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Abstract—A new type of a neural-network architecture, the it is very difficult to implement prior statistical information in
parallel consensual neural network (PCNN), is introduced and neural networks.

applied in classification/data fusion of multisource remote sensing In this paper, the parallel consensual neural network

and geographic data. The PCNN architecture is based on statis- . . .
tical consensus theory and involves using stage neural networks (PC_NN) |s_propose_d as a n_etwork which does not use prior
with transformed input data. The input data are transformed Statistical information but is somewhat analogous to the
several times and the different transformed data are used as if statistical consensus theory approaches. In the PCNN, the
they were independent inputs. The independent inputs are first jnput data are transformed several times and the different
classified using the stage neural networks. The output responsesyansformed data are fed into different neural networks (called
from the stage networks are then weighted and combined to make t | network SNN's). The final outout is based
a consensual decision. In this paper, optimization methods are stage neural networks or S)- € hina 9“ put'is base
used in order to weight the outputs from the stage networks. ON the consensus among neural networks trained on the same
Two approaches are proposed to compute the data transforms original data with different representations.
for the PCNN, one for binary data and another for analog data. In the PCNN, the input data can be both binary and analog.
The analog approach uses wavelet packets. The experimentalgq these data representations are discussed in the paper. For
results obtained with the proposed approach show that the PCNN th | tati ti f ¢ f based
outperforms both a conjugate-gradient backpropagation neural e analog repregen ation, a ime-irequency transiorm based on
network and conventional statistical methods in terms of overall Wavelet packets is introduced. In the PCNN, the outputs from
classification accuracy of test data. the individual stage neural networks need to be weighted when
Index Terms—Consensus theory, wavelet packets, accuracy, Cor_lsensus is Complﬂted-_The queStion_ of how they should be
classification, probability density estimation, statistical pattern  Weighted and optimized is addressed in the paper.
recognition, time-frequency analysis, data fusion. The paper begins with a short overview of consensus
theory which is followed by a discussion on the PCNN.
Then, optimization of the weights for the individual stages
_ is discussed, followed by an overview of how to select input
LASSIFICATION of data from multiple sources (mul-data transformations. This overview includes a brief review of

tisource data) is an important research area which vifavelet packets. Finally, experimental results are given.
related to data fusion. In multisource classification different

types of information from several data sources are used for

classification in order to improve the classification accuracy

as compared to the accuracy achieved by single-source classi- Il. CONSENSUSTHEORY

fication. Conventional statistical pattern recognition methOdSConsensus theory [3]-[8] is a well-established research
are not appropriate_ in classification of multisource data sinﬁgm involving procedures with the goal of combining single
such data cannot, in most cases, be modeled by a convenignt, ity distributions to summarize estimates from multiple
multivariate statistical model. In [1] and [2], it was shown thaéxperts (data sources) with the assumption that the experts
neural networks performed well in classification of multisourcg,ake decisions based on Bayesian decision theory. Consensus
remote sensing and geographic data. The neural-network mggso\y is closely related to the method of stacked generaliza-
els were superior to the statistical methods in terms of overg}j, [9] where outputs of experts are combined in a weighted
classification accuracy of training data. However, statistica),y, with weights which are based on the individual perfor-
approaches based on consensus from several data sources,Qiiee of the experts. In most consensus theoretic methods
performed the neural networks in terms of overall classificati®y, .y data source is at first considered separately. For a given
accuracy of test data [3]. Our conclusion from these resultsd§yrce an appropriate training procedure can be used to model
that it is desirable to combine certain aspects of statistiGil gata by a number of source-specific densities that will
consensus theory approaches and neural networks. HOwWeXfEracterize that source [1]. The source-specific classes or

clusters are therefore referred to as data classes, since they
are defined from relationships in a particular data space. In
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selection rule into the information classes. The combinati@pinion pool, has been proposed to overcome some of the

formula obtained is called a consensus rule. problems with the linear opinion pool. The logarithmic opinion
Consensus theory can be justified by the fact that a groppol can be described by

decision is better in terms of mean square error than a decision "

from a_smgle expgrt (data source). To show this, let us define Lj(Z) = Hp(wﬂzi),\i )

an indicator function

=1
I, = { 1 ?f wj oceurs where A, - - -, A, are weights which should reflect the good-
’ 0 if w; does not occur ness of the data sources. Often it is assumedihat \; = 1.

wherew; is an information class. Now it is needed to find an n [7], the Iogarlth_mlc opinion pool is given a natgral-_

estimate;, of the “best” probability that minimizes the meanco_njggate mte_rpretatlon and '.t IS shov_vr_l that th? IOgamhm'C

square error (summed over &fs) opinion pool differs fr_om the linear opinion pool in that it is

unimodal and less dispersed.

Eij (r) = Z(T - ij)Qp(Z) The logarithmic opinion pool treats the data sources inde-

Z pendently. Zeros in the logarithmic opinion pool are vetos;
) L i.e., if any expert assi wi|z:) =0, thenL;(Z) = 0. This
WhereZ_: [21, -+, 2n] is @ compound vector consisting Ofdramatic)lloehs\vior is agdrlri(wgac)k if th7e densi{q(/ fLinctions are not
observations from all the data sourcesis the number of carefully estimated. The logarithmic opinion pool is externally

data sourcesz; (i = 1,---,n) is an observation from a Bayesian, but it is computationally more complicated than the
single data sourcéz; can be a vector if the correspondlnqim_:‘ar opinion pool

data source makes a multidimensional observation),,@#d
is the probability ofZ. Differentiating sz.j (r) with respect to
7 and setting the result equal to zero gives

It is desirable to combine consensus theoretic approaches
and neural networks since consensus theory has the goal of
combining several opinions, and a collection of different neural
22(7, _L)p(Z) = 0. netwgrks .should be more accurate than a single network in

classification, at least in the mean square sense. Moreover,
feedforward neural networks minimizing mean-square error
The solution to the above equationis= p(w;|Z) which at the output have been shown to approximate posterior
implies that the group probability(w;|Z) is optimal for probabilities,p(w,|z) when one output neuron is assigned to
classification in the mean square sense. each classw; [10]. Using this property, it becomes possible

Several consensus rules have been proposed. Probablyt#gnplement consensus theory in the networks.
most commonly used consensus rule is the linear opinion

pool which has the following (group probability) form for the m
information classv; if n data sources are used

zZ

. NEURAL NETWORKS WITH PARALLEL STAGES

Implementing consensus theory in neural networks involves
- using a collection of neural networks. This may be achieved by
Ci(2) = Z)‘ip (wjlzi) (1) using neural networks with several parallel stages as depicted
=1 in Fig. 1. Each stage can be a particular neural network,
where p(w,|z;) is a source-specific posterior probability andhere referred to as an SNN. Unlike a multilayer network,
Ai's (i =1,---,n) are source-specific weights which controeach SNN is essentially independent of the other SNN'’s in
the relative influence of the data sources. The weights dhe sense that each SNN does not receive its input directly
associated with the sources in the global membership functiisom the previous SNN. In the PCNN, the input data to the
to express quantitatively the goodness of each source [5]. SNN’'s are obtained by applying a data transform (DT) to
The linear opinion pool has a number of appealing propehe original input vectors. Therefore, the stages are trained
ties. For example, it is simple, yields a probability distributiompn different representations of the same input data. Each
and the weight); reflects in some way the relative expertis&NN has the same number of output neurons (equal to the
of the ith expert. Also, if the data sources have absolutehumber of data classes) and is trained for a fixed number
continuous probability distributions, the linear opinion poabdf iterations or until the training procedure converges. When
gives an absolutely continuous distribution. In using the line#lre training of all the stages has finished, the consensus for
opinion pool, it is assumed that all of the experts observe thiee SNN’s is computed. The consensus is obtained by taking
input vectorZ. Therefore, (1) is simply a weighted average oflass-specific weighted averages of the output responses of the
the probability distributions from all the experts and the resuBNN's. Thus, the PCNN attempts to improve its classification
is a combined probability distribution. accuracy by weighted averaging of the SNN responses from
The linear opinion pool, though simple, has several weakeveral different input representations. By doing this, the
nesses [6]; e.g., it shows dictatorship when Bayes' theorddCNN attempts to give highest weighting to the SNN trained
is applied, i.e., only one data source will dominate in makingn the “best” representation of input data.
a decision. It is also not externally Bayesian (does not obeyUsing the proposed PCNN architecture, it can be guaranteed
Bayes' rule). The reason it is not externally Bayesian is that thigat the PCNN should do no worse than single stage networks,
linear opinion pool is not derived from the joint probabilitiesat least in terms of training accuracy in the mean square
using Bayes’ rule. Another consensus rule, the logarithmsense. This is based on the argument in Section Il that a group
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Fig. 1. The proposed PCNN with weighted individual stages.

decision is better in terms of mean square error than a decisiomattiti and Colla [18] have looked at several different ways
based on the opinion of a single expert. To be able to guarantéeombining outputs of a set of neural-network classifiers, and
such performance in classification of test data, cross-validatiBogova [19] has combined the outputs of neural networks by
methods [9] can be used. Also, it has been shown [11] thatDempster—Shafer methods. Cho and Kim [20] have combined
each of the networks in a collection of neural networks arriiee outputs of multiple networks based on fuzzy logic.
at the correct classification with probability — p and the  The parallel self-organizing hierarchical neural network
networks make independent errors, the probability of a sum @&SHNN) proposed by Ersoy and Hong [21] is a neural
network outputs being in error is monotonically decreasing imetwork which is in some respects related to the PCNN
n if p<1/2. This implies that using a collection of networksproposed here. The PSHNN involves a self-organizing number
reduces the expected classification error if the networks madfestages, similar to a multilayer neural network. At the output
independent errors. However, the independence assumptioofigach SNN, there is an error detection scheme. If an input
hard to justify in most cases. vector is rejected, it goes through a nonlinear transformation
It has also been shown [12] that the standard deviation of thefore being input to the next SNN. This property is distinct
classification of a collection of neural networks (such as them conventional neural networks. The PSHNN in [21] is
PCNN) decreases as the number of stage networks increadased on using binary data. Deng and Ersoy [22], [23] have
extended the PSHNN to apply it with analog inputs and
outputs. The PSHNN is somewhat related to the method of
A. Related Neural-Network Models “adaptive mixtures of local experts” [24] which is a multiple

neural-network model where each network is trained on a

Several methods have been p_roposed to combine mumglﬂ)set of the training data. Valafar and Ersoy [25] have
neural networks. In [13] and [14] it was shown that averaglrt%(:S

. o oposed a parallel self-organizing consensual neural network
separate networks improves generalization performance for CNN) which is related to the PSHNN. The PSCNN uses
mean squareq error. Tumer and Gosh [15] .have glso .sho linear transformations of the input data and creates accept
that substantial improvements can be achieved in diffic

. . . ) d reject boundaries for each SNN in a similar fashion to
pattern recognition problems by combining or integrating ”}ﬂe PSHNN. Pre- and postvoting are used to make decisions
outputs of multiple classifiers. However, the earliest attempt

bini itin| K b dited to Nil 1 fth the SNN's. The postvoting is in some ways similar to
combining multiple networks can be credited to Nilsson [ rror boundaries in the PSHNN but is not related to consensus

who proposed his committee machines based on a coIIectmgOr
of single-layer networks as an attempt to design a muItiIayerA" the architectures discussed above are not based on con-

neural network Which could classify pomplicated data. Hansgg sus theory and do not offer any optimal way of computing
and _Salamon [11] discuss the _appllcanon of an ensembletﬁ weights for the combination of stage networks. Of interest
multilayer neural networks. Their ensemble consists of seve re is to base the total network on consensus theory, select

SNN’s where each SNN receives the same input data, simi propriate data transforms for the inputs to different stage

to Nilsson's cpmmlttee machines. Eagh SN.N 'S based on &tworks, and optimize the influence of the individual stage
backpropagation network, and the weights in different SNN’

N . , ; Metworks to maximize the overall accuracy in classification.
are initialized differently in order to avoid the same local

minima for all the networks. The ensemble network makes the
final decision (classification) based on the majority vote from
all the networks. Alpaydin [17] proposed a similar architecture The weight selection schemes in the PCNN should reflect
to the one in [11], offering the possibility of using differenthe goodness of the separate input data, i.e., relatively high

types of stage networks. weights should be given to input data that contribute to high

IV. OPTIMAL WEIGHTS
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accuracy. There are at least two potential weight selectisaboptimal methods for solving this optimization problem. The
schemes. The first scheme is to select the weights such ttest of this section will be devoted to these methods.

they weight the individual stages but not the classes within theThe first method is to use sequential formulas to compute
stages. In this scheme one possibility is to use equal weighite optimal A [26]. Let the ¢th row vector of the matrixX

for all the outputs of the SNN'sX;,i = 1,2,---,n, and bez! and theith row of the matrixD be d¥’; then A can be
effectively take the average of the outputs from the SNN’salculated iteratively using the formula

l.e., A(i-l—l) :A(z) + P(i+l)$i+l(dzT+1 _ $?+1A(Z))
1 4 PO, 2T P
Y==) X, pli+l) — p() _ H1titl i=0.1.- .1
n Zz::l 14+ $?+1P(i)xi+l 4 s Ly 3 7

whereY is the combined output response. Another possibililyhere A(") is the least squares estimate &f,. The initial
in this scheme is to use reliability measures which rank th@nditions to the sequential formula até”) = 0 and P(¥ =
SNN’s according to their goodness. These reliability measurgs, where is a positive large number.
might be, e.g., stage-specific classification accuracy of trainingThe second method for solving the least squares error
data, overall separability or equivocation [1]. problem is to choose unitary which minimizes||D — X A||?
The second scheme is to choose the weights such that tf&]. We compute
not only weight the individual stages but also the classes within 9 9 9
the stages. This scheme is depicted in Fig. 1. In this case, the 1D = XA" = DI = 2(D, XA) + [|X]]
combined output responsk, can be written in matrix form as \where (D, XA) = tr(DATXT) andtr returns the trace of its
Y — XA argument matrix. If
_ _ . XD =vu”*
where X is a matrix containing the output of all the SNN’s
and A contains all the weights. Assuming thaf has full is a singular value decomposition (SVD) &f"' D then
column rank, the above equation can be solvedousing tr(DATXT) = tr(XT DAT)
the pseudoinverse of or a simple delta rule. In order to find

the optimal weights in Fig. 1, we define :tr(VETUT;\T)
X o[ X X, =tr(XU A V)
A1 = Z O’i(XTD)tii
A2 =1
A= .
whereT” = [t;;] = UT ATV is a unitary matrix and; is theith
Ap singular value of its argument matrix. This sum is maximized
whereX; i = 1,---,n arer x p matrices { is the number of When allti; =1, i.e.whenAqp,, = VUt
training samplesp is the number of outputs for each SNN).
Each row ofX; represents an output vector for tih SNN V. DATA TRANSFORMS
andA;,¢ = 1,---,n arepx p matrices representing the weights The major source of classification error in single stage
for thesth SNN. If Y = D is the desired output of the wholeneural networks is the nonseparability of the classes. To
network we have reduce or eliminate classification errors it is desirable to find a

transformation which maps the input vectors into another set

of vectors that can be classified more accurately. A variety of

schemes can be used in the PCNN to transform the data. We
shall consider two cases: binary input data and analog input
data.

XA=D.

A is an unknown matrix, and its least square estinigaig is
sought to minimize the squared error, i.e,

Aopt = argmin || XA — D||%.
A A. Binary Input Data

This is a well—known_ pro_blem in linear regression, signal In the binary case, input vectors can be represented by a
processing .and adapnvg filtering. The formula foy,. uses Gray code [2]. The Gray-code representation can be derived
the pseudoinverse ok, i.e., from the binary code representation in the following manner.
Aope = (XTX)1XTD If by,---,b, is @ code word in am-digit binary code, the
corresponding Gray-code worg, -- -, g, iS obtained by the
where X7 is the transpose o, and (X7 X))~ X7 is the rule
pseudoinverse oK if X7 X is nonsingular. In the case that
X is not of full column rank, this solution becomes ill-
conditioned. In that case one can use dummy augmentation
to make X a full column rank matrix in a higher dimensionalwhere & is the exclusive OR (XOR) operator. One simple
space and then solve the problem. There are at least two othessibility for a data transformation for the PCNN is to use

g =b
gk =bp ®br—1 k=2
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this scheme successively for the stages that follow [21]. This is
done by looking at the Gray-coded input of the previous SNN x(m)
asby,---,b, and then taking the Gray code of the Gray code.

B. Analog Input Data

A general approach proposed for the transformation of
analog input data is based on the wavelet packet transform
(WPT). The wavelet packet transform [28] provides a trans-
formation of a signal from the time domain to the frequency
domain and is a generalized version of the wavelet transform
[29]. The WPT is computed on severalvelswith different h
time/frequency resolutions.

The full WPT for a time domain signal can be calculated by
successive application of low-pass and high-pass decimation
operations. Letw(k) and g(k),k = 1,2,---, L, be the finite
low-pass and high-pass impulse responses for the WPT [28].
Let z(m),m = 1,2,---, N, denote the original time domain
signal of finite lengthlV, where N = 271, DefineG and H
as the operators which perform the convolutionz¢fr) with 2 l 1 2 l 1
h(k) andg(k), respectively, followed by a decimation by two
(see Fig. 2). Then we have

™=

{Hz}(m)= > z(k)h(2m — k)
k=1
L Hx Gx
{Ga:}(m) = Zx(k)g(Qm - k) Fig. 2. Low-pass decimation and high-pas s decimation of a time domain
k=1 signal.
for m = 1,2,.-., N. Due to decimationHz and Gz each
contain half as many samples asThe operatorsf andG | So |
form a pair of quadrature mirror filters (QMF’s) and satisfy LP HP

the following orthogonality conditions:

o
<
iy

HH* =GG*, HG*=GH* and H'H+G'G=1

LV\HP LWP
where [ is the identity operator,H* and G* are adjoint ,

operations ofH and G, respectively. Various design criteria S20 [ % [ S | S23 J
such as regularity, symmetry, etc., on the low-pass filter LP/\HP LP HP LP HP LP HP
coefficientsh(k) can be found in [29]. Once thé-tap low-
pass FIRfilterh(k) is fixed, the L-tap high-pass filter can [ Sso [ S [ Sso [ S5 | Ssu | Sis [ Sas [ Sar |
be found byg(k) = (=1)*h(L — 1 — k). In this work, the
Daubechies four-point (D4) filters [29] were used for the wPT.
The WPT may be calculated using a recursion of the above
mentioned filter decimation operations. The top level, callddequency resolution is observed (see Fig. 3). The sequence,
Level 0, of the full WPT contains the original time domains; ,z, at binb and levell of the WPT can be written as
signal and thus has one bin. Level 1 of the WPT has two bins
where the first bin containgx and the second bin contains
Gz. The Level 1 representation has two degrees of frequency fori=0,1,---,n—1, b=0,1,---,2"71 -1
resolu_ti(_)n, i'?" the low- and the high-fr_equency portions fnd the low-pass and high-pass filter decimations of the
the original signal have been separated into two bins, but ggquencesl ,z are
to decimation, each bin has only half the time resolution that i
exists at Level 0. Level 2 of the WPT contains four bins, Sipimr = HS e
where each bin contains sequences generated by the operations
H2z, GHz, HGr and G2z. Hence, Level 2 has four degreend
of frequency resolutions, but each bin has only half the time
resolution that existed at Level 1. This process can be repeated
n—1times whereV = 27~!, By proceeding down through the The WPT provides a systematic way for transforming the
levels of the WPT, the tradeoff between time resolution andput data for the PCNN. Each level of the full WPT consists

ig. 3. Levels and bins for the full WPT.

108 =H"Si11 02 + G*Si1 20112

Sit1,26412 = GSp .
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of data for the different stage networks. Therefore, the stages TABLE |
will have the same original input data with different time- TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES
frequency resolutions. Thus, the PCNN attempts to find the IN THE EXPERIMENT ON THE COLORADO DATA SeT
consensus for these different representations of the input &ty 4 [ mformation Class Training Size | Test Size
and the optimal \_Nelghtlng_ method W|II gonsequently give the™ Wator 01 302
best representation the highest weighting. ) Golorads Blue Spruce 56 56
An advantage of the WPT is that it is not computationally , ' )
intensive, i.e., the computations ﬁN 10g2 N) This prop- 3 Mountane/Subalpine Meadow 43 44
erty is very important for the PCNN, especially if the number 4 | Aspen 70 70
of StageS(TL) is |arge_ 5 Ponderosa Pine 1 157 157
6 Ponderosa Pine/Douglas Fir 122 122
VI. EXPERIMENTAL RESULTS 7 Engelmann Spruce 147 147
Two experiments were conducted with the PCNN on mult & | Douglas Fir/White Fir 38 38
source remote sensing and geographic data. The results of the? | Pouslas Fir/Ponderosa Pine/Aspen 2 25
experiments are discussed below. ) 10 Douglas Fir/White Fir/Aspen 49 50
Total 1008 1011

A. Experiment 1: Colorado Data Set

The PCNN was used to classify a data set consisting of the _,
following four data sources:

1) Landsat MSS data (four spectral data channels);

2) elevation data (in 10 m contour intervals, one data ss-
channel;

3) slope data (0—90in one-degree increments, one data
channel); S8er

4) aspect data (1-180n one-degree increments, one data 5
channel).

Each channel comprised an image of 135 rows and 13%80
columns, and all channels were spatially coregistered. The arearst
used for classification is a mountainous area in Colorado. It
has ten ground-cover classes which are listed in Table I. One
class is water; the others are forest types. It is very difficult 7+-
to distinguish among the forest types using the Landsat MSS 72;,, ) . . _
data alone since the forest classes show very similar spectral ° ¥ umber of Stages (SNNs) 1
response [1]. Reference data were compiled for the area by , _
comparing a cartographic map 10 a color composite of i & Colorado dta huerage esus o he PN wih cqua and ptime)
Landsat data and also to a line printer output of each Landgaking results and the lower curves test results.
channel. By this method 2019 reference points (11.4% of the

area) were selected comprising two or more homogeneous _
fields in the imagery for each class. Approximately 50% dyere binary, the Gray code of the Gray code was the data

the reference samples were used for training, and the rHg\psformation selected for the PCNN. Each SNN was trained

were used to test the neural networks. Two versions of tﬁg 200 iterations. ) ]
PCNN were applied in classification of the Colorado data, "€ PCNN was tested with randomly ordered stages in 11

i.e., PCNN with equal weights and with optimized weightdlIfférent experiments. Up to 15 SNN's were used in each

(The optimal approach reported here was the pseudoinvePs%NN and the average overall classification ac_curacies were
method but the suboptimal methods gave similar result§gmMputed as a function of the number of SNN's in the PCNN.
The PCNN algorithms were implemented using 0ne_|ayg e average results of the experiments with the PCNN are
conjugate-gradient delta rule neural networks [2], [30] for thehown in Fig. 4 for the two weight selection schemes and the
SNN’s. The conjugate-gradient versions of the feedforwafdandard deviation of the training accuracy for the PCNN is
neural networks are computationally more efficient than cofbown in Fig. 5.

ventional gradient descent neural networks. The original inputThe results using the PCNN were compared to the results
data were Gray-coded since that representation has previo@Nained with three statistical methods in [3]: The minimum
given the best results for this particular data set [2]. Using tficlidean distance (MED) classifier [31], the linear opinion
Gray code with eight bits for each input variable expandgzbol (LOP), and the statistical multisource classifier (SMC)
the dimensionality of input data to 56 dimensions. Thereforhich is a version of the logarithmic opinion pool. Our original
each SNN had 57 inputs (one extra input for computing biagent was also to use the Gaussian maximum likelihood (ML)
for the neurons), and ten outputs. All the neural networkeethod [31]. However, the ML method could not be applied
used the sigmoid activation function. Since the input datince the whole data set cannot be modeled by Gaussian
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4.5 - TABLE 1
OVERALL TRAINING AND TEST ACCURACIES FOR THE
al '\ , CLASSIFICATION METHODS APPLIED TO THE COLORADO DATA SET
35f Method Training Accuracy | Test Accuracy
ol | MED 40.28% 37.98%
_% = Sgﬂm,‘v‘g{g,ﬁ*gtf LOP 76.19% 73.79%
8257 | SMC 81.25% 80.02%
§ 2 1 CGBP (0 hidden neurons) 84.15% 79.70%
@ 6. | CGBP (40 hidden neurons) 91.16% 80.06%
R PCNN (equal weights) 87.06% 80.74%
! N i,,,:l,\ ] PCNN (optimal weights) 91.93% 80.77%
. e e
- - 3
% 5 10 s weighting method became very clear in the experiments. The
Number of Stages (SNNs) optimal approach clearly outperformed the equal weighting

Fig. 5. Colorado data. Standard deviation for the training and test resultsapproach in terms of training accuracy. In fact, for training
the PCNN mehtods. The * curves indicate training standard deviaitons. data, the optimal Weighting approach did show monotonically

increasing overall accuracy as a function of the number of
100 . , . ; , stages (see Fig. 4). This result was expected since the weights
___________ in the PCNN were optimized based on the training data.
e T I On the other hand, the PCNN methods showed very similar
1 test accuracies after 15 stages. On the average, the optimal
approach achieved 80.77% overall accuracy for test data

95

L. OHidden as compared to 80.74% for the equal weighting approach.
%0} T B e | In comparison, the CGBP method achieved the maximum
~ 40 Hidden accuracy of 80.06% for test data (both for 32 and 40 hidden

neurons at 250 iterations but the test accuracy was lower when
[ the CGBP converged), whereas the SMC result was 80.02%
) and the LOP result 73.79% for the same data. Although the
woh b ] test accuracy difference between the PCNN methods, on one
R , hand, and the SMC and the CGBP, on the other, seems small,
) T this difference is statistically significant. Therefore, in the

75 . ‘ ‘ ‘ ‘ experiment both versions of the PCNN outperformed not only

° 200 et Traninratons 20 % the CGBP but also the best statistical consensus theory method
Fig. 6. Colorado data. Average results for the CGBP with a variable numb(eSrMC) in terms of cIassﬁmayoh accuracy of tggt da.'ta' Also, as
of hidden neurons. The upper curves represent training results and the loftéPected, the standard deviation of the classification accuracy
curves test results. of the PCNN went down as the number of stages increased
(Fig. 5).

multivariate density functions. The reason for this is that
several of the class-specific covariance matrices were singular . )
due to low variation in the topographic data sources. B. Experiment 2: Anderson River Data Set
Also, the single-stage conjugate-gradient backpropagationThe data used in the second experiment, the Anderson River
(CGBP) algorithm with two layers [30] was trained on thelata set, are a multisource remote sensing and geographic data
same data with a variable number of hidden neurons. Thet made available by the Canada Centre for Remote Sensing
CGBP neural networks had 57 inputs, zero, 16, 32, and 4OCRS), Ottawa, Ontario
hidden neurons, and ten output neurons (the network with zerd32]. The imagery involves a 2.8 km by 2.8 km forestry
hidden neurons is the network which was used for the stagesite in the Anderson River area of British Columbia, Canada.
the PCNN). Each version of the CGBP was trained six timdde area is characterized by rugged topography, with terrain
with different initializations. The average results achieved witlevations ranging from 330 m to 1100 m above sea level.
the CGBP (for different number of hidden neurons) are showihe forest cover is primarily coniferous, with Douglas fir
in Fig. 6 as a function of the number of training iterations. predominating up to approximately 1050 m elevation, and
The classification results are summarized in Table Il. Thegedar, hemlock, and spruce types predominating at higher
it can be seen that the PCNN methods outperformed tBgvations [32]. Six data sources were used:
single stage CGBP and the statistical methods in terms ofl) airborne multispectral scanner (AMSS) with 11 spectral
overall classification accuracy of test data. Also, the differ-  data channels (ten channels from 380—-1100 nm and one
ence between the equal weight selection and the optimal channel from 8-14.m);

85

Overall Accuracy (%)




BENEDIKTSSONet al: PARALLEL CONSENSUAL NEURAL NETWORKS 61

TABLE I 74 . T T .
TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES
IN THE EXPERIMENT ON THE ANDERSON RIVER DATA 735
Class # | Information Class Training Size | Test Size 73
1 Douglas Fir (31-40m) 971 1250
. 725
2 Douglas Fir (21-30m) a5l 817 &
3 Douglas Fir « Other Species (31-40m) 548 701 g 72H
3
4 Douglas Fir - Lodgepole Pine {21-30m) 512 705 ;5
=715
5 Hemlock - Cedar (31-10m) 317 105 g
>
6 Forest Clearings 1260 1625 o 71
Total 1189 5503
e = = 70.5
70
TABLE IV
AVERAGE PAIRWISE JM-DISTANCES FOR THREE OF THE 895, - p 3 ), s 5
DAtA Sources (MaxiMum JM-DIsSTANCE Is 1.414) Number of Stages (SNNs)
Data Source | Average JM-Distance Fig. 7. Anderson River data. Average results for the PCNN with equal and
AMSS 119877 optimal weights as a function of the number of ANN'’s. The upper curves
) represent training accuracies and the lower curves test accuracies.
SAR Shallow 0.46305
SAR Stee 0.43109 .
P Analog representation was used for the data and, there-

fore, the WPT was applied to obtain input vectors for the
. _ different stages. Zero-filling was used in the WPT to achieve
2) steep mode synthetic aperture radar (SAR) with four dajactors of length 32 (nearest power of two). Here, the PCNN

channels (X-HH, X-HV, L-HH, L-HV); with the WPT was implemented using two-layer conjugate-
3) shallow-mode SAR with four data channels (X-HH, Xgradient backpropagation neural networks (CGBP) [2], [30]
HV, L-HH, L-HV); for the SNN’s. All the neural networks used the sigmoid
4) elevation data (one data channel, where elevation dgtivation function. Each SNN had 33 inputs (one extra input
meters= 61.996 + 7.2266 * pixel value); for computing bias in the neurons), 15 hidden neurons and six
5) slope data (one data channel, where slope in degteesutput neurons. Both versions of the PCNN were used in the
pixel value); experiments, i.e., the equal weighting method and the optimal
6) aspect data (one data channel, where aspect in degigeRjhting method. In the experiments, the optimal weighting
= 2 * pixel value). approach was again the pseudoinverse method. Each SNN was

The AMSS and SAR data were detected during the weélained for 600 iterations.
of July 25-31, 1978. Each channel comprises an image ofThe PCNN was tested with randomly ordered stages in
256 lines and 256 columns. All of the images are spatialfifteen different experiments. Up to six SNN’s were in each
coregistered with pixel resolution of 12.5 m. PCNN (corresponding to the number of levels in the full

There are 19 information classes in the ground referendéPT) and the average overall classification accuracies were
map provided by CCRS. In the experiments, only the sbomputed as a function of the number of SNN'’s in the PCNN.
largest ones were used, as listed in Table lll. Here, trainifidne average classification results for the experiments with the
samples were selected uniformly, giving 10% of the tot&#CNN’s are shown in Fig. 7, and the standard deviations of
sample size. Test samples were then selected randomly fribra training and test accuracies for the PCNN's are shown in
the rest of the labeled data. Fig. 8.

To estimate the separabilities between the informationThe results of the PCNN, were compared to results for
classes for the AMSS and SAR data sources, Jeffries—Matugaar statistical methods used to classify the 22 band data
(JM) distances [31] were computed. The average pairwifg], [31]: the minimum Euclidean distance (MED) classifier,
JM-distance separabilities are shown in Table IV for théne Gaussian maximum likelihood method (ML), the linear
AMSS and SAR data sources. The values in Table IV indicadpinion pool (LOP), and the SMC. For the LOP and SMC
that the Anderson River data is very difficult to classify6 data classes were defined in each data source and the
The AMSS source is apparently the most separable of ttemote sensing data sources were modeled to be Gaussian but
multidimensional data sources. Although it only has an averathee topographic data sources were modeled by the maximum
separability of 1.199, it is much more separable than the SARRnalized likelihood method [33].
data sources which are not very separable at all. Since thes&he single-stage CGBP algorithm with two layers [2], [30]
three multidimensional data sources are not very separablevi@s also trained on the same data with 15, 20, and 25 hidden
this forest area, the topographic data may be expected to hedurons. Each version of the CGBP network was trained six
in classifying the data more accurately than can be achievédes with different initializations. Then the overall average
using the remote sensing data alone. accuracies were computed for each version. The average
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0.8 . . . ' : —— TABLE V
OVERALL TRAINING AND TEST ACCURACIES FOR THECLASSIFICATION
07l METHODS APPLIED TO THE ANDERSON RIVER DATA SeET
N — Optimal Wei?hts ' Method Traini A Test A
osl X - - Equal Weights | Method aining Accuracy est Accuracy
N MED 50.51% 50.83%
§05 R . ML 68.23% 64.30%
K S N - .~
& el -l “ LOP 54.00% 53.89%
Soaf "o T~ S 1
g Tl X SMC 70.47% 68.20%
Hoaf N e . ) CGBP (15 hidden neurons) 71.44% 69.28%
os N i * | CGBP (20 hidden neurons) 73.56% 70.94%
» S . PCNN (equal weights) 72.50% 70.29%
0.1 RN PCNN (optimal weights) 73.84% 71.76%
T e T
Number of Stages (SNNs) method were 73.56% for training data and 70.94% for test

data, and the maximum overall accuracies with the statistical
Fig. 8. Anderson River data. Standard deviation for the training and test _’

results for the PCNN methods. The * curves indicate training standati€thods were achieved by the SMC which gave 70.47%

deviations. overall accuracy for training data and 68.20% overall accuracy
for test data. The differences in test classification accuracies

74 . , , : , R for the optimal PCNN and the CGBP can be shown to
P be statistically significant. Therefore, in the experiments the

el ] optimal weighting PCNN outperformed all other methods in
terms of classification accuracies of test data. Also, as Fig. 8
displays, the standard deviations of the clasification for the

~
=3

68} - g5 Hidgen ] PCNN's went down as the number of stages used increased,
_— iaden
~-- 15 Hidden as expected.

[=2]
[
T

VIl. CONCLUSIONS

@D
B
T

Overall Accuracy (%)

In this paper, a new type of neural network-architecture,
the PCNN, was proposed. The PCNN architecture is based on
1 statistical consensus theory and its significance lies in using
a collection of SNN’s trained with different representations
of input data in order to form a consensual decision. The

. ‘ ‘ . . ‘ . . PCNN takes advantage of the fact that a neural-network group
P00 A e i eratione 0 1600 18% decision is more accurate in the mean square sense than
Fig. 9. Anderson River data. Average experimental results for the CG the decision of a single neural n-etwork' Also, classification
Wigt]H a variable number of hidden neurgns. Tl;e upper curves represent trai&ﬁ%ﬁormance‘ of neural networks is Very. dependent on rePre'
results and the lower curves test results. sentation of input data. The PCNN provides a way of making
a consensual decision for networks trained on different input
representations and give the most weights in classification to
tAe SNN’s trained on the “best” representation of input data.

o ) , In the PCNN, the input data are transformed several times
The overall classification accuracies for the different metl&-nd the different transformed data are used as if they were

ods are summarized in Table V. There it can be seen that Eﬁﬁependent inputs. The independent inputs are first classified
PCNN methods outperformed both the single stage CGBPL%ing SNN's. The output responses from the SNN's are then
and all the statistical methods in terms of overall Clas%eighted and combined to make a consensual decision.
fication accuracy of test data. Also, the optimal approachTyo methods were used to weight the outputs from the stage
outperformed the equal weighting approach in terms of bofigtworks in the PCNN architecture. The simpler approach
training and test accuracy. The optimal method achieved, g8ed equal weights for all the stages; the other used optimized
the average, 73.84% overall accuracy for training data. {feights, an approach which can also be used for other similar
contrast, the corresponding accuracy for the equal weightingural-network architectures.

method was 72.50%. This difference between the methodsan approach based on wavelet packets was also proposed
was expected, since the weights in the optimal PCNN wefgr the selections of data transformations for PCNN’s with
optimized based on the training data. On the average, tealog inputs. Wavelet packets provide a systematic way of
optimal approach achieved 71.76% overall accuracy for tesimputing input data for the PCNN. Wavelet packets give
data as compared to 70.29% for the equal weighting approadifferent time-frequency resolutions of the original input data
In comparison, the maximum overall accuracies for the CGBBr the different stages. A more heuristic method based on

(223
N
T
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results for the CGBP networks are shown in Fig. 9 as
function of the number of training iterations.
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Gray coding was also suggested for PCNN’s with binary3]
inputs.

The results obtained showed that the PCNN performeg
very well in the experiments in terms of overall classification
accuracy. In fact, the PCNN with the optimal weights out- 5]
performed both conjugate-gradient backpropagation and tr‘Ee
best statistical methods in classification of multisource remotk]
sensing and geographic data in terms of overall classification
accuracy of test data. On the other hand, the PCNN uses muy#
tiple neural networks and improves the overall classification
accuracy by using both more parameters and longer traini
time than single neural networks. However, when the datg]
sets are difficult to model and accuracy is the most importa%B
factor, the PCNN with optimal weights should be considere
a desirable alternative to other methods.

Some of the future research issues concerning the PC
involve the weight selection. In this paper the weights for the
stage neural networks were only based on the training sB&l
Using the same data for training the classifiers and estimatign
of the weights can lead to overtraining by the optimal PCNN.
This type of overtraining was seen in experiment 1 (see Fig. 4)
where the optimal PCNN clearly outperformed the equaIIM4]
weighted PCNN in terms of training accuracies but the test
accuracies for both methods were very similar. This behavior
leads to the conclusion that it may be appropriate to use[;3;
different training set to train the classifiers than the one used to
compute the weights for the stage neural networks. When
weights are computed it is desirable to know which network [g7]
the best one in general and not the best on the training set. A
possible strategy is to take the training set, divide it into twe, o
and use one half to train the classifiers and the other half to
compute the weights for the stageH.the training set is not [19]
large enough, one can use the leave-one out method or k-felg}
cross-validation [9].

[21]
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