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Abstract—A new type of a neural-network architecture, the
parallel consensual neural network (PCNN), is introduced and
applied in classification/data fusion of multisource remote sensing
and geographic data. The PCNN architecture is based on statis-
tical consensus theory and involves using stage neural networks
with transformed input data. The input data are transformed
several times and the different transformed data are used as if
they were independent inputs. The independent inputs are first
classified using the stage neural networks. The output responses
from the stage networks are then weighted and combined to make
a consensual decision. In this paper, optimization methods are
used in order to weight the outputs from the stage networks.
Two approaches are proposed to compute the data transforms
for the PCNN, one for binary data and another for analog data.
The analog approach uses wavelet packets. The experimental
results obtained with the proposed approach show that the PCNN
outperforms both a conjugate-gradient backpropagation neural
network and conventional statistical methods in terms of overall
classification accuracy of test data.

Index Terms—Consensus theory, wavelet packets, accuracy,
classification, probability density estimation, statistical pattern
recognition, time-frequency analysis, data fusion.

I. INTRODUCTION

CLASSIFICATION of data from multiple sources (mul-
tisource data) is an important research area which is

related to data fusion. In multisource classification different
types of information from several data sources are used for
classification in order to improve the classification accuracy
as compared to the accuracy achieved by single-source classi-
fication. Conventional statistical pattern recognition methods
are not appropriate in classification of multisource data since
such data cannot, in most cases, be modeled by a convenient
multivariate statistical model. In [1] and [2], it was shown that
neural networks performed well in classification of multisource
remote sensing and geographic data. The neural-network mod-
els were superior to the statistical methods in terms of overall
classification accuracy of training data. However, statistical
approaches based on consensus from several data sources out-
performed the neural networks in terms of overall classification
accuracy of test data [3]. Our conclusion from these results is
that it is desirable to combine certain aspects of statistical
consensus theory approaches and neural networks. However,
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it is very difficult to implement prior statistical information in
neural networks.

In this paper, the parallel consensual neural network
(PCNN) is proposed as a network which does not use prior
statistical information but is somewhat analogous to the
statistical consensus theory approaches. In the PCNN, the
input data are transformed several times and the different
transformed data are fed into different neural networks (called
stage neural networks or SNN’s). The final output is based
on the consensus among neural networks trained on the same
original data with different representations.

In the PCNN, the input data can be both binary and analog.
Both these data representations are discussed in the paper. For
the analog representation, a time-frequency transform based on
wavelet packets is introduced. In the PCNN, the outputs from
the individual stage neural networks need to be weighted when
consensus is computed. The question of how they should be
weighted and optimized is addressed in the paper.

The paper begins with a short overview of consensus
theory which is followed by a discussion on the PCNN.
Then, optimization of the weights for the individual stages
is discussed, followed by an overview of how to select input
data transformations. This overview includes a brief review of
wavelet packets. Finally, experimental results are given.

II. CONSENSUSTHEORY

Consensus theory [3]–[8] is a well-established research
field involving procedures with the goal of combining single
probability distributions to summarize estimates from multiple
experts (data sources) with the assumption that the experts
make decisions based on Bayesian decision theory. Consensus
theory is closely related to the method of stacked generaliza-
tion [9] where outputs of experts are combined in a weighted
sum with weights which are based on the individual perfor-
mance of the experts. In most consensus theoretic methods
each data source is at first considered separately. For a given
source an appropriate training procedure can be used to model
the data by a number of source-specific densities that will
characterize that source [1]. The source-specific classes or
clusters are therefore referred to as data classes, since they
are defined from relationships in a particular data space. In
general there may not be a simple one-to-one relation between
the user-desired information classes and the set of data classes
available since the information classes are not necessarily a
property of the data. In consensus theory, the information from
the data sources is aggregated by a global membership function
and the data are classified according to the usual maximum
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selection rule into the information classes. The combination
formula obtained is called a consensus rule.

Consensus theory can be justified by the fact that a group
decision is better in terms of mean square error than a decision
from a single expert (data source). To show this, let us define
an indicator function

if occurs
if does not occur

where is an information class. Now it is needed to find an
estimate, of the “best” probability that minimizes the mean
square error (summed over all’s)

where is a compound vector consisting of
observations from all the data sources,is the number of
data sources, is an observation from a
single data source can be a vector if the corresponding
data source makes a multidimensional observation), and
is the probability of Differentiating with respect to

and setting the result equal to zero gives

The solution to the above equation is which
implies that the group probability is optimal for
classification in the mean square sense.

Several consensus rules have been proposed. Probably the
most commonly used consensus rule is the linear opinion
pool which has the following (group probability) form for the
information class if data sources are used

(1)

where is a source-specific posterior probability and
’s are source-specific weights which control

the relative influence of the data sources. The weights are
associated with the sources in the global membership function
to express quantitatively the goodness of each source [5].

The linear opinion pool has a number of appealing proper-
ties. For example, it is simple, yields a probability distribution,
and the weight reflects in some way the relative expertise
of the th expert. Also, if the data sources have absolutely
continuous probability distributions, the linear opinion pool
gives an absolutely continuous distribution. In using the linear
opinion pool, it is assumed that all of the experts observe the
input vector Therefore, (1) is simply a weighted average of
the probability distributions from all the experts and the result
is a combined probability distribution.

The linear opinion pool, though simple, has several weak-
nesses [6]; e.g., it shows dictatorship when Bayes’ theorem
is applied, i.e., only one data source will dominate in making
a decision. It is also not externally Bayesian (does not obey
Bayes’ rule). The reason it is not externally Bayesian is that the
linear opinion pool is not derived from the joint probabilities
using Bayes’ rule. Another consensus rule, the logarithmic

opinion pool, has been proposed to overcome some of the
problems with the linear opinion pool. The logarithmic opinion
pool can be described by

(2)

where are weights which should reflect the good-
ness of the data sources. Often it is assumed that

In [7], the logarithmic opinion pool is given a natural-
conjugate interpretation and it is shown that the logarithmic
opinion pool differs from the linear opinion pool in that it is
unimodal and less dispersed.

The logarithmic opinion pool treats the data sources inde-
pendently. Zeros in the logarithmic opinion pool are vetos;
i.e., if any expert assigns then This
dramatic behavior is a drawback if the density functions are not
carefully estimated. The logarithmic opinion pool is externally
Bayesian, but it is computationally more complicated than the
linear opinion pool.

It is desirable to combine consensus theoretic approaches
and neural networks since consensus theory has the goal of
combining several opinions, and a collection of different neural
networks should be more accurate than a single network in
classification, at least in the mean square sense. Moreover,
feedforward neural networks minimizing mean-square error
at the output have been shown to approximate posterior
probabilities, when one output neuron is assigned to
each class, [10]. Using this property, it becomes possible
to implement consensus theory in the networks.

III. N EURAL NETWORKS WITH PARALLEL STAGES

Implementing consensus theory in neural networks involves
using a collection of neural networks. This may be achieved by
using neural networks with several parallel stages as depicted
in Fig. 1. Each stage can be a particular neural network,
here referred to as an SNN. Unlike a multilayer network,
each SNN is essentially independent of the other SNN’s in
the sense that each SNN does not receive its input directly
from the previous SNN. In the PCNN, the input data to the
SNN’s are obtained by applying a data transform (DT) to
the original input vectors. Therefore, the stages are trained
on different representations of the same input data. Each
SNN has the same number of output neurons (equal to the
number of data classes) and is trained for a fixed number
of iterations or until the training procedure converges. When
the training of all the stages has finished, the consensus for
the SNN’s is computed. The consensus is obtained by taking
class-specific weighted averages of the output responses of the
SNN’s. Thus, the PCNN attempts to improve its classification
accuracy by weighted averaging of the SNN responses from
several different input representations. By doing this, the
PCNN attempts to give highest weighting to the SNN trained
on the “best” representation of input data.

Using the proposed PCNN architecture, it can be guaranteed
that the PCNN should do no worse than single stage networks,
at least in terms of training accuracy in the mean square
sense. This is based on the argument in Section II that a group
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Fig. 1. The proposed PCNN with weighted individual stages.

decision is better in terms of mean square error than a decision
based on the opinion of a single expert. To be able to guarantee
such performance in classification of test data, cross-validation
methods [9] can be used. Also, it has been shown [11] that if
each of the networks in a collection of neural networks arrive
at the correct classification with probability and the
networks make independent errors, the probability of a sum of
network outputs being in error is monotonically decreasing in

if This implies that using a collection of networks
reduces the expected classification error if the networks make
independent errors. However, the independence assumption is
hard to justify in most cases.

It has also been shown [12] that the standard deviation of the
classification of a collection of neural networks (such as the
PCNN) decreases as the number of stage networks increase.

A. Related Neural-Network Models

Several methods have been proposed to combine multiple
neural networks. In [13] and [14] it was shown that averaging
separate networks improves generalization performance for the
mean squared error. Tumer and Gosh [15] have also shown
that substantial improvements can be achieved in difficult
pattern recognition problems by combining or integrating the
outputs of multiple classifiers. However, the earliest attempt at
combining multiple networks can be credited to Nilsson [16]
who proposed his committee machines based on a collection
of single-layer networks as an attempt to design a multilayer
neural network which could classify complicated data. Hansen
and Salamon [11] discuss the application of an ensemble of
multilayer neural networks. Their ensemble consists of several
SNN’s where each SNN receives the same input data, similar
to Nilsson’s committee machines. Each SNN is based on the
backpropagation network, and the weights in different SNN’s
are initialized differently in order to avoid the same local
minima for all the networks. The ensemble network makes the
final decision (classification) based on the majority vote from
all the networks. Alpaydın [17] proposed a similar architecture
to the one in [11], offering the possibility of using different
types of stage networks.

Battiti and Colla [18] have looked at several different ways
of combining outputs of a set of neural-network classifiers, and
Rogova [19] has combined the outputs of neural networks by
Dempster–Shafer methods. Cho and Kim [20] have combined
the outputs of multiple networks based on fuzzy logic.

The parallel self-organizing hierarchical neural network
(PSHNN) proposed by Ersoy and Hong [21] is a neural
network which is in some respects related to the PCNN
proposed here. The PSHNN involves a self-organizing number
of stages, similar to a multilayer neural network. At the output
of each SNN, there is an error detection scheme. If an input
vector is rejected, it goes through a nonlinear transformation
before being input to the next SNN. This property is distinct
from conventional neural networks. The PSHNN in [21] is
based on using binary data. Deng and Ersoy [22], [23] have
extended the PSHNN to apply it with analog inputs and
outputs. The PSHNN is somewhat related to the method of
“adaptive mixtures of local experts” [24] which is a multiple
neural-network model where each network is trained on a
subset of the training data. Valafar and Ersoy [25] have
proposed a parallel self-organizing consensual neural network
(PSCNN) which is related to the PSHNN. The PSCNN uses
nonlinear transformations of the input data and creates accept
and reject boundaries for each SNN in a similar fashion to
the PSHNN. Pre- and postvoting are used to make decisions
with the SNN’s. The postvoting is in some ways similar to
error boundaries in the PSHNN but is not related to consensus
theory.

All the architectures discussed above are not based on con-
sensus theory and do not offer any optimal way of computing
the weights for the combination of stage networks. Of interest
here is to base the total network on consensus theory, select
appropriate data transforms for the inputs to different stage
networks, and optimize the influence of the individual stage
networks to maximize the overall accuracy in classification.

IV. OPTIMAL WEIGHTS

The weight selection schemes in the PCNN should reflect
the goodness of the separate input data, i.e., relatively high
weights should be given to input data that contribute to high
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accuracy. There are at least two potential weight selection
schemes. The first scheme is to select the weights such that
they weight the individual stages but not the classes within the
stages. In this scheme one possibility is to use equal weights
for all the outputs of the SNN’s, and
effectively take the average of the outputs from the SNN’s,
i.e.,

where is the combined output response. Another possibility
in this scheme is to use reliability measures which rank the
SNN’s according to their goodness. These reliability measures
might be, e.g., stage-specific classification accuracy of training
data, overall separability or equivocation [1].

The second scheme is to choose the weights such that they
not only weight the individual stages but also the classes within
the stages. This scheme is depicted in Fig. 1. In this case, the
combined output response, can be written in matrix form as

where is a matrix containing the output of all the SNN’s
and contains all the weights. Assuming that has full
column rank, the above equation can be solved forusing
the pseudoinverse of or a simple delta rule. In order to find
the optimal weights in Fig. 1, we define

...

where are matrices ( is the number of
training samples, is the number of outputs for each SNN).
Each row of represents an output vector for theth SNN
and are matrices representing the weights
for the th SNN. If is the desired output of the whole
network we have

is an unknown matrix, and its least square estimate is
sought to minimize the squared error, i.e,

This is a well-known problem in linear regression, signal
processing and adaptive filtering. The formula for uses
the pseudoinverse of i.e.,

where is the transpose of and is the
pseudoinverse of if is nonsingular. In the case that

is not of full column rank, this solution becomes ill-
conditioned. In that case one can use dummy augmentation
to make a full column rank matrix in a higher dimensional
space and then solve the problem. There are at least two other

suboptimal methods for solving this optimization problem. The
rest of this section will be devoted to these methods.

The first method is to use sequential formulas to compute
the optimal [26]. Let the th row vector of the matrix
be and the th row of the matrix be ; then can be
calculated iteratively using the formula

where is the least squares estimate of . The initial
conditions to the sequential formula are and

, where is a positive large number.
The second method for solving the least squares error

problem is to choose unitary which minimizes
[27]. We compute

where and returns the trace of its
argument matrix. If

is a singular value decomposition (SVD) of then

where is a unitary matrix and is the th
singular value of its argument matrix. This sum is maximized
when all i.e.,when

V. DATA TRANSFORMS

The major source of classification error in single stage
neural networks is the nonseparability of the classes. To
reduce or eliminate classification errors it is desirable to find a
transformation which maps the input vectors into another set
of vectors that can be classified more accurately. A variety of
schemes can be used in the PCNN to transform the data. We
shall consider two cases: binary input data and analog input
data.

A. Binary Input Data

In the binary case, input vectors can be represented by a
Gray code [2]. The Gray-code representation can be derived
from the binary code representation in the following manner.
If is a code word in an -digit binary code, the
corresponding Gray-code word is obtained by the
rule

where is the exclusive OR (XOR) operator. One simple
possibility for a data transformation for the PCNN is to use
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this scheme successively for the stages that follow [21]. This is
done by looking at the Gray-coded input of the previous SNN
as and then taking the Gray code of the Gray code.

B. Analog Input Data

A general approach proposed for the transformation of
analog input data is based on the wavelet packet transform
(WPT). The wavelet packet transform [28] provides a trans-
formation of a signal from the time domain to the frequency
domain and is a generalized version of the wavelet transform
[29]. The WPT is computed on severallevelswith different
time/frequency resolutions.

The full WPT for a time domain signal can be calculated by
successive application of low-pass and high-pass decimation
operations. Let and be the finite
low-pass and high-pass impulse responses for the WPT [28].
Let denote the original time domain
signal of finite length where Define and
as the operators which perform the convolution of with

and respectively, followed by a decimation by two
(see Fig. 2). Then we have

for Due to decimation, and each
contain half as many samples asThe operators and
form a pair of quadrature mirror filters (QMF’s) and satisfy
the following orthogonality conditions:

and

where is the identity operator, and are adjoint
operations of and respectively. Various design criteria
such as regularity, symmetry, etc., on the low-pass filter
coefficients can be found in [29]. Once the-tap low-
pass FIR-filter is fixed, the -tap high-pass filter can
be found by In this work, the
Daubechies four-point (D4) filters [29] were used for the WPT.

The WPT may be calculated using a recursion of the above
mentioned filter decimation operations. The top level, called
Level 0, of the full WPT contains the original time domain
signal and thus has one bin. Level 1 of the WPT has two bins
where the first bin contains and the second bin contains

The Level 1 representation has two degrees of frequency
resolution, i.e., the low- and the high-frequency portions of
the original signal have been separated into two bins, but due
to decimation, each bin has only half the time resolution that
exists at Level 0. Level 2 of the WPT contains four bins,
where each bin contains sequences generated by the operations

and Hence, Level 2 has four degrees
of frequency resolutions, but each bin has only half the time
resolution that existed at Level 1. This process can be repeated

times where By proceeding down through the
levels of the WPT, the tradeoff between time resolution and

Fig. 2. Low-pass decimation and high-pas s decimation of a time domain
signal.

Fig. 3. Levels and bins for the full WPT.

frequency resolution is observed (see Fig. 3). The sequence,
at bin and level of the WPT can be written as

for

and the low-pass and high-pass filter decimations of the
sequence are

and

The WPT provides a systematic way for transforming the
input data for the PCNN. Each level of the full WPT consists
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of data for the different stage networks. Therefore, the stages
will have the same original input data with different time-
frequency resolutions. Thus, the PCNN attempts to find the
consensus for these different representations of the input data,
and the optimal weighting method will consequently give the
best representation the highest weighting.

An advantage of the WPT is that it is not computationally
intensive, i.e., the computations are This prop-
erty is very important for the PCNN, especially if the number
of stages is large.

VI. EXPERIMENTAL RESULTS

Two experiments were conducted with the PCNN on multi-
source remote sensing and geographic data. The results of the
experiments are discussed below.

A. Experiment 1: Colorado Data Set

The PCNN was used to classify a data set consisting of the
following four data sources:

1) Landsat MSS data (four spectral data channels);
2) elevation data (in 10 m contour intervals, one data

channel;
3) slope data (0–90in one-degree increments, one data

channel);
4) aspect data (1–180in one-degree increments, one data

channel).

Each channel comprised an image of 135 rows and 131
columns, and all channels were spatially coregistered. The area
used for classification is a mountainous area in Colorado. It
has ten ground-cover classes which are listed in Table I. One
class is water; the others are forest types. It is very difficult
to distinguish among the forest types using the Landsat MSS
data alone since the forest classes show very similar spectral
response [1]. Reference data were compiled for the area by
comparing a cartographic map to a color composite of the
Landsat data and also to a line printer output of each Landsat
channel. By this method 2019 reference points (11.4% of the
area) were selected comprising two or more homogeneous
fields in the imagery for each class. Approximately 50% of
the reference samples were used for training, and the rest
were used to test the neural networks. Two versions of the
PCNN were applied in classification of the Colorado data,
i.e., PCNN with equal weights and with optimized weights.
(The optimal approach reported here was the pseudoinverse
method but the suboptimal methods gave similar results.)
The PCNN algorithms were implemented using one-layer
conjugate-gradient delta rule neural networks [2], [30] for the
SNN’s. The conjugate-gradient versions of the feedforward
neural networks are computationally more efficient than con-
ventional gradient descent neural networks. The original input
data were Gray-coded since that representation has previously
given the best results for this particular data set [2]. Using the
Gray code with eight bits for each input variable expanded
the dimensionality of input data to 56 dimensions. Therefore,
each SNN had 57 inputs (one extra input for computing bias
for the neurons), and ten outputs. All the neural networks
used the sigmoid activation function. Since the input data

TABLE I
TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES

IN THE EXPERIMENT ON THE COLORADO DATA SET

Fig. 4. Colorado data. Average results for the PCNN with equal and optimal
weights as a function of the number of SNN’s. The upper curves represent
training results and the lower curves test results.

were binary, the Gray code of the Gray code was the data
transformation selected for the PCNN. Each SNN was trained
for 200 iterations.

The PCNN was tested with randomly ordered stages in 11
different experiments. Up to 15 SNN’s were used in each
PCNN and the average overall classification accuracies were
computed as a function of the number of SNN’s in the PCNN.
The average results of the experiments with the PCNN are
shown in Fig. 4 for the two weight selection schemes and the
standard deviation of the training accuracy for the PCNN is
shown in Fig. 5.

The results using the PCNN were compared to the results
obtained with three statistical methods in [3]: The minimum
Euclidean distance (MED) classifier [31], the linear opinion
pool (LOP), and the statistical multisource classifier (SMC)
which is a version of the logarithmic opinion pool. Our original
intent was also to use the Gaussian maximum likelihood (ML)
method [31]. However, the ML method could not be applied
since the whole data set cannot be modeled by Gaussian
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Fig. 5. Colorado data. Standard deviation for the training and test results of
the PCNN mehtods. The * curves indicate training standard deviaitons.

Fig. 6. Colorado data. Average results for the CGBP with a variable number
of hidden neurons. The upper curves represent training results and the lower
curves test results.

multivariate density functions. The reason for this is that
several of the class-specific covariance matrices were singular
due to low variation in the topographic data sources.

Also, the single-stage conjugate-gradient backpropagation
(CGBP) algorithm with two layers [30] was trained on the
same data with a variable number of hidden neurons. The
CGBP neural networks had 57 inputs, zero, 16, 32, and 40
hidden neurons, and ten output neurons (the network with zero
hidden neurons is the network which was used for the stages in
the PCNN). Each version of the CGBP was trained six times
with different initializations. The average results achieved with
the CGBP (for different number of hidden neurons) are shown
in Fig. 6 as a function of the number of training iterations.

The classification results are summarized in Table II. There
it can be seen that the PCNN methods outperformed the
single stage CGBP and the statistical methods in terms of
overall classification accuracy of test data. Also, the differ-
ence between the equal weight selection and the optimal

TABLE II
OVERALL TRAINING AND TEST ACCURACIES FOR THE

CLASSIFICATION METHODS APPLIED TO THE COLORADO DATA SET

weighting method became very clear in the experiments. The
optimal approach clearly outperformed the equal weighting
approach in terms of training accuracy. In fact, for training
data, the optimal weighting approach did show monotonically
increasing overall accuracy as a function of the number of
stages (see Fig. 4). This result was expected since the weights
in the PCNN were optimized based on the training data.
On the other hand, the PCNN methods showed very similar
test accuracies after 15 stages. On the average, the optimal
approach achieved 80.77% overall accuracy for test data
as compared to 80.74% for the equal weighting approach.
In comparison, the CGBP method achieved the maximum
accuracy of 80.06% for test data (both for 32 and 40 hidden
neurons at 250 iterations but the test accuracy was lower when
the CGBP converged), whereas the SMC result was 80.02%
and the LOP result 73.79% for the same data. Although the
test accuracy difference between the PCNN methods, on one
hand, and the SMC and the CGBP, on the other, seems small,
this difference is statistically significant. Therefore, in the
experiment both versions of the PCNN outperformed not only
the CGBP but also the best statistical consensus theory method
(SMC) in terms of classification accuracy of test data. Also, as
expected, the standard deviation of the classification accuracy
of the PCNN went down as the number of stages increased
(Fig. 5).

B. Experiment 2: Anderson River Data Set

The data used in the second experiment, the Anderson River
data set, are a multisource remote sensing and geographic data
set made available by the Canada Centre for Remote Sensing
(CCRS), Ottawa, Ontario

[32]. The imagery involves a 2.8 km by 2.8 km forestry
site in the Anderson River area of British Columbia, Canada.
The area is characterized by rugged topography, with terrain
elevations ranging from 330 m to 1100 m above sea level.
The forest cover is primarily coniferous, with Douglas fir
predominating up to approximately 1050 m elevation, and
cedar, hemlock, and spruce types predominating at higher
elevations [32]. Six data sources were used:

1) airborne multispectral scanner (AMSS) with 11 spectral
data channels (ten channels from 380–1100 nm and one
channel from 8–14 m);
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TABLE III
TRAINING AND TEST SAMPLES FOR INFORMATION CLASSES

IN THE EXPERIMENT ON THE ANDERSON RIVER DATA

TABLE IV
AVERAGE PAIRWISE JM-DISTANCES FORTHREE OF THE

DATA SOURCES (MAXIMUM JM-DISTANCE IS 1.414)

2) steep mode synthetic aperture radar (SAR) with four data
channels (X-HH, X-HV, L-HH, L-HV);

3) shallow-mode SAR with four data channels (X-HH, X-
HV, L-HH, L-HV);

4) elevation data (one data channel, where elevation in
meters * pixel value);

5) slope data (one data channel, where slope in degrees
pixel value);

6) aspect data (one data channel, where aspect in degrees
2 * pixel value).

The AMSS and SAR data were detected during the week
of July 25–31, 1978. Each channel comprises an image of
256 lines and 256 columns. All of the images are spatially
coregistered with pixel resolution of 12.5 m.

There are 19 information classes in the ground reference
map provided by CCRS. In the experiments, only the six
largest ones were used, as listed in Table III. Here, training
samples were selected uniformly, giving 10% of the total
sample size. Test samples were then selected randomly from
the rest of the labeled data.

To estimate the separabilities between the information
classes for the AMSS and SAR data sources, Jeffries–Matusita
(JM) distances [31] were computed. The average pairwise
JM-distance separabilities are shown in Table IV for the
AMSS and SAR data sources. The values in Table IV indicate
that the Anderson River data is very difficult to classify.
The AMSS source is apparently the most separable of the
multidimensional data sources. Although it only has an average
separability of 1.199, it is much more separable than the SAR
data sources which are not very separable at all. Since these
three multidimensional data sources are not very separable for
this forest area, the topographic data may be expected to help
in classifying the data more accurately than can be achieved
using the remote sensing data alone.

Fig. 7. Anderson River data. Average results for the PCNN with equal and
optimal weights as a function of the number of ANN’s. The upper curves
represent training accuracies and the lower curves test accuracies.

Analog representation was used for the data and, there-
fore, the WPT was applied to obtain input vectors for the
different stages. Zero-filling was used in the WPT to achieve
vectors of length 32 (nearest power of two). Here, the PCNN
with the WPT was implemented using two-layer conjugate-
gradient backpropagation neural networks (CGBP) [2], [30]
for the SNN’s. All the neural networks used the sigmoid
activation function. Each SNN had 33 inputs (one extra input
for computing bias in the neurons), 15 hidden neurons and six
output neurons. Both versions of the PCNN were used in the
experiments, i.e., the equal weighting method and the optimal
weighting method. In the experiments, the optimal weighting
approach was again the pseudoinverse method. Each SNN was
trained for 600 iterations.

The PCNN was tested with randomly ordered stages in
fifteen different experiments. Up to six SNN’s were in each
PCNN (corresponding to the number of levels in the full
WPT) and the average overall classification accuracies were
computed as a function of the number of SNN’s in the PCNN.
The average classification results for the experiments with the
PCNN’s are shown in Fig. 7, and the standard deviations of
the training and test accuracies for the PCNN’s are shown in
Fig. 8.

The results of the PCNN, were compared to results for
four statistical methods used to classify the 22 band data
[3], [31]: the minimum Euclidean distance (MED) classifier,
the Gaussian maximum likelihood method (ML), the linear
opinion pool (LOP), and the SMC. For the LOP and SMC
6 data classes were defined in each data source and the
remote sensing data sources were modeled to be Gaussian but
the topographic data sources were modeled by the maximum
penalized likelihood method [33].

The single-stage CGBP algorithm with two layers [2], [30]
was also trained on the same data with 15, 20, and 25 hidden
neurons. Each version of the CGBP network was trained six
times with different initializations. Then the overall average
accuracies were computed for each version. The average
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Fig. 8. Anderson River data. Standard deviation for the training and test
results for the PCNN methods. The * curves indicate training standard
deviations.

Fig. 9. Anderson River data. Average experimental results for the CGBP
with a variable number of hidden neurons. The upper curves represent training
results and the lower curves test results.

results for the CGBP networks are shown in Fig. 9 as a
function of the number of training iterations.

The overall classification accuracies for the different meth-
ods are summarized in Table V. There it can be seen that the
PCNN methods outperformed both the single stage CGBP’s,
and all the statistical methods in terms of overall classi-
fication accuracy of test data. Also, the optimal approach
outperformed the equal weighting approach in terms of both
training and test accuracy. The optimal method achieved, on
the average, 73.84% overall accuracy for training data. In
contrast, the corresponding accuracy for the equal weighting
method was 72.50%. This difference between the methods
was expected, since the weights in the optimal PCNN were
optimized based on the training data. On the average, the
optimal approach achieved 71.76% overall accuracy for test
data as compared to 70.29% for the equal weighting approach.
In comparison, the maximum overall accuracies for the CGBP

TABLE V
OVERALL TRAINING AND TEST ACCURACIES FOR THECLASSIFICATION

METHODS APPLIED TO THE ANDERSON RIVER DATA SET

method were 73.56% for training data and 70.94% for test
data, and the maximum overall accuracies with the statistical
methods were achieved by the SMC which gave 70.47%
overall accuracy for training data and 68.20% overall accuracy
for test data. The differences in test classification accuracies
for the optimal PCNN and the CGBP can be shown to
be statistically significant. Therefore, in the experiments the
optimal weighting PCNN outperformed all other methods in
terms of classification accuracies of test data. Also, as Fig. 8
displays, the standard deviations of the clasification for the
PCNN’s went down as the number of stages used increased,
as expected.

VII. CONCLUSIONS

In this paper, a new type of neural network-architecture,
the PCNN, was proposed. The PCNN architecture is based on
statistical consensus theory and its significance lies in using
a collection of SNN’s trained with different representations
of input data in order to form a consensual decision. The
PCNN takes advantage of the fact that a neural-network group
decision is more accurate in the mean square sense than
the decision of a single neural network. Also, classification
performance of neural networks is very dependent on repre-
sentation of input data. The PCNN provides a way of making
a consensual decision for networks trained on different input
representations and give the most weights in classification to
the SNN’s trained on the “best” representation of input data.

In the PCNN, the input data are transformed several times
and the different transformed data are used as if they were
independent inputs. The independent inputs are first classified
using SNN’s. The output responses from the SNN’s are then
weighted and combined to make a consensual decision.

Two methods were used to weight the outputs from the stage
networks in the PCNN architecture. The simpler approach
used equal weights for all the stages; the other used optimized
weights, an approach which can also be used for other similar
neural-network architectures.

An approach based on wavelet packets was also proposed
for the selections of data transformations for PCNN’s with
analog inputs. Wavelet packets provide a systematic way of
computing input data for the PCNN. Wavelet packets give
different time-frequency resolutions of the original input data
for the different stages. A more heuristic method based on
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Gray coding was also suggested for PCNN’s with binary
inputs.

The results obtained showed that the PCNN performed
very well in the experiments in terms of overall classification
accuracy. In fact, the PCNN with the optimal weights out-
performed both conjugate-gradient backpropagation and the
best statistical methods in classification of multisource remote
sensing and geographic data in terms of overall classification
accuracy of test data. On the other hand, the PCNN uses mul-
tiple neural networks and improves the overall classification
accuracy by using both more parameters and longer training
time than single neural networks. However, when the data
sets are difficult to model and accuracy is the most important
factor, the PCNN with optimal weights should be considered
a desirable alternative to other methods.

Some of the future research issues concerning the PCNN
involve the weight selection. In this paper the weights for the
stage neural networks were only based on the training set.
Using the same data for training the classifiers and estimation
of the weights can lead to overtraining by the optimal PCNN.
This type of overtraining was seen in experiment 1 (see Fig. 4)
where the optimal PCNN clearly outperformed the equally
weighted PCNN in terms of training accuracies but the test
accuracies for both methods were very similar. This behavior
leads to the conclusion that it may be appropriate to use a
different training set to train the classifiers than the one used to
compute the weights for the stage neural networks. When the
weights are computed it is desirable to know which network is
the best one in general and not the best on the training set. A
possible strategy is to take the training set, divide it into two,
and use one half to train the classifiers and the other half to
compute the weights for the stages.1 If the training set is not
large enough, one can use the leave-one out method or k-fold
cross-validation [9].
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