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Abstract. A numerical approach to calculating nonlinear force-free fields is presented. The approach
is similar to Sakurai (1981) being a current-field iteration scheme using the integral solution to
Ampere’s law (the Biot–Savart law). However, the method of solution presented here is simpler than
Sakurai’s approach, in that the field is directly constructed on a grid without the intermediate solution
of a large system of nonlinear equations. The method also permits straightforward implementation
on parallel computers. Results of applying the method to a number test cases, including boundary
conditions with substantial currents, are presented.

1. Introduction

Solar coronal magnetic fields are the source of energy for solar flares (e.g., Priest
and Forbes, 2002), and play an important but incompletely understood role in
coronal heating. Direct measurement of the field in the corona is difficult (how-
ever, see Lin, Penn, and Tomczyk, 2000), and the most detailed information comes
from the influence of the field on magnetically sensitive lines at the photosphere
and in the chromosphere. There is considerable interest in techniques for recon-
structing the field in the corona based on these measurements. Accurate coronal
field reconstructions are even more important with the advent of a new generation
of ground- and space-based vector magnetographs, in particular SOLIS (Keller,
Harvey, and Giampapa, 2003), and the proposed Solar Dynamics Observatory and
Solar-B instruments.

A popular model for the magnetic field B in the solar corona is that it is force-
free, i.e., the field is assumed to satisfy the force-free equation

(∇ × B) × B = 0, (1)

as well as ∇ ·B = 0. Physically the force-free state corresponds to a static situation
in which the magnetic (Lorentz) force dominates over plasma forces. The force-
free Equation (1) may also be written

∇ × B = αB, (2)

where α is in general a function of position. Taking the divergence of this equation
gives the prescription
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B · ∇α = 0 (3)

which means that α is a constant along a field line.
The simplest force-free models are the potential field model (α = 0) and the

linear force-free model (α = constant). In these cases there are integral solutions
for the field in a volume in terms of the normal component of the field on the
boundary of the volume and the value of α, although in the linear case the solution
is not unique (e.g., Alissandrakis, 1981). These solutions are still widely used in
solar physics to model coronal fields, both for simple test cases, and using vector
magnetograph boundary data. However, the potential and linear force-free models
have serious deficiencies. For example, potential fields have no free energy, and
linear force-free fields generally have infinite energy in a half space.

Nonlinear force-free fields correspond to spatially varying α. In this case ana-
lytic solutions are only available for limited cases with specific symmetries (e.g.,
Marsh, 1996). The appropriate boundary conditions for existence and uniqueness
of a solution are not rigorously proven, although it is often argued that the normal
component of the field on the boundary together with the distribution of α over one
of the magnetic polarities is sufficient to determine a solution, provided all field
lines connect to the boundary (Grad and Rubin, 1958). Bineau (1972) demonstrated
that these boundary conditions ensure a unique solution for small values of α.

A variety of approximate numerical methods have been proposed for calculating
nonlinear force-free fields (for reviews see e.g., Sakurai, 1989; McClymont, Jiao,
and Mikić, 1997; Amari et al., 1997; for recent developments see, e.g., Wheatland,
Sturrock, and Roumeliotis, 2000; Yan and Sakurai, 2000; Li, Wang, and Wei, 2003;
Wiegelmann and Inhester, 2003). All methods are computationally intensive, and
it is fair to say that to date they are not routinely applied in solar physics.

One mathematically well-founded approach is current-field iteration (Grad and
Rubin, 1958), which can be summarized as the solution, at iteration k + 1, of the
linear equations

∇ × Bk+1 = αkBk (4)

and

(Bk+1 · ∇)αk+1 = 0. (5)

Equation (4) is an updating of the field at iteration k + 1 based on the current
distribution at iteration k. Equation (5) is a propagation of αk+1 along the updated
field lines, i.e., an updating of the current distribution. The proofs of existence and
uniqueness by Bineau (1972) are based on current-field iteration.

Sakurai (1981) presented a numerical scheme for implementing current-field
iteration. In this approach a number of field lines of an initial potential field are
traced, and the integral solution to Equation (4)

B(x) = µ0

4π

∫
dV ′J(x′) × x − x′

|x − x′|3 (6)
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(the Biot–Savart law), is used to calculate a perturbation to the potential field due
to currents added along the chosen field lines. To make the iteration procedure
computationally feasible, Sakurai adopted a set of nodal points along the chosen
field lines as the free parameters in the problem. A pair of nodal points defines the
axis of a current element. Requiring that the net field due to the Biot–Savart contri-
butions from all current elements is parallel to the axis at the centre of each current
element leads to a set of coupled nonlinear equations for the locations of the nodal
points. These equations were solved using the iterative quasi-Newton method. The
initial results produced by Sakurai were promising, but the method does not appear
to have been subsequently developed. McClymont, Jiao, and Mikić (1997) state
that the method does not converge for highly non-potential fields, and Amari et al.
(1997) suggest that this is related to the sensitive convergence properties of the
system of nonlinear equations.

Recently a different approach to current-field iteration has been formulated
(Amari et al., 1997; Amari, Boulmezaoud, and Mikić, 1999). In this case the
vector potential is used and the analog of Equation (4) is solved by discretization
and solution of a linear system of equations. This method has been shown to suc-
cessfully reconstruct a test solution (Amari, Boulmezaoud, and Mikić, 1999), and
has also been applied to vector magnetograph data (Régnier, Amari, and Kersalé,
2002). Amari et al. (1997) state that the vector potential is used to ensure that
the divergence of the field is zero. However, we note that the approach of Sakurai
(1981) also ensures this, since the divergence of Equation (6) is zero.

In this paper another implementation of current-field iteration is described,
which is closest to Sakurai’s method. However, the present method is simpler to
implement than the methods of Sakurai (1981) or Amari, Boulmezaoud, and Mikić
(1999) in that it does not involve the solution of a large system of nonlinear or
linear equations respectively – at each iteration the field is directly constructed
on a grid. A feature of the method is that it is straightforward to implement for
parallel computation. This is an important consideration because: (1) force-free re-
constructions are computationally intensive, in particular when applied to modern
high-resolution vector magnetograph data; and (2) parallel computers, in particular
distributed memory clusters are now widely available to solar researchers. A brief
description of the code and of preliminary results was given in Wheatland (2004).
This paper presents a more detailed account.

The layout of this paper is as follows. In Section 2 the computational method is
described. In Section 3 the results of applying the method to simple test cases are
presented, and in Section 4 the results are discussed.



250 M. S. WHEATLAND

2. Method

2.1. DESCRIPTION

The method is implemented on a cartesian grid [a gridpoint is here denoted x =
(x, y, z)], with the lower boundary (z = 0) representing the photosphere. Uniform
and equal grid spacings �x = �y = �z are assumed, with N gridpoints along
each dimension.

An initial potential field B0(x) is calculated for every gridpoint x based on given
boundary values Bz(x, y, 0). The other boundary values imposed are a set of values
αi (i = 1, 2, . . . ,M) of the force-free parameter at M lower boundary gridpoints
with positive polarity [a chosen set of points (xi, yi, 0) such that Bz(xi, yi, 0) > 0].
These points are taken to be the footpoints for current-carrying field lines.

The field line of the potential field starting from the position (xi, yi, 0) of foot-
point i is traced, using fourth order Runge–Kutta and linear interpolation of B0(x)

between gridpoints. Following Sakurai (1981), field line i is modelled as current-
carrying by assuming a sequence of short cylindrically symmetric current elements
between nodal points along the field line. It is also assumed that there is a mirror
image current-carrying field line in z < 0, so that a complete circuit of current
passes through footpoint i. A contribution �B1,i(x) to the field due to the current
circuit i is calculated at all gridpoints x using the Biot-Savart law (Equation (6)),
as follows. This field contribution is the sum �B1,i(x) = ∑

j �B1,i,j (x) over
contributions from each current element in the circuit (the current elements for
the given field line i are enumerated by j ). For gridpoints far from the centre of
current element j , the asymptotic form

�B1,i,j (x) = µ0

4π
Iilj

x − x′
j

|x − x′
j |3

(7)

of the Biot–Savart law is used, where lj is the vector joining the nodal points
defining the axis of current element j , x′

j is the centre of the current element, and
Ii is the total current along the field line. For gridpoints closer to x′

j the approach
of Sakurai (1981) is followed: the current density is assumed to follow a Gaussian
distribution Jj (rj ) = J0,j e

−r2
j /a2

j [where J0,j ≡ Ii/(πa2
j )] with respect the axis of

the current element, in which case the exact counterpart of Equation (6) is

�Bφ 1,i,j (x) = µ0Ii

2π

∫ ∞

0
dkJ1(krj )e

−a2
j k2/4×

×
{

e−k|zj | sinh(klj /2) (|zj | > lj/2)

1 − e−klj /2 cosh(kzj ) (|zj | < lj/2),

(8)

where rj , φj , zj are local cylindrical coordinates defined by the origin x′
j and the

axis lj . In practice we find that Equation (7) is accurate to a few percent provided
|x−x′

j | > f ×max(aj , lj ), where f ≈ 5. This means that the simple expression (7)
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can be used for the great majority of gridpoints, and the integral (8) need only be
evaluated for a relatively small fraction of gridpoints. The integral is evaluated us-
ing the trapezoidal rule. Finally it should be noted that, again following Sakurai, the
radius aj of the current elements is assumed to expand with neighboring field lines.
At the footpoint of the field line the radius a0 = (�x�y/π)1/2 is adopted. The cur-
rent along the field line is then Ii = πa2

0αiBz,0/µ0, where Bz,0,i = Bz(xi, yi, 0) is
the vertical component of field at the footpoint. For current element j the radius is
taken to be aj = (Bz,0,i/B‖,j )1/2a0, where B‖,j is the magnitude of the component
of field along the axis of the current element. This choice implies that the radius of
the current element expands with the field whilst conserving current.

The procedure described in the previous paragraph is repeated for all M field
lines, to produce a net contribution �B1(x) = ∑

i �B1,i(x) at every gridpoint x in
the box. Then the procedure is iterated. Fieldlines of the perturbed field B1(x) =
B0(x)+�B1(x) are traced starting from each footpoint (xi, yi, 0), and contributions
�B2(x) due to current along these field lines are calculated, leading to a net field
B2(x) = B0(x) + �B2(x). This procedure is repeated for K iterations, leading to
an estimate BK(x) for a force-free field, calculated at every gridpoint.

Before proceeding we highlight the distinction between the present method and
Sakurai (1981). In Sakurai’s approach nodal points along field lines are introduced
as the free parameters in the problem. This is presumably to avoid direct construc-
tion of the field at every gridpoint, which would involve evaluation of integrals
(Equation (8)) over every current element for every gridpoint. In the present method
the field is directly constructed, but the procedure is made computationally feas-
ible by introducing the asymptotic form (7), which greatly reduces the number of
integrals to be evaluated.

2.2. PARALLELIZATION

A feature of the present method is that the contributions �Bk,i(x) at iteration k

may be calculated independently for each of the M current-carrying field lines.
The physical basis for this is the trivial point that Ampere’s law is linear. This
provides a natural way to parallelize the method. The independent calculations
need to be synchronized when the sum �Bk(x) = ∑

i �Bk,i(x) is evaluated. This
is a common problem in parallel computing called sum reduction (e.g., Chandra
et al., 2001), which is straightforward to implement.

In the simplest implementation, each independent process or thread of the code
has a copy of the three-dimensional array Bk(x), which is used to trace field line i.
Each process then calculates its own three-dimensional array �Bk,i(x), based on its
field line. A master process synchronizes the addition of the �Bk,i(x). In practice
each process is given a subset of the M field lines, rather than just one field line,
and calculates the contribution due to field lines in that subset.

The method of parallelization is described in detail because it is different from
usual approaches. Typically codes are parallelized by decomposing the computa-
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tional grid, and having each process operate on a section of the grid. The present
method is simpler than such an approach and requires less inter-process communic-
ation. A disadvantage of the present approach is that each process must deal with
arrays as large as the total array, so sufficient memory must be available to each
process. The method of parallelization is discussed in more detail in Section 4.

3. Results

The method has been initially tested by application to a number of test cases,
including configurations similar to those presented by Sakurai (1981). The code
used is a parallel implementation using OpenMP (Chandra et al., 2001) run on an
eight-processor shared memory machine. The tests involve a grid with N = 100,
and a moderate number of current-carrying field lines (54).

For each test case the boundary condition on the normal component of B is
chosen to be the simple bipolar configuration:

Bz(x, y, 0) = B0 exp

[
−(x − x1+)2

2σ 2
− (y − y1+)2

2σ 2

]
−

−B0 exp

[
−(x − x1−)2

2σ 2
− (y − y1−)2

2σ 2

]
,

(9)

where (x±, y±) are the locations of the peaks in the field. The chosen values are
x+ = x− = 0.5, y+ = 0.6, y− = 0.4, and σ = 0.15, where the bar indicates
that these values are normalized in terms of (N − 1)�x, the size of the grid. (All
quantities in the code are non-dimensional, and where non-dimensional quantities
are referred to in the text, a bar is used. Magnetic fields are normalized in terms of
B0, the peak field strength.)

3.1. TEST CASE 1

First we consider a central current directed from the positive pole to the negative
pole of the bipole. In particular we consider the choice

αi =
{

C if Bz(xi, yi, 0) > 0.95B0

0 otherwise,
(10)

where C is a constant [note that αi is in units of the reciprocal of (N −1)�x]. This
configuration is similar to the ‘uniform α’ case considered by Sakurai (1981). In
the following we consider the choices C = 0.5, 1, 2, 3, 4, 8.

Figure 1 illustrates the boundary conditions, for a grid with N = 100. The grey-
scale background shows the distribution (9) of Bz(x, y, 0), and the small crosses
illustrate boundary points with αi = C. There are 54 points with positive values of
αi , so there are 54 current-carrying field lines in the calculation.
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Figure 1. Boundary conditions for test case 1.

Figure 2 is a visualization of the potential field which is the starting point for
each calculation. The view is from above the computational grid looking down,
and the value of the field in the lower boundary is indicated by the greyscale. A
number of field lines [starting from points with Bz(x, y, 0) > 0.75B0] are shown
for illustration.

For each choice of C, the code was run for a series of iterations, and the field
configuration at each iteration was examined using visualizations such as Figure 2.
The visualizations were used to judge whether the field had achieved an equilib-
rium configuration, where by ‘equilibrium’ we mean that field lines traced from
given starting points (e.g., the field lines shown in Figure 2) do not appear to alter
position between iterations. For C = 0.5, 1, 2 an equilibrium configuration was
achieved at 10 iterations. For C = 3 an equilibrium was achieved at 30 iterations.
For C = 4 the observed field lines were still oscillating slightly in position after
40 iterations, and for C = 8 no equilibrium was achieved in 50 iterations: the field
was observed to alternate between a sequence of very different configurations.

Figure 3 shows the equilibrium configuration achieved for the case C = 3,
which is the most non-potential case judged to have achieved an equilibrium. The
view matches Figure 2. A transparent isocontour for current density defined by the
set of points with J > 0.25Jmax is shown, to indicate the region of high current. A
twisted bipolar configuration is observed. This figure should be compared with
Figure 3(b) in Sakurai (1981). Sakurai’s figure suggests a weaker current than
Figure 3, although it is hard to make a quantitative comparison based on the inform-
ation in the paper. The appearance of Sakurai’s Figure 3(b) is comparable with the
results obtained with the present method for C = 1. The degree of non-potentiality
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Figure 2. Initial potential field configuration.

in the present calculation may be estimated as follows. For a straight flux tube
of length L a field line at radius r turns through an angle �φ = BφL/(Bzr) in
traversing the tube. Taking Bz = B0 and Bφ = µ0I/(2πr) with µ0I ≈ απr2B0

leads to �φ = Lα/2. For a flux loop we can take L ≈ πD/2, where D is
the distance between the footpoints of the loop. Hence we get �φ = παD/4.
For the calculation with C = 3 we have D ≈ 0.35 and α = 3, leading to
�φ ≈ 0.26π . This estimate was checked by tracing field lines of the field in
Figure 3. Specifically field lines originating at all boundary points (x, y, 0) with
0.75B0 < Bz(x, y, 0) < 0.95B0 were traced. The end point of each field line
(the point where it returns to z = 0) was determined, and compared with the end
point of the corresponding fieldline for the potential field. The angular displace-
ment of the two end points (current-carrying and potential) about the minimum
point of the boundary field was taken as the ‘twist’ of the field line. The aver-
age of the twist over the chosen set of field lines was found to be approximately
41 deg ≈ 0.23π rad.

Figure 4 gives a qualitative measure of how close to force-free the final configur-
ation shown in Figure 3 is. In this figure four field lines originating near the peak of
positive polarity in the boundary field are traced (dark tubes). The curl of the field
(which is proportional to the current density) has been numerically evaluated, and
the field lines of this field are also shown, for the same starting points (light tubes).
For an exact force-free field the magnetic field lines and the ‘current field lines’
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Figure 3. Visualization of field and current after 10 iterations for test case 1 with C = 3.

should coincide. The figure shows that the pairs of field lines slowly diverge from
their common starting points. The observed error is likely due to several effects
including the discretization of the current (the current and field of each current
element are only exactly parallel on axis), truncation error in the calculation of the
curl of the field, and errors due to interpolation of the field between gridpoints.
Nevertheless the slow divergence of the current and magnetic field lines suggests
that a fair approximation to a force-free field is being achieved.

A quantitative test of the success of the method was also applied. In the ideal
force-free state the angle θ = sin−1[|J×B|/(JB)] between the current density and
the magnetic field is everywhere zero. However, for points with small values of J

numerical estimates of this angle are not meaningful. Hence we consider the angle
only for gridpoints close to the current-carrying field lines, i.e., with large values of
J . In practice we calculate the average angle over points at which the magnitude of
the curl of of the field is greater than one quarter of CB0, which is a representative
large value of |curl B|.

Figure 5 shows the resulting average angles versus iteration, for the cases C =
0.5 (crosses), C = 1 (asterisks), C = 2 (diamonds) and C = 3 (triangles). The
equilibrium achieved in each case is reflected in the average angle approaching a
constant, at around 11, 9, 8, and 8 deg, respectively. We note that the angle is not
expected to become zero, e.g., due to the discretization of the current. However,
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Figure 4. Field lines for the magnetic field and for the curl of that field near the centre of the bipole,
for the configuration in Figure 3.

the observed values of the average angle suggest that a reasonable approximation
to a force-free field is being achieved in each calculation.

Figure 6 shows the average angle versus iteration for the cases C = 4 (crosses)
and C = 8 (asterisks), which did not achieve equilibria. For C = 4 the angle is
still oscillating slightly after 40 iterations. For C = 8 the angle cycles through
a sequence of values in subsequent iterations, and does not approach a constant
value. This behavior is reminiscent of the bifurcation from a single fixed point to
cycles observed in the iteration of simple one-dimensional nonlinear maps like the
logistic equation (e.g., Thompson and Stewart, 2002).

The calculations presented above are for a grid with N = 100, but it is in-
teresting to briefly consider results for other values of N . For example, for the
cases which achieve equilibrium, the final value of the average angle between
J and B is small but significant, and it is suggested that this is due to the fi-
nite grid. In that case the average angle should decrease with increasing N . To
investigate this question, 20 iterations of the case C = 3 were calculated for
N = 50, 75, 100, 125, 150, 175. Figure 7 shows the final value of the average
angle versus N as a linear–log plot. The angle is observed to decrease slowly with
increasing grid size, and a fit to a power law suggests an approximate N−0.3 de-
pendence. A second question is whether the equilibrium/non-equilibrium observed
in Figures 5 and 6 depends on N . To address this question 20 iterations of the
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Figure 5. Mean angles between J and B versus iteration, for test case 1 with C = 0.5 (crosses), 1
(asterisks), 2 (diamonds) and 3 (triangles).

Figure 6. Mean angles between J and B versus iteration for test case 1 with C = 4 (crosses) and
C = 8 (asterisks).

calculation with C = 8 were performed for N = 50, 75, 100, 125, 150. For each
case oscillations similar to those shown in Figure 6 were observed, suggesting that
the oscillatory behavior is independent of the size of the grid.

3.2. TEST CASE 2

As a second case we consider a central current which is directed from the positive
pole to the negative pole for a number of points in the boundary for which x >
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Figure 7. Mean angle between J and B after 20 iterations versus N for test case 1 with C = 3.

0.5, and is directed from the negative pole to the positive pole for a number of
points in the boundary for which x < 0.5, such that there is zero net axial current.
Specifically we consider the choice

αi =




C if Bz(xi, yi, 0) > 0.95B0 and xi > 0.5

−C if Bz(xi, yi, 0) > 0.95B0 and xi < 0.5

0 otherwise,

(11)

where C is a constant. This configuration is similar to the ‘antisymmetric-α’ case
considered by Sakurai (1981). In the following we consider the cases C = 0.5, 1,
2, 4, 8, 16. Figure 8 illustrates the boundary conditions (cf., Figure 1). The small
crosses (diamonds) indicate points with positive (negative) values of αi . Once again
there are 54 current-carrying field lines.

For C = 0.5, 1, 2, 4 equilibrium was achieved after 10 iterations, and for C = 8
a total of 30 iterations were required. For C = 16 the field configuration did not
reach an equilibrium after 50 iterations. Figure 9 shows the equilibrium configura-
tion for C = 8, the most non-potential case to achieve an equilibrium. A transparent
isocontour is shown for points with J > 0.25Jmax. In this case the configuration is
symmetric in the plane x = 0.5, and the non-potentiality shows up in the distor-
ted shape of the field lines. Hudson and Wheatland (1999) argued that nonlinear
force-free fields with symmetric boundary conditions in Bz but with antisymmetric
currents should be symmetric, and this calculation supports the argument. This
figure should be compared with Figure 4(a) in Sakurai (1981). Once again, the
present calculation appears to be more highly non-potential.

Figure 10 shows the average angle between J and B (as defined in Section 3.1)
versus iteration, for the cases C = 0.5 (vertical crosses), C = 1 (asterisks), C = 2
(diamonds), C = 4 (triangles), C = 8 (squares), and C = 16 (angled crosses).
For C = 0.5, 1, 2, 4, 8 (cases where equilibrium was achieved) the average angle
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Figure 8. Boundary conditions for test case 2.

Figure 9. Visualization of field and current after 30 iterations for test case 2 with C = 8.
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Figure 10. Mean angles between J and B versus iteration, for test case 2 with C = 0.5 (crosses), 1
(asterisks), 2 (diamonds), 4 (triangles), 8 (squares), and 16 (angled crosses).

approaches around 11, 9, 7, 7, and 7 deg, respectively. These results suggest that
a fair approximation to a force-free field is being achieved. For C = 16 the angle
decreases to around 13 deg but is still changing after 50 iterations.

Finally we consider the free energies of the calculated fields, for test cases 1
and 2, where by ‘free energy’ we mean the energy of the field minus the energy of
the initial potential field. Figure 11 shows the results for test cases 1 (diamonds)
and 2 (triangles), as log-log plots of free energy versus the value of C. For test case
1 the energies increase almost quadratically with C (exact quadratic dependence
is indicated by the dashed line), which is expected on the basis of simple circuit
models (e.g., Wheatland and Farvis, 2004). Specifically, the free energy of the field
may be written as E = 1

2

∑
i LiI

2
i +∑

i>j Mij IiIj , where Ii denotes the current on
the ith current carrying field line, and Li and Mij are self and mutual inductances
for the current circuits defined by the current-carrying field lines. We have Ii ∼ C,
and if the geometry of the field lines does not vary with the current then Li and Mij

are constant, leading to E ∼ C2. However, for highly non-potential situations we
expect the geometry of the circuits to depend on the current (Wheatland and Farvis,
2004), and hence the inductances will depend on the current. In this case quadratic
dependence on C is no longer expected, and this may account for the results for
test case 1 in Figure 11. Similar results are obtained for test case 2. The energies
for case 2 are less than those for case 1, which is expected because the mutual
inductance of oppositely directed current circuits is negative. The departure from
E ∼ C2 behavior is again observed for large values of C, which may be attributed
to dependence of the geometry of the current on the current.
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Figure 11. Free energies of fields for test cases 1 and 2.

4. Discussion and Conclusions

A method for calculating nonlinear force-free fields using current-field iteration
and the Biot–Savart law is presented. The method is initially similar to Sakurai
(1981) but differs in the way the problem is solved. In Sakurai’s method a system
of nonlinear equations is solved to determine the nodal points for a set of current-
carrying field lines. In the present method the field at each gridpoint is directly
calculated, based on a set of current-carrying field lines traced using the previous
iteration of the field. An important feature of this approach is that it is straight-
forward to parallelize, because field contributions due to different current-carrying
field lines add independently.

In this paper two test cases are considered, consisting of a bipolar magnetic
configuration with symmetric and antisymmetric boundary distributions of current.
The results of computations ranging from weakly non-potential to moderately non-
potential are considered in each case. The method produces equilibrium configur-
ations which are fair approximations to a force-free field for moderate numbers of
iterations, including when there are substantial currents. For the most non-potential
situations considered, equilibrium is not achieved. It is unclear whether this is due
to the non-existence of a force-free equilibrium in these cases, or to a failure of
the method. For the symmetric boundary conditions, the most non-potential case
for which an equilibrium was found corresponds to a twist of around 0.25π . Other
authors have reported force-free equilibrium configurations for bipoles carrying
larger currents. For example, Klimchuk, Antiochos, and Norton (2000) used the
magnetofrictional method to produce a configuration with a twist of 2π , although
the boundary conditions were somewhat different to the present case. It is difficult
to be definite on this point, given the absence of rigorous proofs of existence of
solutions to the problem at hand.
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The equilibrium configurations produced here are found to be reasonable ap-
proximations to a force-free state, judged by the average of the angle between
the current density and magnetic field over points with large current density. The
average is around seven degrees in the most non-potential cases. This result is for a
grid size N = 100, and the angle is shown to decrease slowly with increasing grid
size. It is argued that the finite value of the angle is due to discretization, although
we have not been able to find a simple analytic argument to account for the size of
the angle, or for the scaling of the angle with the number of grid points.

A point not discussed previously is the choice of a fixed value of αi for a given
footpoint at each iteration. The method of Sakurai (1981) also uses fixed values
of α. In the general current-field iteration scheme described by Equation (4) the
function αk at iteration k + 1 can presumably be chosen in any way provided that
the boundary values approach the required values for large k. McClymont, Jiao,
and Mikić (1997) suggest that currents should be increased gradually. The effect
of increasing αi at each iteration to approach the value required by the boundary
conditions will be investigated in future work.

In common with Sakurai’s method, the present method is limited by the number
of current-carrying field lines involved. In Sakurai’s implementation this limitation
was particularly restrictive, since the number of nonlinear simultaneous equations
to be solved is twice the number of nodal points along current-carrying field lines.
As a result the calculations in Sakurai (1981) involve only a small number of
current-carrying field lines. In the present method this limitation is somewhat less
restrictive because: (1) the method of solution is one of construction, and does not
involve the solution of a large system of equations; and (2) the field line calcula-
tions are performed in parallel. The calculations presented here involve a moderate
number of current-carrying field lines (54).

To pursue this point further, it is worthwhile to estimate the order of the two
methods (i.e., to estimate how the number of calculations involved in the problem
scales with the size N of the grid, in each case). In Sakurai’s method, the number
of current-carrying field lines may be taken to be f N2, where f is the fraction
of boundary points with a non-zero value of αi . Each current-carrying field line
will have of order N nodal points, leading to a total ∼ f N3 nodal points. The
method then involves solving a system of ∼ f N3 simultaneous equations, which is
a problem of order (f N3)3 = f 3N9 (Press et al., 1992). For comparison, consider
the present method. Once again each current-carrying field line has of order N

nodal points. The field at N3 points in the box needs to be calculated based on each
nodal point, so there are ∼ N × N3 = N4 calculations involved in this procedure.
Once again if we assume f N2 current-carrying field lines, then a serial version of
the method is of order f N6. The parallel version of the code should be considerably
faster. As an idealization (ignoring overheads involved in parallelization) if there
are M processes, then the method is of order f N6/M. This suggests that, for large
N , a small fraction f and/or large scale parallelization is required.
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The code used here is a parallel implementation of the method using OpenMP
(Chandra et al., 2001), which was run on an eight-processor shared memory ma-
chine. A code using the Message Parsing Interface (MPI; see, e.g., Gropp, Lusk,
and Skjellum, 1999), suitable for distributed memory computers, has also been
written and tested. The MPI version of the code will be used on a cluster to enable
calculations with substantially larger numbers of current-carrying field lines. This
is likely to be necessary, e.g., to apply the code to vector magnetograms.

There are many potential applications of the present method for calculating
force-free fields in solar physics (e.g., see the discussion in McClymont, Jiao, and
Mikić, 1997). A longer-term goal is to develop the code described here into a robust
tool for use by the wider solar physics community, to assist in the analysis of data
from the next generation of vector magnetographs.
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