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Abstract

Given a similarity graph between items, correlation clustering (CC) groups similar
items together and dissimilar ones apart. One of the most popular CC algorithms
is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and
obtains a 3-approximation ratio. Unfortunately, in practice KwikCluster requires
a large number of clustering rounds, a potential bottleneck for large graphs.

We present C4 and ClusterWild!, two algorithms for parallel correlation cluster-
ing that run in a polylogarithmic number of rounds, and provably achieve nearly
linear speedups. C4 uses concurrency control to enforce serializability of a par-
allel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is
a coordination free algorithm that abandons consistency for the benefit of better
scaling; this leads to a provably small loss in the 3 approximation ratio.

We demonstrate experimentally that both algorithms outperform the state of the
art, both in terms of clustering accuracy and running time. We show that our
algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while

achieving a 15 x speedup.

1 Introduction

Clustering items according to some notion of similarity is a major primitive in machine learning.
Correlation clustering serves as a basic means to achieve this goal: given a similarity measure
between items, the goal is to group similar items together and dissimilar items apart. In contrast to
other clustering approaches, the number of clusters is not determined a priori, and good solutions
aim to balance the tension between grouping all items together versus isolating them.

The simplest CC variant can be described on a
complete signed graph. Our input is a graph
G on n vertices, with +1 weights on edges be-
tween similar items, and —1 edges between dis-
similar ones. Our goal is to generate a partition
of vertices into disjoint sets that minimizes the
number of disagreeing edges: this equals the
number of “+” edges cut by the clusters plus
the number of “— edges inside the clusters.
This metric is commonly called the number of
disagreements. In Figure 1, we give a toy ex-
ample of a CC instance.

Entity deduplication is the archetypal motivat-
ing example for correlation clustering, with ap-

cluster 1 cluster 2

cost = (#“—" edges inside clusters) + (#“+” edges across clusters) = 2

Figure 1: In the above graph, solid edges denote simi-
larity and dashed dissimilarity. The number of disagree-
ing edges in the above clustering clustering is 2; we
color the bad edges with red.

plications in chat disentanglement, co-reference resolution, and spam detection [1, 2, 3, 4, 5, 6]. The
input is a set of entities (say, results of a keyword search), and a pairwise classifier that indicates—
with some error—similarities between entities. Two results of a keyword search might refer to the
same item, but might look different if they come from different sources. By building a similarity



graph between entities and then applying CC, the hope is to cluster duplicate entities in the same
group; in the context of keyword search, this implies a more meaningful and compact list of results.
CC has been further applied to finding communities in signed networks, classifying missing edges
in opinion or trust networks [7, 8], gene clustering [9], and consensus clustering [3].

KwikCluster is the simplest CC algorithm that achieves a provable 3-approximation ratio [10], and
works in the following way: pick a vertex v at random (a cluster center), create a cluster for v
and its positive neighborhood N (v) (i.e., vertices connected to v with positive edges), peel these
vertices and their associated edges from the graph, and repeat until all vertices are clustered. Beyond
its theoretical guarantees, experimentally KwikCluster performs well when combined with local
heuristics [3].

KwikCluster seems like an inherently sequential algorithm, and in most cases of interest it requires
many peeling rounds. This happens because a small number of vertices are clustered per round. This
can be a bottleneck for large graphs. Recently, there have been efforts to develop scalable variants
of KwikCluster [5, 6]. In [6] a distributed peeling algorithm was presented in the context of MapRe-
duce. Using an elegant analysis, the authors establish a (3 + ¢)-approximation in a polylogarithmic
number of rounds. The algorithm employs a simple step that rejects vertices that are executed in
parallel but are “conflicting”; however, we see in our experiments, this seemingly minor coordina-
tion step hinders scale-ups in a parallel core setting. In [5], a sketch of a distributed algorithm was
presented. This algorithm achieves the same approximation as KwikCluster, in a logarithmic num-
ber of rounds, in expectation. However, it performs significant redundant work, per iteration, in its
effort to detect in parallel which vertices should become cluster centers.

Our contributions We present C4 and ClusterWild!, two parallel CC algorithms with provable
performance guarantees, that in practice outperform the state of the art, both in terms of running
time and clustering accuracy. C4 is a parallel version of KwikCluster that uses concurrency control
to establish a 3-approximation ratio. ClusterWild! is a simple to implement, coordination-free
algorithm that abandons consistency for the benefit of better scaling, while having a provably small
loss in the 3 approximation ratio.

C4 achieves a 3 approximation ratio, in a poly-logarithmic number of rounds, by enforcing con-
sistency between concurrently running peeling threads. Consistency is enforced using concurrency
control, a notion extensively studied for databases transactions, that was recently used to parallelize
inherently sequential machine learning algorithms [11].

ClusterWild! is a coordination-free parallel CC algorithm that waives consistency in favor of speed.
The cost we pay is an arbitrarily small loss in ClusterWild!’s accuracy. We show that ClusterWild!
achieves a (3 + €)OPT 4 O(e - n - log?® n) approximation, in a poly-logarithmic number of rounds,
with provable nearly linear speedups. Our main theoretical innovation for ClusterWild! is analyzing
the coordination-free algorithm as a serial variant of KwikCluster that runs on a “noisy” graph.

In our experimental evaluation, we demonstrate that both algorithms gracefully scale up to graphs
with billions of edges. In these large graphs, our algorithms output a valid clustering in less than
5 seconds, on 32 threads, up to an order of magnitude faster than KwikCluster. We observe how,
not unexpectedly, ClusterWild! is faster than C4, and quite surprisingly, abandoning coordination in
this parallel setting, only amounts to a 1% of relative loss in the clustering accuracy. Furthermore,
we compare against state of the art parallel CC algorithms, showing that we consistently outperform
these algorithms in terms of both running time and clustering accuracy.

Notation G denotes a graph with n vertices and m edges. G is complete and only has +1 edges.
We denote by d,, the positive degree of a vertex, i.e., the number of vertices connected to v with
positive edges. A denotes the positive maximum degree of G, and N (v) denotes the positive neigh-
borhood of v; moreover, let C,, = {v, N(v)}. Two vertices u, v are termed as “friends” if u € N (v)
and vice versa. We denote by 7 a permutation of {1,...,n}.



2 Two Parallel Algorithms for Correlation Clustering

The formal definition of correlation clustering is given below.

Correlation Clustering. Given a graph G on n vertices, partition the vertices into an arbitrary
number k of disjoint subsets C1, . ..,Cy such that the sum of negative edges within the subsets plus
the sum of positive edges across the subsets is minimized:

k k k

= mi i ~(C;,C +(C. C.
OPT= min  amin . D> B (CuC)+D > E*(C.C))
Ub_jei={1,my =1 i=1j=i+1

where E and E~ are the sets of positive and negative edges in G.

KwikCluster is a remarkably simple algorithm that approximately solves the above combinatorial
problem, and operates as follows. A random vertex v is picked, a cluster C,, is created with v and
its positive neighborhood, then the vertices in C, are peeled from the graph, and this process is
repeated until all vertices are clustered KwikCluster can be equivalently executed, as noted by [5], if
we substitute the random choice of a vertex per peeling round, with a random order 7 preassigned to
vertices, (see Alg. 1). That is, select a random permutation on vertices, then peel the vertex indexed
by 7(1), and its friends. Remove from 7 the vertices in C,, and repeat this process. Having an order
among vertices makes the discussion of parallel algorithms more convenient.

C4: Parallel CC using Concurency Control.
Suppose we now wish to run a parallel version
of KwikCluster, say on two threads: one thread
picks vertex v indexed by 7 (1) and the other
thread picks u indexed by 7(2), concurrently.

Algorithm 1 KwikCluster with

7 = a random permutation of {1,...,n}
while V # 0 do
select the vertex v indexed by 7 (1)

AR A

Can both vertices be cluster centers? They can, Co = {v, N(v)} .
. . . Remove clustered vertices from G and 7
iff they are not friends in G. If v and u are con- end while

nected with a positive edge, then the vertex with
the smallest order wins. This is our concurency
rule no. 1. Now, assume that v and u are not friends in GG, and both v and u become cluster centers.
Moreover, assume that v and v have a common, unclustered friend, say w: should w be clustered
with v, or u? We need to follow what would happen with KwikCluster in Alg. 1: w will go with
the vertex that has the smallest permutation number, in this case v. This is concurency rule no. 2.
Following the above simple rules, we develop C4, our serializable parallel CC algorithm. Since, C4
constructs the same clusters as KwikCluster (for a given ordering ), it inherits its 3 approximation.
The above idea of identifying the cluster centers in rounds was first used in [12] to obtain a parallel
algorithm for maximal independent set (MIS).

C4, shown as Alg. 2, starts by assigning a random permutation 7 to the vertices, it then samples an
active set A of % unclustered vertices; this sample is taken from the prefix of 7. After sampling
A, each of the P threads picks a vertex with the smallest order in A, then checks if that vertex can
become a cluster center. We first enforce concurrency rule no. I: adjacent vertices cannot be cluster
centers at the same time. C4 enforces it by making each thread check the friends of the vertex, say
v, that is picked from A. A thread will check in attemptCluster whether its vertex v has any
preceding friends that are cluster centers. If there are none, it will go ahead and label v as cluster
center, and proceed with creating a cluster. If a preceding friend of v is a cluster center, then v is
labeled as not being a cluster center. If a preceding friend of v, call it u, has not yet received a
label (i.e., u is currently being processed and is not yet labeled as cluster center or not), then the
thread processing v, will wait on u to receive a label. The major technical detail is in showing that
this wait time is bounded; we show that no more than O(logn) threads can be in conflict at the
same time, using a new subgraph sampling lemma [13]. Since C4 is serializable, it has to respect
concurrency rule no. 2: if a vertex u is adjacency to two cluster centers, then it gets assigned to the
one with smaller permutation order. This is accomplished in createCluster. After processing
all vertices in A, all threads are synchronized in bulk, the clustered vertices are removed, a new
active set is sampled, and the same process is repeated until everything has been clustered. In the
following section, we present the theoretical guarantees for C4.



Algorithm 2 C4 & ClusterWild! createCluster (v):
clusterID(v) = 7(v)

1: Input: G, e f
: ’ oru € I'(v) \ Ado

§ (;Litzrigl(dlgm:permj&illiitffl‘?gn) = ZO} thl-SterID(u) = min(ClusterID(u), 71'('0))

4: while V # 0 do encor

5: A = maximum vertex degree in G(V) attemptCluster(v):

6: A =the firste- % vertices in V[x]. if clusterID(u) = oo and isCenter(v) then

7:  while A # () do in parallel createCluster (v)

8: v = first element in A end if

9: A=A—-{v} ) )
10: if C4 then // concurrency control isCenter(v): - . .
11 attemptCluster(y) f01: u € I'(v) do // check fl'-lemis (in order of ) ‘
12: else if ClusterWild! then // coordination free if 7(u) < .W(U) then /7 if they precede you, wait
13: createCluster(v) wait until clusterID(u) # oo // till clustered
]4: end if if isCenter(u) then
15: end while return 0 //a friend is center, so you can’t be
16:  Remove clustered vertices from V' and enflni(f! it

17: end while

. . end for
18: Output: {clusterID(1), ..., clusterID(n)} return 1 // no earlier friends are centers, so you are

ClusterWild!: Coordination-free Correlation Clustering. ClusterWild! speeds up computation
by ignoring the first concurrency rule. It uniformly samples unclustered vertices, and builds clusters
around all of them, without respecting the rule that cluster centers cannot be friends in G. In Clus-
terWild!, threads bypass the attemptCluster routine; this eliminates the “waiting” part of C4.
ClusterWild! samples a set A of vertices from the prefix of 7. Each thread picks the first ordered
vertex remaining in .4, and using that vertex as a cluster center, it creates a cluster around it. It peels
away the clustered vertices and repeats the same process, on the next remaining vertex in A. At
the end of processing all vertices in A, all threads are synchronized in bulk, the clustered vertices
are removed, a new active set is sampled, and the parallel clustering is repeated. A careful analy-
sis along the lines of [6] shows that the number of rounds (i.e., bulk synchronization steps) is only
poly-logarithmic.

Quite unsurprisingly, ClusterWild! is faster than C4. Interestingly, abandoning consistency does not
incur much loss in the approximation ratio. We show how the error introduced in the accuracy of the
solution can be bounded. We characterize this error theoretically, and show that in practice it only
translates to only a relative 1% loss in the objective. The main intuition of why ClusterWild! does
not introduce too much error is that the chance of two randomly selected vertices being friends is
small, hence the concurrency rules are infrequently broken.

3 Theoretical Guarantees

In this section, we bound the number of rounds required for each algorithms, and establish the
theoretical speedup one can obtain with P parallel threads. We proceed to present our approximation
guarantees. We would like to remind the reader that—as in relevant literature—we consider graphs
that are complete, signed, and unweighted. The omitted proofs can be found in the Appendix.

3.1 Number of rounds and running time

Our analysis follows those of [12] and [6]. The main idea is to track how fast the maximum degree
decreases in the remaining graph at the end of each round.

Lemma 1. C4 and ClusterWild! terminate after O (% logn - log A) rounds w.h.p.

We now analyze the running time of both algorithms under a simplified BSP model. The main idea
is that the the running time of each “super step” (i.e., round) is determined by the “straggling” thread
(i.e., the one that gets assigned the most amount of work), plus the time needed for synchronization
at the end of each round.

Assumption 1. We assume that threads operate asynchronously within a round and synchronize at
the end of a round. A memory cell can be written/read concurrently by multiple threads. The time



spent per round of the algorithm is proportional to the time of the slowest thread. The cost of thread
synchronization at the end of each batch takes time O(P), where P is the number of threads. The
total computation cost is proportional to the sum of the time spent for all rounds, plus the time spent
during the bulk synchronization step.

Under this simplified model, we show that both algorithms obtain nearly linear speedup, with Clus-
terWild! being faster than C4, precisely due to lack of coordination. Our main tool for analyzing C4
is a recent graph-theoretic result from [13] (Theorem 1), which guarantees that if one samples an
O(n/A) subset of vertices in a graph, the sampled subgraph has a connected component of size at
most O(log n). Combining the above, in the appendix we show the following result.

Theorem 2. The theoretical running time of C4 on P cores is upper bounded by
(0] (("H"T}Og" + P) logn - log A) as long as the number of cores P is smaller than min; x*-,

where - is the size of the batch in the i-th round of each algorithm. The running time of Cluster-
Wild! on P cores is upper bounded by O ((mTT" + P) logn - log A) .

3.2 Approximation ratio

We now proceed with establishing the approximation ratios of C4 and ClusterWild!.

C4 is serializable. It is straightforward that C4 obtains precisely the same approximation ratio as
KwikCluster. One has to simply show that for any permutation 7w, KwikCluster and C4 will output
the same clustering. This is indeed true, as the two simple concurrency rules mentioned in the
previous section are sufficient for C4 to be equivalent to KwikCluster.

Theorem 3. C4 achieves a 3 approximation ratio, in expectation.

ClusterWild! as a serial procedure on a noisy graph. Analyzing ClusterWild! is a bit more
involved. Our guarantees are based on the fact that ClusterWild! can be treated as if one was
running a peeling algorithm on a “noisy” graph. Since adjacent active vertices can still become
cluster centers in ClusterWild!, one can view the edges between them as “deleted,” by a somewhat
unconventional adversary. We analyze this new, noisy graph and establish our theoretical result.

Theorem 4. ClusterWild! achieves a (3 + €)-OPT +O(e-n-log? n) approximation, in expectation.

We provide a sketch of the proof, and delegate the details to the appendix. Since ClusterWild!
ignores the edges among active vertices, we treat these edges as deleted. In our main result, we
quantify the loss of clustering accuracy that is caused by ignoring these edges. Before we proceed,
we define bad triangles, a combinatorial structure that is used to measure the clustering quality of a
peeling algorithm.

Definition 1. A bad triangle in G is a set of three vertices, such that two pairs are joined with a
positive edge, and one pair is joined with a negative edge. Let Ty, denote the set of bad triangles in

G.

To quantify the cost of ClusterWild!, we make the below observation.

Lemma 5. The cost of any greedy algorithm that picks a vertex v (irrespective of the sampling
order), creates C,, peels it away and repeats, is equal to the number of bad triangles adjacent to
each cluster center v.

Lemma 6. Let G denote the random graph induced by deleting all edges between active vertices per
round, for a given run of ClusterWild!, and let T,.,, denote the number of additional bad triangles
that G has compared to G. Then, the expected cost of ClusterWild! can be upper bounded as
E {ZteTb 1p, + Thew } where P; is the event that triangle t, with end points i, j, k, is bad, and at
least one of its end points becomes active, while t is still part of the original unclustered graph.

Proof. We begin by bounding the second term E{T }, by considering the number of new bad
triangles Tycy,; created at each round i:

2
E {Tnew,i } < Z P(u,v € A;)-|N(u)UN (v)| < Z (i) 2:0; < 2v€2~§ < 2.

(u,0)€E (B N7



Using the result that ClusterWild! terminates after at most O(% lognlog A) rounds, we get that'
E {Toew} < O(e - n - log®n).

We are left to bound E {ZteTb 1p,} = > i, Pt~ To do that we use the following lemma.
Lemma 7. If p; satisfies Ve, Y ;. .cicq 2 < 1,then, >, py < - OPT.

Proof. Let B, be one (of the possibly many) sets of edges that attribute a +1 in the cost of an optimal
algorithm. Then, OPT = 3" 5. 12> 3 cne Dpecren, & = ey [ B« N2 22 0 B O
>1

Now, as with [6], we will simply have to bound the expectation of the bad triangles, adjacent to
an edge (u,v): 30, 1, ycrer, 1P Let Suw = Uy, vycrer; ¢ be the union of the sets of nodes of

the bad triangles that contain both vertices u and v. Observe that if some w € S\{u, v} becomes
active before u and v, then a cost of 1 (i.e., the cost of the bad triangle {u, v, w}) is incurred. On
the other hand, if either v or v, or both, are selected as pivots in some round, then C, , can be
as high as |S| — 2, i.e., at most equal to all bad triangles containing the edge {u,v}. Let A,, =
{u or v are activated before any other vertices in S,, ,, }. Then,

E[Cuo] = E[Cup| Auw] - P(Auw) + E [Cupwl AT ] - P(AS,)
<14(S]-2) PEu, v} NA#DSNA#D) <1+2|S|-PlonA#DSNA#D)

where the last inequality is obtained by a union bound over v and v. We now bound the following
probability:

P{ve A} - P{SNA#Dve A}  P{ve Al  P{ve Al
P{SNA#0Q} CP{SNA#£0} 1-P{SNA=0}

Observe that P {v € A} = £, hence we need to upper bound PP {S N A = (}. The probability, per
round, that no positive neighbors in S become activated is upper bounded by

(né?) :f[l(l_n_éw> _ (1_ IT__L,)LS _ l(l_ :)"/P] |SIn/P . <i)|8n/P.

Hence, the probability can be upper bounded as

P{ve ASNA#D} =

SIP{unA#0SNAF0} < - ¢ ¥/a

—e—clSi/a"

We know that |S| < 2- A +2andalso e < 1. Then, 0 < ¢- % <e-(2+ %) < 4 Hence, we have
E(Cyp) <1+2- m‘fﬁ. The overall expectation is then bounded by E {Z rer, 1P + rnew} <

(1 +2- %) “OPT +¢-n-In(n/d)-logA < (3+¢) - OPT + O(e - n - log? n) which establishes
our approximation ratio for ClusterWild!. O

3.3 BSP Algorithms as a Proxy for Asynchronous Algorithms

We would like to note that the analysis under the BSP model can be a useful proxy for the perfor-
mance of completely asynchronous variants of our algorithms. Specifically, see Alg. 3, where we
remove the synchronization barriers.

The only difference between the asynchronous execution in Alg. 3, compared to Alg. 2, is the com-
plete lack of bulk synchronization, at the end of the processing of each active set 4. Although the
analysis of the BSP variants of the algorithms is tractable, unfortunately analyzing precisely the
speedup of the asynchronous C4 and the approximation guarantees for the asynchronous Cluster-
Wild! is challenging. However, in our experimental section we test the completely asynchronous
algorithms against the BSP algorithms of the previous section, and observe that they perform quite
similarly both in terms of accuracy of clustering, and running times.

"We skip the constants to simplify the presentation; however they are all smaller than 10.



4 Related Work

Correlation clustering was formally introduced ~Algorithm 3 C4 & ClusterWild!
by Bansal et al. [14]. In the general case, min- (asynchronous execution)
imizing disagreements is NP-hard and hard to

1: Input: G

approximate within an arbitrarily small con- 2 clusterID(1) = ... = clusterID(n) = oo
stant (APX-hard) [14, 15]. There are two varia- 2: :rvhiea‘r/a’;g"g‘dp:rm”‘a“"“ of {1,...,n}
tions of the problem: i) CC on complete graphs  5: o = first element in V/
where all edges are present and all weights are 6 V=V —{v}
=41, and ii) CC on general graphs with arbitrar J: i C4 then /] concurrency control

5 l g grap y s: attemptCluster(v)
edge weights. Both problems are hard, how- 9: elseif ClusterWild! then // coordination free
ever the general graph setup seems fundamen- 10 createCluster(v)

. . 11:  endif
tally harder. The best known approx1mat10n Id-  12: Remove clustered vertices from V and 7

tio for the latter is O(logn), and a reduction to  13: end while

the minimum multicut problem indicates that 14 Output: {cluserID(1), ... , clusteriD(n)}.
any improvement to that requires fundamental

breakthroughs in theoretical algorithms [16].

In the case of complete unweighted graphs, a long series of results establishes a 2.5 approximation
via a rounded linear program (LP) [10]. A recent result establishes a 2.06 approximation using an
elegant rounding to the same LP relaxation [17]. By avoiding the expensive LP, and by just using the
rounding procedure of [10] as a basis for a greedy algorithm yields KwikCluster: a 3 approximation
for CC on complete unweighted graphs.

Variations of the cost metric for CC change the algorithmic landscape: maximizing agreements (the
dual measure of disagreements) [14, 18, 19], or maximizing the difference between the number of
agreements and disagreements [20, 21], come with different hardness and approximation results.
There are also several variants: chromatic CC [22], overlapping CC [23], small number of clusters
CC with added constraints that are suitable for some biology applications [24].

The way C4 finds the cluster centers can be seen as a variation of the MIS algorithm of [12]; the
main difference is that in our case, we “passively” detect the MIS, by locking on memory variables,
and by waiting on preceding ordered threads. This means, that a vertex only “pushes” its cluster
ID and status (cluster center/clustered/unclustered) to its friends, versus “pulling” (or asking) for its
friends’ cluster status. This saves a substantial amount of computational effort.

S Experiments

Our parallel algorithms were all implemented” in Scala—we defer a full discussion of the imple-
mentation details to Appendix C. We ran all our experiments on Amazon EC2’s r3.8xlarge (32
vCPUs, 244Gb memory) instances, using 1-32 threads. The real graphs listed in Table 1 were each

[ Graph [ # vertices [ # edges [ Description ]
DBLP-2011 986,324 6,707,236 2011 DBLP co-authorship network [25, 26, 27].
ENWiki-2013 4,206,785 101,355,853 2013 link graph of English part of Wikipedia [25, 26, 27].
UK-2005 39,459,925 921,345,078 2005 crawl of the .uk domain [25, 26, 27].
1T-2004 41,291,594 1,135,718,909 2004 crawl of the .it domain [25, 26, 27].
‘WebBase-2001 118,142,155 1,019,903,190 2001 crawl by WebBase crawler [25, 26, 27].

Table 1: Graphs used in the evaluation of our parallel algorithms.

tested with 100 different random 7 orderings. We measured the runtimes, speedups (ratio of run-
time on 1 thread to runtime on p threads), and objective values obtained by our parallel algorithms.
For comparison, we also implemented the algorithm presented in [6], which we denote as CDK for
short®. Values of € = 0.1, 0.5, 0.9 were used for C4 BSP, ClusterWild! BSP and CDK. In the interest
of space, we present only representative plots of our results; full results are given in our appendix.

2Code available at https://github.com/pxinghao/ParallelCorrelationClustering.
3CDK was only tested on the smaller graphs of DBLP-2011 and ENWiki-2013, because CDK was pro-
hibitively slow, often 2-3 orders of magnitude slower than C4, ClusterWild!, and even KwikCluster.
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Figure 2: In the above figures, ‘CW’ is short for ClusterWild!, ‘BSP’ is short for the bulk-synchronous variants
of the parallel algorithms, and ‘As’ is short for the asynchronous variants.

Runtimes & Speedups: C4 and ClusterWild! are initially slower than serial, due to the overheads
required for atomic operations in the parallel setting. However, all our parallel algorithms outper-
form KwikCluster with 3-4 threads. As more threads are added, the asychronous variants become
faster than their BSP counterparts as there are no synchronization barrriers. The difference between
BSP and asychronous variants is greater for smaller €. ClusterWild! is also always faster than
C4 since there are no coordination overheads. The asynchronous algorithms are able to achieve a
speedup of 13-15x on 32 threads. The BSP algorithms have a poorer speedup ratio, but nevertheless
achieve 10x speedup with € = 0.9.

Synchronization rounds: The main overhead of the BSP algorithms lies in the need for synchro-
nization rounds. As € increases, the amount of synchronization decreases, and with ¢ = 0.9, our
algorithms have less than 1000 synchronization rounds, which is small considering the size of the
graphs and our multicore setting.

Blocked vertices: Additionally, C4 incurs an overhead in the number of vertices that are blocked
waiting for earlier vertices to complete. We note that this overhead is extremely small in practice—
on all graphs, less than 0.2% of vertices are blocked. On the larger and sparser graphs, this drops to
less than 0.02% (i.e., 1 in 5000) of vertices.

Objective value: By design, the C4 algorithms also return the same output (and thus objective
value) as KwikCluster. We find that ClusterWild! BSP is at most 1% worse than serial across all
graphs and values of €. The behavior of asynchronous ClusterWild! worsens as threads are added,
reaching 15% worse than serial for one of the graphs. Finally, on the smaller graphs we were able
to test CDK on, CDK returns a worse median objective value than both ClusterWild! variants.

6 Conclusions and Future Directions

In this paper, we have presented two parallel algorithms for correlation clustering with nearly linear
speedups and provable approximation ratios. Overall, the two approaches support each other—when
(4 is relatively fast relative to ClusterWild!, we may prefer C4 for its guarantees of accuracy, and
when ClusterWild! is accurate relative to C4, we may prefer ClusterWild! for its speed.

In the future, we intend to implement our algorithms in the distributed environment, where syn-
chronization and communication often account for the highest cost. Both C4 and ClusterWild! are
well-suited for the distributed environment, since they have polylogarithmic number of rounds.
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