
W O R K I N G PAPER

PARALLEL DECOMPOSITION OF MULTISTAGE
STOCHASTIC PROGRAMMING PROBLEMS

A . Ruezczyrieki

October 1988
WP-88-094

-

I n t e r n a t i o n a l l n s t ~ t u t e
for Applied Systems Analysis

PARALLEL DECOMPOSITION OF MULTISTAGE
STOCHASTIC PROGRAMMING PROBLEMS

October 1988
W P-88-094

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

A new decomposition method for multistage stochastic linear programming problems is
proposed by the author. The method combines the ideas of the regularized decomposition
method for two-stage programs and dynamic programming. With each node of the decision
tree of the multistage stochastic problem a certain regularized subproblem is associated which
generates decisions for its successors and some backward information for its predecessor. The
subproblems are solved in parallel and exchange information in an asynchronous way through
special buffers. After a finite time the method either finds an optimal solution to the problem
or discovers its inconsistency. This method is especially convenient for implementation on a
parallel computer.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

Parallel Decomposition of Multistage Stochastic
Programming Problems

Andrzej Ruszczyriski

Institute of Automatic Control

Warsaw University of Technology

00665 Warsaw, Poland

1 Introduction

The main objective of this paper is to present a parallel decomposition method for solving
multistage stochastic linear programming problems defined as follows.

Let R be a finite probability space with elementary events w and probabilities p,. Next,
let D , (t) and H , (t) , t = 1 , . . . , T be sequences of random mb x m, matrices and b, (t) and
c , (t) , t = 1 , . . . , T , be sequences of random vectors in Rmb and Rmz , respectively. We shall
call each sequence b, (t) = (D , (t) , H , (t) , b,(t), c ,(t)) corresponding to some event w E R a
scenario. The problem is to find a sequence z , (t) , t = 1 , . . . , T , w E R , of random vectors in
Rmz (a policy), which minimizes the linear form

subject to the constraints

D w (t) z w (t - 1) + H w (t) z W (t) = b, (t) , t = 1, . . . , T , w E R , (1 . 2)

z (0) = z o , and an additional nonanticipativi ty constraint , which can be formulated as follows:
for all w ' , w 2 E R and any t E (1 , . . . , T)

z , l (t) = z W 2 (t) if S ~ I (T) = S , ~ (T) for T = 1 , . . . , t . (1 . 4)

In other words, decisions corresponding to scenarios which are indistinguishable up to time
t should be equal (see [16] for an extensive discussion of this issue).

Two important special cases of (1 .1) - (1 .4) are the determinis t ic control problem (with one
scenario) and the two-stage stochastic programming problem (T = 2 , s , (l) identical for all
w E 0) .

Although in principle (1 .1) - (1 .4) is a linear programming problem, its size may be too
large for standard linear programming techniques [1 2] . For this reason a variety of specialized
approaches have been developed for the two cases mentioned earlier.

The first group of methods are special versions of the simplex method which take advan-
tage of the structure of the constraint matrix of the problem to improve basis factorization
techniques and pricing strategies [3,6,7,10,13,21,19,23].

The second group are techniques coming down from the decomposition principle of Dantzig
and Wolfe [2,4,5,9,22,23,24].

The third group are nonlinear methods specialized t o this particular class of problems:
the finite generation method [1 5] , the progressive hedging algorithm [16] and the regularized
decomposition method [17,18,20]. The latter one is of special interest for us, because it shares
the finite convergence property of pure linear approaches.

The objective of our paper is twofold. First, we shall extend the regularized decomposition
method t o multistage stochastic programs, while retaining properties observed in the two-
stage case. Secondly, we shall show that the subproblems into which (1 . 1) - (1 . 4) is decomposed
can be solved in parallel and can exchange information in an asynchronous manner. We hope
that this is of interest in its own right and brings new quality even t o the earlier two-stage
version of [17] : the subproblems and the master can operate in parallel. In the multistage case
our approach may mitigate the effort required by nested formulations [2,9,24] by allowing fast
transmission of information between the stages. For computers on which true multitasking
is not yet possible our results eliminate restrictions on the order in which the subproblems
are processed.

In section 2 we restate the problem in a tree-like form and give a general outline of the
method. In section 3 we study in detail fundamental objects of our method: regularized
subproblems and we describe how they generate information for the other subproblems.
Section 4 contains a formal description of the method and in section 5 we prove its finite
convergence.

2 Outline of the method

More insight into the structure of problem (1 . 1) - (1 . 4) can be gained by restating it in a tree-
like form. Namely, with the set of scenarios s , (t) , t = 1, . . . , T , w E R , we can associate
a tree T = { N , A) , where N is a set of nodes and A is a set of arcs of T . The set of
nodes N is divided into subsets (levels) N t , t = 1 , . . . , T , and the nodes n E Nt at level t
correspond to different subscenarios { s n (l) , . . . , s n (t)) . At level 1 there are so many nodes
as many different realizations of s (1) can occur; a t level 2 the nodes correspond to different
pairs { s (l) , s (2)) , etc. The number of nodes a t level T is equal to the number of scenarios

IRl. The arcs join nodes from neighboring levels in such a way that a node n a t level t
corresponding to subscenario sn = { s n (l) , . . . , s n (t)) is connected with all nodes m a t level
t + 1 whose subscenarios sm = { s m (l) , . . . , s m (t + 1)) equal sn up to time t . Let us denote
by r (n) the predecessor of node n , i.e. the node a t the previous level with which n is
connected and by S (n) the set of successors of n, S (n) = { m : n = r (m)) . Next, let
n (n) = { n , r (n) , r (r (n)) , ...) be the path from n to level 1. Taking account of the fact that
for n E Nt we have sn = { s K (") , s n (t)) , it is sufficient to associate with each node n E Nt only
the last element of its subscenario, s, = s n (t) ; the whole subscenario can be recovered by
backtracking the path n (n) .

A node n a t level t corresponds to the bundle R , of scenarios which are indistinguishable
up to time t . By the nonanticipativity condition (1 . 4) all decisions z , (t) , w E R , must be
equal. We denote their value by z,.

To complete the reformulation of the problem, with nodes n E N we shall associate
probabilities p, defined as follows: for each l eafn E NT we set p, = p,, where w E R is the

event tha t corresponds to leaf n . For other nodes we define Pn = CmES(n) I S m .
Using this notation we can rewrite (1 . 1) - (1 . 4) as follows:

min imi ze x p n c i z n
nE N

D n z r (n) + H n z n = bn, n E 4 , (2 . 2)

z , > 0 , n E 4 , (2 . 3)

where for n E 41 we set z,(,) = z o . We shall assume throughout this paper t ha t (2 . 1) - (2 . 3)
is bounded.

The tree structure makes it possible t o develop a hierarchical method for solving (2 . 1) -
(2 . 3) . For each pair of nodes (m , n) , m E S (n) , we define the conditional probability pmn =
p m / p n and use it for recursive definition of the value function

Solving the problem is equivalent t o calculating

Since each component of this sum can be computed independently, with no loss of generality
we can assume tha t there is only one node n = 1 a t level 1 and our a im is t o find f l (z o) .
This can be done by the nes ted decomposi t ion method: a recursive procedure of dynamic
programming type in which problems (2 . 4) a t various levels of recursion are solved by a
cutting plane method (cf. [2 , 9 , 2 4]) .

We shall modify the hierarchical approach in two directions.
First, instead of the pure cutting plane method we shall use its regularized version anal-

ysed in the two-stage case in 1171. With each node n of the tree T , except for the leaves, we
associate the following regularized subproblem

m i n i m i z e ~n = i11zn - (nl12 + C ; Z ~ + x p m n f m (~ n) (2 . 5)
mE S (n)

Here (, is a certain regularizing point and f m (.) , m E S (n) are convex piecewise linear outer
approximations of the value functions f m (.) :

With each leaf n E NT of 7 we associate the linear problem

min imi ze 1 , = c i z , (2 . 9)

In the method we link subproblems (2 . 5) - (2 . 7) and (2 . 9) - (2 . 1 1) in the same way in which the
nodes of 7 are linked. They exchange information along the arcs by passing t o their sons the

Figure 1: The network of tasks for the deterministic dynamic problem

21

S UB(1)

cuts

solutions z, and obtaining some backward information used to correct the approximations
f,,,(.). The backward information has the form of cuts, i.e. some linear functions used to
describe pieces of f,(.) or facets of their domains.

Our principal objective, however, is parallelization. In our method we allow all subprob-
lems to be solved in a parallel asynchronous manner. Their logical dependence, implied by
the tree structure of the problem, is reflected only in the communication structure of the dis-
tributed method, but does not condition the order in which the subproblems are processed.
To this end we separate subproblems by buffers which store primal solutions passed from an-
cestor problems and cuts generated by the successors. Each subproblem takes some (possibly
outdated) information from the buffers, generates its primal solution and and a cut , passes
them to the neighboring buffers, etc., until no new information appears.

We shall discuss all these issues in sections 3 and 4, but let us a t first illustrate the
structure of the method on two typical examples.

Example 1. Consider the deterministic dynamic problem

2 2

minimize C c;zt

SUB(2)

Dtzt- l + Htz t = b t , t = I , . . . , T I

...
cuts

Graph T is in this case a chain and the corresponding network of subproblems and buffers
takes on the form shown in Figure 1. It corresponds to the nested decomposition method,
but our subproblems are quadratic and solved in parallel thus allowing for fast exchange of
information between the stages (see [:I.] for another parallel approach to dynamic program-
ming).

Example 2. Consider now the stochastic two-stage problem

minimize ciz l + C plc;zl
1=2

Graph T is a star with root 1 and leaves 2 , . . . , L. The corresponding network of subproblems
and buffers is shown in Figure 2. It is similar to the structure of the Dantzig- Wolfe method,
but our master is different, and the master and the subproblems are solved in parallel, which
significantly differs our approach from that of 181.

Figure 2 : The network of tasks for the stochastic two-stage problem

For stochastic dynamic problems the structure of the network of subproblems is a combination
of these two extreme cases.

3 Cuts

Let amj + g&,z,, j E Jm, be a collection of linear functions such that

f m (z n) 2 amj + g k j z n l fo r a l l x,, j E J:, (3 . 1)

and

dam f m 2 { z n : am, + g k j z n < O), j € J:, (3 . 2)

where J; and J; are disjoint subsets of J,. We shall call (3 . 1) object ive cuts and (3 . 2)
feasib i l i ty cuts. The cuts can be used to define functions f;, in (2 . 5) as follows: if z , satisfies
the feasibility cuts we set

f m (~ n) = m i n { v m n : urnn 2 a,, + g L z n , j E J:);
-

otherwise we set f m (z n) = +a. It is clear that fm is convex and piecewise linear and satisfies
(2 .8) .

Using the cuts we can reformulate (2 .5) - (2 .7) in a more explicit fashion. Let us in
introduce aggregate vectors and matrices: p, = (Pmn)mES(n) , Vn = (v ~ ~) ~ ~ s (~) , an =

(~ m j) m ~ ~ (n) , j ~ ~ , , Gn = (g m j) m E S [n) , j ~ ~ k With this notation (2 .5) - (2 .7) can be equivalently
formulated as follows:

m i n i m i z e r], = f llz, - en 1 1 + c;zn + p i u , (3 . 3)

Here En is a zero-one matrix, whose j-th column has 1 a t position 1 if the j- th cut in (3 .4) is
an objective cut for the I-th in order function I,(.). The columns corresponding to feasibility
cuts are zero. For simplicity we include direct constraints (2 . 7) into (3 . 4) as feasibility cuts.

We assume tha t there is a t least one cut for each f , (.) , m E S(n) , among (3 . 4) , so t ha t E,
has full row rank.

To describe the way in which cuts for the predecessor can be generated let us fix our
attention on a specific class of methods for solving (3 . 3) - (3 . 5) : the act ive se t methods which
proved useful for linear quadratic problems of similar structure (cf. [1 1 , 1 7 , 1 8]) .

The main idea of active set methods is to choose a subset of linearly independent con-
straints from (3 . 4) - (3 . 5) , solve the equality constrained subproblem obtained and revise the
active set if optimality conditions for the whole problem are not satisfied. Each active set
defines some submatrices G I E , H , D of G , , En, H, , D , and subvectors a , b of a , , b,, which
are used in equality constraints:

H z , = b - Dz,(,) . (3 . 7)

The necessary and sufficient conditions of optimality for (3 . 3) , (3 . 6) , (3 . 7) have now the form:

z , + GX + H*,u = <, - c, .

We can always choose a n active set so t ha t E is of full row rank and 1: H . I is of full column
rank. There can be many specific ways in which the active set can be altered [1 1 , 1 7 , 1 8] , but
there are always only two possible situations in which the method terminates: optimality
with X >_ 0 and (z , , v ,) satisfying (3 . 4) and (3 . 5) , or inconsistency of the active cuts with a

certain inactive cu t . These two cases determine the type of information tha t can be passed
to the predecessing problem.

Lemma 1 Let (9.3)-(3.5) be solvable for s o m e z,(,) with the final act ive se t (9.6)-(9.7). If
the s y s t e m of equations

EX = Pn, (3 . 8)

GX + H ' p = - c , , (3 . 9)

has a solution (A , p) with X > 0, then

where

9 = D'P,

a: = a*X - b'p.

Proof. Consider the linear problem

min imize I , = cAz, + p i v , (3 . 1 3)

G t z n - E'v , 5 - a , (3 . 1 4)

H Z , = b - Dz,(,) . (3 . 1 5)

It is a relaxation of (2 . 4) , so the optimal value satisfies for each z,(,) the inequality

On the other hand X >_ 0 and p satisfying (3.8)-(3.9) form a feasible dual solution to (3.13)-
(3.15). Thus for each z,(,)

Combining the last two inequalities we obtain the required result.

Lemma 2 For a given se t of inequalities (8 .4) - (8 .5) the number of diflerent objective cuts
(9 . 1 0) - (9 .12) i s finite.

Proof. Each cut (3.10)-(3.12), if it exists, is uniquely defined by the active set, and there
can be only finitely many different active sets.

Lemma 3 If the solution zn to (9 .9) - (9 .5) at z:(,,) i s equal t o (,, then the cut (9 .10) - (9 .12)
ez is t s and supports the epigraph of the function

fn (z r (n)) = m i n { c , z n + C ~ m n f m (z n) I Hnzn = b, - Dnzr (,) , zn > 0)
m€ S (n)

Proof. At zn = tn the necessary and sufficient conditions of optimality for (3.13)-(3.15) and
(3.3)-(3.5) are identical, so the cut must exist. Next, the constraints not included into the
active set are satisfied a t (z, , v,). Therefore in(z:(,)) = f n (z : (,)) Since (g , a) supports i n (-)
a t z:(,,) it supports i n (.) at z:(,,), too.

Lemma 4 Suppose that (9 .4) - (9 .5) are inconsistent for some zO Then there ez is t s an
'

active set (9 .6) - (9 .7) such that one of the following conditions holds.

(i) There i s a feasibility cut a + g * z n 5 0 among (9 .4) and multipliers X > 0 and p such that

g + G X + H * p = O , (3.17)

a + X'a + p * (~ z ; (,) - b) > 0 . (3.18)

(i i) There i s an equation hz, = /3 - dz,(,) among (9 . 5) and multipliers X > 0 , p and 6 = i l
such that

EX = 0 , (3.19)

Proof. Suppose that the cut a + g*zn 5 0 is violated a t the solution of the equality
constrained subproblem and cannot be introduced into the active set. Then (3.16)-(3.18)
with X 1 0 follow from 114, thm. 22.11. If an equality constraint hz, = /3 - dz,(,) is
inconsistent with active cuts, in a similar way we get (3.19)-(3.21).

Using lemma 4 we can obtain cuts which must be satisfied by any z,(,) . If case (i) holds,
multiplying (3.14) by A' and adding (3.15) multiplied by p' we see that

and, since zn must satisfy a + g*zn 5 0,

In case (ii) in a similar fashion we obtain the cut

The new cut is violated at z:(,,). These two cases can be put in one format

by assigning zero multipliers to inactive cuts, multiplier 1 to the violated cut, and changing
signs of (A , p) if 6 = - 1. We can summarize it in the following lemma.

Lemma 5 At any z:(,,) for which (3 .4) - (3 .5) are inconsistent we can construct by (3 . 3 1) or
(3 .32) a feasibility cut

6 + g*zr(n) 5 0, (3.23)

The number of such cuts possible i s finite and they fully describe the set of z,(,) for which
(3 .4) - (3 .5) are consistent.

Proof. Formulae (3.23)-(3.25) follow directly from (3.22). Each such cut is defined uniquely
by the active set and the violated constraint, because (3.16)-(3.17) or (3.19)-(3.20) define

E uniquely (A , P) by the full column rank of IG H *] . The number of possible active sets for
(3.4)-(3.5) is finite and for each active set there can be only finitely many violated constraints.
Therefore, one can generate only only finitely many cuts (3.23)-(3.25). If satisfies them,

then it must satisfy (3.4)-(3.5), since otherwise we would be able to construct a new cut by
lemma 4. The proof is complete.

For the linear problem (2.9)-(2.11) the cuts simplify slightly: there are no terms a*A and a;lX
in (3.12) and (3.25).

4 Tasks

As we mentioned in section 2, our method for solving (2.1)-(2.3) consists of a number of tasks
which can be executed in parallel and can exchange information in an asynchronous manner.
With each node n of the tree T we asociate a task SUB(n) whose function is to solve the
regularized subproblem (3.3)-(3.5) corresponding to node n. The task SUB(n) communicates
with other tasks through two channels: BOX(n) and PIPE(n) . Let us describe the channels
and the tasks in more detail.

In BOX(n) the last solution zn of (3.3)-(3.5) is stored. Only SUB(n) may change its contents
by overwriting 2,. The tasks SUB(m) for m E S(n) may read zn without destroying it. If
BOX(n) is empty and SUB(m) attempts to read x,, SUB(m) waits until there will be new
information available.

PIPE(n)

Through PIPE(n) cuts generated by the tasks SUB(m), m E S(n) are transmitted to
SUB(n). PIPE(n) has a finite capacity which allows for storing a t least one cut. When
SUB(n) takes a cut from PIPE(n) , the cut is deleted and new space in PIPE(n) is created.
If PIPE(n) is full, the tasks (SUB(m), m E S(n) which attempt to put cuts to PIPE(n) ,
wait until room for the next cut will be available.

The tasks SUB(n) have three different forms: for the root node, for the leaves n E NT and for
the intermediate nodes. SUB(n) operates in two modes: 'go' and 'optimal' and updates the
solution of (3.3)-(3.5) each time new information is available in the buffers. To simplify our
description we asume that a t the beginning every SUB(n), n @ NT, has at least one objective
cut for each f,(.), m E S(n). The tasks start in mode 'go' and execute the following
algorithm.

SUB(n) for n # 1 and n @ NT

Step 1. Read z,(,) from BOX(lr(n)).

Step 2. Get a cut from PIPE(n) .

Step 3. If z,(,) did not change and PIPE(n) was empty, go to Step 4; otherwise set mode to
'go' and go to Step 5.

Step 4. If mode='optimal' go to Step 1; otherwise go to Step 8.

Step 5. Solve the subproblem (3.3)-(3.5) and delete from (3.4) the cuts that were inactive a t
the solution. If (3.3)-(3.5) was infeasible then go to Step 6. If (3.3)-(3.5) was solvable
then go to Step 7.

Step 6. Clear BOX(n), generate the feasibility cut (3.22)' put it into PIPE(x(n)) and go to
Step 1.

Step 7. Write z, into BOX(n) and generate the objective cut (3.10)-(3.12)' if possible. If the
objective cut exists then put it into PIPE(x(n)) . Go to Step 1.

Step 8. If the tasks SUB(m) for all m E S(n) read the last z, from BOX(n) and are i n mode
'optimal', then go to Step 9; otherwise go to Step 1.

Step 9. If z, # (, then set (, -k z, and go to Step 5; otherwise change mode to 'optimal'
and go to Step 1.

Before proceeding to the other cases let us briefly comment on the above algorithm. There
are two external sources of changes in the solution of (3.3)-(3.5): changes in z,(,) and new
cuts. Only if these possibilities are exploited and no new cuts can be expected, because the
sons are in mode 'optimal' (Step 8), we update the regularizing point <,. If this is exploited
too, we change the mode to 'optimal' to let our predecessor know that nothing new can be
expected from us.

SUB(n) processes many cuts and most of them become soon outdated. However, owing to
the deletion rule of Step 5, the size of (3.3)-(3.5) is bounded. The set of cuts that are stored
(the committee) never has more than m, + (S(n)l + 1 members: no more than m, + IS(n)J
active cuts and one new cut read from PIPE(n). A specialized algorithm for updating the
solution of (3.3)-(3.5) when a new cut is added has been developed in [17,18].

The task for leaves is much simpler: there are no cuts to process and the problem is linear.

S U B (n) for n E NT

Step 1. Read z,(,) from B O X (l r (n)) .

Step 2. If z,(,) is different from the last z,(,) set mode to 'go' and go to Step 3 ; otherwise
set mode to 'optimal' and go to Step 1.

Step 9. Solve the subproblem (2.9)-(2.11). If (2.9)-(2.11) was solvable then go to Step 4;
otherwise go to Step 5.

Step 4 . Generate the objective cut (3.10)-(3.12)' put it into P I P E (l r (n)) and go to Step 1.

Step 5. Generate the feasibility cut (3.22), put it into P I P E (l r (n)) and go to Step 1

The root task is responsible for detecting optimality or infeasibility and terminating the whole
method.

Step 1. Get a cut from P I P E (1) . If P I P E (1) is empty then go to Step 4; otherwise go to
Step 2.

Step 2. Solve the subproblem (3.3)-(3.5) and delete from (3 .4) the cuts that were inactive a t
the solution. If (3 .3)-(3.5) was infeasible then go to Step 7. If (3 .3) - (3 .5) was solvable
then go to Step 3 .

Step 9. Write zl into B O X (1) and go to Step 1.

Step 4 . If the tasks S U B (m) for all m E S (l) read the last xl from B O X (1) and are in mode
'optimal', then go to Step 5 ; otherwise go to Step 1.

Step 5. If zl # E l then set E l -e xl and go to Step 2; otherwise go to Step 6.

Step 6 . Terminate (opt imal solution found)

Step 7. Terminate (the problem i s infeasible).

If S U B (1) terminates, all other tasks terminate, too; their last solutions contain then the
solution to the original problem.

5 Convergence

Out aim in this section is to prove that the method after a finite time either discovers
inconsistency in the problem or finds its optimal solution (recall that we assume througout
this paper that the problem is bounded). We shall use r to denote time that passed from the
start of the method.

To avoid deadlocks and races we shall need two additional assumptions.

(A l) If a new x, is written into B O X (n) , then after a finite time each S U B (m) , m E S (n)
will get acess to B O X (n) .

(A2) If SUB(m) for m E S (n) reads z, from BOX(n), then the mode of SUB(m) is changed
to 'go' before SUB(n) checks it a t Step 8.

Let us introduce two notions concerning asymptotic behavior of our subproblems.

Definition 1 We say that SUB(n) for n # 1 is stable from above if there exists a finite
time r, such that the contents of BOX(?r(n)) does not change for r 2 T,. The task SUB(1)
is stable from above if it is feasible for all r 2 0.

Definition 2 We say that SUB(n) is terminally optimal if there exists a finite time ?,, such
that SUB(n) stays in mode 'optimal'for all r 2 .i,.

We are now ready to carry out our analysis.

Lemma 6 Suppose that SUB(n) is in mode 'optimal' at time r . Then the tasks SUB(m) for
m E S(n) ar in mode 'optimal' at time r .

Proof. Out assertion is true for leaves n E NT. Suppose that it is true for all m E S(n) . We
shall prove it for n. Let SUB(n) be in mode 'optimal' at time r . Then at some time r, 5 r
SUB(n) entered Step 8 and the tasks SUB(m), m E S(n) were a t mode 'optimal' a t time
instants r, E [T,, TI. Each SUB(m) can change its mode only after receiving a new z, from
BOX(n) or a new cut from PIPE(m) . In the interval [r,, T] the solution z, does not change,
because SUB(n) stays in mode 'optimal'. Next, by our inductive assumption SUB(j) , j E

S (m) are in mode 'optimal', so PIPE(m) remains empty. Consequently, SUB(m), m E S (n)
stay in mode 'optimal' in the intervals [r,, r] .

Lemma 7 Suppose that SUB(n) is in mode 'optimal' at time r . Then z, solves the linear
problem (2.4).

Proof. Out assertion is true for leaves n E NT. Suppose that it is true for all m E S(n) .
We shall prove it for n. Let r, 5 r be the last time a t which z, changed. By lemma 6, all
SUB(m), m E S(n) are in mode 'optimal' a t time r . On the other hand, by Step 3 each
SUB(m) changed its mode to 'go' a t a certain r, E [T,,T]. So, each SUB(m), m E S (n)
executed a t least once Step 5 in the time interval [T,, r] . Let ?,,, be the last time in this interval
at which Step 5 was executed by SUB(m). Since SUB(m) is in mode 'optimal' a t r we must
have had z, = c, a t .i,. By our inductive assumption and lemma 3, the last objective cut
generated by SUB(m) supported f,(.) a t z,. The cut was read by SUB(n) in the interval
[&, T] by virtue of (A1)-(A2). But z, did not change in [&, r] ; hence f,(z,) _> f,(z,).
Since f,,, 5 f, we obtain fm(zn) = f,(z,) for all m E S(n) . Consequently, z, solves (2.4).
If m E S (n) is a leaf, the analysis is simpler, because each objective cut is then a supporting
cut.

Lemma 8 There are finitely many possible committees for each SUB(n).

Proof. Our assertion is trivial for leaves n E NT. Suppose that it is true for all m E

S (n) . We shall prove it for n. Each committee is a set of cuts generated by the tasks
SUB(m), m E S(n) . By our inductive assumption each successor of n may have only finitely
many committees. By lemmas 2 and 5 each committee may define only finitely many cuts.
Therefore only finitely many committees for SUB(n) can be formed from these cuts.

Lemma 9 Suppose that SUB(n) is stable from above. Then En is changed only finitely many
times.

Proof. Let z,(,) be fixed for r > r0 and let En be changed a t time instants r k 2 r O , k =
1 ' 2 , Let 2: denote the solution to (3.3)-(3.5) a t rk . By Step 11, the regularizing point
in the interval [rk , rk+ '] is given by <:+' = zk,. It is changed a t rk+', so zk,+l # (:+I. Let

Consider SUB(m), m E S(n). By Step 8 of SUB(n), each SUB(m), m E S (n) reads zk,+' a t
some time instant r h > r k , changes mode to 'go', and reaches mode 'optimal' a t some time
instant ah 5 rk+'. By (A2), r k < a;. Therefore, to reach optimality a t a i , SUB(m) must
execute Step 5 with zm = Em in the interval [r k , a i] . By lemma 3 the objective cut a t this
point supports fm(.) a t zk,+', i.e. fm(zk,+') = fm(z;+'). Summing up, a t each time instant
r k the following relations hold

(i) zk,+' solves (2.5)-(2.7) with En = <:;

(ii) fm (zk,+') = fm (zk,+') for all m E S (n)

These two conditions imply that a t r k an ezact serious step of the regularized decompo-
sition method of [17] for solving the problem

minimize F,(z,) = cAz, + pm,f,(zm)
m€ S (n)

is executed (z,(,) is fixed.). It follows from the theory developed in [17] that after finitely
many such steps the minimum of F, will be reached and no more steps will be possible.

Lemma 10 If SUB(n) is stable from above then all its successors SUB(m) for m E S(n) are
stable from above.

Proof. By lemma 9, En can be changed only finitely many times. Hence there is ro such that
for r 2 ro both z,(,) and En remain constant. The solution z, to (3.3)-(3.5) does not change
when inactive cuts are deleted. It is unique for a given committee, owing to the existence of
the quadratic regularizing term in (3.3). Consequently, z, may change only by introduction
of a cut which cuts-off the previous solution. In this case the minimum value of (3.3)-(3.5)
increases. By lemma 8 there can be only finitely many different committees a t SUB(n), which
implies that z, may be changed only finitely many times. The proof is complete.

Lemma 11 If SUB(n) is stable from above then it is terminally optimal.

Proof. Our assertion is obvious for leaves n E NT. Suppose that it is true for all m E S(n) .
We shall prove it for n. By lemma 10, the successors SUB(m), m E S(n) are stable from
above. By our inductive assumption they are terminally optimal. Let ro be such a time
instant that for r > ro z,(,) and 2, do not change and SUB(m), m E S(n) are in mode
'optimal'. If SUB(n) were in mode 'go' a t some time r > ro it would have to enter Step 8.
But z, does not change for r > TO, so we would have z, = En, mode would be set to 'optimal'
and SUB(n) would start infinite cycling between Steps 1 and 4.

It is now easy to prove our main result

Theorem 1 After a finite t ime the method either discovers inconsistency i n the problem and
stops at Step 6 of S U B (1) or finds an optimal solution and stops at Step 5 of S U B (1) . In
the latter case the solution i s given by en, n E U.

Proof. Suppose that S U B (1) is not stable from above. Then after a finite time it stops
a t Step 6 with inconsistent feasibility cuts. The cuts approximate the domain of f l (.) from
outside, so the problem is infeasible in this case. Suppose now that S U B (1) is stable from
above. By lemma 11 it is terminally optimal and after a finite time it stops a t Step 6.
Then by lemmas 6 and 7 all tasks are in mode 'optimal' with z, = en, n E N solving the
corresponding problems (2 .4) . The proof is complete.

6 Conclusions

Our decomposition approach differs from earlier methods in two ways.

It has regularizing quadratic terms in all subproblems (except for the leaves) which
stabilize their solutions and allow for deletion of inactive cuts.

All subproblems are solved in parallel and exchange information in an asynchronous
manner. This speeds up the flow of information between stages.

In spite of these modifications, the method shares the finite termination property of classical
approaches.

References

[I] D.P. Bertsekas, Distributed dynamic programming, IEEE Transactions on Automatic
Control AC-27(1982) 610-616.

[2] J . Birge, Decomposition and partitioning methods for multistage stochastic linear pro-
grams, Operations Research 33(1985) 989-1007.

[3] J . Bisschop and A. Meeraus, Matrix augmentation and partitioning in in the updating
of the basis inverse, Mathematical Programming 30(1984) 71-87.

[4] G.B. Dantzig and A. Madansky, On the solution of two-stage linear programs under
uncertainty, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics
and Probability, vol I, University of California Press, Berkeley 1961, pp. 165-176.

[5] G.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations
Research 8(1960) 101-111.

[6] R. Fourer, Solving staircase linear programs by the simplex method, 1: inversion, Math-
ematical Programming 23(1982) 274-3 13.

[7] R. Fourer, Solving staircase linear programs by the simplex method, 2: pricing, Mathe-
matical Programming 25(1983) 251-292.

[8] J . K . Ho, T.C. Lee and R.P. Sundarraj, Decomposition of linear programs using par-
allel computation, technical report, College of Business Administration, University of
Tennessee, Knoxville, 1987.

[9] J .K. Ho and A.S. Manne, Nested decomposition for dynamic models, Mathematical Pro-
gramming 6(1974) 121-140.

[lo] P, Kall, Computational methods for solving two-stage stochastic linear programming
problems, ZA MT 30(1979) 261-271.

[I l l K. C. Kiwiel, A dual method for certain positive semidefinite quadratic programming
problems, technical report, Systems Research Institute, Warsaw 1987.

[12] B. Murtagh, Advanced Linear Programming, McGraw-Hill, 1981.

[13] A. Propoi and V. Krivonozhko, The simplex method for dynamic linear programs, RR-
78-14, IIASA, Laxenburg, 1978.

[14] R.T. Rockafellar, Convez Analysis, Princeton University Press, Princeton 1970.

[15] R.T. Rockafellar and R.J.-B. Wets, A Lagrangian finite generation technique for solving
linear quadratic problems in stochastic programming, Mathematical Programming Study
28(1986) 63-93.

[16] R.T. Rockafellar and R.J.-B. Wets, Scenarios and policy aggregation in optimization
under uncertainty, WP-87-119, IIASA, Laxenburg 1987.

[17] A. Ruszczyriski, A regularized decomposition method for minimizing a sum of polyhedral
functions, Mathematical Programming 35(1986) 309-333.

1181 A. Ruszczyliski, Regularized decomposition of stochastic programs: algorithmic tech-
niques and numerical results, Operations Research , to appear.

[19] A.Ruszczynski, Modern techniques for linear dynamic and stochastic programs, in: The-
ory, software and testing ezamples for decision support systems, A. Lewandowski and A.
Wierzbicki (eds.), WP-87-26, IIASA, Laxenburg 1987, pp.27-43.

[20] A. Ruszczyriski, Regularized decomposition and augmented Lagrangian decomposition
for angular linear programming problems,WP-88-88, IIASA, Laxenburg 1988.

[21] B. Strazicky, Some results concerning an algorithm for the discrete recourse problem, in:
Stochastic Programming, M. Dempster (ed.), Academic Press, London 1980, pp. 263-274.

[22] R. Van Slyke and R. J.-B. Wets, L-shaped linear programs with applications to optimal
control and stochastic programming, SIAM J. on Applied Mathematics 17(1969) 638-663.

[23] R. J.-B. Wets, Large scale linear programming techniques in stochastic programming,
in: Numerical Methods in Stochastic Programming, Y . Ermoliev and R. Wets (eds),
Springer-Verlag, Berlin 1986 (to appear).

[24] R. Wittrock, Dual nested decomposition of staircase linear programs, Mathematical Pro-
gramming Study 24(1985) 65-86.

