
  1

Parallel Database Systems:
The Future of High Performance Database Processing1

David J. DeWitt2 Jim Gray
Computer Sciences Department San Francisco Systems Center

University of Wisconsin  Digital Equipment Corporation
1210 W. Dayton St. 455 Market St. 7’th floor
Madison, WI. 53706 San Francisco, CA. 94105-2403
dewitt @ cs.wisc.edu Gray @ SFbay.enet.dec.com

January 1992

Abstract:  Parallel database machine architectures have evolved from the use of exotic

hardware to a software parallel dataflow architecture based on conventional shared-nothing

hardware.  These new designs provide impressive speedup and scaleup when processing

relational database queries.  This paper reviews the techniques used by such systems, and surveys

current commercial and research systems.

1. Introduction
Highly parallel database systems are beginning to displace traditional mainframe

computers for the largest database and transaction processing tasks.  The success of these

systems refutes a 1983 paper predicting the demise of database machines [BORA83]. Ten years

ago the future of highly-parallel database machines seemed gloomy, even to their staunchest

advocates.  Most database machine research had focused on specialized, often trendy, hardware

such as CCD memories, bubble memories, head-per-track disks, and optical disks.  None of these

technologies fulfilled their promises; so there was a sense that conventional cpus, electronic

RAM, and moving-head magnetic disks would dominate the scene for many years to come.  At

that time, disk throughput was predicted to double while processor speeds were predicted to

increase by much larger factors.  Consequently, critics predicted that multi-processor systems

would soon be I/O limited unless a solution to the I/O bottleneck were found.

While these predictions were fairly accurate about the future of hardware, the critics were

certainly wrong about the overall future of parallel database systems.  Over the last decade

Teradata, Tandem, and a host of startup companies have successfully developed and marketed

highly parallel database machines.
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2 This research was partially supported by the Defense Advanced Research Projects Agency under contract N00039-86-C-0578,
by the National Science Foundation under grant DCR-8512862, and by research grants from Digital Equipment Corporation,
IBM, NCR, Tandem, and Intel Scientific Computers.
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 Why have parallel database systems become more than a research curiosity?  One

explanation is the widespread adoption of the relational data model. In 1983 relational database

systems were just appearing in the marketplace; today they dominate it.  Relational queries are

ideally suited to parallel execution; they consist of uniform operations applied to uniform streams

of data.  Each operator produces a new relation, so the operators can be composed into highly

parallel dataflow graphs. By streaming the output of one operator into the input of another

operator, the two operators can work in series giving pipelined parallelism.  By partitioning the

input data among multiple processors and memories, an operator can often be split into many

independent operators each working on a part of the data.  This partitioned data and execution

gives partitioned parallelism (Figure 1).

The dataflow approach to database system design needs a message-based client-server

operating system to interconnect the parallel processes executing the relational operators.  This in

turn requires a high-speed network to interconnect the parallel processors.  Such facilities seemed

exotic a decade ago, but now they are the mainstream of computer architecture.  The client-server

paradigm using high-speed LANs is the basis for most PC, workstation, and workgroup software.

Those same client-server mechanisms are an excellent basis for distributed database technology.
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Figure 1.  The dataflow approach to relational operators gives both pipelined and partitioned
parallelism.  Relational data operators take relations (uniform sets of records) as input and produce
relations as outputs.  This allows them to be composed into dataflow graphs that allow pipeline parallelism
(left) in which the computation of one operator proceeds in parallel with another, and partitioned
parallelism in which operators (sort and scan in the diagram at the right) are replicated for each data
source, and the replicas execute in parallel.

Mainframe designers have found it difficult to build machines powerful enough to meet

the CPU and I/O demands of relational databases serving large numbers of simultaneous users or

searching terabyte databases.  Meanwhile, multi-processors based on fast and inexpensive

microprocessors have become widely available from vendors including Encore, Intel, NCR,

nCUBE, Sequent, Tandem, Teradata, and Thinking Machines.  These machines provide more

total power than their mainframe counterparts at a lower price.  Their modular architectures
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enable systems to grow incrementally, adding MIPS, memory, and disks either to speedup the

processing of a given job, or to scaleup the system to process a larger job in the same time.

In retrospect, special-purpose database machines have indeed failed; but, parallel

database systems are a big success.  The successful parallel database systems are built from

conventional processors, memories, and disks.  They have emerged as major consumers of highly

parallel architectures, and are in an excellent position to exploit massive numbers of fast-cheap

commodity disks, processors, and memories promised by current technology forecasts.

A consensus on parallel and distributed database system architecture has emerged.  This

architecture is based on a shared-nothing hardware design [STON86] in which processors

communicate with one another only by sending messages via an interconnection network.  In

such systems, tuples of each relation in the database are partitioned (declustered) across disk

storage units3 attached directly to each processor. Partitioning allows multiple processors to scan

large relations in parallel without needing any exotic I/O devices.  Such architectures were

pioneered by Teradata in the late seventies and by several research projects. This design is now

used by Teradata, Tandem, NCR, Oracle-nCUBE, and several other products currently under

development.  The research community has also embraced this shared-nothing dataflow

architecture in systems like Arbre, Bubba, and Gamma.

The remainder of this paper is organized as follows. Section 2 describes the basic

architectural concepts used in these parallel database systems. This is followed by a brief

presentation of the unique features of the Teradata, Tandem, Bubba, and Gamma systems in

Section 3. Section 4 describes several areas for future research. Our conclusions are contained in

Section 5.

2. Basic Techniques for Parallel Database Machine Implementation

2.1. Parallelism Goals and Metrics: Speedup and Scaleup
The ideal parallel system demonstrates two key properties: (1) linear speedup: Twice as

much hardware can perform the task in half the elapsed time, and (2) linear scaleup:  Twice as

much hardware can perform twice as large a task in the same elapsed time (see Figures 2 and 3).

100GB 100GB 100GB 1 TB

Speedup Batch Scaleup

                                                
3 The term disk here is used as a shorthand for disk or other nonvolatile storage media.  As the decade proceeds nonvolatile
electronic storage or some other media may replace or augment disks.
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Figure 2. Speedup and Scaleup. A speedup design performs a one-hour job four times faster when run
on a four-times larger system.  A scaleup design runs a ten-times bigger job is done in the same time by a
ten-times bigger system.

More formally, given a fixed job run on a small system, and then run on a larger system,

the speedup given by the larger system is measured as:

Speedup = 
small_system_elapsed_time
big_system_elapsed_time  

Speedup is said to be linear, if an N-times large or more expensive system yields a speedup of N.

Speedup holds the problem size constant, and grows the system.  Scaleup measures the

ability to grow both the system and the problem.  Scaleup is defined as the ability of an N-times

larger system to perform an N-times larger job in the same elapsed time as the original system.

The scaleup metric is.

Scaleup = 
small_system_elapsed_time_on_small_problem

big_system_elapsed_time_on_big_problem   

If this scaleup equation evaluates to 1, then the scaleup is said to be linear4.  There are two

distinct kinds of scaleup, batch and transactional.  If the job consists of performing many small

independent requests submitted by many clients and operating on a shared database, then scaleup

consists of N-times as many clients, submitting N-times as many requests against an N-times

larger database.  This is the scaleup typically found in transaction processing systems and

timesharing systems.  This form of scaleup is used by the Transaction Processing Performance

Council to scale up their transaction processing benchmarks [GRAY91]. Consequently, it is

called transaction-scaleup.  Transaction scaleup is ideally suited to parallel systems since each

transaction is typically a small independent job that can be run on a separate processor.

A second form of scaleup, called batch scaleup, arises when the scaleup task is presented

as a single large job.  This is typical of database queries and is also typical of scientific

simulations.  In these cases, scaleup consists of using an N-times larger computer to solve an N-

times larger problem.  For database systems batch scaleup translates to the same query on an N-

times larger database; for scientific problems, batch scaleup translates to the same calculation on

an N-times finer grid or on an N-times longer simulation.

The generic barriers to linear speedup and linear scaleup are the triple threats of:

startup: The time needed to start a parallel operation.  If thousands of processes must be

started, this can easily dominate the actual computation time.

interference:  The slowdown each new process imposes on all others when accessing shared

resources.

                                                
4 The execution cost of some operators increases super-linearly.  For example, the cost of sorting n-tuples increases as nlog(n).
When n is in the billions, scaling up by a factor of a thousand, causes nlog(n) to increase by 3000.   This 30% deviation from
linearity in a three-orders-of-magnitude scaleup justifies the use of the term near-linear scaleup.
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skew:  As the number of parallel steps increases, the average sized of each step decreases, but

the variance can well exceed the mean.  The service time of a job is the service time of the

slowest step of the job.  When the variance dominates the mean, increased parallelism

improves elapsed time only slightly.
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Figure 2. Good and bad speedup curves.  The standard speedup curves. The left curve is the ideal. The
middle graph shows no speedup as hardware is added.  The right curve shows the three threats to
parallelism.  Initial startup costs may dominate at first.  As the number of processes increase, interference
can increase.  Ultimately, the job is divided so finely, that the variance in service times (skew) causes a
slowdown.

Section 2.3 describes several basic techniques widely used in the design of shared-

nothing parallel database machines to overcome these barriers.  These techniques often achieve

linear speedup and scaleup on relational operators.

2.2. Hardware Architecture, the Trend to Shared-Nothing Machines

The ideal database machine would have a single infinitely fast processor with an infinite

memory with infinite bandwidth — and it would be infinitely cheap (free).  Given such a

machine, there would be no need for speedup, scaleup, or parallelism.  Unfortunately, technology

is not delivering such machines — but it is coming close.  Technology is promising to deliver

fast one-chip processors, fast high-capacity disks, and high-capacity electronic RAM memories.

It also promises that each of these devices will be very inexpensive by today's standards, costing

only hundreds of dollars each.

 So, the challenge is to build an infinitely fast processor out of infinitely many processors

of finite speed, and to build an infinitely large memory with infinite memory bandwidth from

infinitely many storage units of finite speed.  This sounds trivial mathematically; but in practice,

when a new processor is added to most computer designs, it slows every other computer down

just a little bit.  If this slowdown (interference) is 1%, then the maximum speedup is 37 and a

thousand-processor system has 4% of the effective power of a single processor system.

How can we build scaleable multi-processor systems?  Stonebraker suggested the

following simple taxonomy for the spectrum of designs (see Figures 3 and 4)  [STON86]5:

                                                
5  Single Instruction stream, Multiple Data stream (SIMD) machines such as ILLIAC IV and its derivatives like MASSPAR and the
"old" Connection Machine are ignored here because to date they have few successes in the database area.  SIMD machines seem to



  6

shared-memory: All processors share direct access to a common global memory and to all

disks.  The IBM/370, and Digital VAX, and Sequent Symmetry multi-processors typify this

design.

shared-disks: Each processor has a private memory but has direct access to all disks.  The IBM

Sysplex and original Digital VAXcluster typify this design.

shared-nothing:  Each memory and disk is owned by some processor that acts as a server for

that data.  Mass storage in such an architecture is distributed among the processors by

connecting one or more disks.  The Teradata, Tandem, and nCUBE machines typify this

design.

Shared-nothing architectures minimize interference by minimizing resource sharing.

They also exploit commodity processors and memory without needing an incredibly powerful

interconnection network.  As Figure 4 suggests, the other architectures move large quantities of

data through the interconnection network.  The shared-nothing design moves only questions and

answers through the network.  Raw memory accesses and raw disk accesses are performed

locally in a processor, and only the filtered (reduced) data is passed to the client program.  This

allows a more scaleable design by minimizing traffic on the interconnection network.

Shared-nothing characterizes the database systems being used by Teradata [TERA83],

Gamma [DEWI86, DEWI90], Tandem [TAND88], Bubba [ALEX88], Arbre [LORI89], and

nCUBE [GIBB91].  Significantly, Digital’s VAXcluster has evolved to this design.  DOS and

UNIX workgroup systems from 3com, Boreland, Digital, HP, Novel, Microsoft, and Sun also

adopt a shared-nothing client-server architecture.

The actual interconnection networks used by these systems vary enormously. Teradata

employs a redundant tree-structured communication network.  Tandem uses a three-level

duplexed network, two levels within a cluster, and rings connecting the clusters. Arbre, Bubba,

and Gamma are independent of the underlying interconnection network, requiring only that

network allow any two nodes to communicate with one another. Gamma operates on an Intel

Hypercube. The Arbre prototype was implemented using IBM 4381 processors connected to one

another in a point-to-point network.  Workgroup systems are currently making a transition from

Ethernet to higher speed local networks.

The main advantage of shared-nothing multi-processors is that they can be scaled up to

hundreds and probably thousands of processors that do not interfere with one another.  Teradata,

Tandem, and Intel have each shipped systems with more than 200 processors. Intel is

implementing a 2000 node Hypercube.  The largest shared-memory multi-processors currently

available are limited to about 32 processors.

                                                                                                                                                
have application in simulation, pattern matching, and mathematical search, but they do not seem to be appropriate for the
multiuser, i/o intensive, and dataflow paradigm of database systems.
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These shared-nothing architectures achieve near-linear speedups and scaleups on complex

relational queries and on online-transaction processing workloads [DEWI90, TAND88,

ENGL89].  Given such results, database machine designers see little justification for the

hardware and software complexity associated with shared-memory and shared-disk designs.

P1 P
2

Pn

Interconnection Network

Figure 3. The basic shared-nothing design.  Each processor has a private memory and one or more
disks.  Processors communicate via a high-speed interconnect network.  Teradata, Tandem, nCUBE, and
the newer VAXclusters typify this design.
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Figure 4. The shared-memory and shared-disk designs.  A shared-memory multi-processor connects
all processors to a globally shared memory.  Multi-processor IBM/370, VAX, and Sequent computers are
typical examples of shared-memory designs.  Shared-disk systems give each processor a private memory,
but all the processors can directly address all the disks.  Digital’s VAXcluster and IBM’s Sysplex typify this
design.

Shared-memory and shared-disk systems do not scale well on database applications.

Interference is a major problem for shared-memory multi-processors.  The interconnection

network must have the bandwidth of the sum of the processors and disks.  It is difficult to build

such networks that can scale to thousands of nodes.  To reduce network traffic and to minimize

latency, each processor is given a large private cache.  Measurements of shared-memory multi-

processors running database workloads show that loading and flushing these caches considerably

degrades processor performance [THAK90].  As parallelism increases, interference on shared

resources limits performance.  Multi-processor systems often use an affinity scheduling

mechanism to reduce this interference; giving each process an affinity to a particular processor.

This is a form of data partitioning; it represents an evolutionary step toward the shared-nothing
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design.  Partitioning a shared-memory system creates many of the skew and load balancing

problems faced by a shared-nothing machine; but reaps none of the simpler hardware

interconnect benefits.  Based on this experience, we believe high-performance shared-memory

machines will not economically scale beyond a few processors when running database

applications.

To ameliorate the interference problem, most shared-memory multi-processors have

adopted a shared-disk architecture.  This is the logical consequence of affinity scheduling. If the

disk interconnection network can scale to thousands of discs and processors, then a shared-disk

design is adequate for large read-only databases and for databases where there is no concurrent

sharing.  The shared-disk architecture is not very effective for database applications that read and

write a shared database.  A processor wanting to update some data must first obtain the current

copy of that data.  Since others might be updating the same data concurrently, the processor must

declare its intention to update the data.  Once this declaration has been honored and

acknowledged by all the other processors, the updator can read the shared data from disk and

update it.  The processor must then write the shared data out to disk so that subsequent readers

and writers will be aware of the update.  There are many optimizations of this protocol, but they

all end up exchanging reservation messages and exchanging large physical data pages.  This

creates processor interference and delays.  It creates heavy traffic on the shared interconnection

network.

For shared database applications, the shared-disk approach is much more expensive than

the shared-nothing approach of exchanging small high-level logical questions and answers

among clients and servers.  One solution to this interference has been to give data a processor

affinity; other processors wanting to access the data send messages to the server managing the

data.  This has emerged as a major application of transaction processing monitors that partition

the load among partitioned servers, and is also a major application for remote procedure calls.

Again, this trend toward the partitioned data model and shared-nothing architecture on a shared-

disk system reduces interference.  Since the shared-disk system interconnection network is

difficult to scale to thousands of processors and disks, many conclude that it would be better to

adopt the shared-nothing architecture from the start.

Given the shortcomings of shared-disk and shared-nothing architectures, why have

computer architects been slow to adopt the shared-nothing approach?  The first answer is simple,

high-performance low-cost commodity components have only recently become available.

Traditionally, commodity components were relatively low performance and low quality.

Today, old software is the most significant barrier to the use of parallelism.  Old software

written for uni-processors gets no speedup or scaleup when put on any kind of multiprocessor.  It

must be rewritten to benefit from parallel processing and multiple disks.  Database applications
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are a unique exception to this.  Today, most database programs are written in the relational

language SQL that has been standardized by both ANSI and ISO.  It is possible to take standard

SQL applications written for uni-processor systems and execute them in parallel on shared-

nothing database machines.  Database systems can automatically distribute data among multiple

processors.  Teradata and Tandem routinely port SQL applications to their system and

demonstrate near-linear speedups and scaleups.  The next section explains the basic techniques

used by such parallel database systems.

2.3. A Parallel Dataflow Approach to SQL Software

Terabyte online databases, consisting of billions of records, are becoming common as the

price of online storage decreases.  These databases are often represented and manipulated using

the SQL relational model.  The next few paragraphs give a rudimentary introduction to relational

model concepts needed to understand the rest of this paper.

A relational database consists of relations (files in COBOL terminology) that in turn

contain tuples (records in COBOL terminology).  All the tuples in a relation have the same set of

attributes (fields in COBOL terminology).

Relations are created, updated, and queried by writing SQL statements.  These statements

are syntactic sugar for a simple set of operators chosen from the relational algebra.  Select-

project, here called scan, is the simplest and most common operator – it produces a row-and-

column subset of a relational table.  A scan of relation R using predicate P and attribute list L

produces a relational data stream as output.  The scan reads each tuple, t, of R and applies the

predicate P to it.  If P(t) is true, the scan discards any attributes of t not in L and inserts the

resulting tuple in the scan output stream.  Expressed in SQL, a scan of a telephone book relation

to find the phone numbers of all people named Smith would be written:
SELECT telephone_number /* the output attribute(s) */
FROM telephone_book /* the input relation */
WHERE last_name = ’Smith’; /* the predicate */

A scan's output stream can be sent to another relational operator, returned to an application,

displayed on a terminal, or printed in a report.  Therein lies the beauty and utility of the relational

model.  The uniformity of the data and operators allow them to be arbitrarily composed into

dataflow graphs.

 The output of a scan may be sent to a sort operator that will reorder the tuples based on

an attribute sort criteria, optionally eliminating duplicates.  SQL defines several aggregate

operators to summarize attributes into a single value, for example, taking the sum, min, or max

of an attribute, or counting the number of distinct values of the attribute.  The insert operator

adds tuples from a stream to an existing relation.  The update and delete operators alter and

delete tuples in a relation matching a scan stream.
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The relational model defines several operators to combine and compare two or more

relations. It provides the usual set operators union, intersection, difference, and some more exotic

ones like join and division. Discussion here will focus on the equi-join operator (here called

join). The join operator composes two relations, A and B, on some attribute to produce a third

relation. For each tuple, ta, in A, the join finds all tuples, tb, in B  whose attribute values are

equal to that of ta.  For each matching pair of tuples, the join operator inserts into the output

steam a tuple built by concatenating the pair.

Codd, in a classic paper, showed that the relational data model can represent any form of

data, and that these operators are complete [CODD70].  Today, SQL applications are typically a

combination of conventional programs and SQL statements.  The programs interact with clients,

perform data display, and provide high-level direction of the SQL dataflow.

The SQL data model was originally proposed to improve programmer productivity by

offering a non-procedural database language. Data independence was an additional benefit;  since

the programs do not specify how the query is to be executed, SQL programs continue to operate

as the logical and physical database schema evolves.

Parallelism is an unanticipated benefit of the relational model.  Since relational queries

are really just relational operators applied to very large collections of data, they offer many

opportunities for parallelism.  Since the queries are presented in a non-procedural language, they

offer considerable latitude in executing the queries.

Relational queries can be executed as a dataflow graph.  As mentioned in the

introduction, these graphs can use both pipelined parallelism and partitioned parallelism.  If one

operator sends its output to another, the two operators can execute in parallel giving potential

speedup of two.

The benefits of pipeline parallelism are limited because of three factors: (1) Relational

pipelines are rarely very long - a chain of length ten is unusual. (2) Some relational operators do

not emit their first output until they have consumed all their inputs.  Aggregate and sort operators

have this property.  One cannot pipeline these operators.  (3) Often, the execution cost of one

operator is much greater than the others (this is an example of skew).  In such cases, the speedup

obtained by pipelining will be very limited.

Partitioned execution offers much better opportunities for speedup and scaleup.  By

taking the large relational operators and partitioning their inputs and outputs, it is possible to use

divide-and-conquer to turn one big job into many independent little ones. This is an ideal

situation for speedup and scaleup.  Partitioned data is the key to partitioned execution.

Data Partitioning
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Partitioning a relation involves distributing its tuples over several disks. Data partitioning

has its origins in centralized systems that had to partition files, either because the file was too big

for one disk, or because the file access rate could not be supported by a single disk.  Distributed

databases use data partitioning when they place relation fragments at different network sites

[RIES78].  Data partitioning allows parallel database systems to exploit the I/O bandwidth of

multiple disks by reading and writing them in parallel.  This approach provides I/O bandwidth

superior to RAID-style systems without needing any specialized hardware [SALE84, PATT88].

 The simplest partitioning strategy distributes tuples among the fragments in a round-

robin fashion.  This is the partitioned version of the classic entry-sequence file.  Round robin

partitioning is excellent if all applications want to access the relation by sequentially scanning all

of it on each query.  The problem with round-robin partitioning is that applications frequently

want to associatively access tuples, meaning that the application wants to find all the tuples

having a particular attribute value.  The SQL query looking for the Smith’s in the phone book is

an example of an associative search.

Hash partitioning is ideally suited for applications that want only sequential and

associative access to the data.  Tuples are placed by applying a hashing function to an attribute of

each tuple.  The function specifies the placement of the tuple on a particular disk.  Associative

access to the tuples with a specific attribute value can be directed to a single disk, avoiding the

overhead of starting queries on multiple disks.  Hash partitioning mechanisms are provided by

Arbre, Bubba, Gamma, and Teradata.

 

P1 P2 Pn

a---c d---g w--z 

P1 P2 Pn P1 P2 Pn

range partitioning round-robin hashing
Figure 5: The three basic partitioning schemes.  Range partitioning maps contiguous attribute ranges
of a relation to various disks.  Round-robin partitioning maps the i’th tuple to disk i mod n.  Hashed
partitioning, maps each tuple to a disk location based on a hash function.  Each of these schemes spreads
data among a collection of disks, allowing parallel disk access and parallel processing.

Database systems pay considerable attention to clustering related data together in

physical storage.  If a set of tuples are routinely accessed together, the database system attempts

to store them on the same physical page.  For example, if the Smith’s of the phone book are

routinely accessed in alphabetical order, then they should be stored on pages in that order, these

pages should be clustered together on disk to allow sequential prefetching and other



  12

optimizations.  Clustering is very application specific.  For example, tuples describing nearby

streets should be clustered together in geographic databases, tuples describing the line items of

an invoice should be clustered with the invoice tuple in an inventory control application.

Hashing tends to randomize data rather than cluster it. Range partitioning clusters tuples

with similar attributes together in the same partition.  It is good for sequential and associative

access, and is also good for clustering data.  Figure 5 shows range partitioning based on

lexicographic order, but any clustering algorithm is possible.  Range partitioning derives its name

from the typical SQL range queries such as
latitude BETWEEN 37o AND 39o

Arbre, Bubba, Gamma, Oracle, and Tandem provide range partitioning

The problem with range partitioning is that it risks data skew, where all the data is place

in one partition, and execution skew in which all the execution occurs in one partition.  Hashing

and round-robin are less susceptible to these skew problems. Range partitioning can minimize

skew by picking non-uniformly-distributed partitioning criteria.  Bubba uses this concept by

considering the access frequency (heat) of each tuple when creating partitions a relation; the goal

being to balance the frequency with which each partition is accessed (its temperature) rather than

the actual number of tuples on each disk (its volume) [COPE88].

While partitioning is a simple concept that is easy to implement, it raises several new

physical database design issues.  Each relation must now have a partitioning strategy and a set of

disk fragments. Increasing the degree of partitioning usually reduces the response time for an

individual query and increases the overall throughput of the system. For sequential scans, the

response time decreases because more processors and disks are used to execute the query. For

associative scans, the response time improves because fewer tuples are stored at each node and

hence the size of the index that must be searched decreases.

There is a point beyond which further partitioning actually increases the response time of

a query.  This point occurs when the cost of starting a query on a node becomes a significant

fraction of the actual execution time [COPE88, GHAN90a].

 Parallelism Within Relational Operators

Data partitioning is the first step in partitioned execution of relational dataflow graphs.

The basic idea is to use parallel data streams instead of writing new parallel operators

(programs). This approach enables the use of unmodified, existing sequential routines to execute

the relational operators in parallel.  Each relational operator has a set of input ports on which

input tuples arrive and an output port to which the operator’s output stream is sent. The parallel

dataflow works by partitioning and merging data streams into these sequential ports.  This

approach allows the use of existing sequential relational operators to execute in parallel.



  13

Consider a scan of a relation, A, that has been partitioned across three disks into

fragments A0, A1, and A2.  This scan can be implemented as three scan operators that send their

output to a common merge operator.  The merge operator produces a single output data stream to

the application or to the next relational operator.  The parallel query executor creates the three

scan processes shown in Figure 6 and directs them to take their inputs from three different

sequential input streams (A0, A1, A2). It also directs them to send their outputs to a common

merge node.  Each scan can run on an independent processor and disk. So the first basic

parallelizing operator is a merge that can combine several parallel data streams into a single

sequential stream.

SCAN

A

SCAN

A2

C

SCAN

A1

SCAN

A0

merge 
operatorC

Figure 6: Partitioned data parallelism.  A simple relational dataflow graph showing a relational scan
(project and select) decomposed into three scans on three partitions of the input stream or relation.  These
three scans send their output to a merge node that produces a single data stream.

Process  
Executing 
Operator

Split   
operator   

  
output 
portinput 

ports

Merge   
operator   
  

Figure 7:  Merging the inputs and partitioning the output of an operator. A relational dataflow graph
showing a relational operator’s inputs being merged to a sequential steam per port.   The operator's output
is being decomposed by a split operator into several independent streams.  Each stream may be a
duplicate or a partitioning of the operator output stream into many disjoint streams.  With the split and
merge operators, a web of simple sequential dataflow nodes can be connected to form a parallel execution
plan.

The merge operator tends to focus data on one spot.  If a multi-stage parallel operation is

to be done in parallel, a single data stream must be split into several independent streams. A split

operator is used to partition or replicate the stream of tuples produced by a relational operator.  A

split operator defines a mapping from one or more attribute values of the output tuples to a set of

destination processes (see Figure 7).
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JOIN

SCAN SCAN

A B

C

INSERTinsert into C 
  select    * 
  from      A, B 
  where     A.x = B.y;

Figure 8: A simple SQL query and the associated relational query graph.  The query specifies that a
join is to be performed between relations A and B by comparing the x attribute of each tuple from the A
relation with the y attribute value of each tuple of the B relation.   For each pair of tuples that satisfy the
predicate, a result tuple is formed from all the attributes of both tuples .  This result tuple is then added to
the result relation C.  The associated logical query graph (as might be produced by a query optimizer)
shows a tree of operators, one for the join, one for the insert, and one for scanning each input relation.

As an example, consider the two split operators shown in Figure 9 in conjunction with the

SQL query  shown in Figure 8.  Assume that three processes are used to execute the join

operator, and that five other processes execute the two scan operators — three scanning partitions

of relation A while two scan partitions of relation B.  Each of the three relation A scan nodes will

have the same split operator, sending all tuples between “A-H” to port 1 of join process 0, all

between “I-Q” to port 1 of join process 1, and all between “R-Z” to port 1 of join process 2.

Similarly the two relation B scan nodes have the same split operator except that their outputs are

merged by port 1 (not port 0) of each join process.  Each join process sees a sequential input

stream of A tuples from the port 0 merge (the left scan nodes) and another sequential stream of B

tuples from the port 1 merge (the right scan nodes).  The outputs of each join are, in turn, split

into three steams based on the partitioning criterion of relation C.

Relation A Scan Split Operator Relation B Scan Split Operator

Predicate Destination Process Predicate Destination Process

“A-H” (cpu #5, Process #3, Port #0) “A-H” (cpu #5, Process #3, Port #1)

“I-Q” (cpu #7, Process #8, Port #0) “I-Q” (cpu #7, Process #8, Port #1)

“R-Z” (cpu #2, Process #2, Port #0) “R-Z” (cpu #2, Process #2, Port #1)
Figure 9. Sample split operators.  Each split operator maps tuples to a set of output streams (ports of
other processes) depending on the range value (predicate) of the input tuple.  The split operator on the left
is for the relation A scan in Figure 7, while the table on the right is for the relation B scan.  The tables
above partition the tuples among three data streams.

To clarify this example, consider the first join process in Figure 10 (processor 5, process

3, ports 0 and 1 in Figure 9).  It will receive all the relation A “A-H” tuples from the three

relation A scan operators merged as a single stream on port 0, and will get all the “A-H” tuples
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from relation B merged as a single stream on port 1.  It will join them using a hash-join, sort-

merge join, or even a nested join if the tuples arrive in the proper order.

JOIN

SCAN

A2

JOIN

SCAN SCAN

A1 B1

JOIN

SCAN SCAN

A0 B0

split each B scan output into 3 streams 
merge the 3 input streams  
                        at each join  node

C1

INSERT

C3

INSERT

C2

INSERT
split each join output into 3 streams 
merge the 3 join input streams  
                   at each insert  node 

Perform 1/3 of the join 

Figure 10: A simple relational dataflow graph.  It shows two relational scans (project and select)
consuming two input relations, A and B and feeding their outputs to a join operator that in turn produces a
data stream C.

If each of these processes is on an independent processor with an independent disk, there

will be little interference among them.  Such dataflow designs are a natural application for

shared-nothing machine architectures.

The split operator in Figure 9 is just an example.  Other split operators might duplicate

the input stream, or partition it round-robin, or partition it by hash.  The partitioning function can

be an arbitrary program.   Gamma, Volcano, and Tandem use this approach [GRAE90]. It has

several advantages including the automatic parallelism of any new operator added to the system,

plus support for a many kinds of parallelism.

The split and merge operators have flow control and buffering built into them.  This

prevents one operator from getting too far ahead in the computation.  When a split-operator’s

output buffers fill, it stalls the relational operator until the data target requests more output.

For simplicity, these examples have been stated in terms of an operator per process.  But

it is entirely possible to place several operators within a process to get coarser grained

parallelism.  The fundamental idea though is to build a self-pacing dataflow graph and distribute

it in a shared-nothing machine in a way that minimizes interference.

Specialized Parallel Relational Operators

Some algorithms for relational operators are especially appropriate for parallel execution,

either because they minimize data flow, or because they better tolerate data and execution skew.

Improved algorithms have been found for most of the relational operators.  The evolution of join

operator algorithms is sketched here as an example of these improved algorithms.
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Recall that the join operator combines two relations, A and B, to produce a third relation

containing all tuple pairs from A and B with matching attribute values.  The conventional way of

computing the join is to sort both A and B into new relations ordered by the join attribute.  These

two intermediate relations are then compared in sorted order, and matching tuples are inserted in

the output stream.  This algorithm is called sort-merge join.

Many optimizations of sort-merge join are possible, but since sort has execution cost

nlog(n), sort-merge join has an nlog(n) execution cost.  Sort-merge join works well in a parallel

dataflow environment unless there is data skew.  In case of data skew, some sort partitions may

be much larger than others. This in turn creates execution skew and limits speedup and scaleup.

These skew problems do not appear in centralized sort-merge joins.

Hash-join is an alternative to sort-merge join.  It has linear execution cost rather than

nlog(n) execution cost, and it is more resistant to data skew.  It is superior to sort-merge join

unless the input streams are already in sorted order.  Hash join works as follows.  Each of the

relations A and B are first hash partitioned on the join attribute.  A hash partition of relation A is

hashed into memory.  The corresponding partition of table relation B is scanned, and each tuple

is compared against the main-memory hash table for the A partition.  If there is a match, the pair

of tuples are sent to the output stream.  Each pair of hash partitions is compared in this way.

The hash join algorithm breaks a big join into many little joins.  If the hash function is

good and if the data skew is not too bad, then there will be little variance in the hash bucket size.

In these cases hash-join is a linear-time join algorithm with linear speedup and scaleup.  Many

optimizations of the parallel hash-join algorithm have been discovered over the last decade.  In

pathological skew cases, when many or all tuples have the same attribute value, one bucket may

contain all the tuples.  In these cases no algorithm is known to speedup or scaleup.

The hash-join example shows that new parallel algorithms can improve the performance

of relational operators.  This is a fruitful research area [BORA90, DEWI86, KITS83, KITS90,

SCHN89, SCHN90, WOLF90, ZELL90]. Even though parallelism can be obtained from

conventional sequential relational algorithms by using split and merge operators, we expect that

many new algorithms will be discovered in  the future.
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3. The State of the Art

3.1. Teradata

Teradata quietly pioneered many of the ideas presented here.  Since 1978 they have been

building shared-nothing highly-parallel SQL systems based on commodity microprocessors,

disks, and memories.  Teradata systems act as SQL servers to client programs operating on

conventional computers.

Teradata systems may have over a thousand processors and many thousands of disks.

The Teradata processors are functionally divided into two groups: Interface Processors (IFPs)

and Access Module Processors (AMPs).  The IFPs handle communication with the host, query

parsing and optimization, and coordination of AMPs during query execution. The AMPs are

responsible for executing queries.  Each AMP typically has several disks and a large memory

cache.  IFPs and AMPs are interconnected by a dual redundant, tree-shaped interconnect called

the Y-net [TERA83].

Each relation is hash partitioned over a subset of the AMPs. When a tuple is inserted into

a relation, a hash function is applied to the primary key of the tuple to select an AMP for storage.

Once a tuple arrives at a AMP, a second hash function determines the tuple’s placement in its

fragment of the relation. The tuples in each fragment are in hash-key order.  Given a value for the

key attribute, it is possible to locate the tuple in a single AMP.  The AMP examines its cache,

and if the tuple is not present, fetches it in a single disk read.  Hash secondary indices are also

supported.

 Hashing is used to spit the outputs of relational operators into intermediate relations. Join

operators are executed using a parallel sort-merge algorithm.  Rather than using pipelined

parallel execution, during the execution of a query, each operator is run to completion on all

participating nodes before the next operator is initiated.

Teradata has installed many systems containing over one hundred processors and

hundreds of disks.  These systems demonstrate near-linear speedup and scaleup on relational

queries, and far exceed the speed of traditional mainframes in their ability to process large

(terabyte) databases.

3.2. Tandem NonStop SQL

 The Tandem NonStop SQL system is composed of processor clusters interconnected via

4-plexed fiber optic rings.  Unlike most other systems discussed here, the Tandem systems run

the applications on the same processors and operating system as the database servers.  There is

no front-end back-end distinction between programs and machines.  The systems are configured

at a disk per MIPS, so each ten-MIPS processor has about ten disks.  Disks are typically duplexed
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[BITT88].  Each disk is served by a set of processes managing a large shared RAM cache, a set of

locks, and log records for the data on that disk pair.  Considerable effort is spent on optimizing

sequential scans by prefetching large units, and by filtering and manipulating the tuples with SQL

predicates at these disk servers.  This minimizes traffic on the shared interconnection network .

Relations may be range partitioned across multiple disks.  Entry-sequenced, relative, and

B-tree organizations are supported.  Only B-tree secondary indices are supported.  Nested join,

sort-merge join, and hash join algorithms are provided.  Parallelization of operators in a query

plan is achieved by inserting split and merge operators between operator nodes in the query tree.

Scans, aggregates, joins, updates, and deletes are executed in parallel.  In addition several

utilities use parallelism (e.g., load, reorganize, ...) [TAND87, ZELL90].

Tandem systems are primary designed for online transaction processing (OLTP) -

running many simple transactions against a large shared database.  Beyond the parallelism

inherent in running many independent transactions in parallel, the main parallelism feature for

OLTP is parallel index update.  SQL relations typically have five indices on them, although it is

not uncommon to see ten indices on a relation.  These indices speed reads, but slow down inserts,

updates, and deletes.  By doing the index maintenance in parallel, the maintenance time for

multiple indices can be held almost constant if the indices are spread among many processors

and disks.

Overall, the Tandem systems demonstrate near-linear scaleup on transaction processing

workloads, and near-linear speedup and scaleup on large relational queries [TAND87, ENGL89].

3.3. Gamma

 The current version of Gamma runs on a 32 node Intel iPSC/2 Hypercube with a disk

attached to each node. In addition to round-robin, range and hash partitioning, Gamma also

provides hybrid-range partitioning that combines the best features of the hash and range

partitioning strategies [GHAN90b]. Once a relation has been partitioned, Gamma provides both

clustered and non-clustered indices on either the partitioning or non-partitioning attributes.  The

indices are implemented as B-trees or hash-tables.

 Gamma uses split and merge operators to execute relational algebra operators using  both

parallelism and pipelining [DEWI90]. Sort-merge and three different hash join methods are

supported [DEWI84].  Near-linear speedup and scaleup for relational queries has been measured

on this architecture [SCHN89, DEWI90, SCHN90].

3.4. The Super Database Computer

 The Super Database Computer (SDC) project at the University of Tokyo presents an

interesting contrast to other database systems [KITS90, HIRA90].  SDC takes a combined

hardware and software approach to the performance problem.  The basic unit, called a processing
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module (PM), consists of one or more processors on a shared memory.  These processors are

augmented by a special purpose sorting engine that sorts at high speed (3MB/s at present), and

by a disk subsystem [KITS89].  Clusters of processing modules are connected via an omega

network that provides both non-blocking NxN interconnect and some dynamic routing minimize

skewed data distribution during hash joins.  The SDC is designed to scale to thousands of PMs,

and so considerable attention is paid to the problem of data skew.

 Data is partitioned among the PMs by hashing.  The SDC software includes a unique

operating system, and a relational database query executor.  The SDC is a shared-nothing design

with a software dataflow architecture. This is consistent with our assertion that current parallel

database machines systems use conventional hardware.  But the special-purpose design of the

omega network and of the hardware sorter clearly contradict the thesis that special-purpose

hardware is not a good investment of development resources.  Time will tell whether these

special-purpose components offer better price performance or peak performance than shared-

nothing designs built of conventional hardware.

3.5. Bubba

The Bubba prototype was implemented using a 40 node FLEX/32 multi-processor with

40 disks [BORA90]. Although this is a shared-memory multi-processor, Bubba was designed as

a shared-nothing system and the shared-memory is only used for message passing. Nodes are

divided into three groups: Interface Processors for communicating with external host processors

and coordinating query execution, Intelligent Repositories for data storage and query execution,

and Checkpoint/Logging Repositories. While Bubba also uses partitioning as a storage

mechanism (both range and hash partitioning mechanisms are provided) and dataflow processing

mechanisms, Bubba is unique in several ways.  First, Bubba uses FAD rather than SQL as its

interface language. FAD is an extended-relational persistent programming language.  FAD

provides support for complex objects via several type constructors including shared sub-objects,

set-oriented data manipulation primitives, and more traditional language constructs.  The FAD

compiler is responsible for detecting operations that can be executed in parallel according to how

the data objects being accessed are partitioned.  Program execution is performed using a dataflow

execution paradigm.  The task of compiling and parallelizing a FAD program is significantly

more difficult than parallelizing a relational query.  Another Bubba feature is its use of a single-

level store mechanism in which the persistent database at each node is mapped to the virtual

memory address space of each process executing at the node.  This is in contrast to the traditional

approach of files and pages. Similar mechanisms are used in IBM’s AS400 mapping of SQL

databases into virtual memory, HP’s mapping of the Image Database into the operating system
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virtual address space, and Mach’s mapped file [TEVA87] mechanism.  This approach simplified

the implementation of the upper levels of the Bubba software.

3.6. Other Systems

 Other parallel database system prototypes include XPRS [STON88], Volcano

[GRAE90], Arbre [LORI89], and the PERSIST project under development at IBM Research

Labs in Hawthorne and Almaden. While both Volcano and XPRS are implemented on shared-

memory multi-processors, XPRS is unique in its exploitation of the availability of massive

shared-memory in its design. In addition, XPRS is based on several innovative techniques for

obtaining extremely high performance and availability.

Recently, the Oracle database system has been implemented atop a 64-node nCUBE

shared-nothing system.  The resulting system is the first to demonstrate more than 1000

transactions per second on the industry-standard TPC-B benchmark.  This is far in excess of

Oracle’s performance on conventional mainframe systems - both in peak performance and in

price/performance [GIBB91].

NCR has announced the 3600 and 3700 product lines that employ shared-nothing

architectures running System V R4 of Unix on Intel 486 and 586 processors. The interconnection

network for the 3600 product line uses an enhanced Y-Net licensed from Teradata while the 3700

is based on a new multistage interconnection network being developed jointly by NCR and

Teradata.  Two software offerings have been announced.  The first, a port of the Teradata

software to a Unix environment, is targeted toward the decision-support marketplace.  The

second, based on a parallelization of the Sybase DBMS is intended primarily for transaction

processing workloads.

3.7. Database Machines and Grosch’s Law

Today shared-nothing database machines have the best peak performance and best price

performance available.  When compared to traditional mainframes, the Tandem system scales

linearly well beyond the largest reported mainframes on the TPC-A transaction processing

benchmark.  Its price/performance on these benchmarks is three times cheaper than the

comparable mainframe numbers.  Oracle on an nCUBE has the highest reported TPC-B numbers,

and has very competitive price performance [GRAY91, GIBB91].  These benchmarks

demonstrate linear scaleup on transaction processing benchmarks.

Gamma, Tandem, and Teradata have demonstrated linear speedup and scaleup on

complex relational database benchmarks.  They scale well beyond the size of the largest

mainframes.  Their performance and price performance is generally superior to mainframe

systems.
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These observations defy Grosch’s law.  In the 1960’s, Herb Grosch observed that there is

an economy-of-scale in computing.  At that time, expensive computers were much more

powerful than inexpensive computers.  This gave rise to super-linear speedups and scaleups.  The

current pricing of mainframes at 25,000$/mips and 1000$/MB of RAM reflects this view.

Meanwhile, microprocessors are selling for 250$/mips and 100$/MB of RAM.

By combining hundreds or thousands of these small systems, one can build an incredibly

powerful database machine for much less money than the cost of a modest mainframe.  For

database problems, the near-linear speedup and scaleup of these shared-nothing machines allows

them to outperform current shared-memory and shared disk mainframes.

Grosch’s law no longer applies to database and transaction processing problems.  There is

no economy of scale. At best, one can expect linear speedup and scaleup of performance and

price/performance.  Fortunately, shared-nothing database architectures achieve this near-linear

performance.
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4. Future Directions and Research Problems

4.1. Mixing Batch and OLTP Queries

Section 2 concentrated on the basic techniques used for processing complex relational

queries in a parallel database system.  Concurrently running a mix of both simple and complex

queries concurrently presents several unsolved problems.

One problem is that large relational queries tend to acquire a many locks and tend to hold

them for a relatively long time.  This prevents concurrent updates the data by simple online

transactions. Two solutions are currently offered: give the ad-hoc queries a fuzzy picture of the

database, not locking any data as they browse it.  Such a "dirty-read" solution is not acceptable

for some applications. Several systems offer a versioning mechanism that gives readers a

consistent (old) version of the database while updators are allowed to create newer versions of

objects.  Other, perhaps better, solutions for this problem may also exist.

Priority scheduling is another mixed-workload problem.  Batch jobs have a tendency to

monopolize the processor, flood the memory cache, and make large demands on the I/O

subsystem.  It is up to the underlying operating system to quantize and limit the resources used

by such batch jobs to insure short response times and low variance in response times for short

transactions.  A particularly difficult problem, is the priority inversion problem, in which a low-

priority client makes a request to a high priority server.  The server must run at high priority

because it is managing critical resources.  Given this, the work of the low priority client is

effectively promoted to high priority when the low priority request is serviced by the high-

priority server.  There have been several ad-hoc attempts at solving this problem, but

considerably more work is needed.

4.2. Parallel Query Optimization

 Current database query optimizers do not consider all possible plans when optimizing a

relational query.  While cost models for relational queries running on a single processor are now

well-understood [SELI79], they still depend on cost estimators that are a guess at best.  Some

dynamically select  from among several plans at run time depending on, for example, the amount

of physical memory actually available and the cardinalities of the intermediate results

[GRAE89].  To date, no query optimizers consider all the parallel algorithms for each operator

and all the query tree organizations. More work is needed in this area.

 Another optimization problem relates to highly skewed value distributions.  Data skew

can lead to high variance in the size of intermediate relations, leading to both poor query plan

cost estimates and sub-linear speedup.   Solutions to this problem are an area of active research

[KITS90, WOLF90, HUA91,WALT91].
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4.3. Application Program Parallelism

 The parallel database systems offer parallelism within the database system.  Missing are

tools to structure application programs  to take advantage of parallelism inherent in these parallel

systems.  While automatic parallelization of applications programs written in Cobol may not be

feasible, library packages to facilitate explicitly parallel application programs are needed.  Ideally

the SPLIT and MERGE operators could be packaged so that applications could benefit from them.

4.4. Physical Database Design

  For a given database and workload there are many possible indexing and partitioning

combinations. Database design tools are needed to help the database administrator select among

these many design options. Such tools might accept as input a description of the queries

comprising the workload, their frequency of execution, statistical information about the relations

in the database, and a description of the processors and disks. The resulting output would suggest

a partitioning strategy for each relation plus the indices to be created on each relation.  Steps in

this direction are beginning to appear.

 Current algorithms partition relations using the values of a single attribute.  For example,

geographic records could be partitioned by longitude or latitude.  Partitioning on longitude

allows selections for a longitude range to be localized to a limited number of nodes, selections on

latitude must be sent to all the nodes. While this is acceptable in a small configuration, it is not

acceptable in a system with thousands of processors.  Additional research is needed on

multidimensional partitioning and search algorithms.

4.5. On-line Data Reorganization and Utilities

 Loading, reorganizing, or dumping a terabyte database at a megabyte per second takes

over twelve days and nights.  Clearly parallelism is needed if utilities are to complete within a

few hours or days.  Even then, it will be essential that the data be available while the utilities are

operating.  In the SQL world, typical utilities create indices, add or drop attributes, add

constraints, and physically reorganize the data, changing its clustering.

 One unexplored and difficult problem is how to process database utility commands while

the system remains operational and the data remains available for concurrent reads and writes by

others.  The fundamental properties of such algorithms is that they must be online (operate

without making data unavailable), incremental (operate on parts of a large database), parallel

(exploit parallel processors), and recoverable (allow the operation to be canceled and return to

the old state).



  24

5. Summary and Conclusions
Like most applications, database systems want cheap, fast hardware.  Today that means

commodity processors, memories, and disks.  Consequently, the hardware concept of a database

machine built of exotic hardware is inappropriate for current technology.  On the other hand, the

availability of fast microprocessors, and small inexpensive disks packaged as standard

inexpensive but fast computers is an ideal platform for parallel database systems.  A shared-

nothing architecture is relatively straightforward to implement and, more importantly, has

demonstrated both speedup and scaleup to hundreds of processors.  Furthermore, shared-nothing

architectures actually simplify the software implementation. If the software techniques of data

partitioning, dataflow, and intra-operator parallelism are employed, the task of converting an

existing database management system to a highly parallel one becomes a relatively

straightforward. Finally, there are certain applications (e.g., data mining in terabyte databases)

that require the computational and I/O resources available only from a parallel architecture.

 While the successes of both commercial products and prototypes demonstrates the

viability of highly parallel database machines, several open research issues remain unsolved

including techniques for mixing ad-hoc queries and with online transaction processing without

seriously limiting transaction throughput, improved optimizers for parallel queries, tools for

physical database design, on-line database reorganization, and algorithms for handling relations

with highly skewed data distributions.  Some application domains are not well supported by the

relational data model.  It appears that a new class of database systems based on an object-

oriented data model are needed. Such systems pose a host of interesting research problems that

required further examination.
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