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Abstract Many fluid flows of engineering interest, though very complex in ap-
pearance, can be approximated by low-order models governed by a few modes,
able to capture the dominant behavior (dynamics) of the system. This feature has
fueled the development of various methodologies aimed at extracting dominant
coherent structures from the flow. Some of the more general techniques are based
on data-driven decompositions, most of which rely on performing a singular value
decomposition (SVD) on a formulated snapshot (data) matrix. The amount of ex-
perimentally or numerically generated data expands as more detailed experimen-
tal measurements and increased computational resources become readily available.
Consequently, the data-matrix to be processed will consist of far more rows than
columns, resulting in a so-called tall-and-skinny (TS) matrix. Ultimately, the SVD
of such a TS data-matrix can no longer be performed on a single processor and
parallel algorithms are necessary. The present study employs the parallel TSQR al-
gorithm of [1], which is further used as a basis of the underlying parallel SVD. This
algorithm is shown to scale well on machines with a large number of processors
and, therefore, allows the decomposition of very large data-sets. In addition, the
simplicity of its implementation and the minimum required communication makes
it suitable for integration in existing numerical solvers and data-decomposition
techniques. Examples that demonstrate the capabilities of highly parallel data-
decomposition algorithms include transitional processes in compressible boundary
layers without and with induced flow separation.
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1 Introduction

In order to develop a correct and encompassing understanding of fluid flows, a
detailed analysis of the observed flow phenomena is required. Ever growing high-
performance computing (HPC) capabilities and high-quality experimental equip-
ment have made studying complex flows possible, but at the same time, the sheer
quantity of data that numerical and experimental efforts produce, puts consider-
able strain on common algorithms used to extract and analyze the principal flow
structures and processes. This is particularly the case for data-driven decomposi-
tion techniques that involve the reduction and restructuring of the full data-matrix
into dominant modes by linear algebra techniques. This methodology has recently
been used in investigations of complex flows to either provide an explanation of
the essential behavior of the system, or to generate reduced-order models based
on a few dominant modes that optimally capture the full dynamics [2], [3], [4], [5],
[6].

Data-driven decomposition techniques rely solely on the underlying data-set,
thus rendering them applicable to numerical or experimental results alike and
making them useful and versatile for post-processing purposes. Proper orthogo-
nal decomposition (POD), for example, belongs to this class of methods, where
structures are ranked by their L2-content (energy, variance, etc.) and form an
orthogonal basis for the analyzed data-set. Often, more than one frequency is at-
tributed to each PODmode, since the optimization process is focused on the spatial
content of the data rather than on the time evolution. Balanced POD [2,7] is an
alternative to POD for input-output systems and constitutes a tractable method
for computing approximate balanced truncations of large-scale state-space sys-
tems used in flow control applications. Another example of a data-decomposition
technique is Koopman [8], [9] or dynamic mode [10] decomposition. The result
of this decomposition algorithm is a non-orthogonal basis, where each extracted
mode is associated with a specific frequency present throughout the data. DMD
has recently been applied to various flow configurations (see, for example, [9], [3],
[11]), extracting dominant frequencies from a given data-set. These data-driven
decomposition techniques have also been used to perform parametric studies on
dynamical systems going through bifurcation [12].

All of the above data-decomposition techniques contain a QR decomposition
of the data-matrix. Besides being a critical component of various algorithms, the
QR-factorization has a wide range of applications in many disciplines, from data-
mining to efficient storage and retrieval of high-dimensional data [13], from cos-
tumer recommender systems [14] to multiple-input and multiple-output (MIMO)
systems such as transmitters and receivers in radio transmissions [15]. In our case
of fluid flow analysis, the size of the gathered data (either from large-scale simula-
tions or highly resolved experimental measurements) or the synchronous processing
of composite or parameter-dependent data results in snapshot data-matrices with
an excessive number of rows (equal to the number of spatial or composite degrees
of freedom) but only a rather small number of columns (equal to the number of
snapshots). This type of matrices is referred to as tall-and-skinny (TS). The TS
data-matrix will eventually render the QR-based data-driven algorithms compu-
tationally expensive and ultimately prohibitive to execute on a single processor.
For this reason, it is necessary to design and implement a parallel routine for per-
forming the decomposition algorithm; this routine would eliminate the solution of
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a QR-decomposition of the full, large-scale data-set and consequently allow the
decomposition algorithm to remain computationally tractable.

Even though other implementations of the parallel QR algorithm for the pur-
pose of high-performance computing exist, for example, within the Trilinos [16]
suite of computational libraries, we propose an alternative parallel algorithm as a
stand-alone option that, due to its simplicity, can be more easily integrated into
the underlying flow solver and used for post-processing applications. The ultimate
goal of our undertaking is to propose an algorithm that shows good scaling over
a large number of processors and has a minimal dependence on external libraries,
making it easily adaptable to the underlying computing infrastructure.

We apply the proposed parallel algorithm to perform the QR-factorization,
which will be used as a basis for the singular value decomposition (SVD) which, in
turn, is needed for the data-driven POD and DMD decompositions. The algorithm
will be demonstrated and tested on data from direct numerical simulations of
transitional and turbulent boundary layers [17], with and without pressure-induced
separation, details of which are presented in Section 3.

2 Parallel algorithm

In this section we first introduce the parallel QR-decomposition algorithm that
is further used as a building block for the SVD-based data-driven decomposition
techniques. The algorithm for finding the singular values and singular vectors is
also described. The scaling of the developed algorithm is tested on up to 1024
processors. For the purpose of this study, the parallel SVD algorithm is used as
the initial step of performing DMD [10], hence, additional steps of parallelizing
the DMD-based decomposition is outlined. However, the developed SVD algorithm
can also be used to perform other SVD-based data-driven decompositions, such as
POD.

2.1 Parallel QR factorization

The QR-factorization and SVD are two fundamental decompositions that have
many applications in scientific computing and data analysis. The TSQR algorithm
of [1] represents the cornerstone of our parallel DMD algorithm; it was initially
applied in the context of DMD using the MapReduce programming framework
by [18]. A schematic of the algorithm is shown in Figure 1, and the algorithm
is presented in the appendix (algorithm 1). The algorithm first divides the data-
matrix into sub-matrices of the same column size and distributes them among
the processors. There are no restrictions on how to assemble and divide the data-
matrix, and a non-uniform breakup of the full data-matrix is conceivable. On each
processor, a QR-factorization is then performed on the respective sub-matrices
and the resulting upper-triangular matrices Ri are gathered into a single matrix,
R′. This gathering constitutes the only required communication step between all
processors in the full algorithm. An additional QR-factorization is then performed
by each processor on the resulting R′ matrix, which results in Q2 and R. The
matrix R is the final upper-triangular matrix of the desired QR-factorization of
the full data-matrix. Each processor then retains its respective portion of Q2, Q2i
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Fig. 1: Direct TSQR algorithm suggested by [18]. For simplicity four processors
are illustrated in the graph. The algorithm simply carries over, as demonstrated,
to larger number of processors.

with i = 1, · · · ,m, where m is the number of processors. Q2i is a square matrix
with the size of the number of snapshots. Multiplying the resulting Q2i by the
original Q1i’s of the sub-matrices yields the final Q of the full data-matrix, which
is already distributed among the processors.

2.2 Parallel singular value decomposition

Once the QR-factorization is performed, the singular value decomposition of the
data-matrix can be calculated in a straightforward manner by applying an addi-
tional SVD on the small matrix, R, resulting in (UR,Σ,Wt) = SVD(R), which is
performed by all the processors. The left-singular vectorsUi of the full data-matrix
are then computed by multiplying UR by the respective portion of the orthogonal
matrix Qi, already available on each processor, Ui = QiUR. The singular values
and the right-singular vectors are already stored in Σ, and Wt, respectively. The
described algorithm is also given in the appendix (algorithm 2).

In order to investigate whether the results of the parallel algorithm match
those of the serial one, a singular-value decomposition is performed on a data-
matrix consisting of 101 snapshots taken from a subdomain of a direct numerical
simulation (DNS) of a transitional boundary layer, studied by [17], with 128, 100,
and 128 grid points in the streamwise, wall-normal and spanwise directions, re-
spectively. Figure 2 compares the singular values obtained from the parallel and
serial algorithms; the results agree to within numerical round-off.

Figure 3 shows the scaling of the parallel algorithm as the number of processors
increases. This scaling also includes the preceding QR factorization. Each column
of the snapshot matrix consists of approximately eight million entries. This is the
maximum size of data which would fit on 64 processors (lower limit of the scaling
analysis). The maximum number of processors used for this scaling analysis is
1024. The figure shows that the scaling is near perfect for this case study.



Parallel QR algorithm for large-scale data-driven flow-field decompositions 5

0 10 20 30 40 50

10
1

10
2

10
3

10
4

Mode number

σ

Fig. 2: Comparison of the singular values of the serial to the parallel SVD algo-
rithm. ◦, serial algorithm; •(gray), parallel algorithm.
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Fig. 3: The speed-up of the parallel algorithm. − − −, linear scaling; –•– scaling
of the parallel algorithm.

To further analyze the scaling properties, the time spent on each portion of
the parallel decomposition algorithm — from QR-factorization to the final SVD
and DMD — is compared and reported in Table 1; we use a range of processors,
from a single unit to up to 64 units. Each snapshot consists of approximately
thirty million degrees of freedom, and data-matrix consist of eighteen snapshots.
This table shows that as the number of processors increases the required time for
performing the decomposition diminishes. There is about a factor of four speed-up
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Number of processors QR (s) SVD (s) Dynamic eigenvalues and eigenvectors (s)
1 40 20 30
16 10 4 8
32 5 3 4
64 2 1 3

Table 1: Comparison of the performance of the parallel QR-based algorithms to
the serial version.

when 16 processors are used compared to only one. When the number of processors
are increased further, each time by a factor of two, the required processing time
reduces by the same factor, respectively.

2.3 Dynamic mode decomposition

Once singular values and vectors of the full data-matrix are computed, the same
procedure as described in [10] can be followed. The data sequence of snapshots is
given by the matrix VN

1 (the snapshot matrix, VN−1
1 is the same as A, given in

previous sections):

V
N
1 = {v1, v2, · · · , vN}, (1)

where the column vectors vi denote the ith snapshot of the flow field containing,
e.g., the velocity field. If we assume that a linear mapping M connects snapshot
vi to the subsequent snapshot vi+1, we have

V
N
2 = MV

N−1
1 . (2)

Replacing the snapshot matrix by the singular values and vectors from the parallel
SVD and multiplying both sides by U∗ produces U∗MU = U∗VN

2 WΣ−1 ≡ S̃.
In order to compute S̃, U∗V

N
2 is initially formed on each processor separately and

the resulting small matrices are then added across all processors. Let yi and µi be
the ith eigenvectors and eigenvalues of S̃, respectively. We then have

U
∗
MUY = S̃Y = Yµ, (3)

and

MUY = UYµ, (4)

with Y containing (as columns) the eigenvectors yi and µ containing (on the
diagonal) the eigenvalues µi. The dynamic modes are then calculated as

Φ = UY. (5)

The final multiplication (Eq. 5) can easily be performed in parallel, by multiplying
each portion of U, Ui by the matrix Y. It can be deduced from Eqs. (2)-(5)
that, once the singular values are computed, the algorithm is parallelizable in
a straightforward fashion. Figure 4 shows a comparison of the eigenvalues of S̃,
evaluated via the serial and parallel algorithms. The subdomain is identical to the
one used in Section 2.2 to compute the singular values in Figure 2. The algorithm
describing steps (3 - 5) is given in the appendix (algorithm 3).
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Fig. 4: Comparison of the eigenvalues of S̃ using the serial and the parallel DMD
algorithm. ◦, serial algorithm; •(gray), parallel algorithm.

Nx Ny Nz No. (snapshots) No. (processors)
separated boundary layer 600 200 128 291 120
classical boundary layer 4096 240 512 101 1024

Table 2: Computational domain of the respective direct numerical simulations used
for the decomposition; total number of degrees of freedom per flow variable, per
snapshot for these boundary layer simulations with and without separation is 15
million and 0.5 Billion grid points, respectively.

3 Application to large-scale data-sets

In this section we apply the described algorithm to data from direct numerical sim-
ulations of transitional and turbulent boundary layers; the first case (section 3.1)
addresses the transition to turbulent fluid motion of a compressible, low-Mach
number boundary layer over a flat plate in the presence of a separation bubble,
while the second case (section 3.2) treats the classical transition process of a similar
flow regime over a flat plate.

The details of the computational domains and resolutions used for each data-
set are shown in Table 2. The extracted dynamics are then analyzed using the
DMD methodology. We should note that the size of the two data-sets renders
them too large to be decomposed without the parallelized algorithm introduced
above.

3.1 Transition to turbulence in a compressible separated boundary layer

The separated boundary layer, presented in this study, was first analyzed by [19]
using direct numerical simulation. The adverse pressure gradient, required to in-
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Fig. 5: Details of the separated boundary layer. (d) Skin-friction coefficient; −−−,
laminar profile; —–, skin-friction profile of the separated boundary layer.

duce separation, is produced by means of suction through the wall-normal velocity
at the top boundary, as proposed by [19]. This configuration was further employed
by [20] to assess the performance of large eddy simulation in predicting separation.
The computational domain and the governing equations used to conduct the direct
numerical simulation here are similar to that described in [20]. As demonstrated
in Figure 5(a) the presence of the separation bubble causes the boundary layer to
transition. In addition, the boundary layer following the reattachment is thicker
than the laminar boundary layer preceding the separation, as shown in Figure 5(b).
These observations agree well with the simulations of [19] and [20]. The length of
the separation bubble, estimated using Figure 5(d), ∆XSB = 1.4, is shorter than
the length predicted by [19]. The difference is due to a different suction profile at
the upper boundary. The solver employed in the current study is compressible, as
a result, the suction profile described in the incompressible framework of [19] is
augmented by blowing with similar shape and an opposite sign to keep the total
mass flux constant, and to allow the pressure gradient to relax back to zero away
from the blowing and suction region, as demonstrated by Figure 5(c). Due to the
added blowing, the separation bubble reattaches sooner than in the incompressible
simulation, where only suction is applied.

In order to analyze the dynamics of the laminar separation, DMD is applied on
two hundred and ninety equally spaced snapshots of the separating bubble. The
resulting eigenvalues and spectrum are shown in Figure 6, where six modes are
highlighted excluding the mean. These modes are selected using the sparsity pro-
moting algorithm of [21]. The full decomposition is performed using 120 processors
in 149 seconds.
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Fig. 6: Eigenvalues and the spectra of the dynamic modes of the separation bubble.
Modes selected by the sparsity promoting algorithm are highlighted in red.

The combination of the six selected modes encompasses the low-frequency dy-
namics of this separated flow, and can be further explained from the shape of
the modes and their effect on the mean profile, shown in Figure 7. Two slices
in x − z plane, at y = 0.5 on the top, and x − y plane, at z = 0.3 on the bot-
tom, are plotted. The combination of the two lowest frequency modes (2 & 3) are
shown in Figure 7(b). These modes are active on the shear layer with a wavelength
highlighted by the two circles in the bottom half of Figure 7(b). In addition, the
x − z slice (top half of the same figure) shows a pair of high and low velocity
streaks, in the region of 3 ≤ x ≤ 4, which resemble the legs of Λ-shaped vortices.
These Λ-shaped structures are present in many transitional flows, one of which
is described in the following section (K-type transition), and are characteristic of
the appearance of the secondary instabilities preceding turbulence. Two of these
structures are present in the spanwise length of the domain. These modes evolve
into elongated streak-like structures following the reattachment point. These two
modes contain the dynamics of shear layer oscillations including the presence of
Λ-shaped vortical structures, which evolve into streaky structures downstream.
The shape of the remaining modes is shown in Figure 7(c). In contrast to modes 2
& 3, these low-frequency modes are less pronounced at the edge of the shear layer
and become more active near the reattachment point, defining the dynamics of the
reattachment region. Moreover, these modes evolve into waves with certain wave-
length in the streamwise direction, illustrated in the top half of Figure 7(c), rather
than streaky structures. These wave-lengths manifest themselves in the form of
rollers appearing downstream of the separation bubble, visible in the bottom half
of Figure 7(a).

The modulation of the mean flow through these selected modes is plotted in
Figure 7(a). This figure shows that the combination of these modes constitutes the
flapping of the shear layer and the modulation of the reattachment line. Therefore,
a few DMD modes, extracted using the parallel decomposition algorithm, are able
to reconstruct the overall dynamics of the transitional region of the separated
flow. This example is used as a proof of concept, and in the following section the
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Fig. 7: (a) Modulated mean flow profile using the six selected modes. (b,c) show
the shape of the modes 2 & 3 and 4, 5, 6 & 7, respectively.

algorithm is tested on a large numerical data-set, where the parallelism is essential
in order to perform the decomposition.

3.2 Transition to turbulence in a compressible flat-plate boundary layer

The dynamics of the pre-turbulent region of the controlled transitional boundary
layer has previously been studied by [11]. Owing to the large size of the gen-
erated data-set and the goal to generate a reduced-order representation of the
late-transitional regime, the decomposition of the transitional flow fields had to be
limited to a rather small subregion, consisting of merely 0.3% of the full compu-
tational domain. Nonetheless, it could be demonstrated that a few low-frequency
modes are able to recover the Reynolds shear-stress close to the wall. Even though
the dynamics of the late-transitional regime had been captured by the study, there
remained the question whether and how the identified dominant low-frequency
modes connect to the fully turbulent regime further downstream. Using the par-
allel algorithmic extension, described above, and analyzing the full domain allows
us now to address this question and to study and track low-frequency structures
form the early laminar stage through transition into fully turbulent fluid motion.
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Fig. 8: Modal decomposition of the (fundamental) H-type transition. (a,b) DMD-
spectrum and amplitude distribution, indicating by filled symbols the dominant
low-frequency modes. (c,d) Wall-parallel slices of the streamwise velocity com-
ponent. The selected DMD modes correspond to the Tollmien-Schlichting and
subharmonic waves. The boxed region in (c) signifies the subdomain previously
studied in [11].

The domain used for applying the DMD algorithm consists of approximately half a
billion grid points. Both controlled transitions of (fundamental) K-type and (sub-
harmonic) H-type will be considered. The decomposition domain covers the full
streamwise extent, from low-amplitude disturbances to nonlinear breakdown into
the turbulent regime. The DMD modes of H-type transition, visualized by the
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streamwise velocity component, are discussed first. Hundred and one equispaced
snapshots are included in the data analysis; these snapshots span nearly two peri-
ods of the fundamental Tollmien-Schlichting wave. The eigenvalues of S̃ from the
dynamic mode decomposition are plotted in Figure 8(a). Two modes, mode 2 and
mode 3, are highlighted in the figure and are selected for further analysis, as they
describe a substantial part of the processed data sequence. The choice and ampli-
tudes of these modes are determined using the optimization algorithm described
in [21], and the resulting amplitude distribution is shown versus the detected fre-
quencies in Figure 8(b). As demonstrated in [11], these two modes coincide with
the fundamental Tollmien-Schlichting and subharmonic modes of the early transi-
tional regime. The spatial evolution of the two DMD modes at a fixed wall-normal
slicing plane is illustrated in Figure 8(c,d). The Tollmien-Schlichting wave is char-
acterized by its two-dimensionality, which is illustrated in Figure 8(d) at the initial
stage of the development of mode 2. However, as the flow approaches the nonlinear
stage of the transition scenario, the two-dimensionality of the Tollmien-Schlichting
wave breaks down, and the subharmonic wave exhibits a spanwise modification (or
secondary instability) at the upstream portion of the domain. The spanwise extent
of the domain is such that it comprises four wavelengths of the subharmonic wave,
and this can be noticed in the extracted mode of Figure 8(c), especially in the
streamwise region of 4.2 ≤ x ≤ 4.5. The subdomain studied by [11] extended from
5.5 ≤ x ≤ 5.8 and covered only one-fourth of the spanwise length (coinciding with
one wave-length of the subharmonic wave); the size of the previously analyzed
domain is indicated in Figure 8(c).

The shape of the modes extracted from our full data-set compares well in this
region to the low-frequency modes of the earlier subdomain analysis. This suggests
that the modes, representing the Tollmien-Schlichting wave and the subharmonic
disturbances in the early transitional region, develop further downstream and con-
nect to the low-frequency modes of the late-transitional regime studied in [11].

To gain a better understanding of the evolution of the modes in the down-
stream direction, we have extracted three cross-sectional slices at fixed streamwise
locations. Comparison of the streamwise slices in Figure 9(a,b) illustrates the three-
dimensional shape of the subharmonic disturbances versus the two-dimensional na-
ture of the Tollmien-Schlichting wave. These modes are reminiscent of the modal
shapes that are computed through linear stability analysis at this stage of the
transition process, since the amplitude of the disturbances is still relatively low.
As the modes evolve downstream, mode 2 maintains the spanwise wavelength of
the initial subharmonic wave. This is illustrated by the shape of this mode, de-
picted in Figure 9(c) and the alternating sign along the spanwise direction. Mode
3 evolves in a different manner: no alternating sign is observed in the shape of
the mode. Similarly, at the streamwise location x = 6.0, close to breakdown into
turbulence, the overall shape of the modes still resembles the behavior observed
farther upstream. Similar results can be observed by analyzing the (subharmonic)
K-type transition, and the shape of the extracted dominant dynamic modes agree
well with those presented in [11]. Now that we have identified the low-frequency
modes of interest in both transitional scenarios, we can analyze the persistence of
their shape within the whole domain, and well into the turbulent regime.

Comparing the development of these low-frequency modes into the turbulent
regime for the two transition scenarios of K- and H-type also allows the assessment
of the commonalities and differences these two scenarios and their principal struc-
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(a) Mode 2, x = 4.0 (b) Mode 3, x = 4.0

(c) Mode 2, x = 5.0 (d) Mode 3, x = 5.0

(e) Mode 2, x = 6.0 (f) Mode 3, x = 6.0

Fig. 9: Contours of the streamwise velocity of modes 2 and 3, for H-type transition.

(a) H-type transition normalized by x0, where Re|x0
= 105.

(b) K-type transition normalized by x0, where Re|x0
= 105

Fig. 10: Contours of the streamwise velocity showing the development of the lowest-
frequency mode (mode 2) for the H- and K-type compressible boundary layer
transition.
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tures pose. To this end, the evolution of mode 2 is compared for the K- and H-type
transition in Figure 10. K-type transition is characterized by the appearance of
aligned Λ-shaped vortices in the late stages of transition, whereas these vortices
appear in a staggered format during H-type transition. This characteristic is also
reflected in the spatial shape of the DMD modes for the transitional regime. The
trace of these Λ-vortices can be clearly seen in the low-frequency modes of the
K-type transition at x ≈ 2.5 and of the H-type transition at x ≈ 5.0. These loca-
tions coincides with the streamwise location at which the skin-friction coefficient
diverges from the laminar value as shown in [17]. The streamwise distance between
the place where three-dimensional effects become visible to where the mode ceases
to be spanwise periodic is markedly smaller in the K-type than in the H-type
transition. This feature can be attributed mainly to the higher-amplitude initial
disturbances that are introduced into the computational domain for the K-type
transition, causing the region of nonlinear growth to shorten and the breakdown
to turbulence to occur more rapidly. Although the spatial development of these
modes depends on the specifics of the transition scenario, in the region where the
flow is fully turbulent the differences between the two modes diminish [17]. In both
transition scenarios the modes are predominantly composed of streaky structures
in the streamwise direction. The shape, size and spacing of these streaks are similar
to what has been reported for streaks in the buffer layer of turbulent wall-bounded
flows. This is to be expected as the slices are taken from the buffer layer region
of the turbulent boundary layer for both cases. These results suggest that low-
frequency modes of dynamical importance in the late-transitional regime capture
the streaky structures that characterize the buffer layer in the turbulent regime,
and that these structures are independent of the transitional scenario preceding
turbulence.

4 Summary and conclusions

A parallel QR algorithm for tall-and-skinny matrices has been embedded in com-
mon data-driven flow-field decomposition algorithms. The algorithm relies on a
division of the data-matrix into submatrices along the row coordinate. The sub-
matrices, sent to the available processors, are QR-decomposed locally, after which
an additional QR-decomposition has to be performed and distributed to all proces-
sors, which determines the manner in which the local decompositions are assem-
bled into the final result. The parallel version of the full decomposition allows the
processing of very large data-sets, which could arise (i) naturally from large-scale
simulations with many degrees of freedom or (ii) artificially, e.g., from composite
data-sets or bifurcation studies where the embedding of multiple variables and/or
parameter values inflates the state vector.

As numerical simulations for complex processes with a wide range of spatial and
temporal scales become more and more commonplace, data sequences produced by
these simulations dramatically increase in size. At the same time, decomposition
and post-processing algorithms become evermore essential in the analysis of these
large data-sets and in the reduction to a few coherent features and dominant
processes contained in the snapshot sequence. The proposed algorithm and its
variants scale well on a parallel architecture and can thus aid in the interpretation
and analysis of large-scale fluid simulations.
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Two applications have been included to illustrate the parallel algorithm and
its advantages; both are transitional boundary layers. The first application treats
a transitional boundary layer that exhibits a local separation bubble due to an
imposed freestream pressure-gradient variation. The second application has been
analyzed previously, though only in a very limited spatial region; this case has been
included to assess the validity and prevalence of the earlier results when the far
larger domain is treated by the parallel algorithm. In both cases, the transition re-
gion — spanning the laminar state, the rise of primary and secondary instabilities,
and their ultimate breakdown — can be processed in its entirety which permits
us to link upstream influences to downstream effects. In the case of the separated
flow, the flapping of the shear layer and the dynamics of the reattachment region is
captured using six low-frequency DMD modes. Furthermore, as far as the second
transition scenario is concerned, the link between the dominant instability modes
upstream and low-frequency streaky motion downstream in the turbulent region
was illustrated by decomposing the entire domain.

Beyond the examples shown here, the parallel version of the data-driven de-
composition techniques should appeal to a wide range of applications where mas-
sive data-sets need to be analyzed and the extraction of pertinent, but reduced
information is critical for our understanding of the underlying flow physics.
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Algorithm 1: finds the Qi and R matrices

Input: A
(1→N)
i

data-matrix, dispersed on each processor
Output: Qi and R, the orthogonal and upper-triangular matrices
/* NT : total number of data-points on each processor */

/* Ns : number of snapshots */

/* Index "i" indicates that the respective matrix or vector is defined on

each processor, i = 1, · · · , nproc, where nproc is the total number of

processors */

1 Atmp = A
(1→N)
i

// The data-matrix with snapshots from 1 to N

/* Tau is a square matrix of the size Ns */

/* work is a vector of the size "lwork" */

2 “lwork” = NT ×Ns

3 CALL DGEQRF(NT , Ns, Atmp, NT , Tau, work, lwork, info)

4 for j ← 1 to Ns do

5 Ri(1 : j, j) = Atmp(1 : j, j)

6 end

/* Computing Q1i, which is stored in the rest of Atmp ← Q1i */

7 CALL DORGQR(NT , Ns, Ns, Atmp, NT , Tau, work, lwork, info)

/* Ri’s are gathered in R′ in all the processors */

/* First Ri is stored in vector tmpLi */

8 for j ← 1 to Ns do

9 tmpLi(1 + (j − 1) ∗Ns : j ∗Ns) = Ri(1 : Ns, j)
10 end

/* Gathering tmpLi to all processors in tmpG */

11 CALL MPI ALLGATHER(tmpLi, Ns ×Ns, MPI REAL, tmpG, Ns ×Ns,
MPI REAL, MPI COMM WORLD, ierror) // size(tmpG) = Ns ×Ns × nproc
/* Forming R′ from the vector tmpG */

12 for j ← 1 to nproc do

13 for k ← 1 to Ns do

14 R′((Ns ∗ (j − 1) + 1) : (Ns ∗ (j − 1) +Ns), k) =
tmpG((Ns ×Ns ∗ (j − 1) + (k − 1) ∗Ns + 1) : (Ns ×Ns ∗ (j − 1) + k ∗Ns))

15 end

16 end

/* performing QR-factorization on R′ */

17 “lwork” = Ns*nproc // "nproc" is the number of processors

/* work is a vector of the size lwork */

18 CALL DGEQRF( lwork, Ns, R′, lwork, Tau, work, lwork, info )
/* Computing R */

19 for i← 1 to Ns do

20 R(1 : i, i) = R′(1 : i, i)
21 end

/* Computing Q2i, The orthogonal matrix is stored in the rest of R′ ← Q2i

*/

22 CALL DORGQR(lwork, Ns, Ns, R′, lwork, Tau, work, lwork, info)
/* Computing Qi = Atmp ×R′ */

/* "myrank" is an integer value signifying the rank of the processor in the

group */

23 CALL DGEMM ( ’N’, ’N’, NT , Ns, Ns, 1.0, Atmp, NT ,

R′(1 + myrank×Ns : Ns × (myrank + 1), :) ,NT , 0.0, Qi, NT )
24 return Qi, R
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Algorithm 2: finds the Ui, Σ and V matrices

Input: Qi, dispersed on each processor and R

Output: Ui, Σ, and V

/* NT : total number of data-points on each processor */

/* Ns : number of snapshots */

/* work is a vector of the size "lwork" */

1 “lwork” = max(1, 5Ns)
/* Computing SVD of matrix R */

/* S, vector of the length Ns, storing the singular values */

2 CALL DGESVD( ’S’, ’S’, Ns, Ns, R, Ns, S, UR, Ns, V, Ns, work, lwork, info )
/* Σ is a square matrix of the size Ns */

3 for i← 1 to Ns do

4 Σ(i, i) = S(i)
5 end

/* Computing Ui = Qi ×UR */

6 CALL DGEMM (’N’, ’N’, NT , Ns, Ns, 1.0, Qi, NT , UR, Ns, 0.0, Ui, NT )
7 return Ui, Σ, V

Algorithm 3: finds the DMD modes, φi, and eigenvalues, µ

Input: Ui, and A
2→(N+1)
i

dispersed on each processor, Σ, and V

Output: φi, and µ
/* NT : total number of data-points on each processor */

/* Ns : number of snapshots */

/* Computing B = Ui ×A
2→(N+1)
i

on each processor */

/* B is a square matrix of the size Ns */

1 CALL DGEMM ( ’T’, ’N’, Ns, Ns, NT , 1.0, Ui, NT , A
2→(N+1)
i

, NT , 0.0, B, Ns)

/* Storing B, in vector form, in tmpL */

2 for j ← 1 to Ns do

3 tmpLi(1 + (j − 1) ∗Ns : j ∗Ns) = B(1 : Ns, j)
4 end

/* Summing tmpLi across all processors and storing the result in tmpG */

5 CALL MPI ALLREDUCE(tmpL, tmpG, Ns ×Ns, MPI REAL, MPI SUM,
MPI COMM WORLD) // size(tmpG) = Ns ×Ns

/* Forming C from the vector tmpG */

6 for j ← 1 to Ns do

7 C(1 : Ns, j) = tmpG(1 + (j − 1) ∗Ns : j ∗Ns)
8 end

/* Computing B = C×VT */

9 CALL DGEMM ( ’N’, ’T’, Ns, Ns, Ns, 1.0, C, Ns, V, Ns, 0.0, B, Ns)

/* Computing eigenvalues µi, µr and eigenvectors Y of S̃ = B×Σ */

/* µi, µr and β, vectors of the size Ns */

/* Y is a matrix of the size Ns */

/* work is a vector of the size "lwork" */

10 “lwork” = max(1, 8Ns)
11 CALL DGGEV( ’N’, ’V’, Ns, B, Ns, Σ, Ns, µi, µr, β, B, 1, Y, Ns, work, lwork,

info )
12 for i← 1 to Ns do

13 Y(i, :) = Y(i, :)×Σ(i, i)
14 end

/* Eigenvalues: */

15 µr = µr/β
16 µi = µi/β

/* Computing φi = Ui ×Y */

17 CALL DGEMM( ’N’, ’N’, NT , Ns, Ns, 1.0, Ui, NT , Y, Ns, 0.0, φ, NT )
18 return φi, µ
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