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ABSTRACT

Many string manipulations can be performed efficiently on suffix trees. In this paper,
a CRCW Parallel RAM algorithm is presented that constructs the suffix tree associated with
a string of n symbols in OOogn) time with n processors. The algorithm requires 8(n2)
space. However, lhe space needed can be reduced to O(nI~ for any O<ES.l, with a
corresponding slOW-dOWIl propoI1ional to 1/£. Efficient parallel procedures are also given
for some string problems l.hat can be solved with suffix trees.
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1. INTRODUCTION

Let x = Xl ,XZ•..• .;t".. be a string of n= Ix I symbols and asswne that XII is a special symbol # that OCCUI'S

nowhere else in x. We use I to denote the alphaber of x. i.e., the set of all distinct symbols occurring in x.

(Note that II l:'in.) Given a substring w of x. a descriptor of w is any pair (i .1 w J) ~ch that i is the starting

position in x of an occurrence ofw. The sl@x tree Tx associated with x is the me (digital searr:h tree) with n

leaves and at most n -1 internal nodes such that: (1) each edge is labeled wiIll a descriptor of some substring of

x I (2) no two sibling edges may have the same (nonempty) prefix. (3) each leaf is labeled with a distinct posi

tion of x and (4) the concatenation of the labels on the path from the root to leaf i describe the suffix of x

stalling at position i. (See Fig. 1 for an example.) In practice, the label of the edge connecting node J.l to its

parent node is stored in J.l. Observe that. in general, there is more than one way to assign consistent labels to

the edges of a suffix tree.

The main problem addressed in this paper is the parallel construction of the suffix tree T;f associated with

input string x. For fixed alpha1:et size, the sequential algorithms in [We-73], {Mc-76] construct T;f in linear

time. The time bound becomes 0 (nlog II I) if the alphabet size is not a constant. Suffix trees and their com

panion structures suppon many string manipulations, such as performing on-line string matching [AHU-74],

finding the longest repeated subsoing in a string, testing square-freedom of a slring [AP-83], [Ap-84], finding

all the squares or repetitions in a string [AP-83], computing substring statistics with or without overlap [AP

85a], [AP-85bJ, performing exact [AG-86] or approximate [LV-86J pattern matching. A more detailed list of

applications is given in [Ap-85]. In the context ofparallel computation, various open problems revolve around

T;r [Ga~85]. The only previous parallel algorithm for constructing suffix trees is given in [LV~86]. I[ runs in

time o (logn) and uses n2nogn processors.

We adopt the concurrent-read concurrent-write (CRCW) parallel random access machine (PRAM) model

of computation. We use n processors which can simultaneously read from and write to a common memory

with 8(n
2

) locations. In case several processors seek access to the same memory location for write purposes,

one of them succeeds but we do not know in advance which. See [Vi-83] for a survey of results concerning

PRAMs. The overallprocessorsxtime cost of our algorithm. is 0 (nlogn), which is optimal when log II J is of

the same order of magnimde as logn. Although the algorithm requires quadratic space, only 0 (n logn) loca-
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lions need initialization. Moreover, we show later lhat the space can be reduced to 0 (n l+~, for any chosen

O<e:s;;l, with a corresponding slow-down proportional to lie.

Our approach to the coDStroction of Tz consists of two main pans. In the first part, described in Section

2, an approximate version of the tree is built, called the skeleton. This pan of the construction is reminiscent

of an early approach to subquadratic pattern matching [KMR-72]. The second part, described in Section 3.

consists of refining the skeleton to transfOIID it into T;r;. The processor allocation technique that is used for the

refinement is of independent interest. Allocating processors to jobs is often a crucial task in the design of

efficient parallel algorithms, and there are papers mainly devoted to overcoming allocation problems. For

example, [SV-81] solved the allocation problem in the algorithm of [Va-75] for finding the maximum among

n elements, [BH-83] and [Kr-83) solved the allocation problem in the algorithm of [Va-75] for merging.

[CV-86aJ. [CV-86b] and [Vi-84) gave deteIministic and randomized allocation schemes for list ranking.

Section 4 contains a brief analysis of the various allocation techniques that can be used for a suffix tree.

In Section 5, we show how me space used in our construction can be reduced. Fmally, we describe in Section

6 how our suffix tree construction leads to the design of efficient parallel algorithms for on·line string match

ing, finding a longest repeated substring in a string, and peIfoIming approximate pattern matching.

2. CONSTRUCTING THE SKELETON TREE

From now on, we will assume wl.o.g. that n is a power of 2. We also extend x by appending to it n-I

instances of the symbol #. We use:xil to refer to this modified string. We now list some salient features of me

skeleton tree Dx of x, and then give a consouctive definition ofDx. The basic structure of the skeleton for the

siring of Figure I is shown in Figure 2. The skeleton Dx of x is a tree with n leaves. Each internal node ofDx

has at least two children. The edges in Dx point from each node to its parent Each leaf or internal node ofD
x

is labeled with the descriptor of some substring of;r# having starting positions in [l,n). If node J..L is labeled

with descriptor (i ,I), then I =2q for some q, O$q :::1ogn. If J..L is a leaf then I=n. If J..L is an internal node other

than the root, then q is the stagenumber of J..L. If the label of J..L corresponds to substring w ofx, then we write

w=W(J..L), and we call J..L the locus of w. Figure 2 shows the skeleton for the string of Fig. 1. A consouctive

definition for D:x. is as follows.
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(i) The root of Dz is the locus of the empty word. The root has I! I sons, each one being the locus of a dis

tinct symbol ofJ .

(ii) Assume that all nodes of stagenumber up to l-l~ have been insetted in Dz • To expand DJ: to

stagenumber ISlogn. consider the nodes of stagenumber i-lone by one. For a generic such node J.L, let

w=Wijl). Now do the following.

1 If w=z# for some string z over 1 , then make I.l the (unique) leaf labeled (i ,n), where i is the first com

ponent of the old label of J.L.

2 Assume instead w*z#. Let {SI,S2, ...,sk} be a set ofmax.i.m.um cardinality among the sets formed by dis

tinct substrings of;r# with the properties: ISf 1=21w I and w is a prefix ofSr. t=l,2•...,k. (Thus. if i is the

starting plsition of an occurrence ofw in xU. then there is some Sf also starting at i. In the string of Fig.

1, for example. we have that each occurrence ofw=ab in x# .extends into either sl=abaa, or sr=aba# I

or s3=abab. On the other hand. w=aa occurs inxit only as a prefix ofsl=aJJba. Note that, in general. an

St may occur more than once in :x#.) We distinguish two cases. (A) k>l. We create k sons of J.l,

Vl.V2.· .. ,Vle. and make v t the locus of St. t=l,2,... ,k. (B) k=l. i.e.• w occurs always as a prefix of the

same substring s l' We make Il the locus ofs l'

Observe that no two nodes of D;r: can have the same label. A natural parallel consttuetion of D;r: is based

on the above definition. We describe such a construction in detail. to acquaint the reader with the basic con

current steps which are used throughout this paper.

We use n processors P IoP2•... ,p,.. where i is the serial number of processor Pi. At the beginning. pro

cessorPi is assigned to the j -th position of x. i=1.2•....n. It is convenient to think of each processor as being

assigned two segments of the common memory. each segment consisting of logn+l cells. The segments

assigned to Pi are called IDj • and NODEi • respeclively. By the end of the computation. IDj[q]

(i=I.Z•...n; q=O.l •...,logn) contains (the first component of) a descriptor for the substring of x# of length zq

which starts at position j in x# • with the constraint that all the occurrences of the same substring ofx get the

same descriptor. If. for some value of q<1ogn. NODEj[q] is not empty. then it represents a node J.1 of

stagenumber q in D;r:, as follows: the field NODEj[q]LABEL is a replica of IDj[q], and the field

NODEj[qj.PARENT points to the location of the parent of J.L. Fmally, NODEj[logn] stores the leaf labeled
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(i ,n) and thus is nonempty for i=1.2•... ,n. For convenience, we extend the notion of ID to all positions i >n

through the convention: lD j [q]=n+l for i >n. The computation makes crucial use of a bulletin board (BB) of

nx(n+l) locations in the common memory. All processors can simultaneously write to BB and simultane-

Dusly read from it. We use the following concurrent-write convention. In case several processors try simul

taneously to write intO the same memory location, one of them succeeds but we do not know in advance

which. In the following, we call winner (i) the index of the processor which succeeds in writing to the loca-

tion of the cornmon memory attempted by Pi.

Procedure Skeleton-Tree takes as input the stting x and a location of the common memory called

ROOT, and computes the entries of the arrays NODEj [q J,IDj[q]; (i=1.2•...•n, q=O,l,... ,logn). The procedure

consists of some initializations, that implement point (i) in the definition of Dx , and logn main iterations,

implementing point (ii).

The initializations are as follows. In parallel, all processors initialize their NODE and ID arrays. Next,

processors facing the same symbol ofI attempt to write their serial number in the same location ofBB . Say, if

Xi=8 e/, processor Pi attempts to write i in BB [loS]. Through a second reading from the same location, P..

reads j=wiTlller(i) and sets IDj[O).f-j. (Thus U,I) becomes the descriptor for every occurrence of symbol s).

For all i such that winner (i)=i, processor Pi sets NODE.. [0).1'ARENT .f- ROOT and copies ID
j
[O)=i into

NODE.. [O].l.ABEL. Hence NODE.. [0] becomes the locus of s .

We now describe iteration q I q=O,l,... Jogn-l, which is also p::rfOImed synchronously by all proces

sors. First, processor Pi, i=l.2•...•n, creates a composite label TIDi , by setting: TID; .f- (IDj[q], ID"+2'[q)).

Next, processor Pi attempts to write i in BB [TID;] = BB [ID.. [q lJDi+2'[q ]]. Now. processor Pi sets:

IDj[q+l]f-winner(i) .i=1,2•...•n. The processors that are not winners become idle for the remainder of the

stage. On the other hand, any winnerP.. perfonns the following.

NODE,[q+ljPARENT <-- NODE1D,[qJ[q]
NODE;[q+Ij.lABEL <-- Wi [q+I]
if NODEID,[ql[q] has only one child then

begin
NODEi[q+IJ.PARENT <--NODE/D,[qj[q].PARENT ;
Make NODE/DdqJ[qj empty.

end
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Thus. the winners create new locuses in their associated NODE locations. Whenever a node lJ. is created

that has no siblings, then the pointer from parent {J.1) is removed and copied into J.L. This avoids the formation

of chains of unaJY nodes.

The existence of siblings can be checked as follows. Assume that for each row r of BB • there is a dis

tinct memory location, say AUX [r J. known to all processors. At each stage. there are siblings iff two or more

successful processors write to different locations of the same row of BB. To find out whether this is the case,

all successful processors writing in the same row r ofBB attempt to write their index in AUX[r]. Next, all the

processors in that row except the winner wtite a special marker in AUX[r]. Fmally, all the processors in the

same row check the status of AUX[r]. Qearly, processor Pi was the only successful processor in row r iff, at

thetimeofchecldng. AUX[r)=i.

The correctness of the procedure follows by straightforward indUctiOIL Since no two n -symbol sub

sttings of:x# are identical, processorPi (i=l,2•...,n) must be occupying the ''leaf' NODEiDogn] at the end of

the computation. The time complexity is obviously 0 Oogn). Note that NODEj[q ]LABEL not empty implies

NODE; [q ].lABEL = (i .zq), that is, the label of a node. when defined. is nothing but the address of that node.

Although the LABEL fields are entirely redundant so far, assuming this node formal from the stan simplifies

the rest of our presentation. Finally. we remark that BB needs Dot to be initialized.

3. REFlNING Dr

By the end of the construction of D~. processorPi will be occupying leaf i. i=1,2,... ,n. Prior to starting

the transformation of Dx into Tx • the labels of all nodes of Dx have to be modified as follows. Recall that the

current LABEL of a node J.L is a starting position of W (JJ.) in x# which is also the address of th.is node. The

modified label (m -label) to be constructed for J.L is any pair (i ./) such that, letting W(JJ.)=W(parent(J.L»-w, it

is 1= Iw I and i is the starting position of an occurrence of w in xU. In the following. we call m -labeled skele

ton the tree that is obtained by substituting every label of Dx with a consistent m-label. Set aside the orienta

tion of edges, the main difference between Tx and the m-Iabeled skeleton Dx is that in Tx there carmot be two

sibling nodes such that their labels describe two substrings of.r having a common prefix (i.e., Dx is not a me).

However, the rn-labeled D~ shares with Tx the propenies (1-3) listed in defining the latter. provided x# is used
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there in the place ofx.

A processor can trivially compute the m-Iabel of Jl in constant time knowing the LABEL of J.L., and the

sr..agenumbers. say q and q', of Jl and parent(p..), respectively. FOlDlally, if j is the LABEL of Il, then

(j+2Q',Zq -2q) is the m-Iabel of Jl. The n processors can produce all m-Iabels in logn parallel steps. Using the

parent pointers, the processors migrate towards ROOT with a synchronous pace based on stagenumbers: the

m-Iabels of all children of nodes with the same stagenumber are computed at the same time. (Recall that the

difference in stagenumber between a node and its parent is not necessarily 1.) At the beginning, all processors

occupying leaves which are children of nodes of stagenumber logn-l change the labels of these nodes into

m-Iabels. Next, the processors compete for the common parent node, say. by attempting to simultaneously

write on it the labels (addresses) of the nodes which they currently occupy. The winners are marked "free":

they ascend to the parent node where they will perform the necessary label adjustment at the appropriate stage.

The losers simply take a record of the (old) label used by the winner. The (q-l)-th heration involves all free

processors on nodes with a stagenumber of q or higher. The operation is the same as above.

A byproduct of the m-Iabel consblJetion process is a mapping that assigns some leaves and internal

nodes to processors in Such a way that the following property is met.

PROPERTY 1. If a node other than ROOT has k children, then precisely k-l of the children have been
assigned a processor. Moreover, each one of the k-l processors knows the address of the
unique sibling without a processor.

The proof ofPropeny 1 is straightforward. Let now (i ,I) and U,m) be the m-Iabels of two sibling nodes

Il. and v ofDx• and let q be the stagenumber ofparent(jJ.)=parenr(v).

FACT 1. The substrings of:x# whose descriptors are the m-Iabels of j.L and v have a common prefix of
length at most 2Q-1.

FACT 2. If k is the length of the longest common prefix of x#{i.i+l-l] and .r#[J.}+m-lJ, then
ID;[llogkj] =IDj[[logkJ].

Fact 1 follows from the definition of Dx • Fact 2 holds by the construction of the ID 'so

Assuming a fixed size alphabet, the transformation of the m-labeled Dx into T;x is carried out in two

steps. First, a tree is produced that is identical to T;x save the fact that all edges are directed upward, as in D;x.
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Next. the directions of all edges are reversed.

The first and more important step is actuated by producing logn -1 consecutive refinements of

D.:z:=D(logn.-I). The q-th such refinement is denoted by DOogll-q-I). Infonnally, D(logn-q-l) is a labeled tree

with n leaves and no unary nodes which has much the same structure of the m-labeled D;,;. In particular. pro

perties (1-3) of the definition ofTr hold for any refinement of D.:z:. The refinement nCO) is identical to T.:z: except

for the edge directions. Figure 3 shows the second refinement for our example skeleton.

We give now rigorous definitions for D(logll--q-l), q=l,2. ,logn-l. We do so by specifying how

n(logll-q-l) is obtained from D(loglI-{q-l}-l). for q=1.2•...•1ogn-1. For simplicity. we use k henceforth to

denote logn-q-l. Frrst, two more definitions are needed. A nest is any set formed by all children of some

node in n(t.). Let (i ,1) and U,k) be the labels of two nodes in some nest ofD(i). An integer t, O<rSmin[I.kJ,

is a refiner for (i ,I) and U ,k) iff ;r#[i ,i+/-IJ=x#U,j+/-IJ.

Assume now that all refinements down to D (.1:), logn-1~<0, have been already produced, and that D (.1:)

meets the following condirion(k): (i) D(.I:) is a labeled tree with n leaves and no unary nodes; (Ii) D(.I:) enjoys

properties (1-3) of the definition ofT:z:; (iii) D(.I:) is labeled in such a way that no pairoflabels of nodes in the

same nes.t admits a refiner of size 2.1: •

Observe that condition O-ogn-l) is met trivially by D:z:. Moreover, part (iii) of condition (0) implies that

reversing the direction of all edges of D(O) would change the latter in a digital-search tree that stores the collec

tion of all suffixes of oX. Dearly, such a nie fulfills precisely the definition ofT:z:.

We now define D(.I:-1) as the tree obtained by transforming D(.I:) as follows. The manipulations that

transform D(.I:) into D(.I:-I) are performed synchronously on all and only the eligible nests ofD(.I:), Le., on those

nests that might admit a refiner of size 2(.1:-1). Dearly, the only eligible nests in D:z: are those whose parent

nodes have stagenumberlogn-l. There is only one such Destin lhe skeleton of Fig. 2, namely, that formed by

leaves I and 9 (however, this nest does not have a refiner of size 2(10111
-
1)-1 = n/4). The nests of nodes whose

parents have stagenumber logn-2 become eligible at the inception of the second refining stage (cf. Fig. 3), and

soon.

Assume thaI., in D(.I:), all nodes that are parents of currently eligible nests are suitably marked. Let

(i101]),02.1:2),.··,(i", ,I",) be the set of all labels in some eligible nest of D (.1:). Let v be the parent node of that
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nest. The nest is refined in two steps.

STEP 1. Use the LABEL and ID tables to modify the nest rooted at v. as follows. With the child node labeled

(ij.Ij ) associate the split-label (TDjJrk-l].rDjJ+2'-I[~-lD, j=lJ,•...•m. Now partition the children of v into

equivalence classes, putting in the same class all nodes with lhe same first component of their split-labels. For

each non-singleton class which results, perform the following three operations.

(1) Create a new parent node I-l for the nodes in that class, and make j.l. a son Dfv.

(2) Set the LABEL of I-l to (i .2(k-
10. where i is the first component of the split-label of all nodes in the class.

(3) Consider each child of Ji. For the child whose current LABEL is (ij,lj), change LABEL 10

(ij+2(k-I),lj_2(t-11.

STEP 2. If more than one class resulted from the partition. then stop. Otherwise. let C be the unique class

resulting from the partition. It follows from assumption (iii) on D (k) that C cannot be a singleton class. Thus a

new parent node j.L as above was created for the nodes in C during STEP 1. Make Jl a child of the parent ofv

and set the lABEL ofJl to (i.l+2(.l:-10, where (i ,I) is the label ofv.

The followmg theorem shows that our definition of the series of refinements D (k) is unambiguous.

Theorem 1 The synchronous application of Steps 1 and 2 to all eligible nests of D(.l:) produces a tree that
meets condition (k-l).

Proof. Properties (ii-iii) of condition (k-l) are easily established for D(.l:-l). Thus, we concentrate on pro

perty (i). Since no new leaves were inserted in the transition from DJ: 10 D(k-l), property (i) will hold once we

prove thatD(.l:-l) is a tree with no unary nodes.

Clearly, the nest of the children of the root is not eligible for any k >0. Thus for any parent node v of an

eligible nest of D(I:), parent (v) is defined. By condition (k), node v has more than one child, and so does

parent (v). LetD(lto) be the structure resulting from application of Step I to D(k).

If, in D(k), the nest ofparent(v) is not eligible, then v is a node of D(k-l), and v may be the only unary

node in D(J:) between any child ofv in D(k) and the parent of v in D(k). Node v is removed in STEP 2, unless

v is a branching node in D(Ie). Hence no unary nodes result in this part ofD(.l:-l).
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Assume now that, in D(J:), both the nest cfv and that ofparent (v) are eligible. We claim that. in jj(k),

either the parent of v has not changed and it is a branching node, or it has changed but still is a branching

node. Indeed, by definition of D(k). neither the nest ofv nor that ofparenr(v) can be refined in only one sin

gleton equivalence class. Thus, by the end of S1EP 1. the following alternatives are left.

1. The parent of v in 5(t) is identical to parent (v) in D(..!:). Since the nest of parem(v) could DOt have been

refined into only one singleton class, then parenr(v) must be a branching node in D(k-l). Thus this case

reduces to that where the nest ofparent (v) is nOl eligible.

2. The parent ofv in 5(1:) is not the parent cfv inD(t). Then parent (v) injj(k) is a branching node, and also a

node of D(k-l). ltv is a branching node in 5(1:), then there is no unary node between v and parenr(v) in DO:),

and the same holds true between any node in the nest of v and v. Ifv is an unary node in 5(1c), then lhe unique

child of v is a branching node. Since the current parent of v is also a branching node by hypolhesis, then

removing v in STEP 2 eliminates the only unary node existing on lhe path from any node in the nest ofv to

the closest branching ancestor of that node. 0

In order to specify which nests ofD(.l:-l) are eligible. we need to complete the roles for eligibility. In the

light of the preceding discussion. it is easy to see that, once a node has become the parent of an eligible nest, it

will not lose this propeny through the subsequent refinements (as long as it is not eliminated from the tree).

even though the nest itself may undergo changes. Moreover, the nests ofnodes created in producing D (.l:-I) are

eligible for the transition from D(.t-I) to D(.l:-2).

If the nest of D(t) rooted at v had a row R of BB all to itself, then the ttansformation undergone by this

nest in Step 1 can be accomplished by m processors in constant time, m being the number of children. Each

processor handles one child node.lt generates the split-label for that node using its LABEL and the ID tables.

Next, the processors use the row of BB assigned to the nest and the split-labels to partition themselves into

equivalence classes: each processor in the nest whose split-label has first component i competes to write the

address of its node in the i -th location of R. A represefllative processor is elected for each class in this way.

Singleton classes can be ttivially sparred through a second concurrent write restricted to losing processors

(after this second write. a representative processor which still reads its node address in R knows to be in a sin-
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gleton class). The representatives of each nonsingleton class create now the new parent nodes. label them with

the first component of their split-label, and make each new node accessible by all other processors in the class.

To conclude STEP 1, the processors in the same class update the labels of their nodes.

For STEP 2, the existence of more than one equivalence class needs to be tested. This is done through a

competition of the representatives which uses the root of the nest as a common write location, and follows the

same mechanism as in the construction of D~. If only one equivalence class was produced in STEP I, then its

representative performs the adjusnnent of label prescribed by STEP 2.

The above discussion suggests that, once each node of, say, D~=D(log"-l) is assigned to a distinct proces

sor, D(logn-2) could be produced in conslant time. The difficulty, however, is how to assign the nodes (notably,

the newly inserted ones) ofv(logn-2) in constant time. It turns out that bringing fewer processors into the game

leads to a crisp (re-)assignment strategy.

By definition, D(k) does not have unary nodes. Itis seen then that the manipulations of Steps 1-2 can be

operated in constant time by assigning m-I processors, rather than m to a nest of m nodes. The only addi-

tional assumption to be made is that. at the beginning, all m-1 processors have access to the unique node

which lacks a processor of its own. Before staning STEP I, the processors elect one of them 10 serve as a sub-

stitute for the missing processor. After each elementary step, this simulator "catcbes.up" with the others.

In view of Property I, this shows that n processors can achieve the first refinement of D:z:. As to the

assignment of the rows ofBB to the nodes ofD(k), simply assign the i -th row to processorPi. Then, whenever

Pi is in charge of the simulation of the missing processor in a nest, its BB row is used by all processors in that

nest

For any given value of k,let a legal assignment of processors to the nodes ofD(k) be an assignment that

enjoys Property I.

Theorem 2. Given a legal assignment of processors for D (k), a legal assignment of processors for D (k-l) can
be produced in constant time.

Proof. We give first a constant-time policy that re-allocates the processors in each nest ofD(k) on the nodes of

5(1;). We show then that our policy leads to a legal assignment for D(k-I).
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Let then v be the parent of a nest of D(k). A node to which a processor has been assigned will be called

pebbled. By hypolhesis, all but one of the children cfv are pebbled. Also, all children cfv are nodes of 5(k).

In the general case, some of the children of v in D(k) are still children of v in ii(le) I while others became chil

dren of newly insened nodes ~J.J.l2•... I J.lt. Our policy is as follows. At the end of STEP 1, for each node J.l,

of 5(k) such that all children of J.lr are pebbled, one pebble (say, the representative processor) is chosen among

the children and passed on to the parent In STEP 2, whenever a pebbled node v is removed. then its pebble is

passed down to the (unique) son J.L crv in jj(J:.).

Dearly, OUf policy can be implemented in constant time. To prove its correcmess, we need to show that

it generates a legal assignment for D (k-1),

It is easy to see that ifnode v is removed in the transition from D(k) to D(k-l), then the unique son J.l cfv

in jj(k) is unpebbled in 5(1:). Thus, in STEP 2. it can never happen that two pebbles are moved onto the same

node ofD (k-I).

By definition of D (k), the nest of node v cannot give rise to a singleton class. Thus at the end of STEP I,

either (Case 1) the nest has been refined in only one (nonsingleton) class, or (Case 2) it has been refined in

more than one class, some of which are possibly singleton classes.

Before analyzing these two cases, define a mapping f from the children in the nest of the generic node v-
of V(k) into nodes ofD(k-I). as follows. Ifnode ~ is in the nest ofv and also in D(k-l) then set J.l1 = f(J.l) = j.L:;

ifinstead J.l is not in D(k-l), let J.11 = f (J.l) be the (unique) son of Jl in j)(k).

In Case 1. exactly one node Jl is unpebbled.in j)(k). All the nodes ~"s are siblings in D(k-l) and, by our

policy, J.l' is pebbled in D(.I:-l) iff J.1 is pebbled in DCk).

In Case 2, node v is in V (1-1). Any node J.1 in the nest ofv is in 5(1). At the end of STEP 2, the pebble of

node J.l will go untouched unless J.l is in a nonsingleton equivalence class. Each such class generates a new

parent node, and a class passes a pebble on to that node only if all the nodes in the class were pebbled.. Thus, in

D(.I:-l), all the children of v except one are pebbled by the end of STEP 1. Moreover, for each nonsingleton

equivalence class, all nodes in that class but one are pebbled. At the end of STEP 2, for each node J.1 which

was in the nesl ofv in D(k), node Il' is pebbled iff Jl was pebbled at the end of STEP I, which concludes the

proof. 0
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4. STORING A SUFFIX TREE

In some advanced applications (cf., for example. [AP-83l, [AP-85a,bl, [LV-86]), Tz needs only to be

traversed bottom·up. The structure achieved for of D(O) would suffice for these tasks. Like any trie. however,

Tz is usually employed to perform dOWIlward searches, starting at its root. TIlis requires the insertion, for each

original directed edge {J.J....v) of D(O), of a matched downward edge (v,!!). Correspondingly, each node v must

now store appropriate dowrrward labels for all the downward edges originating from it. Such labels supply the

branching information needed in the course of a downward search in Tz of a string w. We examine two dif

ferent ways of defining such information. More precisely, let (i .t) be the label of the upward edge (j.L,v). One

way is to label the matched downward edge (v.ll) with the symbol of I that conesponds [0 Xi. This entails that

the branching decision at each node be driven by the symbol that occupies a certain position of w. The second

way is to use the value of IDj[Oj. To use this information during a search. an auxiliary table must have been

precomputed that maps each symbol of I into its corresponding ID.

In either case, the set of downward labels of each internal node ofTx can be stored using a linear list, a

binary me, or an array. Resorting to arrays enables searching for w in Tx in time 0 (I wI), but requires space

B(I/I'n) or 8(n 2
) (depending on the labeling convention adop~) to store Tx . Lists or binary tries require

only linear space for Tx • However, the best time bounds for searching w under the two labeling conventions

become O(lw Ilogll J) and O([w Ilogn), respectively. Such bounds refer to the implementation with binary

tries. For ordered alphabets, the bound 0 (Iw Ilog II [) extends also to the list implementation of the symbol

based downward labels. We describe below the trie implementation of symbol-labels and the array implemen

tation of ID -labels, since all the others can be derived from one of these two quite easily.

We show how to implemem symbol-based downward labels with tries, i.e., how to replace each original

internal node of D(O) with a binary trie indexing to a suitable subset ofI. This transformation can be obtained

in 0 (log II J) time using the lega;L assignment of processors that holds on D(O) at completion. We outline the

basic mechanism and leave the details as an exercise. We simply perform logl/l fuTtherrefinements ofDCO),

for which the ID tables are not needed. In fact, the best descriptor for a string of log II I bits or less is the

string itself. Thus, we let the processors in each nest partition their associated nodes into finer and finer

equivalence classes, based on the bit-by-bit inspection of their respective symbols. Oearly, a processor oecu-
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pying a node with upward label (i ,[) will use symbol Xi in this process. Whenever a new branching node v is

created. one of the processors in the current nest of v climbs to IJ.=father(v) and assigns the appropriate down

ward label to J.L. At the end. the processors assign downward labels 10 the ultimate fathers of the nodes in the

nest

Finally I we discuss the array implementation of ID -based downward labels. This representation shall be

needed in Section 6. We assign a vector of size n, called DUTy, to each node v of D(O). The vector OUTy

stores the downward edges from v as follows. If ~ is a son of v and the upward label of J.1 is (i ,l), a pointer to

Il. is stored in OUTy[JDi[O]]. It as an easy exercise to show that n processors legally assigned to n(O). and

equipped with SCn) locations each, can construct this implementation ofTz in constant time. In fact, the same

can be done with any D(J.:), but the space needed to accommodate OUT vectors for all refinements D(J:) would

become 8(n2Iogn). Observe that. since n processors cannot initialize 8(n~ space in o (logn) time. the final

collection of OUT vectors will describe in general a graph containing T;r plus some garbage. T;r can be

separated from the rest by letting the processors in each nest conven the OUT vector of the parent node into a

linked list. This task is accomplished b'ivially in extra 0 Oogn) time. The interested reader may refer to [FL

80]. For one of the applications of Section 6. however. we shall need the entire series of D(k.) implemented by

OUT vectors.

5. REDUCING THE SPACE

Both the preparation of D;r and its subsequent refinements need 8(n 2) space. Procedure Skeleton-tree

needs E>(n 2) space due to the array BB. which is used at each iteration q to partition the composite labels

(TID's) into equivalence classes. In any refining stage, the nest ofeach node v needs a distinct array of n loca

tions for partitioning the split-labels of the nodes in the nest into equivalence classes. In this section, we show

that both problems can be solved using only S(n l~ space, for any 0 <eS: 1, at the expense of a corresponding

slow-dovm proponional to lie.

We analyze the procedure Skeleton -tree first. Consider some substring w of x of length 29 , with q >0.

and letw =wlw2 with ]wII = IW21 =2q
-

1• LetN 1 andN2 be thelD's assigned by the procedure to WI and

W2' respectively. Recall that each of N I .N2 is an integer between I and n. The difficulty in creating the lD
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foew is that the pair eN I,NV may assume n2 values.

We show how to solve this problem using only 8(n I-f-E) space. We assume for simplicity that n t is an

integer, but it is easy 10 generalize our solution 10 the cases where n t is not an integer. We focus on comput

ing the ID of the string w above. The same manipulations are performed in parallel for all substrings of x of

length 2fl • The idea is to express Nz by its representation in the base nt . The coefficients (al,aZ, ... ,allJ

(least-significant coefficient first) ofthis representation are easily computed in liE steps as follows:

fori=l to liE do

begin

Qi f-N2 modnE

end

Iteration q of Skelewn -tree is now modified to contain liE subiterations. The input to subiteration B.

0= 1•...• lIE., is as follows:

(i) An ID for the pair consisting of the left subsDing and the o-l-wple (a}. ...,a&-I). lbis ID is a number

between 1 and n.

eE) TheJD as, i.e., a number between 0 and nt_I.

The output of subiteration 3 is an JD for lhe pair consisting of the left substring and the O-tuple (a 1•.•. ,as).

TIlls ID is a number between I and n.

The concurrent-write contests that take place within any subiteration of iteration q of the Skeleton-Tree

procedure are similar to the original ones. The only difference is that now an auxiliary array of size (n+l)xn£

suffices. Details are left to the reader. For any fixed 0 <e51 the total space requirements are bounded by

o (n '-><) and the IUIllling time by 0 ((IIE)logn )=0 (Jogn).

Our space reduction technique extends easily to the refining stages. We outline the main changes and

omit lhe tedious details. With reference to the generic intermediate tree D(,!;), we focus on the processors that

handle the nest of some node v. Recall that, in order to refine this nest, the processors partition their underly-
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ing nodes into equivalence classes, according to the first component of the split-labels. For this purpose, a row

of BB was used in our original construction, namely, the row assigned to the representative processor of the

nest. Assume instead that processorPi. i =1, ... ,n I is assigned only an array Ll1TLE -BB j consisting of n&loca

tions of the common memory, and letPj be the representative of the nest ofv. We perfann the partition of the

nest in lie subiterations, as follows. Fust. all processors in the nest compute the representation of the first

component of their split-labels in the base n t . There are n t possible values for the first coefficient of this

representation Thus, the processors in the nest can partition themselves in nt classes through a concurrent

write contest on LlTI'LE-BBj • In this way, each class elects a representative processor. The UTT'LE-BB

arrays associated with these representatives is similarly used to obr..ain a second refinement of the classes. This

refinement is based on the second coefficients in the representations of the split-labels in base n£. It should be

clear how to proceed with the remaining 11£-2 subilerations. For any fixed 0 < £~ 1 the total space require

ments are bounded by 0 (n 1"") and the running time by o«lIe)logn )=0 Oogn).

If the suffix tree is implemented by OUTv vectors, as needed in the next section, it would require 8(n 2)

space. However, we can reduce the space to 8((l/£)n 1+£)=8(n l+~ using the ideas of the space reduction

described above.

6. APPLICAnONS

In this section we describe some applications of our parallel suffix tree construction in the design of

efficient parallel algorithms.

Problem 1. On-line string matching: Suppose a string x =x 10 ••• •X,,_1'# is given in advance (for preprocess

ing). Answer as fast as possible (on-line) queries of the fOIID: "Does the string z =z" .. _•Zm (the pattern)

occur in x?"

Solution:

Preprocessing. Construct the suffix tree ofx#. In the course of the computation we save: (1) The logn bulletin

boards used in logn iterations of the procedure Skeleron-Tree. (2) All the intermediate trees D(k),

k=logn-I •...,O. Each of these intermediate trees is implemented by the vectors OUTVI defined in Section 4.

The computation of this step takes 0 Oogn) time using n processors.
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On-line Processing of the queries.

Step 1. Recall that in Section 2 we computed IDj[q] (i=l, ...,1l ;q=O•...,logn) for the string xii. The value

IDj[q] is a unique name of the substring Xi,··· ,Xj+2"_l' where IDj[q]=IDj[q] if

Xi.·· _ 'Xi+2._1=Xj•.•.• Xj+2·_1· We start the on-line processing with naming some of the substrings in the

pattern z. For q=o•...•LlogmJ •the subslrings we are naming are all subslrings whose length is zq which stan

at positions i. where i is a multiple of zq and i+2Q$m. The names are stored in the vectors PIDj [q]. (I.e.,

PID; [q J is the unique name of the Substring Zj, .•. , Zi+2'_I') The naming is done such that if two substrings of

length zq, one in z and the other in xJf • are equal then their names are equal too. For this, we compute the PID

labels using the same bulletin boards (BBs) used in the Skeleton-Tree procedure. (1bese BBs are saved in

the preprocessing stage.)

Step 2. Let PID IrLlogmJ ] (that is. the name of the prefix of z whose length is ZliogmJ) be k. Observe that if

none of JDj.[LIogmj ] is equal to k then the prefix of z whose length is Zliogm] does not occur in x. We con

clude that the answer 10 the query is NO. a.e., z does not occur in x.)

Suppose k=ID;[LIogmJ] for some l$iSn-l. We check whether NODE.t[llogmj] appears in D(logn-l).

Note that NODE.t[llogmj ] will not appear in D(logn-I) if and only if allihe subsnings of x whose prefix of

length ZLlogmJ is the same as Ihe prefix of z have also the same prefix oflength ZLlogm! +1. IfNODE.t[llogmj ]

appears in D (log,,-l) then we are guaranteed that it will appear also in D cLIOII't!) and we proceed to Step 3. This

is, since all the refinements D(logll-l)•...• DCLlogmJ ) deal only with substrings whose length is greater than

zL1osntl. Otherwise. i.e., NODE.t[llogmj ] does not appear in D(logll-I). we check whether z is equal 10

x,t, . - .•X.t-tm_1 letter by letter. This can be done in logm time using mllogm processors. The answer to the

query is YES if and only if the two strings are equal.

Step 3. We find a node v in the suffix tree such that z is a prefix ofW(v) (if such node exists). For this, we use

the vectors PTDi[q], of Step 1 and the DCq) trees, q=llogmj -1, ... ,D. of the preprocessing. Node v is found

using some notion of binary search in llogmj iterations.

Tteration q (q = llogmJ -1•...,0). Let v and z' be the input parameters of iteration q. (For iteration llogmJ-l

V=NODE.t[llogmj ] and z' is the suffix of z starting at position ZLlogm] +1.) The invariant property satisfied in

all the iterations is that v is a node in D(q+l) and z' is a SUbstring whose length is less than Zq+l. Our goal is to

."
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check whether z' follows an occurrence ofW(v). We work onD(q). There are two possibilities:

(Possibility 1) The node v appears in D(q). Possibility 1 has two subpossibilities. (Possibility 1.1) 2q is

larger than the length of z'. In this case we do nothing and the input parameters of the present iteration become

the input parameters of the next iteration. (Possibiliry 1.2) zq is less than or equal to the length of z'. Assume

that Z' stans at position j of z and b is the value stored in PIDj[qJ. If the entry OUTv[b] is empty then z

does nO[ occur in x. Otherwise, the input parameters of the next iteration will be the suffix of z' starting at

position 2q +1 and the node pointed to by OUTy[b].

(Possibility 2) The node v does not appear in V(q). This means that v had only one son in D (q+l) and so it was

omitted from D(q) (m Step 2 of refining D(q+l~. Let Il be the single son cfv in iiCq+1). Possibility 2 has two

subpossibilities. (Possibility 2.1) zq is larger than the length of z'. Assume that lhe LABEL of ~ in D(q) is

(i ,l). In this case z' occurs inx if and only if z' is a prefix OfX;+I_2'+I, . .. ,xi+l. We check this letter by letter

in logm time using mflogm processors. (Possibility 2.2) 2q is less or equal to lhe length of z'. We compare

IDj+I_2f+l [q] (the unique name of Xi+l-2'+I' ..•• .2';+1) to the unique name of lhe prefix of z' whose length is

2q
. If these names are different then z does not occur in.2'. Otherwise. the input parameters of the next itera

tion will be the suffix ofz' starting at position 2q+I and the node J.1.

Remarks. (a) We did not initialize the vectors OUTv' therefore it could be that we will get a wrong positive

answer. To avoid mistakes. every time we get a positive answer we explicitly check whether z really appears

in;r at the position given in the answer. 1bis can be done in LlogmJ time using mflogm processors as a last

step.

(b) The on-line computation can be extended to obtain additional infOImation about z. For example: (I) What

is the number of occurrences of z in x (2) In case there is more than one occurrence, what is the starting posi

tion of the first (or last or all) occurrence(s) of z in x. (3) What is the longest prefix of z which occurs in x.

Complexity. The preprocessing takes O(logn) time using n processors. Answering a query takes OOogm)

time using mflogm processors.

Problem 2. Finding the longest repeated substring in a string: Given a string.2' find the longest subsoing

which occurs in;r more than once.
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Solution: W (v) is defined in Section 2. Let IW(v) I be the length of W(v).

Step 1. Construct the suffix tree ofx# and find IW (v) I of each node v.

Step 2. Find the internal node v with the maximum IW(v) I field. The substring represented by the path from

the root to v is the longest repeated substring in x.

Step 2 can be carried out using the panillel algoriUun for finding the maximum given in [SV-81].

Complexiry. Step 1 takes O(logn) lime using n processors. Step 2 takes OOoglogn) time using nlloglogn

processors.

Problem 3. Approximate string matching: Suppose a string x I a pattern z and a parameter k are given. (Let n

(resp. m) be the length of x Crespo z ).) Fmd occurrences of z in x with at most k differences. We distinguish

three types of differences: (a) A letter in z corresp:mds to a different letter in x. (b) A letter in z corresponds

to "no letter" in x. ee) A letter in x corresponds to "no letter" in z.

Solution: [LV~86J gave both a serial and a parallel algorithm. for the problem. The present paper enables to

design an alternative panillel algorithm. which essentially consists of parallelizing the serial algorithm of [LV-

86]. The alternative panillel algorithm. is based on both the parallel prefix tree consb'Uetion, of this paper, and

parallel algorithm. for answering Lowest Common Ancestor (LCA) queries of [ScV-87]. In order to keep this

presentation short we refrain from describing this alternative algorithm in detail. lbis alternative parallel

algorithm for the approximate string matching problem runs in time 0 (k +logn) using n +m processors. Note

that the parallel algorithm of [LV-86] consists of two parts: (1) Analysis of the pattem (2) Analysis of the

text. Part 1 runs in OOogm) time using m 2 processors. Pan 2 runs in o(k+logm) time using n processors.

So, comparison of the performance of these two parallel algorithms depends on the relative values of n and m

and also on whether the pattern is given in advance for preprocessing.
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Figure 1

The suffix tree T;c for x=abaababaabtuIbaba#. For convenience, the arcs of T;c are labeled both with sub
strings of x and their associated descripmrs.
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Figure 2

Basic structure of the skeleton tree Dx for the string of Fig. 1. Solid points are used to
mark non-branching nodes. Such nodes are introduced while constructing D;t, but they
are also removed during the construction. Node labels are not reponed in the figure.
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Figure 3

No nest of the skeleton of Fig. 2 undergoes changes in the first refining stage. The present figure shows the
effect of the second refining stage. Parent nodes of the nests that were eligible at the inception of this stage are
shown solid. Among the effects of this stage, the old locus of abaa (shown smaller) is eliminated from the
tree. One more refining stage leads to the tree ofFig. 1.
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