
Parallel d-D Delaunay Triangulations

in Shared and Distributed Memory

Daniel Funke
∗

Peter Sanders
∗

Abstract

Computing the Delaunay triangulation (DT) of a given

point set in R
D is one of the fundamental operations in

computational geometry. In this paper we present a novel

divide-and-conquer (D&C) algorithm that lends itself equally

well to shared and distributed memory parallelism. While

previous D&C algorithms generally suffer from a complex

– often sequential – merge or divide step, we reduce the

merging of two partial triangulations to re-triangulating a

small subset of their vertices using the same parallel algorithm

and combining the three triangulations via parallel hash table

lookups. In experiments we achieve a reasonable speedup on

shared memory machines and compare favorably to CGAL’s

three-dimensional parallel DT implementation on some inputs.

In the distributed memory setting we show that our approach

scales to 2048 processing elements, which allows us to compute

3-D DTs for inputs with billions of points.

1 Introduction

The Delaunay triangulation (DT) of a given point set
in R

D has numerous applications in computer graphics,
data visualization, terrain modeling, pattern recognition
and finite element methods [15]. Computing the DT
is thus one of the fundamental operations in geometric
computing. Therefore, many algorithms to efficiently
compute the DT have been proposed [23] and well
implemented codes exist [12, 20]. With ever increasing
input sizes, research interest has shifted from sequential
algorithms towards parallel ones [2, 4, 6, 9, 11, 15],
with shared memory parallelism for algorithms in two
dimensions receiving most of the attention. Distributed
memory algorithms however – as studied by Cignoni
et al. [9] and Lee et al. [17] – are required to cope with
triangulations exceeding the memory limitations of one
machine.

In this paper we present a novel divide-and-conquer
(D&C) DT algorithm for arbitrary dimension that lends
itself equally well to shared and distributed memory
parallelism and thus hybrid parallelization. Previous
D&C DT algorithms suffer from a complex – often

∗Karlsruhe Institute of Technology, Institute for Theoretical

Informatics, Algorithmics II. Email: {funke, sanders}@kit.edu

sequential – divide or merge step [9, 17]. We reduce the
merging of two partial triangulations to re-triangulating
a small subset of their vertices using the same parallel
algorithm and combining the three triangulations via
hash table lookups. All steps required for the merging
– identification of relevant vertices, triangulation and
combining the partial DTs – are performed in parallel.
Only minor modifications are required to adapt our
algorithm from a shared memory machine to a message-
based distributed memory cluster.

The rest of this paper is structured as follows: we
present a problem definition and a survey of related work
in Sections 2 and 3. Subsequently, our proposed shared
memory algorithm is described in Section 4. The modifi-
cations necessary to adapt our algorithm to a distributed
memory setting are presented in Section 5. Section 6
highlights some technical details of our implementation.
We evaluate our algorithms in Section 7 and close the
paper with conclusions and an outlook to future work in
Section 8.

2 Definitions

D-simplices are a generalization of triangles (D = 2) to
D-dimensional space. A D-simplex s is a D-dimensional
polytope, i. e., the convex hull of D + 1 points. The
convex hull of a subset of size m + 1 of these D + 1
points is called an m-face of s. Specifically, the 0-faces
are the vertices of s and the (D − 1)-faces are its facets.
Given a D-dimensional point set P = {p1, p2, . . . , pn}
with pi ∈ R

D for all i ∈ {1, . . . , n}, a triangulation T (P)
is a subdivision of the convex hull of P into D-simplices,
such that the set of the vertices of T (P) coincides with P

and any two simplices of T intersect in a common D − 1
facet or not at all. The union of all simplices in T (P) is
the convex hull of point set P. A Delaunay triangulation
DT (P) is a triangulation of P such that no point of P is
inside the circumhypersphere of any simplex in DT (P).
If the points of P are in general position, i. e., no D + 2
points lie on a common D-hypersphere, DT (P) is unique
[10].

A note on notation: we refer the set of vertices of
simplex s by vertices(s); the individual i-th vertex is
denoted verticesi(s). We employ a similar notation for

207 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

the set of neighboring simplices of s – neighbors(s) – and
an individual neighbor i – neighborsi(s).

3 Related Work

A survey of parallel DT algorithms in two and three di-
mensions for shared memory is given by Kohout et al. [15].
The proposed algorithms are either based on parallel incre-
mental insertion or a D&C approach. Parallel incremental
insertion algorithms are generally bootstrapped with a
sequentially obtained initial triangulation of a subset of
the input points. Subsequently, the rest of the points
can be inserted in parallel by identifying the surrounding
simplex for each point, removing it and re-triangulating
the resulting cavity with the inserted point and the facets
of the surrounding simplices [2, 7, 15]. The Delaunay
property of the re-triangulated region is ensured by per-
forming local flips [14, 15]. To avoid simultaneous access
to the same simplex during re-triangulation, locks need
to be employed. Various locking strategies are studied in
[2, 15]. The algorithm of Batista et al. is the basis for the
parallel DT algorithm found in the CGAL library [12].
This potential for contention renders parallel incremental
insertion very sensitive to the input point distribution
and limits the attainable speedup. Moreover, it requires
fine-grained communication, which is prohibitive in the
distributed memory setting. To avoid communication,
Lo [18] partitions the input points into zones. Each
zone is further subdivided into cells. Neighboring zones
exchange the points of their adjacent cells, to be able
to construct the triangulation without synchronization.
They report a speedup of ≈ 10 for 12 cores with shared
memory for uniformly distributed points, however no
comparison with other implementations are given.

A parallel D&C algorithm for DTs was first proposed
by Aggarwal et al. [1]. The input points are partitioned
into blocks, which are triangulated in parallel. These par-
tial triangulations are stitched together in an expensive
merge step, which can only be performed by one process-
ing element, thus limiting speedup. As non-Delaunay
simplices might be introduced to the triangulation dur-
ing stitching, corrective steps are required to restore the
Delaunay property. In the worst case, the necessary cor-
rections can spread throughout the entire triangulation
[15]. A different approach is pursued by Cignoni et al. for
three- and arbitrary-dimensional DTs [8, 9, respectively].
They divide the input by cutting (hyper)planes and firstly
construct the simplices of the triangulation crossing those
planes. The algorithm continues to build the triangula-
tion in the divided regions in parallel, no further merging
is necessary. However, their division step is expensive and
sequential and thus limits scalability. Chen [5] improves
on that by calculating the affected zone comprising the
set of simplices that are indeterminate, i. e., a point out-

side the convex hull of the sub-triangulation may still
influence them. The merging of two partial triangulations
can then be reduced to merging the affected zones. Using
a distributed memory setting, they report speedups of up
to 4.5 for clusters of 8 processing elements (PEs) and uni-
formly distributed points. Further studies on distributed
memory machines are presented by Lee et al. [17]. They
partition the input according to paths of Delaunay edges
obtained from a lower convex hull projection [4]. The
individual partitions can then be triangulated without
further merging. They report a speedup of ≈ 12 for a
machine with 32 PEs and a uniform distribution of input
points. To the best of our knowledge no algorithm has
been shown to scale well to clusters with hundreds of
PEs.

An entirely different approach is proposed by Chen
and Gotsman [6]. They localize the computation of the
DT by computing the Delaunay neighbors for each point
individually. This affords for almost linear speedup. It
remains to be seen whether their approach generalizes to
three and higher dimensions.

Fuetterling et al. [11] present a novel data structure
for D&C-based DT algorithms, the linear floating point

quad-tree (LFQT) based on the Morton codes of the input
point coordinates. The geometrical structure of the quad
tree allows for efficient subdivision of the input during the
recursive descent and its numerical structure minimizes
the need for exact arithmetic. Although their data
structure should generalize to arbitrary dimension, they
only report – very favorable – results for single threaded
as well as multi threaded performance for computing the
DT in two dimensions.

Table 1 provides an overview of the discussed
literature and compares some properties of the proposed
algorithms.

4 Shared Memory Algorithm

In this paper we present a novel D&C Delaunay trian-
gulation algorithm with a fully parallelizable merge step.
The merging of two partial triangulation relies on re-
triangulating a small subset of border points of both
triangulations with the same parallel DT algorithm. Bor-
der points are vertices of simplices that might violate the
Delaunay property for some point of the other partition
and hence need to be re-triangulated for a valid DT of
the combined point set. All steps necessary to identify
these points and to combine the two partial triangula-
tions with their border triangulation are fully parallelized.
Algorithm 1 outlines our algorithm, which is described
in the following. Refer to Figure 1 for a two-dimensional
example.

Given the set of input points P = {p1, . . . , pn} and a
recursion level r, if the number of points is below a certain

208 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 3-D d-D shared mem. dist. mem. speedup

Kohout et al. [15] ✓ ✗ ✓ ✗ 3.7 (4 PEs)
Batista et al. [2] ✓ ✗ ✓ ✗ 7 (8 PEs)
Lo [18] ✓ ✗ ✓ ✗ 10 (12 PEs)

Aggarwal et al. [1] ✗ ✗ ✓ ✗ theory
Cignoni et al. [8, 9] ✓ ✓ ✗ ✓ 3.4 / (16 PEs)
Chen [5] ✓ ✗ ✗ ✓ 4.5 (8 PEs)
Lee et al. [17] ✗ ✗ ✗ ✓ 12 (32 PEs)
Fuetterling et al. [11] ✗ ✗ ✓ ✗ 13 (16 PEs)

Chen and Gotsman [6] ✗ ✗ ✓ ✗ 7.5 (8 PEs)

this paper ✓ ✓ ✓ ✓ 260 (2048 PEs)

Table 1: Properties of DT algorithms proposed in this paper and related work. The speedup given is the maximum
reported by the authors for uniformly distributed points.

threshold or a recursion depth of logP for P processors
has been reached, an efficient sequential DT algorithm
is used to solve the base case. Otherwise, our recursive
divide-and-conquer algorithm is employed. Firstly, the
splitting dimension k is determined following one of
various schemes: a) constant, predetermined splitting
dimension; b) cyclic choice of the splitting dimension
– similar to k-D trees [3]; or c) dimension with largest
extend. The input points are then partitioned across
the selected dimension k according to the median point.
Both partitions are recursively triangulated in parallel,
yielding triangulations T1 and T2.

Subsequently, the border simplices B of both trian-
gulations are determined, starting from the convex hull of
T1 and T2. To identify the convex hull of a triangulation
efficiently, Shewchuk [20] introduces a vertex at infinity

that forms an infinite simplex with every facet of the
convex hull. We extend this concept by introducing a
vertex at infinity for each corner of the bounding box
of point set P, thus affording meaningful intersection
tests of infinite simplices with a partition’s bounding box.
The search for border simplices employs a parallel work
queue initialized with the infinite simplices of T1 and
T2. A simplex s belongs to the border of triangulation
Ti if its circumsphere intersects with the bounding box
of the other triangulation Tj , i 6= j, i. e., s might still
be influenced by a point in partition j. In that case,
s is added to B and all its neighbors are enqueued for
processing. A lock-free marking scheme is used to ensure
every simplex is processed at most once. After comple-
tion of the algorithm, all simplices of T1 and T2 not in
B are completely inside their respective partition and
are hence not susceptible to change due to points of the
other partition. The same criterion is used by Isenburg
et al. [13] and later Wu et al. [25] to define finalized

triangles of a partition in a streaming computation set-

ting, by Chen [5] to determine the affected zone and by
Lo [18] to determine cells of a zone to be exchanged with
neighboring zones. The vertices of all border simplices
are collected and recursively triangulated using the D&C
algorithm, yielding border triangulation TB .

The combined triangulation T is composed of sim-
plices from the partial triangulations as well as the border
triangulation TB . Non-border simplices of T1 and T2 can
be immediately added to T , as no point of the other
partition can lie within their circumsphere. The border
simplices B are discarded, since they potentially violate
the Delaunay property for some point of the opposite
partition. For a simplex sB ∈ TB to be added to T , one
of two conditions needs to be fulfilled: a) sB consists of
vertices from both partitions, or b) sB is contained within
one partition but replaces a previously found border sim-
plex. The first condition treats simplices crossing the
border of T1 and T2, which could not have been found be-
fore. As sB fulfills the Delaunay property with respect to
the border point set, it also fulfills it with respect to both
partition point sets [5]. The second condition re-adds
simplices of the border that have been confirmed to not
only fulfill the Delaunay property with respect to their
own partition but also with respect to the border point
set and hence the other partition [18]. If vertices(sB)
is fully contained in one partition but no simplex with
equal vertices has been previously found in the respective
partial triangulation, sB is discarded, as it must violate
the Delaunay property for a point of that partition not be-
longing to the border point set, following the uniqueness
of the DT for a point set in general position [10].

Simplices with equal vertices can be efficiently found
by using a hash table of the discarded border simplices.
The lookup key is a simplex hash hs(s) – the exclusive

209 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 1 Delaunay(P, r): shared memory parallel D&C algorithm

Input: points P = {p1, . . . , pn} with pi ∈ R
D, recursion level r

Output: Delaunay triangulation T

1: if n < N ∨ r = logP then ⊲ for P processors
2: return sequentialDelaunay(P) ⊲ base case

3: k ← splittingDimension(P)
4:

(

P1 P2

)

=
(

p1 · · · ps | ps+1 · · · pn
)

← divide(P, k) ⊲ partition points in dim. k

5: T =
(

T1 T2

)

←
(

Delaunay(P1, r + 1) Delaunay(P2, r + 1)
)

⊲ in parallel

Border triangulation:

6: B← ∅; Q← convexHull(T1) ∪ convexHull(T2) ⊲ initialize set of border simplices and work queue
7: parfor si,x ∈ Q do ⊲ simplex originating from triangulation Ti

8: mark(si,x) ⊲ only process each simplex once
9: if circumsphere(si,x) ∩ boundingBox(Tj) 6= ∅, with i 6= j then

10: B ∪= {si,x} ⊲ circumsphere intersects other partition ⇒ si,x is a borders simplex
11: for si,y ∈ neighbors(si,x) ∧ ¬marked(si,y) do ⊲ process all neighbors
12: Q ∪= si,y; mark(si,y)

13: TB ← Delaunay(vertices(B), r + 1) ⊲ triangulate points of border simplices

Merging:

14: T ← (T1 ∪ T2) \B; Q← ∅ ⊲ merge partial triangulations stripped from border
15: parfor sb ∈ TB do ⊲ merge simplices from border triangulation
16: if vertices(sb) 6⊂ P1 ∧ vertices(sb) 6⊂ P2 then

17: T ∪= {sb}; Q ∪= {sb} ⊲ sb spans both partitions
18: else

19: if ∃s ∈ B : vertices(s) = vertices(sb) then
20: T ∪= {sb}; Q ∪= {sb} ⊲ sb replaces border simplex

Neighborhood update:

21: parfor sx ∈ Q do ⊲ update neighbors of inserted simplices
22: for d ∈ {1, . . . , D + 1} do
23: if neighborsd(sx) 6∈ T then ⊲ neighbor not in triangulation anymore
24: C ← {sc : fd(sx) = fd(sc)} ⊲ candidates with same facet hash
25: for sc ∈ C do

26: if | vertices(sx) ∩ vertices(sc)| = D then

27: neighborsd(sx)← sc; Q ∪= sc ⊲ sc is neighbor of sx

28: return T

or of a hash value hv(·) of each vertex of s,

hs(s) :=
⊕

i<D+1

hv(verticesi(s)).

For a suitable hv(·), hs(·) is efficiently computable,
commutative and contributions of individual vertices
can be easily extracted. The latter two properties are
important for the subsequent neighborhood update. Refer
to Section 6 for details about the choice of hv(·).

Finally, the neighborhood-relations of the newly
inserted simplices need to be established. For each
neighbor d ∈ {1, . . . , D+1} of a simplex s it is determined
whether the currently designated neighbor is valid –
i. e., is not some placeholder value and still part of
triangulation T – or needs updating. In the latter case,

the simplex sn ∈ T is determined that shares the facet
opposite of verticesd(s) with s. Simplex sn is set as
the new neighbor and enqueued for updating itself. To
efficiently find candidates for neighboring simplices of a
given simplex s we employ a facet hash – denoted fi(s)
for the facet opposite the i-th vertex. The facet hash must
be independent from the order of vertices in s and should
be efficiently computable from hs(s). Thus, we exploit
the commutativity of hs(s) and the involutionarity of
exclusive or and let

fi(s) := hs(s)⊕ hv(verticesi(s)).

As only simplices of T1 and T2 neighboring the border
simplices B as well as simplices added to T from TB need
to update their neighborhood, we can efficiently maintain

210 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

P1 P2

(a) partitioning

T1 T2B

(b) partial DTs

TB

(c) border DT

T

(d) final DT

Figure 1: Example of a two-dimensional triangulation.
Infinite simplices are not drawn for clarity.

a facet lookup table during border detection and merging.
The convex hull of T is composed of the convex hull of
T1 and T2 without the simplices belonging to the border
plus the simplices of the convex hull of TB that have been
added to T . The necessary data structures can also be
efficiently maintained during merging.

5 Distributed Memory Algorithm

The previously presented divide-and-conquer algorithm
can be applied to a distributed memory model with
explicit message-based communication. The general
idea of the approach remains unchanged, only slight
modifications are required to account for the incomplete
information each processing element (PE) has about the
input points and hence the global triangulation.

Each of the P PEs holds a portion of the input
points, P = {P1, . . . ,PP } with Pi = {pi,1, . . . pi,ni

}. In
the following, we assume that a PE i belongs to exactly
one partition in each partitioning step, i. e., all its points
Pi are either on one side of the splitting plane or the
other. This holds naturally for e. g. geo-spatial data read
from pre-tiled files. Data not adhering to this assumption
require one additional all-to-all communication in the
first recursive descent to move the input points to their
respective PE.

Algorithm 2 presents the modified D&C algorithm

from the viewpoint of PE i. Variables subscripted with
�i denote variables local to PE i. A partition of nodes
is represented by set C, e. g. at recursion level zero
C = {1, . . . , P}. At a given recursion level, if the number
of input points in the current partition C lies below
a certain threshold or there is only one PE left in the
partition the base case Algorithm 3 is invoked to compute
the Delaunay triangulation of the points of C. In the
recursive case, the local minimum, maximum and median
of the input points are computed. These statistics are
gathered by all PEs of the partition to compute the global
values. The splitting dimension is determined according
to the global statistics, following the same schemes as for
the shared memory implementation. The partition C is
reduced toC′, containing only PEs on the same side of the
splitting plane as PE i. The recursive call with partition
C′ yields PE i’s local view T on the triangulation of
the points in

⋃

j∈C′ Pj – denoted DT (C′). It holds that
T = {s ∈ DT (C′) : | vertices(s) ∩ Pi| ≥ 1}, i. e., PE i

stores every simplex of DT (C′) that contains at least
one vertex from the input points of PE i.

Subsequently, the border simplices of the local
triangulation T are determined. The algorithm follows
the same principle as described in the previous section.
A simplex is added to the local border simplex set Bi

if its circumsphere intersects with the bounding box
of partition C \ C′, which can be computed with no
additional communication. As PE i only has a local view
T on DT (C′) and the border detection algorithm starts
its search from the convex hull of DT (C′) there might be
a simplex ŝ ∈ T which belongs to the border of DT (C′)
but is only reachable from the convex hull of DT (C′) via
a simplex ŝ′ of the convex hull only stored at PE j. That
is the case if vertices(ŝ) contains only one vertex from
Pi and vertices(ŝ′) is fully contained in Pj and hence
ŝ′ 6∈ T . As ŝ and ŝ′ are neighbors, at least one vertex of
ŝ is in Pj and therefore ŝ ∈ T at PE j. Thus, ŝ will be
identified as border simplex by PE j. To ensure every PE
is aware of all of its border simplices, a sparse all-to-all
communication within partition C′ is required, yielding
the updated set Bi = (∪j∈C′Bj) ∩ T .

Only PEs with nonempty set Bi need to participate
in the border triangulation. The border triangulation
follows the same algorithm as the main triangulation
with the reduced PE set CB . The merging of T and TB

is extended by the additional condition that a simplex
sB ∈ TB is only considered for addition to T if at least
one of its vertices lies in Pi. The further conditions are
the same as in the shared memory case.

The determination of the neighborhood relations
of the newly inserted simplices is also identical to the
shared memory case. However, as each PE only possesses
a partial view on the triangulation DT (C), not all

211 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 2 Delaunay(Pi,C): distributed memory parallel D&C algorithm

Input: point subset Pi = {pi,1, . . . , pi,ni
}, PEs of partition C

Output: local view T of Delaunay triangulation DT (
⋃

j∈C
Pj)

1: if Σj∈Cnj < N ∨ |C| = 1 then ⊲ base case
2: return DelaunayBase(Pi,C)

3: Si ← localVertexStatistics(Pi) ⊲ local min, max and median
4: Sall ← allReduce(Si,C) ⊲ global min, max and median
5: k ← splittingDimension(Sall)
6: pi = median(Si,k) ≥ median(Sall,k) ⊲ PE’s side of splitting plane in dim. k
7: C′ ← {j : pj = pi ∀j ∈ C} ⊲ set of all PEs on same side of splitting plane
8: T ← Delaunay(Pi,C

′) ⊲ triangulate own partition

9: Bi ← borderSimplices(T,C,C′) ⊲ simplices across splitting plane
10: Bi ← sparseAllToAll(Bi,C

′) ⊲ receive border simplices from neighboring PEs

11: CB ← {j : Bj 6= ∅ ∀j ∈ C} ⊲ PEs with non-empty border
12: if i ∈ CB then

13: TB ← Delaunay(vertices(Bi),CB) ⊲ triangulate border vertices
14: T ← merge(T, TB ,Bi,Pi,C

′) ⊲ slightly modified from Algorithm 1
15: Ui ← updateNeighbors(T,Q) ⊲ Ui set of performed updates
16: Uall ← sparseAllToAll(Ui,CB) ⊲ exchange neighbor updates
17: parfor

(

sx k n
)

∈ Uall do ⊲ simplex sx, neighbor no. k, neighbor simplex n

18: neighborsk(sx)← n

19: return T

neighbors of simplex s ∈ T can be determined by PE i

alone. Particularly, if vertices(s) contains only one vertex
from Pi, at least one of the neighbors of s will not be
stored at PE i. Therefore, each PE keeps track of the
updates it performs. In a sparse all-to-all communication,
information about the updates to a simplex s is send to
every PE that contains s in its local triangulation.

Distributed Base Case: Algorithm 3 details the
treatment of the base case in the distributed setting. If
there is only PE i left in partition C the points Pi are
triangulated on PE i using a sequential or shared memory
parallel algorithm. By setting the base case threshold
N in Algorithm 2 greater than maxj∈{1,...,P} |Pj |, |C|
will always be one in the first recursive descent and
each PE will triangulate its own input points locally.
Only in the recursive calls of delaunay(. . .) for border
triangulations can C contain more than one PE. In that
case, the PE in C with the lowest index is chosen as
master and receives the input points of all other PEs
in C. The master triangulates the gathered points and
broadcasts the simplices among the PEs of the partition.
The PEs then discard all simplices with no vertex in their
respective input point sets.

6 Implementation Details

This section highlights some aspects of our implementa-
tion of the previously proposed algorithms.1 While our
algorithms are implemented for arbitrary dimension, we
have only included base case algorithms for two- and
three-dimensional DTs at the moment.

The input points P = {p1, . . . , pn} with pi ∈ R
D are

stored in an array with theirD coordinates. A partition of
points consists of a list of indices into this array. To ensure
globally unique point indices in the distributed setting,
each PE i stores the global offset ov,i of its point array;
ov,i = Σj<i|Pj |. In addition to the main point array,
an auxiliary hash table of points is stored at each PE,
that holds the vertices of simplices not entirely contained
in Pi and points received in Algorithm 3. In shared
memory, the data structure of Fuetterling et al. [11]
seems to be applicable to speedup division of the input
points. However, due to unavailability of source code its
inclusion remains for future work.

Our triangulation data structure is extended from
Shewchuk [20]. Simplices are stored in an array, where
each simplex s consists of an ID, the D + 1 indices of its
points in the point array – vertices(s) – and D+1 indices
to its neighboring simplices – neighbors(s). The vertices
of a simplex are sorted by index; neighbors are stored such

1Source code available at https://github.com/dfunke/

ParDeTria.

212 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

https://github.com/dfunke/ParDeTria
https://github.com/dfunke/ParDeTria

Algorithm 3 DelaunayBase(Pi,C): base case for distributed DT algorithm

Input: point subset Pi = {pi,1, . . . , pi,ni
}, PEs of partition C

Output: Delaunay triangulation Ti of Pi

1: if |C| = 1 then ⊲ base case
2: return Delaunay(Pi) ⊲ shared memory DT algorithm

3: if i = minC then

4: P′ ← gather(Pi,C) ⊲ gather points from neighbors
5: T ′ ← Delaunay(P′) broadcast(T ′) ⊲ shared memory DT algorithm
6: else ⊲ all other PEs
7: send(Pi) receive(T ′)

8: T ← {s ∈ T ′ : | vertices(s) ∩Pi| ≥ 1} ⊲ filter simplices
9: return T

that neighbor i intersects s at the facet opposite vertex i.
In the distributed case, a PE i sets the upper logP bits of
its simplex IDs to i to obtain globally unique identifiers.
A triangulation data structure furthermore stores the
indices of the simplices of its convex hull, as these serve
as starting point for the border detection algorithm. To
allow fast merging of two partial triangulations, simplices
are stored in blocks. A base case triangulation results
in a single block of simplices with consecutive, globally
unique IDs. When merging T1 and T2 into a combined
triangulation T , T stores two pointers to the data blocks
of T1 and T2, along with their respective minimum and
maximum simplex ID in a binary search tree. After k

merge steps, this allows for random access to a simplex
in O(log k) time; scanning is still in O(1).

The vertex hash function hv(·) required for the
simplex and facet hash function needs to minimize the
expected number of collisions while being efficiently
computable. In our experiments we found that setting
hv(v) equal to the point index rotated by its lowest byte
value to suit our needs. Whether our algorithm would
benefit from a more sophisticated hash function, i. e.,
a provable universal hash function, remains for future
work. Concurrent hash table operations are at the heart
of the merging and neighborhood update algorithms.
The efficient, growable, concurrent hash table by Maier
et al. [19] is used in our implementation. We extended
their implementation to multisets for facet hash lookups
during neighborhood updates.

Intel’s Threading Building Blocks (TBB) library2 is
used for shared memory parallelization. Particularly, its
concurrent work queue is employed in the border simplex
detection and neighborhood update algorithms.

Geometric algorithms need to address the limited
floating-point precision of current hardware. Our pro-
posed D&C scheme relies on combinatorial computations
on hash values except for the detection of the border

2https://www.threadingbuildingblocks.org/

Distribution Points Simplices Runtime

shared memory

uniform 50 000 000 360 542 380 64 s
normal 50 000 000 361 877 812 83 s
bubble 50 000 000 361 638 812 70 s
ellipsoid 500 000 84 408 498 169 s
lines 10 000 122 396 140 292 s

CuZr 4 000 000 28 927 267 8 s
CuZr 100 000 000 634 926 984 148 s

distributed memory

uniform 2 048 000 000 22 112 081 080 92 s
normal 204 800 000 5 861 711 093 50 s

Table 2: Evaluated point sets and their resulting trian-
gulations. Shared memory runtimes are reported for 32
cores, distributed memory runtimes for 2048 cores with
4 cores per MPI process.

simplices of two partial triangulations. We use the fast
sphere-box overlap test of Larsson et al. [16] to determine
if the (hyper)-circumsphere of a given simplex intersects
with the bounding box of the opposite partial triangula-
tion. The test does not suffer from floating-point inaccu-
racies like the orientation- and inSphere-tests required
by the base case algorithm [21].

7 Evaluation

Batista et al. [2] propose three input point distributions
to evaluate the performance of their DT algorithm: N
points distributed uniformly a) in the unit cube; b) on
the surface of an ellipsoid; and c) on skewed lines.
Furthermore, Lee et al. [17] suggest normally distributed
input points around d) the center of the unit cube; and
e) several points within the unit cube – called “bubbles”.
All experiments are performed in three-dimensional space.

We furthermore test our algorithm with two real
world datasets from material science, where Voronoi

213 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

https://www.threadingbuildingblocks.org/

analysis is used in simulation studies of liquids, glasses
and solids to explore their atomic structure, e. g. the
characteristic arrangement of near neighbors of an atom
[22]. Amorphous Copper-Zirconium (CuZr) alloys are
used as benchmark compound in the field [24]; we evaluate
two 50/50 copper/zirconium system consisting of four
million and 100 million atoms.

Table 2 gives an overview of all evaluated point sets,
along with the size of their resulting triangulation.

The shared memory algorithm was evaluated on
a machine with dual Intel Xeon E5-2683 hexadeca-
core processors and 512GiB of main memory. We
use the sequential Delaunay triangulation algorithm of
CGAL 4.7 as base case in Algorithm 1 and compare
our implementation to the parallel DT algorithm of
CGAL [12]. In both cases, CGAL is configured to use
exact predicates.3

The distributed memory experiments were conducted
on InstitutsCluster II at the Steinbuch Centre for Com-
puting at Karlsruhe Institute of Technology. The cluster
contains 480 compute nodes with dual Intel Xeon E5-2670
octa-core processors and 64GiB of main memory, con-
nected by an InfiniBand 4X QDR interconnect. A single
job may use up to 128 nodes (≡ 2048 cores). OpenMPI
version 1.8.6 was used as message passing library.

7.1 Shared Memory Algorithm Figure 2 shows
the performance of our algorithm in comparison to
CGAL’s sequential and parallel Delaunay triangulation
for the aforementioned input distributions. The uniform,
normal and bubble distribution show good scaling be-
havior. The bubble distribution has few points near the
border of a partition and thus a low number of vertices
in the border triangulation. CGAL’s parallel incremental
insertion encounters low congestion in its locking, since
the vertices of one bubble are mostly handled by a single
thread due to spatial sorting [2]. Uniformly distributed
points have larger – but compact and even – border tri-
angulations, resulting in good load balancing between
the partitions. In contrast, normally distributed points
result in larger border triangulations around the center,
yet they profit from small cuts in the outer regions. When
using only a single socket of our test machine, our al-
gorithm performs on par with CGAL’s implementation.
For multiple sockets, however, we clearly outperform
CGAL. Our algorithm adapts well to the NUMA set-
ting, as – except for the final merge step – the entire
algorithm operates exclusively on socket-local data. Con-
trarily, CGAL’s incremental insertion algorithm requires
continuous communication between threads of the two
sockets.

3 CGAL::Exact predicates inexact constructions kernel

1 2 4 8 16 32
cores

0

1

2

3

4

5

sp
ee

d
u
p

Absolute Speedup Distributions

bubble

ellipsoid

lines

normal

uniform

Algorithms

D&C

CGAL

(a) absolute speedup over sequential CGAL

1 2 4 8 16 32
cores

0

1

10

100

t C
G

A
L
/t

D
&

C

Relative Speedup Distributions

bubble

ellipsoid

lines

normal

uniform

(b) relative speedup over parallel CGAL

Figure 2: Speedup of our shared memory D&C algorithm
and CGAL’s parallel DT implementation for various point
distributions.

The ellipsoid and skewed line distributions are specif-
ically tailored to be hard inputs for both implementations.
The former is hard due to its large convex hull, the latter
due to the quadratic number of simplices in the input size.
Both parallel implementations fall below the throughput
of the sequential reference. Our implementation’s per-
formance degrades less than CGAL for the ellipsoid, as
only the simplices of the convex hull whose circumspheres
intersect the splitting plane contribute to the border tri-
angulation, while CGAL suffers from high congestion on
the inner simplices of the ellipsoid. Congestion on the
inner simplices also leads to CGAL’s bad performance
for skewed lines. Our implementations suffers even more,
due to almost all simplices intersecting the splitting plane
for at least one cutting dimension.

Figure 3 shows the fairly regular structure of the
atoms of a CuZr alloy. This results in compact and even
cuts between the partitions of the triangulation similar
to uniformly distributed points. The scaling behavior is
therefore also comparable to this point distribution.

214 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Figure 3: Structure of an amorphous CuZr alloy. Copper
atoms are depicted in red, zirconium atoms in blue.

7.2 Distributed Memory Algorithm Figure 4
shows the weak scaling behavior of our distributed mem-
ory implementation. In the experiment each core pro-
cesses one million input points for the uniform distribu-
tion and 100k points for the normal distribution, due
to memory limitations at the central nodes described
below. We show the behavior for different configurations
of hybrid parallelization, ranging from one thread per
MPI process – i. e., one process per core with sequential
base case – to eight cores per MPI process – i. e., one
process per socket with our shared memory parallel D&C
algorithm as base case in Algorithm 3. We would have
expected one process per socket to yield the best results,
as this configuration is NUMA aware and requires the
least inter-process communication. Nevertheless, for uni-
formly distributed points, two cores per process show
the best performance with a speedup of ≈ 260 for 2048
cores. For the normal distribution, we attain a more
modest speedup of 18 for 2048 cores due to the lack of
load-balancing in our current implementation. PEs close
to the center of the distribution have a much higher work-
load than others, preventing larger speedup gains. If the
input points are not pre-partitioned, we observe a run-
time overhead for the additional all-to-all communication
of 10− 15% on average.

With increasing number of PEs and input size the
recursion depth increases. Thus, more border triangu-
lations are required to produce the global triangulation.
Furthermore, each PE needs to store more simplices that
are only partially contained in its original input point
set. This increases memory consumption per PE. In the
uniformly distributed setting, our measurements show
that while the total number of processed points grows
by three orders of magnitude going from one to 2048
PEs, memory consumption per core only increases by a

0

1

10

100

1000

p
o
in

ts
/s

·
1
0

4

Throughput and Memory Consumption

1 thread

2 threads

4 threads

8 threads

1 2 4 8 16 32 64 128 256 512 1024 2048

cores

1

2

m
em

/m
em

1
c
o
r
e

(a) uniform distribution

0

1

10

100

p
o
in

ts
/s

·
1
0

4

Throughput and Memory Consumption

1 thread

2 threads

4 threads

8 threads

1 2 4 8 16 32 64 128 256 512 1024 2048

cores

0

10

20

30

m
em

/m
em

1
c
o
r
e

(b) normal distribution

Figure 4: Throughput and memory overhead of our dis-
tributed memory algorithm in a weak scaling experiment.

factor of 2.2. For the normal distribution, the memory
increase exceeds a factor of 30. This is due to the large
number of points processed by the central PEs. Further-
more, PEs close to the center also have to store many
simplices only partially contained in their original point
set. Again, load-balancing would mitigate this issue. For
both distributions, the benefit of hybrid parallelization
is apparent, as more threads per MPI process result in
fewer processes, leading to reduced recursion depth in
the distributed algorithm.

8 Conclusions

We present a novel divide-and-conquer algorithm for com-
puting the Delaunay triangulation in arbitrary dimen-
sion, that reduces the merging of two subproblems to
re-triangulating a small subset of their vertices and us-
ing efficient hash table operations to combine the three
triangulations into one. All steps of the merging are par-

215 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

allelized. We are able to perform on par with or better
than CGAL’s parallel three-dimensional DT implementa-
tion in shared memory and show good scalability for our
approach in distributed memory up to 2048 cores and
two billion input points.

Future work will address flexible load balancing
and work division strategies aiming at small border
sizes. This will yield a more robust algorithm capable
of processing large realistic inputs from a variety of
fields. Furthermore, many of these inputs require periodic
boundary conditions, which need to be handled efficiently
by our algorithm.

References

[1] Aggarwal, A., Chazelle, B., Guibas, L.: Parallel
computational geometry. Algorithmica 3(1), 293–
327 (1988)

[2] Batista, V.H., Millman, D.L., Pion, S., Singler,
J.: Parallel geometric algorithms for multi-core
computers. Computational Geometry 43(8), 663–
677 (2010)

[3] Bentley, J.: Multidimensional binary search trees
used for associative searching. Communications of
the ACM 18(9), 509–517 (1975)

[4] Blelloch, E.G., Miller, L.G., Hardwick, C.J., Talmor,
D.: Design and implementation of a practical parallel
delaunay algorithm. Algorithmica 24(3), 243–269
(1999)

[5] Chen, M.B.: The Merge Phase of Parallel Divide-
and-Conquer Scheme for 3D Delaunay Triangulation.
pp. 224–230. IEEE (2010)

[6] Chen, R., Gotsman, C.: Localizing the delaunay
triangulation and its parallel implementation. In:
International Symposium on Voronoi Diagrams in
Science and Engineering (ISVD). pp. 24–31. IEEE
(June 2012)

[7] Chrisochoides, N., Sukup, F.: Task parallel imple-
mentation of the Bowyer-Watson algorithm. In:
International Conference on Numerical Grid Genera-
tion in Computational Fluid Dynamics and Related
Fields. pp. 773–782. North-Holland (1996)

[8] Cignoni, P., Montani, C., Perego, R., Scopigno, R.:
Parallel 3D Delaunay Triangulation. Computer
Graphics Forum 12(3), 129–142 (1993)

[9] Cignoni, P., Montani, C., Scopigno, R.: DeWall:
A fast divide and conquer Delaunay triangulation
algorithm in Ed. Computer-Aided Design 30(5)
(1998)

[10] Delaunay, B.: Sur la sphère vide. A la mémoire de
Georges Voronöı. Bulletin de l’Académie des Sci-
ences de l’URSS. Classe des Sciences Mathématiques
et Naturelles (6), 793–800 (1934)

[11] Fuetterling, V., Lojewski, C., Pfreundt, F.J.: High-
Performance Delaunay Triangulation for Many-Core
Computers. In: Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics. The
Eurographics Association (2014)

[12] Hert, S., Seel, M.: dD convex hulls and delaunay
triangulations. In: CGAL User and Reference
Manual. CGAL Editorial Board, 4.7 edn. (2015)

[13] Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J.:
Streaming Computation of Delaunay Triangulations.
ACM Transactions on Graphics 25(3), 1049–1056
(2006)

[14] Joe, B.: Construction of three-dimensional Delaunay
triangulations using local transformations. Com-
puter Aided Geometric Design 8(2), 123–142 (1991)

[15] Kohout, J., Kolingerová, I., Žára, J.: Parallel
Delaunay triangulation in E2 and E3 for computers
with shared memory. Parallel Computing 31(5),
491–522 (2005)

[16] Larsson, T., Akenine-Möller, T., Lengyel, E.: On
Faster Sphere-Box Overlap Testing. Journal of
Graphics, GPU, and Game Tools 12(1), 3–8 (2007)

[17] Lee, S., Park, C.I., Park, C.M.: An improved parallel
algorithm for delaunay triangulation on distributed
memory parallel computers. Parallel Processing
Letters 11, 341–352 (2001)

[18] Lo, S.: Parallel Delaunay triangulation in three di-
mensions. Computer Methods in Applied Mechanics
and Engineering 237-240, 88–106 (2012)

[19] Maier, T., Sanders, P., Dementiev, R.: Concurrent
hash tables: Fast and general?(!). In: Principles
and Practice of Parallel Programming (PPoPP). pp.
34:1–34:2. ACM (2016)

[20] Shewchuk, J.: Triangle: Engineering a 2D quality
mesh generator and Delaunay triangulator. Ap-
plied Computational Geometry Towards Geometric
Engineering 1148, 203–222 (1996)

[21] Shewchuk, J.: Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates.
Discrete & Computational Geometry 18(3), 305–363
(Oct 1997)

216 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[22] Stukowski, A.: Structure identification methods
for atomistic simulations of crystalline materials.
Modelling and Simulation in Materials Science and
Engineering 20(4), 045021 (2012)

[23] Su, P., Drysdale, R.L.S.: A comparison of sequential
delaunay triangulation algorithms. In: Symposium
on Computational Geometry (SCG). pp. 61–70.
ACM (1995)

[24] Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K.,
Ma, E.: Bulk metallic glass formation in the binary
Cu–Zr system. Applied Physics Letters 84(20),
4029–4031 (2004)

[25] Wu, H., Guan, X., Gong, J.: ParaStream: A parallel
streaming Delaunay triangulation algorithm for Li-
DAR points on multicore architectures. Computers
& Geosciences 37(9), 1355–1363 (2011)

217 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Definitions
	Related Work
	Shared Memory Algorithm
	Distributed Memory Algorithm
	Implementation Details
	Evaluation
	Shared Memory Algorithm
	Distributed Memory Algorithm

	Conclusions

