewick, R., Algorithms in C++, Addison-Wesley, pp. 596-598, 1992.

[74] Dewdney, A.K., The New Turing Omnibus: 66 Excursions in Computer Science,
Computer Science Press, pp. 210-206, 1993.

AMAA

AIAA 2000-0142
Computation of Unsteady Interaction between
Viscous Flows and Flexible Structure with
Finite Inertia

Eric lillberg(,'2), Ramji Kamakoti(1) and Wei Shyy<

University of Florida(,)

Gainesville, FL, USA

Royal Institute of Technology^
Stockholm, Sweden

i)

38th Aerospace Sciences
Meeting and Exhibit

10-13 January 2000 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics,
1801 Alexander Bell Drive, Suite 500, Reston, Virginia 20191-4344.

AIAA 2000-0142

COMPUTATION OF UNSTEADY INTERACTION BETWEEN VISCOUS
FLOWS AND FLEXD3LE STRUCTURE WITH FINITE INERTIA

Eric Lillberg**, Ramji Kamakoti* and Wei Shyyt

Department of Aerospace engineering, Mechanics and Engineering Science,
University of Florida, Gainesville, FL 32611-6250 USA

'Permanent address: Department of Mechanics,
Royal Institute of Technology, Stockholm, Sweden

ABSTRACT

Continuing our effort towards developing a
computational capability for handling interaction
between viscous flows and flexible solid
structure, the effect of inertia on the dynamics of
a flexible membrane is studied. Both laminar and
turbulent unsteady flow fields are investigated by
directly coupling membrane structure dynamics
with fluid dynamics where the fluid/structure
interface is handled by a moving grid technique.
The turbulent simulations are made using the k-a
turbulence model proposed by Menter.
Appropriate dimensionless parameters,
characterizing the problem, are employed to
account for the fluid flow and membrane
characteristics. The results show significant
differences in the membrane configuration, fluid
behavior and aeroelastic response between the
finite inertia membrane and the massless
membrane. Implications in aerodynamic
performance due to such fluid flow and flexible
structure interactions are discussed in terms of
change in the lift/drag ratio.

1. INTRODUCTION

The problem of fluid/structure interaction for
flexible structures has previously been
investigated for physiological flows [1][2],
flexible structures such as marine sails [3]-[6],
and for the low Reynolds number flight
properties of Micro Air Vehicles (jiA V) [7]. The
aerodynamic performance of an ptAV is very
sensitive to alterations in the wind speed and

* Graduate Student, Student Member AIAA.

t Professor and Chair, Associate Fellow AIAA.

Copyright © 1999 by authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with Permission

direction. Experiments show that normal rigid
wings does a poor job under these conditions
where, for example, wind gusts causes changes
in the angle of attack resulting in massive flow
separation and substantial degradation in the lift-
to-drag ratio.

These observations have led to the investigation
of flexible wings, membrane wings or hybrid
rigid-flexible wings. Research made in this area
by Shyy and co-workers [7] [8] shows that the
overall performance of a flexible wing in a non-
stationary laminar flow field is improved
compared to rigid profile wings.

The topic of fluid/structure interaction has
proven to be challenging since it involves not
only fluid and structural dynamics but also the
interaction between the two, along moving
boundaries. The development of tools for the
investigation of such problems have been
substantial during the past decades but much of
the current theoretical practice remains
inadequate to address the most critical issues
involved.

For low Reynolds number aerodynamics around
an airfoil, the flow surrounding the leading edge
region is often not strong enough to overcome
the adverse pressure gradient on the aft-side of
the airfoil and laminar separation occurs. Once
separated, the boundary layer disturbance
amplification rates greatly increase, inducing
transition toward turbulence. The turbulent flow
induces more mixing within the boundary layer,
bringing higher momentum fluid from near the
freestream to the wall. The now higher
momentum fluid near the wall overcomes the
pressure gradient and quickly reattaches, forming
a separation bubble. This separation bubble is
mainly characterized by recirculating flow. The
«attachment point is followed downstream by a
turbulent boundary layer. The turbulent

AIAA 2000-0142

boundary layer continues until turbulent
separation occurs at or before the trailing edge.

The extent of the separation bubble is dependent
on the Reynolds number. As the Reynolds
number decreases, the influence of viscous
damping increases which tends to suppress the
transition process and delay reattachment The
flow will not reattach if, 1) the Reynolds number
is sufficiently low to completely suppress the
transition to turbulence or, 2) the pressure
gradient is too strong for the turbulent flow to
reattach. Thus without reattachment, a bubble
does not form and the flow is then fully
separated.

Increasing angles-of-attack move the pressure
peak towards the leading edge and are also
characterized by increased streamline curvature
on the top surface of the airfoil and hence higher
adverse pressure gradients. Therefore, an
increase in the angle-of-attack will move the
separation point towards the leading edge. The
angle-of-attack at which the top surface is
completely engulfed by separation is termed the
stall angle.

The location and structure of separated regions
are very sensitive to small changes in flow
conditions, making it difficult to construct
optimized or even working airfoils for the
fluctuating environment of uAVs. An interesting
alternative that would improve the aerodynamics
of a wing would be to change the shape of the
wing during flight. An adaptable wing could
have noticeable effects on sustaining good
performance in a fluctuating environment With
intelligently designed sensing and control
strategies, changes in freestream conditions can
be detected, and actuators can be placed to
dynamically adjust the camber and shape of the
wing. At higher angles-of-attack, much of the
wing may be masked by the separation bubble
and a larger displacement of the wing surface
and/or camber would be necessary. An integrated
approach to simultaneously account for
aerodynamics and sensing/control considerations
will be highly desirable. A combination of
passive and active control strategies offers an
opportunity for improving uAV aerodynamics.
In order to reduce the tendency of flow
separation in this manner, a flexible adaptive
wing seems attractive.

In Refs. [5] [6] [9] dynamic interaction between a
flexible membrane airfoil and laminar/turbulent
flows is investigated. For transient free stream
conditions, the simulations show the appearance

and collapse of recirculation zones due to the
acceleration and deceleration of the freestream
velocity. This response from the flow along with
the adjustment in the membrane configuration
results in an aeroelastic response, which can, in
turn, affect the flow structure. However, in these
works, inertial effects, arising from the non-zero
mass membrane, are not taken into account and
the problem of adding these effects to the
formulation serves as the foundation and
motivation for the present work.
In the present work a modified membrane
equation is created, taking inertial effects into
account, by adding membrane density and a
second order time derivative to the equilibrium
equation, presented previously in Refs. [5][6][9],
hence, making it time-dependent This alteration
creates new conditions for stability and
convergence as well as the scaling of the
problem and these properties will be discussed in
following chapters.

Similar simulations are made for the case of an
initially flat extensible membrane using both the
original massless membrane equation and the
new, finite inertia, time dependent formulation
for comparison. First the density ratio between
the membrane and air is taken to be 500 to
simulate a fairly light membrane material such as
a rubber compound. Then, the effect of the
membrane inertia is examined by increasing the
membrane-to-air-density-ratio from 500 to 900
to simulate a heavier material.

2. NUMERICAL METHODS

As for the previous computations in Ref. [5] a
body-fitted curvilinear mesh is used with a
moving boundary consisting of the surface of a
flexible membrane. A body-fitted moving grid
solver using generalized curvilinear coordinates
is then used to follow the motion of the
boundary. The redistribution of grid points is
done at every time instant to accommodate for
the reactions in the membrane shape.

2.1 Basic equations

The Navier-Stokes equations for unsteady,
laminar flow written in two-dimensional
Cartesian coordinates are given by

dt 8x &, &,

AIAA 2000-0142

£♦£(,*,>-. (lc)

where v, is the Cartesian component of the fluid
velocity field, p is the fluid density, // is the fluid
viscosity, t is time and/7 the fluid pressure. In the
present work, though, only incompressible flows
will be considered.

Introducing the new independent variables
4,=^,(x,,x2,t) and A-fifox*/; the Eqs. la-lc
can be rewritten as follows, where the subscript
/, j indicates the partial derivative of the /-th
Cartesian component of velocity or position with
respect to the general curvilinear coordinate./.

|(-/pv2)+A(^V2)=A^taV:u_g2Vw))+
at o$j a§ J

•^(^vb-ftvi,))^^)-^^) (2b)

■%-(Jp) + -£r(pyj) = 0 (2c)
dt d£j

where the contravariant velocities components
are given by

V\ = (Vl ~ X\)X2.2 - (V2 ~ X2)*U (3a)

^^^-^Kr^i-^i)^ (3b)

where Xjare the Cartesian components of the
grid velocity and

Ql =X1,1X1,2 + *2>1X2,2

?3=(*u)2+(*2,l)2

with the Jacobian defined as

J ~ X\,\X2,1 ~X\,1X1.\

(4a)

(4b)

(4c)

(5)

For solving Eqs. 2a-2c, the pressure-based
numerical algorithm, SIMPLE, originally
proposed in [10] for Cartesian coordinates, is
adopted. The details for the basic pressure
correction algorithm are given in [11] with the
extension of the procedure to general curvilinear
coordinates given in [12].

A staggered grid method is adopted for
discretising Eqs. 2a-2c. The non-orthogonal
body-fitted curvilinear mesh is generated
numerically and the Cartesian and contravariant
velocities (v, and Vi) as well as the Cartesian

components of the grid velocity (X;) are located
at the midpoints of the control volume faces. The
discrete value of the pressure is located at the
arithmetic center of the four adjacent mesh
points.

By integrating the conservation laws in (2a)-(2c),
a fully implicit, time dependent, finite volume
method is obtained over appropriately staggered
control volumes with sides denoted by e, w, n, s.
The second order upwind scheme used in [12] is
adopted for the solution in the present work.

The Cartesian components of the grid velocity in
the transformation (3a),(3b) are discretized by a
first order backward difference in time which
reads,

„n „n-1

*/=■ A/
(6)

where At is the time step and the superscript n
and n-1 refers to the present and previous time
level respectively.

To insure a consistent recovery of Cartesian
components from the contravariant velocities
care has to be taken while performing the inverse
transformation since mass conservation is stated
explicitly in terms of Vt as stated in Eq. 2c. A
consistent one-to-one mapping is done as
described in [12] [13] by assembling the
transformation for all grid points in the domain
as a set of simultaneous equations. This
procedure avoids an otherwise inevitable
interpolation procedure. The set of equations
may be symbolically written as

V=[M]v (7)

The solution of this set of equations is obtained
by the following procedure based on D'yakonov
iteration which is given by

,(<•+!) _ v(0 + [M]-l(y-[M]v(,)) (8)

AIAA 2000-0142

The initial estimates for the solution of this
system of equations is given by a straightforward
inversion of the transformation 3a, 3b.

Another problem arises during the treatment of
continuity condition when the grid is time
dependent To ensure mass conservation for a
constant density and uniform velocity field under
time dependent coordinate transformation, the
following identity derived from Eq.2c proves
useful

?4(-i^+^)'4(-i^+^)=0 (9)
at 0$ cxh

Integrating Eq. 9 using the same time integration
scheme over the same control volume used for
mass conservation leads to Eq. 10, which is the
discrete form of the identity given in Eq. 9.

(J"~) H-i&i +**2X -i-^Vw. +%)«+

(-XjXy +xlxzl)„ -(-ijXy +%), =0(10)

This formulation ensures that the Jacobian will
be updated according to the time dependent grid
movements to guarantee geometric conservation
in the discrete form of the conservation laws.

2.2 Turbulence modeling

The governing equations used for the turbulent
simulations within the present work are the
Reynolds Averaged Navier-Stokes (RANS)
equations and the continuity equation. This set of
equations in two-dimensional Cartesian
coordinate form can be written as

3 3 , x d , -i-T. dp (Ha)

&,

dx,

dx

(py,) = 0

*,

(lib)

where v,'s are the Cartesian components of the
time-averaged fluid velocity vector, p is the fluid
density, p the fluid viscosity, t the time, p the
time-averaged fluid pressure, and -pv',v'j are
the components of the Reynolds stress tensor. By
applying the Boussinesq approximation and
writing the components of the Reynolds stress
tensor in terms of the velocity gradients and eddy
viscosity, A,

me RANS equations can be re-
written as

[(p^ipv^o^ttäjy* (12)

where S^llHytfVjjb is its deviatoric part

In this formulation the trace of the Reynolds
stress tensor has been implicitly absorbed by the
eddy viscosity and mean strain rates.
Furthermore, the hydrostatic pressure and the off
diagonal cross derivatives have been neglected.

The model applied here is the Baseline ßSL)
and Shear Stress Transport (SST) k-a> model
proposed by Menter in Ref.[15]. The BSL is a
composite two-zone model using the k-a> model
in the inner region of the turbulent boundary
layer and reduces to the k-s model in the outer
region and in regions of free shear flow thus
overcoming the dependency of the original k-a>
model on the freestream value of/ The tracking
of the two zones in the model is facilitated by the
introduction of a blending function F. The SST is
a transport model for the principal turbulent

shear stress, - pv\v\, and it uses the framework
of the two equation eddy viscosity model.

The first step in the development of this model is
to create the new BSL two-equation model by
transforming the high Reynolds number k-s
model into a k-a> formulation. The transformed
equations for k and a> are then multiplied with a
blending function (1-Fi) and added to Fi times
the original k and ©equations. The function F\ is
assigned to be one in the sublayer and
logarithmic region and zero in the wake region
between the log-layer and the outer region.

The resulting equations are

C"+oi/4)— (13a)

l(pto)+£ü>v/»)=&Tt-£--ßpa? +
dt &

&, adcj dcj

(13b)

where the Reynolds stress tensor, jjj, is defined
by

r« =M,\ _dXj dx, j
- -PkS»

(14)

AIAA 2000-0142

Consequently, in the inner region of the turbulent
boundary layer the model uses the standard k-co
model, which unlike any other two-equation
model does not involve damping functions.
However, the k-co model does not predict the
asymptotic behavior of turbulence correctly as it
approaches the wall. But since the eddy viscosity
is much smaller than the molecular viscosity in
the proximity of the surface, the asymptotic
behavior of the mean velocity profile is
independent of the asymptotic form of
turbulence. Therefore, even if it is not
asymptotically consistent, the model can predict
the mean flow profile and the skin friction
correctly, as seen in Ref. [15].

In the outer region of the turbulent boundary
layer and in regions of free shear flow the k-e
model is better suited than the k-<a model, due to
the latter model's sensitivity to the freestream
value, fu specified for / in the outer region.
Hence,, in these regions the k-s model will be
used instead of k- co model.

Even though the ability to predict adverse
pressure gradient flows rely on the behavior of
the two-equation turbulence model in the
logarithmic region of the boundary layer,
especially in flows with weak pressure gradients,
Johnson and King [16] have shown that it is the
level of the eddy viscosity in the wake region
that ultimately determines the prediction of
strong adverse pressure gradient flows. The fact
that the log region has limited influence is
evident in the failure of the original k-co model to
accurately predict pressure-induced separation
despite its excellent log-layer characteristics.

The method used to overcome this deficiency is
based on the observation that the principal
turbulent shear stress is proportional to the
turbulent kinetic energy in the wake region of the
boundary layer. This property introduces a lag
effect into the equations that accounts for the
transport of the principal turbulent shear stress.
To account for the transport of the principal
turbulent shear stress the eddy viscosity is
redefined which leads to the model called SST.

The relation between the principal turbulent
shear stress, r, and the turbulent kinetic energy,
k, in a boundary layer is given by

T = pa{k

with ax being a constant

(15)

In the original two-equation eddy viscosity
approach the shear stress is computed from

r = //,
dx2

(16)

which for conventional two-equation models can
be rewritten to give

-i
production (k)
dissipatio n(k)

a,* (17)

as stated in Ref.[17]. In flows with strong
adverse pressure gradients the ratio of production
to dissipation can be significantly larger than
one, as found in the experimental data obtained
by Driver in Ref.[18], which leads to an
overprediction of r. To control this property
within the currently used framework, the eddy-
viscosity is redefined as

/*, = P
alk

max(at(o;CiF2)
(18)

where £2 = (dvjdx-i) and F2 is a function defined
to be one for boundary layer flows and zero for
free shear layers. In an adverse pressure gradient
boundary layer the production of k is larger than
its dissipation and Eq. 18 therefore ensures that
Eq. 15 is satisfied whereas the original
definition, /* = pk/co, is used in the rest of the
flow.

The functions F\ and F2 in Eqs. 13b and 18 are
chosen as hyperbolic tangent functions with
arguments based on the computed values of co, k,
ft, p, dk/dxj and dcddxy in the boundary layer and
the distance from the wall to the point of interest.
A closer description of these arguments and
constants used in the BSL and SST k-co model is
given in Ref. [15]and a numerical evaluation of
the model in the present context is done in
Ref.[9].

3. MEMBRANE EQUATIONS

The original membrane equation used in Refs.
[4][5][6][9] is based on an equilibrium state
equation for a two-dimensional elastic membrane
subjected to both normal and shear stresses.
Originally the membrane was assumed to be
massless and the equilibrium conditions were
stated in terms of instantaneous spatial Cartesian
coordinates xt and the body-fitted curvilinear
coordinates £. However, for the non-zero mass

AIAA 2000-0142

membrane calculations inertial effects play an
important role and the formulation therefore
needs to be time dependent
Figure 1 illustrates the elastic membrane fixed in
both ends and subjected to fluid dynamic
pressure and shear stress, p and r respectively

Figure 1: Schematic of an elastic membrane and
the key variables

Imposing force balance in normal and tangential
directions gives the following equations for the
membrane deformation

PJ&.-T**
dt' &*

dT
■ = -r

+ *p (19a)

(19b)

where the material density p^, and the height ft
gives the membrane mass per segment and T is
the membrane tension.

The pressure and shear stress acting on a
segment of the membrane are given by

Ap = p--p+ (20a)

(20b)

where -/+ denotes the lower and the upper
surface, respectively, as depicted in Fig. 1.

By replacing the derivatives in Eq. 19a with an
appropriate set of finite difference
approximations, a discrete form of the elastic
membrane equation is obtained. Applying central
differences to Eq. 19a leads to a five-point kernel
centered at point P with neighboring points E
and W as shown in Fig. 1. Using second order
accurate central differences for the second order

partial derivatives in Eq. 19a and the first order
partial derivative for the non-linear term yields

A£ "1 A»
fa,-af+aM,4B

A*

<T =
T,

P.h
1 +

2A
XM Xl-

2Ax

(21a)

(21b)

where x represents the Cartesian coordinate x2,
the indices h, n+1 and n-1 represents the time
levels and /, /+/ and i-1 the position in the xt

direction. Since the mesh is equidistant along the
membrane surface in the x\ direction, Ax is
simply given as the membrane cord length, c,
divided by the number of points along the
membrane.

The resulting set of finite difference equations
becomes an iterative, explicit, scheme with a
CFI-type stability condition limited by the
largest admissible time step Af«,^. Performing a
linearized von Neumann stability analysis with
fixed coefficients shows that the stability
condition is given by

o-Atl

Ax2
£1 (22)

When Eqs. 21a and 21b are inserted into the
fluid/structure solver, the time step is limited
only with respect to the membrane equation,
since the fluid solver is based on a fully implicit
algorithm. In the computation, A/m is calculated
by dividing the fluid solver time step by a
sufficiently large number of time steps to ensure
stability for the membrane calculation. For the
unsteady computations performed here, this time
step limit does not impose any large increase in
CPU usage since the computational effort to
solve the iterative scheme of the membrane is
very small compared to that of the flow solver.

The original membrane equation used in Refs.
[4][5][6][9] is simply obtained by taking the
membrane mass, /%,, to be zero in Eq. 19a. Thus,
for a massless membrane the movement is
governed by the previously obtained equation ,
which reads

d2x.
dxf 1+&

3

»VI -m (23)

AIAA 2000-0142

A discretization of this equation may be doüe in
a similar way as Eq. 19a and the solution may be
calculated using a line iteration method with
under-relaxation. The amount of relaxation is in
this case the principal factor to control the
stability and convergence properties of the
membrane calculation algorithm.

For both the Eqs. 19a and 23, A/> is defined as in
Eq. 20a. .Also, to describe the mechanical
properties of the membrane it is necessary to
specify the tension T based on material
specifications and geometry. If the membrane
material is assumed to be linearly elastic and not
subjected to any pretension, the nominal tension
can be written as

T = EhS (24)

where E is the elastic modulus, h the membrane
thickness and 5 the nominal strain given by

5 =
L-L°

L°
(25)

where L° is the unstrained length of the
membrane and L the length after deformation.
The length L can be described in spatial
coordinates by

(26)

Refs. [4] [5] [6] [9] to represent a flexible
membrane.

Equation 27 has also an interpretation as the time
scale for the membrane movement in the
problem. For the finite inertia computations the
inertial effects slows down the membrane and a
new time scale must be developed to enable
quantitative evaluations of the different
simulations. As for the massless membrane
equation the new time scale can be derived from
Eq. 19a by multiplying with the normalized

membrane density, pm=p/p„, where p is the
fluid density. This new parameter is given by

n1 = (28)

Both Til and II x indicate the ratio of
characteristic time between the flow field, t{, and
the solid membrane, /m. Specifically,
n,~ö[(/f//m)2/3].

In addition to this parameter the angle of attack,
a, and freestream velocity, vm must be specified
along with the Reynolds number, Re, based on
the membrane cord length c and fluid density
and viscosity, p and p as

Re =
pv c

(29)

where c is the membrane cord length. In the
computational procedures the fluid forces, r and
AP, and the membrane strain, S, are calculated
with appropriate finite sum approximations along
the membrane surface.

It is often convenient to define dimensionless
parameters to help characterize the flow/structure
interaction. For an initially flat massless
membrane dominated by elastic strain and
subjected to fluid dynamic pressure and shear
stress the deformation is dictated by

(27)

where q«, = pvJ/2 is the freestream stagnation
pressure. The cube root in Eq. 27 is suggested by
the exact solution of Eq. 23 given in [14]. This
parameter is given the value 7.9 as suggested in

Furthermore, in the two simulations the
freestream velocity oscillates 20% around its
mean value with a frequency equivalent to a
Strouhal number, St, of 1.5, where St is defined
by

St-*-

where/is the freestream frequency.

(30)

Also, a frequency ratio parameter, Q, may be
defined by drawing an analogy between a one-
degree of freedom spring/mass system and the
transverse motion of the membrane. If the ratio
of the system forcing frequency to the system
natural frequency,^ is defined as

J (31) n =
/.

AIAA 2000-0142

the following parameter may be defined and
substituted for the Strouhal number in the basic
parameter set used in the simulations

O = St (32) 1 nr
again, as with Efi, Clx is the appropriate
dimensionless forcing frequency when the
membrane has no pretension but develops
tension elastically.

Based on the above discussions, the non-
dimensionalized form of the governing equations
can be deduced by introducing the following
dimensionless variables:

u =—

v =-
U„

7 = t.f

x = l

c

T =

(33)

(34)

(35)

(36)

(37)

(38)

(39)
Eh

The non-dimensionalized equations are as
follows:

dX dY

du d(uu) d(uv)_ dP

d7 ax dY ax
1

(40)

Re 3x{dX)+dY{dY).
(41)

Bv ftgv) d(yv)_ SP

d7 ex dY BY

J_
Re dX {ax)+dY[dYl

(42)

«Iil?-'S
-3/2

M^J

vn.y
AP (43)

4. COMPUTATIONAL PROCEDURE

The objective of the present work is to perform
computations of an unsteady flow over an
initially flat elastic membrane with finite inertia
and to evaluate the motion and configuration of
the membrane as well as its aerodynamic
properties and impact on the flow field. The
simulations are also performed with a massless
membrane, in agreement with Refs. [4][5][6][9],
for comparison.

The grid used is a non-square, structured grid
with 201 nodes in the xrdirection, 121 nodes in
the ^-direction and 100 nodes on the membrane
(see Fig. 2). For the analysis of the impact of
boundary placement and number of nodes on the
calculations see Refs. [4][5].

The computational procedure is divided into
several nested loops as described in Fig. 3. First
the flow calculations are performed with a non-
dimensional time-step, Dt, of 0.75 using a
limiting residual tolerance of 3xl0'3. The viscous
stresses and aerodynamic pressures are then
calculated along the membrane surface. Next the
membrane movement is calculated according to
the computed fluid forces. For the finite inertia
calculations the membrane is moved using 100
time-steps per time step used in the flow solver.
The massless membrane calculation is performed
using a residual tolerance of 10'5.

Since the fluid and structure parts of the solver
needs to exchange information to ensure
convergence, this procedure is repeated 10 times
before each global time step is typically taken
and the new freestream velocity is computed.
The number of repetitions is an empirically
obtained estimate based on observed
convergence rates of the 'total' solution of the
combined fluid/structure system for the case of
finite inertia.

AIAA 2000-0142

Entire grid system

Enlarged view of the midsection

A ^ M\V^VrrtT\\ \y\ \\UUJftWrtt\TliiiiU' ' i''' ' 1 --UuUiummfthiiw^^ :s?5>^Mv'^W^ ' 4- -4Wämn^ >W\^WS3rV\^^ !
,^\^\^\>^\\n\\\\\Vn\\\\\U^]■■-■ i I ^^^^M^^e^^^^^^^^^g::

r::a±
^^^^^^^^^^^^^^^^H

^^^^^^^^^^^mff^^mffjfffftjijii flfi"! j i t|il|
r^-^^^hP^'fr^m1 ttWmTTtfi i U'll1- ' 1 I 1 1 M1 WiUuWWWWWW \VliT\\WiWtW'fVrVTrr^^ ^>X^>W^MCMM i i ii ! 4 ttnTuMu™W?M^w^W^ f^^^^^T^ w I IT X X mmssmmMm^MSM^^^^^ ^^Smmm^mmmM m 44+ ttWrnEMMmmmms

Figure 2: Grid with 201x121 nodes and 100 points along the membrane.

5. Results and discussion

The laminar computations were done using a
moderate Reynolds number, Re, of 4000 while
the turbulent simulations were carried out using a
Re of 10*. For both cases the same parameters
were used for the angle of attack, the non-
dimensional time scale, and the non-dimensional

global time step, a=A°, n,=7.9, ft, =0.99 and

Dt=0.75 respectively. Also, for all simulations
the freestream velocity varies as
v»=»/o+0-2sin(Q1t) with a non-dimensional
frequency, Q,, of 0.067. With this value of fi,,

the membrane response is significantly faster
than the time scale of free stream fluctuation.
For the turbulent flow simulation, using the BSL
and SST k-co model, the initial value of the
turbulent energy, k, was set to 0.5 and the
dissipation, ox, to 50 in accordance with the
prescribed values in Ref. [15] for the model.
These choices yields a turbulent Reynolds
number, Äe,=pvmd'#, equal to 100. A test run of
the computational setup gave an approximate
value ofy* between 2 and 3, using a mesh with a
distance to the center of the first off-wall control
volume of approximately 5x10"*.

AIAA 2000-0142

(a) Computational procedure
for massless calculation

(b) Computational procedure for finite inertia structure
(i) Overall Structure &) Fluid-structure interaction

A A
Fluid

Residual > 3x103-

Residual < 3x10"3

£
Membrane

Residual > 10°

ResiduaK 10°

Repeat 10 times J

Increase time
and start new v„

Fluid

Residual > 3x10

ResiduaK 3x1 (I3

Membrane iteration

using dt=DV100

_ Repeat 10 times

Increase time

and start new v.

Calculate fluid forces
T.AP

Calculate Non-
linear term, a

Iterate membrane eq,

Repeat 100 times

Back to fluid
solver

Figure 3: Computational procedures for(a) massless membrane and (b) finite membrane inertia.

To ascertain the numerical accuracy, a grid
refinement was performed by increasing the
fineness towards the membrane surface. A
comparison of the steady state results is
presented in Table 1. It is quite evident that by
fixing V^Vo the present grid resolution has not
fully resolved all the detailed flow and structure
characteristics. However, the qualitative trends
seem to be consistent between solution obtained
on different grids.

In Table 1 aerodynamic characteristics including
Ct, CD and their ratio under the steady state
freestream condition are summarized. On both
grid systems, there are 101 grid points on the
membrane surface. It is interesting to note that
the value of CL increases significantly for the
turbulent flow case. The reason for this could be
explained with help of the membrane shape and
pressure distribution along the upper and lower
surface. As will be discussed later, in the
turbulent flow, the membrane is of a more
symmetric profile.

Worth noticing in the numerical setup is that the
difference in time scale for the two problems has
a clear impact on the aeroelastic response. In the
present cases, the membrane response time, with
or without the inertia effect, is faster than the
time scale of free stream fluctuation. It is noted
that with Q,=0.067, fit, =0.99 (or n,=7.9), the

characteristic times of the structure (t,„) and two
fluid flow features (tf and 1/f) are 1 : 1 :0 (100).

Plots have been made for different time steps
corresponding to 0, 72, 144, 216, 288 and 360
degrees of a full oscillation of the freestream
velocity. The 0° solution of the freestream cycle
was computed by setting the amplitude of the
freestream variation to zero and by running a
sufficiently large number of time steps. This
solution is quasi-stationary though there might
still be some motion left in the case of finite
inertia, which becomes more apparent with
increasing membrane density.

Figures 4a and 4b show the massless membrane
and finite inertia membrane shapes, respectively,
at different times of the freestream oscillation. In
Fig. 5a the lift/drag ratio is plotted at different
times along with one period of the freestream
variation for clarity. Figure 5a also shows the
maximum deflection along the membrane and
the maximum extension, respectively, over one
freestream cycle. In Fig. 5b the massless
membrane and finite inertia membrane shapes
for the turbulent case are presented in the same
manner as for the laminar cases. Figure 6b show
the lift/drag ratio, maximum deflection and
maximum extension over the freestream cycle as
for the laminar case in Figs. 6a. The
streamfunctions plotted in Fig. 7 show the

10

AIAA 2000-0142

Grid
Laminar Turbulent

cL CD cL/cD CL CD CL/CD

201x121 0.4673 0.05305 8.809 0.6777 0.04574 14.82

201x201 0.5306 0.05083 10.44 0.8305 0.03468 23.95

Table 1: Effect of grid refinement on computed steady state aerodynamic properties for massless
calculations. In both cases there are 101 grid points on the membrane surface

• Laminar i 201x201 grid) Turbulent (201x121 grid)

Massless
Finitelnertia,

Pm =500
Massless

Finite Inertia

Pm =500

»■'Umax 5.40E-01 5.38E-01 7.32E-01 7.29E-01

^L^iniii 4.97E-01 4.97E-01 6.23E-01 6.27E-01

ACL 4.30E-02 4.10E-02 1.09E-01 1.02E-01

t'D.max 5.61E-02 5.55E-02 4.72E-02 4.70E-02

v^D.min 4.87E-02 4.76E-02 4.41E-02 4.41E-02

ACD 7.40E-03 7.90E-03 3.10E-03 2.90E-03

CL/CD max 11.09E+00 11.30E+00 1.66E+01 1.65E+01

CJCQ min 8.86E+00 8.95E+00 1.32E+01 1.33E+01

AQ/CD 2.23E+00 2.35E+00 3.40E+00 3.20E+O0

Table 2: Lift and drag coefficients and lift/drag ratio for the different cases studied

buildup and collapse of recirculation zones in the
laminar flow regime. In Fig. 8 the recirculation
zone streamline pattern is shown for massless
(top) and finite inertia computations with two
different values of/?,,, 500 (middle) and 900

(bottom). A plot of the membrane shape at 0°
and 216° is added in Fig.9 to show the effects of
inertia on the membrane configuration. The 0°
result in Fig. 9 suggests that a larger number of
time steps should be made for the higher value of
pm to obtain a quasi-stationary solution. The
plots of streamline patterns are omitted for the
turbulent cases since the flow is fully attached at
all times due to the turbulent boundary layer and
the small angle of attack used in the simulations.
The time dependent computation is initiated
based on the steady solution. As can be observed
from the figures, the lift and drag characteristics
are not periodic which is caused by the non-
linear effect of the coupled fluid flow and
membrane dynamics. Figure 10 shows the
membrane profiles of the massless and finite
inertia models at the time of maximum and
minimum lift during the freestream velocity
cycle. In Fig. 11 the pressure contours are shown
for massless and finite inertia membrane in both
laminar and turbulent flows. The contours are

plotted at 0° and 288° corresponding to the
computed solutions with maximum and
minimum values of the membrane deflection.

The computational results show a clear
difference between the massless approximation
and the finite inertia model. The membrane
configuration changes substantially as well as the
fluid response and overall performance. The
membrane shows a greater diversity in
configuration during the freestream velocity
oscillation for the finite inertia calculation than
for that of the massless. For example the
appearance of inflection points near the trailing
edge of the membrane surface and the different
pattern for the appearance and disappearance of
recirculation zones.

6. Conclusion

The results obtained through the simulations and
evaluations performed within this work show
significant changes in the aeroelastic response of
the finite inertia membrane model as compared
to the massless approximation. Adding inertial
effects to the membrane equation greatly alters
the membrane shape and configuration in
laminar and turbulent unsteady flows. Based on

11

AIAA 2000-0142

the cun-ent choice of the time scales between
membrane, free stream, and fluid momentum, as

represented by the dimensionless parameters 77,,

St and Qi, the time scale of the freestream
fluctuation is long. Consequently, the inertia
does not impact the range of overall aerodynamic
performance. However, even for these cases,
different aerodynamic characteristics are
observed in the transient process indicating that
the interaction among these dimensionless
parameters are important for determining the
aeroelastic characteristics of the overall system.

7. Acknowledgement

This work has been partially supported by NSF,
AFOSR and Eglin AFB.

8. REFERENCES

[1] Cheer, A. Y. and C. P. van Dam, (eds.),
1993, "Fluid Dynamics in Biology",
American Mathematical Society,
Providence, RI

[2] Pedley, T. J. 1980, "The Fluid Dynamics of
Large Blood Vessels", Cambridge
University Press, Cambridge, UK.

[3] Newman, B. G. 1987, "Aerodynamic
Theory for Membrane and Sails", Progress
in aerospace sciences, 24, pp. 1-27

[4] Shyy, W. and R. Smith, 1995,
"Computation of Laminar Flow and
Flexible Structure Interaction",
Computational Fluid Dynamics Review, pp.
777-796.

[5] Shyy, W., Udaykumar, H.S., Rao, M.M.
and Smith, RW. 1996, "Computational
Fluid Dynamics with Moving Boundaries",
Taylor & Francis, Washington, DC,
(revised printing 1997 & 1998).

[6] Smith, RW. and Shyy, W., 1995,
"Computation of Unsteady Laminar Flow

' Over a Flexible Two-Dimensional
Membrane Wing,", Physics of Fluids, 7,
pp. 2175-2184

[7] Shyy, W. and R Smith, 1997, "A Study of
Flexible Airfoil Aerodynamics with
Application to Micro Air Vehicles, AIAA
Paper No. 97-1933

[8] Shyy, W., Klevebring, F., Nilsson, M.*
Sloan, J., Carroll, B. and Fuentes, C, 1999
"A Study of Rigid and Flexible Low
Reynolds Number Airfoils" J. Aircraft, 36,
No.3, pp. 523-529

[9] Smith, R.W. and Shyy, W., 1996,
"Computation of Aerodynamic Coefficients
for a Flexible Membrane Airfoil in
Turbulent Flow", Physics of Fluids, 8, pp.
3346-3353.

[10] Patankar, S. V. and D. B. Spalding, 1972,
"A Calculation Procedure for Heat, Mass
and Momentum Transfer in Three-
Dimensional Parabolic Flows", Int. J. Heat
and mass transfer, 15, pp. 1787-1806

[11] Patankar, S. V. 1980, "Numerical Heat
Transfer and Fluid Flows", Hemisphere,
Washington D.C.

[12] Shyy, W. 1994, "Computational Modeling
for Fluid Flow and Interfacial Transport",
Amsterdam, The Netherlands.

[13] Braaten, M. and W. Shyy, 1986, "A Study
of Recirculating Flow Computation Using
Body-Fitted Coordinates: Consistency and
Mesh Skewness", Numerical Heat
Transfer, 9, pp. 559-574

[14] Seide, P. 1977, "Large Deflections of
Rectangular Membranes Under Uniform
Pressure", International Journal of
Nonlinear Mechanics, 12, pp. 397-406

[15] Menter, F. R 1994, 'Two-Equation Eddy-
Viscosity Turbulence Models for
Engineering Applications", AIAA J., 32, pp
1598-1605.

[16] Johnson, D. A. and L. S. King, 1985,
"Mathematically Simple Turbulence
Closure Model for Attached and Separated
Turbulent Boundary layers", AIAA J., 23,
pp. 1684-1692

[17] Menter, F. R 1992, "Performance of
Popular Turbulence Models for Attached
and Separated Adverse Pressure Gradient
Flows", AIAA J., 30, pp. 2066-2072

[18] Driver, D. M. 1991, "Reynolds Shear
Stress Measurements in a Separated
Boundary layer", AIAA Paper No. 93-2906

12

Membrane profile, massless calculation

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

M/'..

 r i i i

$/■/

\r-\k

HI
— Odeg

— 72 deg

- 144 deg
-— 216 deg

 288 deg

 360 deg

. .

0.045

0.04-

0.035

0.03-

0.025-

0.02-

aoi5-

aoi

aoo5

AIAA 2000-0142

Membrane profle, Finite inertia calculation

////■''

-\
0\\\

■ B

 Odeg
 72deg
 144 deg
---- 216 deg
- 288 deg
 360 deg

vi

' . t i « ' L. 1... 1 1 ...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

(a) (b)

Figure 4: Laminar flow membrane profiles during one freestream oscillation, a=4° Re=4000, 77;=7.P,

77, =0.99, (a) massless, (b) finite inertia, Pm =500,

Membrane profile, massless calculation

0.045

0.04

0.035 """""••Xxs.
0.03 \;\\

>. 0.025

0.02
///

vW

0.015

0.01

0.005

r — Odeg

— 72 deg

— 144 deg
---- 216deg

— 288 deg

— 360 deg

\^

n . ^

Membrane profile, tnrte inertia calculation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

(a) (b)

Figure 5: Turbulent flow membrane profiles during one freestream oscillation, a=4 °, Re=106,17i=7.9,

77, =0.99, (a) massless, (b) finite inertia, Pm =500

13

Bit/drag ratio at drBerent times

— "Freestream"

« Frit» inertia

+ Massless

AIAA 2000-0142
tt/drag rabo at afferent tunas

12 3 4 5

Freestream position, rad

2 3 4

Freestream position, nd

Membrane deflection at rjfterent times
Membrane deflection at c

0.045

0.035

0.03

— "Freestream*

. Finite inertia

+ Massless

\
/

2 3 4 5

Freestream position, rad

— "Freestream"

- Finite inertia

+ Massless

2 3 4 5

Freestream position, tad

5
«10J Membrans extension at dfarant times

— "Freestream"

■ Finite inertia

+ Massless

4.5

4

15

3 \ /

2.5 "

x10 Membrane extension at efferent times

2 3 4 5

Freestream position, rad

 "Freestream"

> Finite inertia

+ Massless

2 3 4 5

Freestream position, rad

(a) (b)

Figure 6: Lift/Drag ratio, membrane maximum deflection and extension during one freestream oscillation,

n,=7.9, /7, =0-99, <x=4° (a) Laminar case,Re=4000 (b) Turbulent case, Re=l(f.

14

AIAA 2000-0142

Figure 7: Laminar flow recirculation zone streamline pattern for massless calculations, IJj-7.9, Ux-Q-99, a=4°

Re=4000, Pm=500.

15

AIAA 2000-0142

Membrane prade. inrte inertia calculation with different density

Massless, 0 deg

Finite inertia, 0 deg, density=500

Finite inertia, 0 deg, dens«y=900

Massless, 216 deg

Figure 8: Laminar flow recirculation zone streamline

pattern for massless and finite inertia calculations using

Pm=500 and 900,11^7.9, ni=0.99,a=4°,Re=4000.

0.04

0.035-

0.03-

0.025-

9. 0.02-

0.015 -

0.01

0.005-

It

/j?-'
\-\ \

-/

 0 deg. density=500
—- 216 deg, den$ity=500
— 0 deg. density=9O0
— 218 deg, density=900 V"

' ' . ■ ■ '

0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1

xfc

Figure 9: Membrane profiles at 0° and 216°for laminar

flow solution with Pm=500 and 900, II,=7.9, J7,=0.P9,

a=4°, Re=4000.

Membran« pro«« at max/min «It coefficient, massless calc

0.05

0.045 -

0.04 -

0.035 -

0.03 -

, 0.025 -

0.02 ■

0.015 -

0.01

0.005 -

y

''
*X,

■ ¥
 max lift cooff, laminar
— max lift cooff, turbulent
 mtn lift coeff, laminar
—— min lift coeff, turbulent

* *\^.

f >

0.05

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1

x/c

w
Membrane prelle at max/min lift coefficient, finite inertia calc.

(b)
Figure 10: The membrane profiles at maximum and

minimum values of CL for laminar and turbulent flows,

a=4° Re=l(f, n,=7.9, LJ}=0.99, (a) Massless

computation, (b) Finite inertia computation, Pm =500.

16

Figure 11: Pressure plots for 72° and 288° corresponding to the maximum and minimum values of the

membrane deflection . IJ,=7.9, 77, =0.99, a=4°. Laminar flow Re=4000, Turbulent flow Re=106.

17

