
Parallel consistency in constraint programming

Rolf, Carl Christian; Kuchcinski, Krzysztof

2009

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Rolf, C. C., & Kuchcinski, K. (2009). Parallel consistency in constraint programming. Paper presented at MCC09:
Second Swedish Workshop on Multi-Core Computing.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ec3aa2bf-8cc4-4802-ba31-e08c44320c62

Combining Task and Data Parallelism in Constraint Programming

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University, Sweden

{Carl_Christian.Rolf | Krzysztof.Kuchcinski}@cs.lth.se

Abstract

Program parallelization becomes increasingly important

when new multi-core architectures provide ways to improve

performance. One of the greatest challenges of this de-

velopment lies in programming parallel applications. Us-

ing declarative languages, such as constraint programming,

can make the transition to parallelism easier by hiding the

parallelization details in a framework.

Automatic parallelization in constraint programming

has previously focused on data parallelism. In this paper,

we look at task parallelism, specifically the case of parallel

consistency. We have developed two models of parallel con-

sistency, one that shares intermediate results and one that

does not. We evaluate which model is better in our experi-

ments. Our results show that parallelizing consistency can

provide the programmer with a robust scalability for regu-

lar problems with global constraints.

Keywords: Parallel Consistency, Constraint Programming

1 Introduction

In this paper, we discuss parallel consistency in con-

straint programming (CP) as a means of achieving task

parallelism. CP has the advantage of being declarative.

Hence, the programmer does not have to make any signifi-

cant changes to the program in order to solve it using par-

allelism. This means that the difficult aspects of parallel

programming can be left entirely to the creator of the con-

straint framework.

Constraint programming has been used with great suc-

cess to tackle different instances of NP-complete problems

such as graph coloring, satisfiability (SAT), and schedul-

ing [5]. A constraint satisfaction problem (CSP) can be

defined as a 3-tuple P = (X, D, C), where X is a set of

variables, D is a set of finite domains where Di is the do-

main of Xi, and C is a set of primitive or global constraints

containing between one and all variables in X . Solving a

CSP means finding assignments to X such that the value of

Xi is in Di, while all the constraints are satisfied. The tuple

P is referred to as a constraint store.

Finding a valid assignment to a constraint satisfaction

problem is usually accomplished by combining backtrack-

ing search with consistency checking that prunes inconsis-

tent values. To do this, a variable is assigned one of the val-

ues from its domain in every node of the search tree. Due to

time-complexity issues, the consistency methods are rarely

complete [2]. Hence, the domains of the variables will con-

tain values that are locally consistent, but cannot be part of

a solution.

X ∈ {5..9}X ∈ {0..4}

Y ∈ {5..9}
Y ∈ {0..4}

No solutions

No solutions

P1

P2

P3

Figure 1: Parallel search in constraint programming.

In this paper, we refer to parallel search as data paral-

lelism, and parallel consistency as task parallelism. When

parallelizing search in CP, the data is split between solvers.

As depicted in Fig. 1, data parallelism in CP can cause ma-

jor problems. In the figure, we send the rightmost nodes to

another constraint solver running on a different processor

core. However, since there are no solutions in those search

nodes, the parallelism will inevitably lead to a slowdown

because of communication overhead. This problem cannot

be avoided, since the consistency algorithms are not com-

plete. Hence, we cannot predict the amount of work sent to

other processors.

Fig. 2 presents the model of parallel consistency in con-

straint programming discussed in this paper. In the exam-

ple, the search process is sequential, but the enforcement of

consistency is performed in parallel. Constraints C1, C2,

and C3 can be evaluated independently of each other on

different processor cores, as long as the changes they try

1

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Figure 2: Parallel consistency in constraint programming.

to perform are synchronized. This type of parallelism does

not involve splitting data, and will never lead to any un-

necessary search. We may, however, have to perform extra

iterations of consistency, since the updates to domains are

based on the store from the beginning of each consistency

phase.

The problem of performing unnecessary work in paral-

lel constraint solving is pervasive. Most problems do not

scale well when using many processors. In our previous

work [11, 12, 13] we have tried to reduce the cost dis-

tributing work, and reduce the probability of performing un-

necessary work. However, some problems cannot be data-

parallelized at all without causing a severe slowdown, this

is true in particular when searching for a single solution.

Data parallelism can be problematic, or even unsuitable,

for other reasons. Many problems modeled in CP spend

a magnitude more time enforcing consistency than search-

ing. Trying to use data parallelism for these problems often

reduces performance. In these cases, task parallelism is the

only way to take advantage of modern multicore processors.

The rest of this paper is organized as follows. In Sec-

tion 2 the background issues are explained, in Section 3 the

parallel consistency is described in detail. Section 4 intro-

duces the experiments and the results, Section 5 gathers the

conclusions, and Section 6 presents our future work.

2 Background

Most work on parallelism in CP has dealt with data par-

allelism [16]. While this offers the greatest theoretical scal-

ability, it is often limited by a number of issues. Today, the

main one is that processing disjoint data will saturate the

memory bus faster than when processing the same data. In

theory, a super-linear performance should be possible for

depth-first search algorithms [10]. This, however, has only

rarely been reported, and only for small numbers of pro-

cessors [6]. The performance-limits placed on data-parallel

constraint solving are especially apparent on modern multi-

core architectures.

Another issue with data parallelism in CP arises for

problems modeled using intervals. This category includes

scheduling problems, which are the most industry-relevant

applications of constraint programming. Splitting an inter-

val in a scheduling problem will reshape the search tree of

both the computer sending work and the one receiving it.

Such a change in shape can lead to bounding solutions not

being found in reasonable time. In the worst case, this can

lead to a very large slowdown. Previous work on data par-

allelism for scheduling problems has either relied on spe-

cialized splitting [16], or only reported results for limited

discrepancy search and not for depth-first search [8].

Task parallelism is the most realistic type of parallelism

for problems where the time needed for search is insignif-

icant compared to that of enforcing consistency. This can

happen when the consistency algorithms prunes almost all

the inconsistent values. Such strong pruning is particularly

expensive and in a greater need of parallelism. The ad-

vantage of these large constraints over a massively parallel

search is that the execution time will be more predictable.

Previous work on parallel enforcement of consistency

has focused on parallel arc-consistency algorithms [7, 15].

The downside of such an approach is that processing one

constraint at a time may not allow inconsistencies to be dis-

covered as quickly. If one constraint holds and another does

not, the enforcement of the first one could be cancelled as

soon as the inconsistency of the second constraint is discov-

ered.

Perhaps the greatest downside of parallel arc-consistency

is that it is not applicable to global constraints. These con-

straints encompass several, or all, of the variables in a prob-

lem. This allows them to achieve a much better pruning than

primitive constraints that can only establish simple relations

between variables, such as X + Y ≤ Z.

3 Parallel Consistency

Parallel consistency in CP means that several constraints

will be evaluated in parallel. Constraints that contain the

same variables have data dependencies, and therefore their

pruning must be synchronized. However, since the prun-

ing is monotonic, the order in which the data is modified

does not affect the correctness. This follows from that well-

behaved constraint propagators must be both decreasing and

monotonic [17]. In our solver this is guaranteed by the con-

sistency method implemented in our solver. It makes the

intersection of the old domain and the one given by the con-

sistency algorithm. The result is written back as a new do-

main. Hence, the domain size will never increase.

Our model of parallel consistency is depicted in Fig. 3.

The pseudo-code for our model is presented in Fig. 4. At

each level of the search, consistency is enforced. This is

done by waking the consistency threads available to the

constraint program. These threads will then retrieve con-

2

Constraint Program

search

Slave 1 Slave 2

start consistency

get constraints

get constraints

inconsistent

backtrack

Figure 3: Model of parallel consistency with two consis-

tency threads. The dashed line indicates the final return to

the constraint program. In this example it leads to a back-

track of the search procedure.

straints from the queue of constraints whose variables have

changed. In order to reduce synchronization, each thread

will take several constraints out of the queue at the same

time. When all the constraints that were in the queue

at the beginning of the consistency phase have been pro-

cessed, all prunings are committed to the constraint store.

If there were no changes to any variable, the consistency

has reached a fix-point and the constraint program resumes

the search. If an inconsistency is discovered, the other con-

sistency threads are notified and they all enter the waiting

state after informing the constraint program that it needs to

backtrack.

As depicted in Fig. 5, we have to stop all thread in order

to enforce updates. The reason is that most constraints can-

not operate on a partially updated store. However, specula-

tive execution of the constraints already in the queue could

reduce the idle time for some threads.

Consistency enforcement is iterative. When the threads

are ready, the constraint queue is split between them. Then

one iteration of consistency can begin. This procedure will

be repeated until the constraints no longer change the do-

main of any variable. The constraints containing variables

that have changes will be added to the constraint queue after

the updates have been performed.

The greatest challenge in parallel consistency lies in dis-

tributing the work evenly between the threads. This load-

balancing requires a tradeoff between synchronization over-

head and an uneven load. The best balance is when each

thread has its own local constraint queue, that receives a

number of the constraints from the global queue. If a thread

runs out of work, it can perform work stealing from another

thread without having to lock the global constraint queue.

One of the main implementation issues of parallel con-

sistency is the overhead for synchronization. If this over-

head is too high, compared to the time needed to enforce

consistency, then there will be no speed-up. Furthermore,

when starting the consistency, there is additional synchro-

nization needed for waking the threads in the thread pool

// variables to be labeled V , with FDV xi ∈ V

// domain of xi is di, list of slave computers S

while V 6= ∅
V ← V \ xi

select value a from di

xi ← a

for each slave s in S

s.enforceConsistency

wait //wait for all slaves to stop

if Inconsistent

di ← di \ a

V ← V ∪ xi

return solution

// set of constraints to be processed PC

// set of constraints processed in this slave SC

// returns result to the constraint program

while PC 6= ∅
PC ← PC \ SC

while SC 6= ∅
SC ← SC \ c

c.consistency

if c.inconsistent

for each slave s in S

s.stop

return Inconsistent

if all other slaves waiting

perform updates

for each changed constraint cd

PC ← PC ∪ cd

for each slave s in S

s.wake

else

wait //wait for updates

return Consistent

Figure 4: The parallel depth-first search algorithm. Con-

straint program (top), slave program (bottom).

from the waiting state.

The issue of load-balancing is related to the model in

the constraint program. Global constraints usually have

consistency algorithms with a time complexity of at least

O(nlog n). Primitive constraints, however, typically have

a constant running time with regard to the number of vari-

ables. While a good load-balancing can alleviate this prob-

lem, some problems may simply have too few global con-

straints to motivate the cost of synchronization in parallel

consistency.

There are two variations of the model that we have pre-

sented. The difference lies in how the intermediate domains

used for updates are handled. The two variations are:

• Shared intermediate domains, which requires synchro-

nization of changes to variables. This variant is de-

scribed in section 3.1.

• Thread local intermediate domains, which does not re-

quire changes to be synchronized, described in sec-

tion 3.2.

The domain that is used during update at the barrier in

Fig. 5 is the intersection of all intermediate domains given

by the constraints. If a shared intermediate domain is used,

3

Constraint

Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting

Done, waiting

Perform updates

Add changed constraints to queue

Figure 5: The execution model for parallel consistency.

the intersection will be calculated each time a constraint

changes a variable. If the intermediate domains are thread

local, the intersection will be calculated at the barrier.

3.1 Shared Intermediate Domains

Using shared intermediate domains requires changes to

be synchronized. This inevitably reduces the scalability of

the parallel consistency. The entire calculation of the do-

main intersection has to be synchronized, otherwise inter-

vals in the domain could be modified concurrently. Hence,

the shared domains cannot be made lock-free, unless the

entire domain fits into an architecture-atomic data type.

The advantage of shared intermediate domains, is that

inconsistencies will be discovered earlier. The domain used

at the update barrier is the intersection of the intermediate

domains given by the constraints. Hence, an empty interme-

diate domain means that the constraint store is inconsistent.

If any constraint leads to an empty intermediate domain,

we can cancel the enforcement of all other constraints, as

the pruning is monotonic.

3.2 Thread Local Intermediate Domains

The principle behind thread local intermediate domains

is depicted in Fig. 6. The downside of using separate in-

termediate domains is that we will not be able to detect all

inconsistencies before the update barrier. Often, inconsis-

tency is reached when the combined changes of two con-

straints lead to an empty intermediate domain. If we are us-

ing thread local intermediate domains, we will only detect

such inconsistencies if the two incompatible constraints are

enforced by the same thread.

Thread local variables do not require synchronization,

this increases the scalability. In the case of thread local in-

termediate domains, the only concern is ensuring visibility

at the update barrier. This may add extra cost of synchro-

nization depending on which thread performs the actual up-

dates.

Constraint

Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting

Done, waiting

X > Y X > Z X > Q

X1 > Y X2 > Z X3 > Q

X ∈ X1 ∩ X2 ∩ X3

Figure 6: The model of thread local updates.

If the constraint store is consistent, thread local inter-

mediate domains are preferable. Since there is less syn-

chronization, the scalability will be better, especially when

using many consistency threads. However, if the store is in-

consistent, we may have to enforce many more constraints

since we cannot see the changes caused by the other threads.

Inconsistency will therefore be detected later, possibly not

until the update barrier is reached.

4 Experimental Results

We used the JaCoP solver [3] in our experiments. The

experiments were run on a Mac Pro with two 3.2 GHz quad-

core Intel Xeon processors running Mac OS X 10.5. The

parallel version of our solver is described in detail in [11].

4.1 Problem Set

We used three problems in our experiments: n-Sudoku,

which gives an n×n Sudoku if the square root of n is an in-

teger, LA31 which is a well-known 30×10 jobshop schedul-

ing problem [4], and n-Queens which consists in finding a

placement of n queens on a chessboard so that no queen

can strike another. The presented results are the absolute

speed-ups of enforcing consistency of all constraints before

the search. For Sudoku we used n = 1024 and for Queens

we used n = 40 000.

The characteristics of the problems are shown in Ta-

ble 1. n-Sudoku is very regular when modeled in CP, it

uses 3×n alldiff constraints. Our implementation of alldiff

uses the O(n2) algorithm for bounds consistency [9]. LA31

was formulated using ten cumulative constraints, which also

have a time complexity of O(n2) [1]. However, this prob-

lem also contains a number of primitive constraints for task

precedence. Queens was formulated using three alldiff con-

straints, combined with a large number of primitive con-

straints to calculate the diagonals of each queen.

4

Table 1: Characteristics of the problems.

Problem Variables
Primitive Global

Constraints Constraints

Sudoku 1048576 0 3072

LA31 632 301 10

Queens 119998 79998 3

4.2 Results for a Consistent Store

We performed experiments on both variations of par-

allel consistency. The results for shared intermediate do-

mains are presented in Table 2 and Fig. 7. The results for

thread local intermediate domains are presented in Table 3

and Fig. 8. From the tables we can see that the scheduling

problem of LA31 is quite small compared to Queens and

Sudoku. However, we wanted to use a standardized test for

this industry-relevant problem instead of generating a new

one.

Table 2: Execution times in milliseconds for shared inter-

mediate domains.

Problem / Threads 1 2 4 8

Sudoku 10991 5524 3108 1843

LA31 84.66 50.92 32.44 27.22

Queens 33428 19419 14928 14420

Table 3: Execution times in milliseconds for thread local

intermediate domains.

Problem / Threads 1 2 4 8

Sudoku 10991 5541 3161 1897

LA31 84.66 47.05 33.22 26.98

Queens 33428 18413 14729 14477

Figure 7 and Fig. 8 show that Sudoku is the problem that

scales the best by far. This is because it is very regular.

The constraints used in this problem are all of the same

size, which makes it easy to achieve a good load-balancing.

Moreover, all constraints contain 1024 variables, making

them very expensive to compute. In contrast, the other prob-

lems use combinations of large and small constraints, which

makes it difficult to distribute the load evenly.
The scheduling problem of LA31 does not scale as well

as Sudoku. The two main reasons are problem size and a

lack of large constraints. The short execution time of en-

forcing consistency increases the relative cost of synchro-

nization. Furthermore, the global constraints in LA31 con-

tain much fewer variables than the ones in Sudoku.

! " # $
%

!

"

&

#

'

(

)

*+,-.+//////// 01&!//////// 2+3345

6+7839/-:/;<93=,5

1
8
5
-
>+
?3
/*
@
3
3
,
A+
@

Figure 7: Absolute speed-up when using shared intermedi-

ate domains.

! " # $
%

!

"

&

#

'

(

)

*+,-.+//////// 01&!//////// 2+3345

6+7839/-:/;<93=,5

1
8
5
-
>+
?3
/*
@
3
3
,
A+
@

Figure 8: Absolute speed-up when using thread local inter-

mediate domains.

Clearly Queens does not scale well at all, but as we can

see in Tables 2 and 3, this is not because of problem size.

The low scalability is instead caused by the constraints.

There are only three global constraints used in this problem.

The rest are small, primitive constraints that finish quickly.

Hence, we will have at most three threads running heavy

consistency algorithms. LA31 scales better than Queens,

despite its short running time, since it contains more global

constraints.

The lack of speed-up for Queens compared to Sudoku re-

lates not only to the load-balancing during consistency, but

also the consistency iterations. Since the three global con-

straints in Queens are much larger than the ones in Sudoku,

it would not be unreasonable to expect a speed-up of about

three for Queens. However, the updates caused by primitive

constraints, require the global constraints to be enforced a

second time. Hence, the pruning pattern of a problem can

have a large negative impact on performance.

The small difference between using shared and thread

local intermediate domains is noteworthy. The minimal dif-

ferences suggests that most of the locks are uncontended.

5

The cases where shared domains are faster are probably

caused by the operating system scheduler.

Clearly it does not matter which model of parallel con-

sistency is chosen when the store is consistent. The closer

the store is to global consistency, the less pruning there will

be. The less pruning, the fewer the dependencies are caused

by the update of intermediate domains, reducing lock con-

tention.

4.3 Results for an Inconsistent Store

During search, the store is likely to become inconsistent

more often than consistent. Hence, we also performed ex-

periments on an inconsistent store. In order to make the

store inconsistent, we made two incompatible assignments

and then enforced consistency.

The execution times in milliseconds of the two models

are presented in Table 4 and Table 5. The absolute speed-

ups are depicted in Fig. 9 and Fig. 10. Clearly, the scala-

bility of parallel consistency is not as good if the store is

inconsistent.

Table 4: Execution times in milliseconds for shared inter-

mediate domains.

Problem / Threads 1 2 4 8

Sudoku 7342 5503 3018 1703

LA31 69 58 38 36

Queens 9709 5442 5127 5312

Table 5: Execution times in milliseconds for thread local

intermediate domains.

Problem / Threads 1 2 4 8

Sudoku 7342 5599 2994 1875

LA31 69 59 41 37

Queens 9709 5750 5370 5547

Table 6 and Table 7 present the behavior of the two

model variations. As expected, many more constraints are

evaluated when using parallel consistency. Furthermore,

the performance is completely determined by the order in

which the constraints are evaluated. Ideally the constraints

should be ordered by the probability of causing an inconsis-

tency.

The reason why the scalability is lower when the store is

inconsistent is that we base our computations on the store

at the beginning of the consistency phase. Hence, even

with shared intermediate domains, the pruning will not be

as strong per consistency iteration as when using sequential

consistency.

Table 6: Constraints evaluated by the shared intermediate

domains.

Problem / Threads 1 2 4 8

Sudoku 2049 3073 3073 3073

LA31 1749 2941 2941 2941

Queens 3 80002 16610 14873

Table 7: Constraints evaluated by the thread local interme-

diate domains.

Problem / Threads 1 2 4 8

Sudoku 2049 3072 3072 3072

LA31 1749 2981 2981 2981

Queens 3 80001 12310 14041

! " # $
%

!

"

&

#

'

()*+,)-------- ./&!-------- 0)1123

4)5617-+8-9:71;*3

/
6
3
+
<)
=1
-(
>
1
1
*
?)
>

Figure 9: Absolute speed-up when using shared intermedi-

ate domains.

! " # $
%

!

"

&

#

'

()*+,)-------- ./&!-------- 0)1123

4)5617-+8-9:71;*3

/
6
3
+
<)
=1
-(
>
1
1
*
?)
>

Figure 10: Absolute speed-up when using thread local in-

termediate domains.

4.4 Processor Load

As depicted in Figures 11 to 13, the processor loads for

the three problems are quite different. The biggest differ-

6

ence is that the problems need a different amount of con-

sistency iterations. Sudoku performs no pruning and needs

only one iteration of consistency. LA31 needs 12 iterations,

hence the heavily varying curve in Fig. 12. Queens needs

two iterations, which is the cause of the spike in Fig. 13.

0

2

4

6

8

A
c
ti
v
e
 T

h
re

a
d
s

Execution Progress

Figure 11: The processor load of Sudoku using eight

threads.

0

2

4

6

8

A
c
ti
v
e
 T

h
re

a
d
s

Execution Progress

Figure 12: The processor load of LA31 using eight threads.

0

2

4

6

8

A
c
ti
v
e
 T

h
re

a
d
s

Execution Progress

Figure 13: The processor load of Queens using eight

threads.

The average load of the problems is presented in Table 8.

The load of LA31 is quite low despite the fact that there are

more global constraints than available threads. The main

cause is the large number of consistency iterations. In order

to enforce the updates, we have to perform twelve barrier

synchronizations, at which no consistency threads are ac-

tive.

The reason why Queens has such a low load is that there

are few global constraints. Given the time complexity, the

three alldiff constraints will take several orders of magni-

tude longer to compute than the combined time for the prim-

itive constraints. In the second iteration of consistency, the

load comes from the two alldiff constraints used to calculate

the diagonals.

Table 8: Average load when using eight threads.

Problem Average Load Percentage of Maximum

Sudoku 6.77 0.85

LA31 2.13 0.27

Queens 1.71 0.21

From the average load it is clear that the performance of

parallel consistency depends heavily on achieving a good

load distribution. Unfortunately, the problem structure may

not allow for the load to be shared using only task paral-

lelism. In the case of Queens, a parallel consistency algo-

rithm for alldiff would be necessary to improve the scalabil-

ity.

5 Conclusions

The main conclusion of this paper is that task paral-

lelism, in the form of parallel consistency, can offer great

improvements in performance. The prerequisite is that the

problem is formulated using many global constraints. For

problems that consist mainly of primitive constraints, that

are easily enforced, the scalability can be severely limited.

Depending on the load-balancing used in the consistency

threads, the regularity of the problem has a large impact on

the scalability. The more regular the problem, the less of

an issue load-balancing becomes. Sudoku is an example of

a problem that is both regular and consists only of global

constraints. Hence, this problem illustrates the upper bound

of the scalability of parallel consistency.

The synchronization cost limits which problems can ben-

efit from parallel consistency. Problems that mostly consist

of small constraints will not scale well since even the lock-

ing in a thread pool is to costly compared to the performance

benefits.

Clearly there is little difference between the two varia-

tions of our model of parallel consistency. Reducing syn-

chronization by using thread local intermediate domains

will most likely give a better scalability when using many

threads. However, which model is better depends on the

problem, and how often the constraint store becomes incon-

sistent.

7

6 Future Work

In our future work we hope to investigate the possibility

of speculative execution. The last iteration of consistency

will not make changes to any domain. Hence, speculative

execution of the last iteration will always be successful.

We also hope to improve the load-balancing by imple-

menting work stealing. This will alleviate some of the

issues that occur for problems with irregular constraints.

However, this may not prevent the extra updates caused by

the primitive constraints.

The problems that show poor scalability in our experi-

ments are those that often need a greater amount of search.

Such problems would benefit primarily from data paral-

lelism. However, parallel consistency could be used to in-

crease the scalability when the memory bus starts to get con-

gested.

References

[1] P. Baptiste, C. L. Pape, and W. Nuijten. Constraint-Based

Scheduling. Kluwer Academic Publishers, Norwell, MA,

USA, 2001.
[2] R. Dechter. Constraint Processing. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2003.
[3] K. Kuchcinski. Constraints-driven scheduling and resource

assignment. ACM Transactions on Design Automation of

Electronic Systems (TODAES), 8(3):355–383, July 2003.
[4] S. R. Lawrence. Resource-constrained project schedul-

ing: An experimental investigation of heuristic scheduling

techniques. Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh PA, 1984.
[5] K. Marriott and P. J. Stuckey. Introduction to Constraint

Logic Programming. MIT Press, Cambridge, MA, USA,

1998.
[6] L. Michel, A. See, and P. V. Hentenryck. Parallelizing con-

straint programs transparently. In C. Bessiere, editor, CP,

volume 4741 of Lecture Notes in Computer Science, pages

514–528. Springer, 2007.
[7] T. Nguyen and Y. Deville. A distributed arc-consistency al-

gorithm. Sci. Comput. Program., 30(1-2):227–250, 1998.
[8] L. Perron. Search procedures and parallelism in constraint

programming. In CP ’99: Proceedings of the 5th Inter-

national Conference on Principles and Practice of Con-

straint Programming, pages 346–360, London, UK, 1999.

Springer-Verlag.
[9] J.-F. Puget. A fast algorithm for the bound consistency of

alldiff constraints. In AAAI/IAAI, pages 359–366, 1998.
[10] V. N. Rao and V. Kumar. Superlinear speedup in parallel

state-space search. In Proceedings of the Eighth Confer-

ence on Foundations of Software Technology and Theoreti-

cal Computer Science, pages 161–174, London, UK, 1988.

Springer-Verlag.
[11] C. C. Rolf and K. Kuchcinski. Load-balancing methods for

parallel and distributed constraint solving. Cluster Comput-

ing, 2008 IEEE International Conference on, pages 304–

309, Oct 2008.

[12] C. C. Rolf and K. Kuchcinski. State-copying and recompu-

tation in parallel constraint programming with global con-

straints. In PDP ’08: Proceedings of the 16th Euromi-

cro Conference on Parallel, Distributed and Network-Based

Processing (PDP 2008), pages 311–317, Washington, DC,

USA, 2008. IEEE Computer Society.

[13] C. C. Rolf and K. Kuchcinski. Parallel consistency in con-

straint programming. PDPTA ’09: The 2009 International

Conference on Parallel and Distributed Processing Tech-

niques and Applications, 2:638–644, July 2009.

[14] C. C. Rolf and K. Kuchcinski. Parallel consistency in con-

straint programming. In MCC 2009: Second Swedish Work-

shop on Multi-Core Computing, November 2009.

[15] A. Ruiz-Andino, L. Araujo, F. Sáenz, and J. J. Ruz. Par-

allel arc-consistency for functional constraints. In Imple-

mentation Technology for Programming Languages based

on Logic, pages 86–100, 1998.

[16] C. Schulte. Parallel search made simple. In N. Beldiceanu,

W. Harvey, M. Henz, F. Laburthe, E. Monfroy, T. Müller,

L. Perron, and C. Schulte, editors, Proceedings of TRICS:

Techniques foR Implementing Constraint programming Sys-

tems, a post-conference workshop of CP 2000, Singapore,

Sept. 2000.

[17] C. Schulte and M. Carlsson. Finite domain constraint pro-

gramming systems. In F. Rossi, P. van Beek, and T. Walsh,

editors, Handbook of Constraint Programming, Foundations

of Artificial Intelligence, chapter 14, pages 495–526. El-

sevier Science Publishers, Amsterdam, The Netherlands,

2006.

8

