
Parallel Determinacy Race Detection for Futures

Yifan Xu
Washington University in St. Louis

xuyifan@wustl.edu

Kyle Singer
Washington University in St. Louis

kdsinger@wustl.edu

I-Ting Angelina Lee
Washington University in St. Louis

angelee@wustl.edu

Abstract

The use of futures can generate arbitrary dependences in the
computation, making it difficult to detect races efficiently. Al-
gorithms proposed by prior work to detect races on programs
with futures all have to execute the program sequentially. We
propose F-Order, the first known parallel race detection algo-
rithm that detects races on programs that use futures. Given
a computation with work T1 and span T∞, our algorithm

detects races in time O((T1 lg k̂ + k
2)/P + T∞(k + lg r lg k̂))

on P processors, where k is the number of future operations,
r is the maximum number of readers per memory location,

and k̂ is the maximum number of future operations done by
a single future task, which is typically small. We have also
implemented a prototype system based on the proposed al-
gorithm and empirically demonstrates its practical efficiency
and scalability.
*CCS Concepts· Software and its engineering→ Soft-

ware testing and debugging; · Theory of computation

→ Shared memory algorithms; · Computing methodolo-

gies→ Shared memory algorithms.

1 Introduction

Futures [17] provide an elegant means to express parallelism
in functional programs. Using futures, the programmer can
annotate the invocation of a function instance to be asyn-
chronous Ð the function call may execute in parallel with the
continuation of the caller. The invocation returns a future
handle object that associates the function call execution,
the future task, with a store. Whenever the execution of
a future task completes, the resulting value of the task is
deposited into the future handle and can be retrieved by
anyone who has access to the handle. An attempt to retrieve
the result from the handle before the computation finishes
causes the control to block.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP’20, February 22-26 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00

https://doi.org/10.1145/3332466.3374536

Although futures were originally proposed in the context
of functional programs, its use has seen an increasing pop-
ularity in the context of imperative programs. Modern im-
perative task parallel platforms that support futures include
variants of Habanero Java [9, 21], X10 [10, 48], Cilk [43], and
Deterministic Parallel Ruby [27]. Its use has also been incor-
porated into C++11 [22] and Java [34]. Recently, researchers
have also studied how to use futures in multithreaded com-
putations to share concurrent data structures [24, 30].

Compared to fork-join parallelism, which is the traditional
parallelism paradigm supported by many task parallel plat-
forms, futures offer additional flexibility in how one can
express parallelism. With fork-join parallelism, the asynchro-
nous function invocations must be joined together within a
well-defined lexical scope; with futures, joining with a future
task occurs when one invokes get on the handle to attempt
to retrieve the result of the future task. Since the future han-
dle is an object that can be freely passed around, or even
stored in a data structure and retrieved later, joining with
future tasks can occur at arbitrary program points and is not
limited by any lexical scope.

With imperative programming, the interactions between
shared memory and parallelism have to be regarded carefully,
however. If not careful, the interactions can lead to pernicious
errors such as races that are challenging to detect and debug.
In this paper, we study the problem of how to efficiently
detect races in a task parallel program that employs futures.

How to efficiently detect races in a task parallel program is
a well studied problem [1, 4, 13ś15, 29, 37, 38, 47, 50, 51, 55].
In the context of task parallel programming, the focus has
been on detecting determinacy races [13] (also called gen-

eral races [31]), where two logically parallel subcomputa-
tions access the same memory location in a conflicting way
(i.e., at least one is a write). The execution of a parallel com-
putation can be modeled as a directed acyclic graph (or
DAG), in which a node represents a sequence of instructions
without parallel control constructs and an edge represents a
control dependence that arises from the execution of control
constructs. Two memory accesses are said to be logically
in parallel if no directed path exists between them. Since
the dependences that arise from the control constructs are
input-dependent and not schedule dependent, the race de-
tection algorithms proposed by this prior work can provide
strong correctness guarantees Ð the race detector reports
a race if and only if one exists for a given program and a
given input; i.e., the race detector is sound and complete with

respect to a given input, as opposed to for a given execution

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

schedule. Moreover, in the absence of a determinacy race,1

the computation behaves in a deterministic fashion.
Algorithms proposed by this prior work detect races on

the fly as the program executes. They typically consist of
two components: 1) an access history that keeps track of
the readers and the writers that previously accessed a given
memory location during execution, and 2) a reachability
component that answers the query of whether two given
accesses are logically in parallel or not. Upon a memory
access v , the algorithm checks v against each conflicting
access u stored in the access history that accessed the same
memory location, and queries the reachability data structure
to see if u and v are logically in parallel. If so, the algorithm
has found a race.
Much of the prior work focuses on detecting races for

fork-join parallelism [4, 13ś15, 29, 37, 38, 50], which gener-
ates computation DAGs with nice structural properties. By
exploiting the structural properties, the state-of-the-art algo-
rithm [50] can detect races for a task parallel computation
with only fork-join parallelism with no asymptotic overhead.
Given a computation with work T1, how long it takes to
run the computation on one core and span T∞, how long it
takes to run the computation on infinitely-many cores, or
the longest dependences in the computation, the algorithm
can race detect the computation in time O(T1/P +T∞) when
running on P processing cores.

Unlike computations that utilize only fork-join parallelism,
the use of futures can generate arbitrary dependences due to
the fact that the joining of future tasks can occur at arbitrary
program points. Consequently, a program that uses futures
no longer has the same structural properties, and algorithms
developed in this prior work cannot be applied directly.
A few sequential algorithms [1, 47, 51] have been pro-

posed to race detect programs that use futures, and the state-
of-the art algorithm [1] provides an execution time bound
of O(T1 + k

2), where k is the number of future operations.
However, these prior algorithms must execute the program
sequentially during race detection. The requirement of se-
quential execution is not just an implementation artifact but
fundamental to how the algorithms maintain reachability. As
the computation DAG unfolds dynamically during program
execution, the reachability maintenance data structure must
maintain reachability of all accesses occurred thus far. In
these prior algorithms, the reachability data structure can
only be maintained correctly assuming a particular traversal
order of the computation DAG, which only the sequential
execution guarantees. If the DAG folds in any other topologi-
cal traversal order (which occurs during parallel executions),
the reachability data structure proposed by these prior algo-
rithms no longer work correctly.

1Henceforth, when we say a race, we mean a determinacy race unless noted

otherwise.

In this work, we propose F-Order, the first know parallel

race detection algorithm that race detects a program with
futures while executing the program in parallel. Given a
computation with T1 work and T∞ span, our race detection

algorithm runs in timeO((T1 lg k̂ + k
2)/P +T∞(k + lg r lg k̂))

on P processors, where k is the number of future operations,
r is the maximum number of readers per memory location,

and k̂ is the maximum number of future operations done by
a single future task, which is usually small.
To put this bound into perspective, a provably efficient

parallel scheduler can execute a baseline program (i.e., no
race detection) in time O(T1/P +T∞) [3]. Our race detection
algorithm incurs additionalO(k2) work, like the state-of-the-
art sequential algorithm [1], but this additional work can
be parallelized. It also incurs a multiplicative overhead of

lg k̂ on the work term (which is small) and a multiplicative

overhead of (k + lg r lg k̂) on the span term, where k likely
dominates the other term.

We have implemented and empirically evaluated a proto-
type system based on F-Order. The empirical results indicate
the reachability component incurs little overhead and that
the race detection obtains similar scalability as the base-
line. Moreover, we have compared our parallel race detector
against FutureRD, the state-of-the-art sequential race detec-
tor for futures [49, 51]. Empirical results indicate that, even
though our parallel race detector incurs higher overhead on
one-core execution, the fact that we can race detect while
executing the program in parallel quickly pays off in absolute
execution times.

Contributions

• We propose F-Order, the first known parallel race detec-
tion algorithm that race detects programs with futures. We
provide the key intuitions behind our parallel algorithm
(Section 4) and prove its correctness (Section 5).

• We show that F-Order can race detect a computation with

workT1 and spanT∞ in expected timeO((T1 lg k̂ +k
2)/P +

T∞(k + lg r lg k̂)) on P processors, where k is the number
of future operations, r is the maximum number of readers

per memory location, and k̂ is the maximum number of
future operations done by a future task (Section 6).

• We implemented a prototype of F-Order and empirically
evaluate its scalability and overhead (Section 7). Experi-
mental results indicate that F-Order scales well and the ab-
solute running times of all benchmarks with race detection
using F-Order on 4 cores or more beat the state-of-the-art
sequential race detector [51].

2 Preliminaries

Language Constructs Considered. Fork-join parallelism
can be expressed using two keywords: spawn and sync.
When a function F spawns off another function G by pre-
fixing the invocation with spawn, the execution of G may

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

operate in parallel with the continuation of F . The invoca-
tion of a sync specifies that all previously spawned functions
must return before the control can pass sync.2

Future parallelism can be expressed using create and
get. Similar to spawn, when a function F spawns off another
function G by prefixing the invocation with create, the
execution ofG may operate in parallel with the continuation
of F . We refer to this instance of G as a future task. Unlike
spawn, however, the invocation of create returns a future
handle, with which the execution of the future task G is
associated. By invoking a get on the handle, the control
cannot pass beyond get until the future task finishes and
deposits its result into the handle. An invocation of a sync
does not affect future tasks spawned off with create; sync
can freely continue without waiting for future tasks to return.
Modeling Parallel Computations. One can model the

execution of a parallel computation as a directed acyclic

graph (or DAG), in which a node represents a sequence of
instructions without parallel control and an edge represents
a control dependence between two nodes.
The execution of a spawn creates a spawn node with

two outgoing edges: one to the spawned function (drawn
as the left sub-DAG) and one to the continuation of the
caller (drawn as the right sub-DAG). The execution of a
sync creates a sync node with multiple incoming edges, one
from the end of each spawned function to the sync node
that represents the continuation after sync. Without loss
of generality, we shall assume that a sync code consists of
only two incoming edges Ð it is not difficult to convert a
sync node with multiple incoming edges into a chain of sync
nodes, each with two incoming edges.

The execution of a program that uses only fork-join paral-
lelism generates a series-parallel (SP) DAG [52] with nice
structural properties. Specifically, a SP DAG is a planar DAG
with a unique source node with no incoming edges and a
unique sink node with no outgoing edges. A SP DAG can
be constructed recursively using series and parallel compo-
sitions where the spawn and sync nodes are well-nested.
The execution of a create generates a create node with

two outgoing edges, one to the future task (drawn as the left
sub-DAG) and one to the continuation of the caller (drawn as
the right sub-DAG). The execution of a future task terminates
with a put node, which is the last node to execute in the
future task that deposits the result into its future handle.
The execution of a get terminates the current node v , and
generates a join node with two incoming edges Ð one from
v , referred to as join node’s local parent, and one from the
put node of the corresponding future task, referred to as the
join node’s future parent. We refer to the edge generated
by create to the future task and the edge generated by get

from the put node to the join node as non-SP edges as these

2Many task parallel platforms also support parallel loops, which can be

thought of as syntactic sugar that compiles down to spawn and sync.

edges do not conform to the well-nested structures that arise
from series and parallel compositions for SP DAGs.
When a program uses both fork-join and future paral-

lelism, the execution generates a nearly series-parallel

(NSP) DAG GN = (Dsp, Enon), a DAG formed by a set Dsp

of SP DAGs connected by a set Enon of non-SP edges. Since
each future task may contain fork-join parallelism, the exe-
cution of a future task can be modeled as its own SP DAG.
If the future task executes a create, the spawned-off future
task is a separate SP DAG, connected via non-SP edges.
Other Definitions. The following types of nodes are spe-

cial: spawn, sync, create, join, and put nodes. All other nodes
are common nodes. Given two nodes u and v , we say u and
v are in series if a directed path exists between u and v ; oth-
erwise they are in parallel. If a path exists between u and
v , we say u is an ancestor of v , and v is a descendent of u.
Furthermore, we say create and put nodes are non-SP nodes,
which are special in that they have an outgoing non-SP edge.
If there is a path from u to v , and u is either a create or put
node, we say u is a non-SP ancestor of v .
Parallel Schedule and Performance Metrics. During

execution, the DAG unfolds dynamically, and the scheduler
maps execution of nodes onto processing cores, in a way that
respects the dependences expressed by the parallel control
constructs. A node v only becomes ready to execute when
all its ancestors have finished executing. A valid parallel
schedule is a topological sort of the nodes in the DAG.
There are two important metrics for measuring perfor-

mance of a DAG: assuming each node takes unit time to
execute, its work (denoted as T1), the number of nodes in
the DAG, or how long it takes to execute the DAG on one
core; and its span (denoted as T∞), the length of a longest
path in the DAG, or how long it takes to execute the DAG on
infinitely many cores. A DAG can be scheduled efficiently
using a work-stealing scheduler [2, 3, 7, 8]. Given a DAG
with T1 work and T∞ span, a work-stealing scheduler can
execute the computation in time T1/P +O(T∞).

3 Related Work

Race Detection for Task Parallel Code. One can exploit
the structural property of fork-join parallelism to obtain effi-
cient race detection algorithms when the program uses only
fork-join parallelism. Mellor-Crummey [29] is the first to
show that, for a parallel race detector, it suffices to store
two readers and a single writer per memory location in the
access history. Feng and Leiserson [13, 14] provided the first
provably efficient sequential race detection algorithm that
is near-optimal. Bender et al. [4] proposed the first asymp-
totically optimal sequential algorithm and the first provably
efficient parallel algorithm with aO(P) overhead on the span
term, where P is the number of cores used during execution.
Finally, Utterback et al. [50] proposed the first asymptotically
optimal parallel algorithm.

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

For race detecting pipeline parallelism, which is another
task parallel paradigm with nice structural properties, Dim-
itrov et al. [12] proposed the first sequential algorithm that
is near-optimal; Xu et al. [55] later proposed the first asymp-
totically optimal parallel algorithm.

Lee and Schardl [25] proposed a sequential race detection
algorithm for fork-join computations with reductions, where
the DAG is series-parallel except when executing reductions.
A few algorithms [1, 47, 51] have been proposed to race

detect programs that use futures. Surendran and Sarkar [47]
proposed the first algorithm to race detect a program that
uses futures, but their algorithm runs sequentially and can
incur large overhead, O(T1(f + 1)(k + 1)α(m,n)), where f

is the number of future tasks, k is the number of future
operations,m is the number of memory accesses, n is the
number of parallel control constructs executed, and α is the
functional inverse of Ackermann’s function. Later, Agrawal
et al. [1] improved the bound toO(T1+k

2), although the work
is theoretical and no implementation of the algorithm exists.
Finally, Utterback et al. [51] separated the use of futures
into two classes Ð structured use of futures that imposes
certain programming restrictions on where the future get
can occur,3 and general use of futures that does not impose
such a restriction. By distinguishing the two, Utterback et al.
[51] observed that programs that use structured futures can
be race detected much more efficiently, in timeO(T1α(m,n)).
For general use of futures, Utterback et al. [51] proposed
an algorithm (and its corresponding implementation) that
executes in time O((T1 + k

2)α(m,n)).
Race Detection for Pthreaded Code. Much work has

been done on race detecting pthreaded code. Like task par-
allel code, an execution of a pthreaded code can also be
represented as a DAG and thus the problem of race detec-
tion boils down to checking for reachability of nodes in the
DAG. Unlike task parallel code, however, the dependences
in a pthreaded execution are formed via lock operations (as
opposed to via high-level constructs) whose ordering forms
happens-before (HB) relations. Thus, the dependences are
schedule dependent and nondeterministic for a given input.
Thus, race detecting pthreaded code cannot be sound and
complete for a given input as the number of possible sched-
ules grows quickly.

The dependences formed via lock operations can be arbi-
trary with no structural properties. Researchers have pro-
posed lock-set based algorithms [41, 53] that provide wide
coverage but cannot precisely capture the dependences and
may generate many false positives. Researchers have also
proposed a Vector-clock (VC) based approach [16]) that pre-
cisely captures the dependences, but only for a given sched-
ule. Hybrid approaches have also been explored [33, 36, 42,
56] that incorporate VC and lock-sets in order to achieve a

3The structured use of futures is first proposed by Herlihy and Liu [18] in

the context of studying cache misses.

compromise between coverage and precision. Finally, pre-
dictive analysis has been proposed as a method to explore
alternative feasible schedules among nearby instructions
in order to maintain precision while increasing the cover-
age [23, 26, 40, 44].

Even though a VC-based algorithm can capture arbitrary
dependences and in principle can be applied to task-parallel
code with futures, naively applying it to task-parallel code
would be impractical. It requires storing a vector-clock of
length n with each memory location, where n is the number
of nodes in the computation DAG (which can be on the order
of millions). Each memory access requires querying this
vector, resulting a O(n) overhead per access. In contrast, for
task parallel code, one can exploit the structural properties
in the DAG to encode reachability much more efficiently. In
the case where futures are used, our algorithm still exploits
the structural properties that exist within a single future
task (which is an SP DAG) to allow for efficient reachability
queries and handles the arbitrary dependences that arise due
to non-SP edges in a special way. By doing so, our algorithm
incurs an additional O(k2) space overhead across the entire

execution and additional O(lg k̂) work per access, where k

is the number of future operations, and k̂ is the maximum
number of future operations done by a single future task.
Race Detection for Event-Driven Applications.More

recently, researchers have begun to study algorithms to race
detect event-driven systems, such as web pages [35, 39] and
mobile applications [5, 19, 20, 28]. A key challenge here,
unlike the pthreaded code, is to establish a precise causal-
ity model, i.e., how to capture happens-before relations be-
tween asynchronous events. These prior works mainly differ
in their formulations of the causality model, which can be
specific to the application domain (i.e., a model for web appli-
cations written in JavaScript will differ from that for Android
applications). Similar to pthreaded code, once the causality
model is established, an execution of an event-driven system
can be represented as a DAG with arbitrary dependences,
and the problem of race detection boils down to checking
for reachability of nodes in the DAG.
Most prior work in this domain performs reachabil-

ity queries by building and traversing the DAG explic-
itly [5, 20, 28, 35, 39], which can incur high overhead either
during the DAG construction (i.e., the causality model re-
quires traversing through the execution trace a few times to
finalize the DAG) or during detection. Work by [39] builds
the DAG but improves the overhead by running a VC-based
algorithm on the DAG using łchain decomposition,ž where
the width of a vector is determined by the number of chains
in the DAG. Work by [5] further improves the overhead by
proposing a causality model where the DAG can be con-
structed with almost a single pass of the execution trace.
Finally, work by [19] proposes a causality model that allows

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

one to run a VC-based algorithm (with chain decomposi-
tion) with single-pass over the trace without building the
DAG explicitly. This line of work differs from our work in
that, the causality model (or how dependences form) for
task parallel code with futures is much simpler, allowing us
to encode reachability without explicitly building the DAG.
While some work [5, 19, 39] proposed heuristics to optimize
a VC-based algorithm, the optimizations are domain specific
and not applicable in our case.
Use of Futures. Surendran and Sarkar [46] propose com-

piler analysis to automatically generate parallel code from
serial code for pure functions using futures. Voss et al. [54]
investigated methods to detect (and prevent) deadlock in ap-
plications that use futures. Finally, researchers have studied
scheduling strategies and the corresponding performance
bounds when a task parallel code uses futures [18, 43, 45].

4 Overview of F-Order

This section provides an overview of F-Order. The use of fu-
tures generates non-SP edges (defined in Section 2) that form
arbitrary dependences and thus lack the structural properties
that fork-join parallelism enjoys. This has two implications.
First, it no longer suffices to store only a constant number of
accessors per memory location in the access history. Second,
the reachability can no longer be maintained efficiently by
exploiting the structural properties. We discuss each of the
components in turn, the intuitions behind F-Order, and how
F-Order addresses the challenges.

4.1 Access History in F-Order

For fork-join parallelism, due to the nice structural properties
of SP DAGs, it is sufficient to store only the łleft-mostž and
łright-mostž readers per memory location during parallel
execution [29]. One can prove that a reader omitted by the
access history can race with a writer if and only if the writer
also races with either the left-most or the right-most reader.
Thus, we do not miss a race by omitting such a reader in the
access history. For a program that uses futures, however, we
no longer have the same structural properties Ð there are
no clear łleft-mostž and łright-mostž readers that one can
store to subsume potential races with other readers. Thus we
must store all readers encountered until a sequential writer
comes along.
How F-Order maintains access history follows the same

strategy as the prior state-of-the-art sequential algorithm [1].
For each memory location l , F-Order stores a last writer ,
last-writer(l), which is the last node that wrote to l ,
and a list of readers reader-list(l) that read l since
last-writer(l). Whenever a node r tries to read a mem-
ory location l , F-Order performs a reachability query be-
tween r and last-writer(l) to see if r races with the
last writer. If so, a race is reported. If not, r is added to

reader-list(l). Whenever a node w writes to a mem-
ory location l , F-Order checks w against all the readers in
reader-list(l) and the last writer last-writer(l). If any of
the reader-list(l) or last-writer(l) is logically in paral-
lel withw , a race is reported. Otherwise, F-Order empties the
reader-list(l) and sets last-writer(l) to bew . As argued
by Agrawal et al. [1], we won’t miss any races by emptying
reader-list(l) because any future access that races with a
node in reader-list(l)must also race withw . The fact that
the prior algorithm executes the program sequentially and
F-Order executes it in parallel does not change the correct-
ness argument, so long as F-Order synchronizes the access
history data structure correctly.

Agrawal et al. [1] also show that that the total number of
reachability queries per reader is bounded by two. F-Order
provides the same bound on the number of reachability
queries per reader. Since F-Order executes in parallel, how-
ever, we must also consider how the reachability queries
impact the span, which we discuss in Section 6.

4.2 Reachability Maintenance in F-Order

The Challenges. A computation that uses futures can be
modeled as a nearly-series-parallel DAG (NSP DAG), consist-
ing of a set of SP DAGs connected via non-SP edges. Given
two nodes, if they are connected by only SP edges, one can
perform a reachability query on them efficiently by applying
the reachability maintenance algorithm used for fork-join
parallelism from prior work [4, 15, 50]. The challenge is
to handle the reachability queries efficiently when the two
nodes are possibly connected in part by non-SP edges.

The state-of-the-art prior algorithm [1] encodes the reach-
ability that arises due to non-SP edges explicitly using an aux-
iliary graph R. Unfortunately, the maintenance of R heavily
depends on traversing the computation DAG in a left-to-right
depth-first fashion (i.e., executing the DAG sequentially).
Thus, this prior algorithm simply cannot be parallelized,
since a parallel execution can traverse the DAG in any order
(as long as it is a topological sort of the DAG), which breaks
the invariants required by R to keep track of reachability
correctly. Thus, the reachability maintenance in F-Order has
to use an entirely different strategy.
The Intuitions.Based on howwemodel the computation,

each future task forms its own SP DAG, and different SP
DAGs can only be connected via non-SP edges. That means,
if two nodes are in series and connected by only SP edges
then they must belong to the same SP DAG, and one can
utilize a prior parallel algorithm such as WSP-Order [50] to
correctly answer reachability queries between them. WSP-
Order cannot encode the reachability of two nodes correctly
if they are connected via non-SP edges, regardless of whether
they belong to the same SP DAGs or not. Thus, we need some
other means to encode reachability between two nodes if
they are connected via non-SP edges.

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

The key observation is as follows. Given two nodes u and
v connected via non-SP edges, some node w must exist in
the path between u and v , wherew is a non-SP ancestor of v
that is in the same SP DAG asu. That is, the prefix of the path
(from u tow) contains only SP edges, and the suffix (fromw

to v) containing at least one non-SP edge (outgoing fromw).
Thus, given two nodes u and v possibly connected in part by
non-SP edges, we can query their reachability efficiently if
we can quickly determine if such an ancestorw exists, who
is 1) an non-SP ancestor of v in the same SP DAG as u and
2) in series with u via only SP edges.
The FOMData Structure. To quickly determine whether

such an non-SP ancestorw ofv exists, F-Order employs an en-
abling data structure called the Future Order-Maintenance

(or FOM for short) data structure per node in the NSP DAG.
An FOM data structure for v stores all v’s non-SP ancestors,
organized into groups, where each group contains non-SP
ancestors from the same SP DAG.
Upon execution of a node v , its FOM data structure will

be complete and its content fixed because v’s FOM data
structure contains onlyv’s non-SP ancestors, and these must
have already been discovered by the time v executes as the
scheduler guarantees that a node cannot execute until all its
ancestors have executed. Ifv accesses somememory location
that some node u accessed previously, F-Order queries v’s
FOM data structure to find the group д that holds the non-SP
ancestors from the same SP DAG as u. F-Order then checks
with д to determine whether somew exists that is reachable
from u. If a node is in the group д, by definition it is in the
same SP DAG as u. Then, we simply need to check ifw is in
series with u.
A naive implementation would be to check reachability

against every node in д, taking time linear in the size of
д. Ideally, we would like to quickly eliminate non-viable
candidates in the group and avoid querying every single node
in the group. The key insight of F-Order involves identifying
the correct auxiliary data to store with each non-SP ancestor
in a group so that the process of elimination can be done
quickly.
It turns out that, to perform the process of elimination

within a group, we simply need to organize nodes in a given
group as follows. First, store the nodes in a total order, called
the English order [32], that corresponds to the depth-first-
left-to-right traversal of nodes in the corresponding SP DAG.
The English order is well defined among nodes in the same
group, because a group contains only nodes from the same
SP DAG with no non-SP edges. Second, with each nodew in
the group, additionally storew’s furthest descendent that
is also within the same group; that is, some node z that is
reachable fromw that is also in the group such that no other
node y in the group is reachable from z (formally defined in
Section 5). We will elaborate on the detailed construction of
FOM data structures and discuss how F-Order uses them to
perform reachability queries in Section 5.

Figure 1. An example of a NSP DAG with every node’s FOM
data structure shown. In this NSP DAG, four SP DAGs exist,
ID’ed as A, B, C , and D, with A being the main SP DAG
and the others being the spawned future tasks. The non-SP
edges are shown as thick dashed edges. Each node has its
own instance of FOM data structure, containing entries of
{key : value} pairs, where thekey is the ID of an SPDAG and
the corresponding value is a set of non-SP ancestors from
the SP DAG. The parentheses next to each non-SP ancestor
shows its furthest descendant in the group.

4.3 An Illustrating Example

Figure 1 shows the static snapshot of an NSP DAG with
all its FOM data structures shown. Note that the parallel
execution unfolds the NSP DAG dynamically, revealing each
node as it becomes ready (i.e., all its ancestors have executed).
Nevertheless, as discussed earlier, the content of an FOM
data structure for node v is fixed by the time v executes,
so this dynamic unfolding of the DAG does not change the
content of the FOM data structures shown.
For now, we shall focus solely on the organization of an

FOMdata structure and howwe use it to perform reachability
queries. Take node f : it contains multiple non-SP ancestors.
They are grouped into four entries in f ’s FOM data structure,
as they respectively belong to four different SP DAGs. In
particular, f has nodes k , l , and n as its non-SP ancestors,
all from SP DAG B. Thus, its FOM data structure contains
an entry with group keyed by B, and the corresponding
value is a list of non-SP ancestors ordered in their English
order. (Note that the nodes in a given SP DAG are labeled
alphabetically according to their ordering in the English
order.)

Say f is being executed, and F-Order wants to check if f is
reachable from node i . Since i belongs to SP DAG B, F-Order
checks f ’s FOM data structure for the group indexed with B,
which returns the list k , l , and n (with every node having n as
its furthest descendant). Since n is reachable from i , F-Order
concludes that f is reachable from i . In this case, the group
for B is small, containing only three nodes. However, the
size of a group can be larger, and ideally we want F-Order
to quickly home in on n and not check i against every node
in the group. This is where the English ordering and the

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

auxiliary data of furthest descendants become useful, which
we discuss in Section 5.

5 Details of F-Order and Its Correctness

This section presents the full detail of F-Order and its correct-
ness proof. F-Order consists of two parts: a construction

algorithm that builds and maintains the FOM data struc-
ture for each node and a reachability-query algorithm that
checks whether a given pair of nodes are reachable from one
another. We discuss each in turn. Throughout the section,
we shall refer back to Figure 1 as an illustrating example.

Notations. Given an NSP DAG GN = (Dsp, Enon), which
consists a set of SP DAGs connected via non-SP edges, we
assume each SP DAG d ∈ GN is assigned with a unique inte-
ger identifier, denoted as SP(d). Given a node u, we overload
the notation and use SP(u) to denote the ID of the SP DAG
containing u. Given two nodes u and v , we use u ❀ v to
denote the presence of a directed path from u to v . We use
u ❀sp v if the path comprises only SP edges and u ❀nsp v

if the path comprises any non-SP edge. We say u ≺ v iff
u ❀ v , and u ⪯ v iff either u ≺ v or u = v . If u and v are in
the same SP DAG d ∈ Dsp , we say u ≺d v iff u ❀sp v; we

say u ∥d
lef t

v iff node u is left of v in SP DAG d , where u is

in the left sub-DAG of d and v is in the right sub-DAG of d .
Both notations ≺d and ∥d

lef t
are only applicable to nodes in

the same SP DAG d . They specify the English order in that,
if u is before v in the order, then either u ≺d v or u ∥d

lef t
v .

For instance, in Figure 1, c ≺d д and b ∥d
lef t

e . On the other

hand, h and д cannot be related using these operators.

5.1 Construction of FOM Data Structures

As the NSP DAG unfolds, nodes become ready and get exe-
cuted. When a node v executes, F-Order constructs an FOM
data structure forv , denoted asv . f om, whose content is com-
plete at the beginning of v’s execution to allow for reach-
ability queries for memory accesses performed by v . An
FOM data structure is organized as a hash table, hashing
SP(d) to its corresponding group that stores all ofv’s non-SP
ancestors that belong to the SP DAG d .

For a given groupд, an element e inд has two fields: e .node
and e .desc . Field e .node stores the actual non-SP ancestor.
Field e .desc stores the furthest descendent of e .node in д.
We say a node v is the furthest descendent of e .node in д

iff (1) e .node ⪯d v , (2) there exists an element x in д such
that x .node = v , (3) for any other element y in д, we have
v ⊀d y.node . Intuitively, the furthest descendant of e .node is
another non-SP ancestor ofv stored in the same group д that
is a descendant of e .node and e .node has no other descendant
in the group that is further out.
Properties of an FOM data structure. An FOM data

structure maintains the following properties.

1. For a non-SP node w such that w ⪯ v , there ex-
ists a group containing element x in v . f om such that
x .node = w .

2. Given two elements x and y in group д, x .node and
y.node are in the same SP DAG d . If x .node ≺d y.node

or x .node ∥d
lef t

y.node , then x is before y in д.

3. Given an element x in group д, its furthest descendant
field is maintained properly. That is, (1) x .node ⪯d
x .desc , (2) there exists an element y in д such that
y.node = x .desc , (3) for any other element z in д, we
have x .desc ⊀d z.node .

Property 1 states that, given a node v in the NSP DAG,
v . f om has all v’s non-SP ancestors. Property 2 states that
the elements in a group are stored in the English order. Since
a group stores only nodes from the same SP DAG, their
relationships (≺d or ∥d

lef t
) can be maintained and queried

efficiently using the prior parallel algorithmWSP-Order [50]
designed for fork-join parallelism. Property 3 states that
the furthest descendents for every element is maintained
correctly.

The construction algorithm in F-Order assumes the follow-
ing helper functions that operate on FOM data structures.

• FOM-Insert(f om, v): Given an instance f om and a non-
SP node v , FOM-Insert returns a new instance of FOM
created by copying over the content of f om and inserting
v into the appropriate group stored in f om.

• FOM-Merge(f om1, f om2): Given two instances f om1 and
f om2 of FOM, FOM-Merge returns a new instance of FOM
created by merging the contents of f om1 and f om2.

Algorithm 1: F-Order, Construction

1 Function CommonOrSpawn(v)

2 v .f om = v .parent .f om

3 Function Sync(v)

4 let u be the corresponding spawn node of v

5 if u .f om , v .lparent .f om and

u .f om , v .rparent .f om then

6 v = FOM-Merge(v.lparent.fom, v.rparent.fom)

7 else if u .f om , v .lparent .f om then

8 v .f om = v .lparent .f om

9 else

10 v .f om = v .rparent .f om

11 Function CreateOrPut(v)

12 v .f om = FOM-Insert(v.parent.fom, v)

13 Function Join(v)

14 v .f om = FOM-Merge(v.local.fom, v.future.fom)

Algorithm 1 shows the pseudocode of the construction
algorithm. F-Order constructs FOMs for all nodes by prop-
agating the presence of non-SP nodes (i.e., create or put)
to all its descendents during parallel execution. The algo-
rithm initializes an empty instance of FOM for the source
node of the main DAG since it doesn’t have any ancestor.
Subsequently, it executes nodes of the DAG in any valid

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

order: a node can be executed when all it’s ancestors have
finished executing. As each node v executes, the algorithm
calls different functions based on v’s node type.
If v is a common or spawn node, v has only one parent

v .parent . Any non-SP ancestor of v .parent (possibly includ-
ing v .parent itself) is also a non-SP ancestor of v . Thus, the
algorithm sets v . f om = v .parent . f om (line 2).
If v is a create or put node, besides inheriting all its par-

ent’s non-SP ancestors, v also needs to insert itself into
its own FOM data structure. Therefore, the algorithm in-
vokes FOM-Insert to insert itself intov .parent . f om (line 12),
which implicitly creates a new instance of FOM that copies
the content from v .parent . f om and inserts itself into the
appropriate group.
If v is a join node, then v has two parents: a local parent

v .local and a future parent v . f uture . Then the algorithm
creates a new instance of FOM by merging v .local . f om and
v . f uture . f om (line 14).

Finally, if v is a sync node, then v has two parents: a
left parent v .lparent and a right parent v .rparent . How-
ever, it is not always necessary to merge v .lparent . f om and
v .rparent . f om. By the structural properties of an SP DAG,
we know that a sync nodev has a corresponding spawn node
u and two SP sub-DAGs in between: the left sub-DAGGL and
the right sub-DAGGR . The source node ofGL inheritsu . f om,
which can only changewhenGL contains either a create node
or a join node (i.e., with an incoming put edge). IfGL does not
contain either create or join node, v .lparent . f om remains
the same as u . f om. Similarly, the same thing holds for GR

and v .rparent . f om. The merge is only necessary when both
v .lparent . f om and v .lparent . f om have changed compared
to u . f om. Thus, the algorithm checks for whether both have
changed, and if so calls FOM-Merge (line 6). Otherwise, if
only one changed, v . f om inherits the one that has changed
(lines 8 and 10). If neither has changed, it doesn’t matter
which one v . f om inherits from. Take node f in Figure 1 for
instance: its corresponding spawn node is c and only the
right sub-DAG (i.e., e) has its FOM data structure changed
from c . Thus, f simply inherits its FOM data structure from
its right parent e . The node д, on the other hand, constructs
its FOM data structure by merging the FOM data structures
from both of its parents.

For performance reasons, it is important that F-Order calls
FOM-Merge only when both sub-DAGs execute nodes that
cause their respective FOM data structure to change, a fact
that we use when proving the performance bound of F-Order
in Section 6.

Lemma 5.1 states that Property 1 always holds for an FOM
data structure:

Lemma 5.1. Given a node v , F-Order constructs a FOM in-

stance v . f om that stores all the non-SP ancestors (i.e., future

create and put nodes) of v (Property 1).

Proof Sketch. One can show this inductively by the
nodes executed during parallel execution: provided that the
FOM instance(s) of v’s parent(s) satisfy Property 1, the con-
struction of v’s FOM also satisfies Property 1. □

To show that the construction algorithm satisfies the Prop-
erties 2 and 3, we need to examine the FOM-Insert and
FOM-Merge in more detail. Due to space constraints, we dis-
cuss what these functions do at a high-level and omit the
full pseudocode.
Insert Operation. At FOM-Insert(f om, v), we create

a new FOM f omnew by copying the content of f om into
f omnew . Then we check if f omnew contains a group д with
SP(v). If so, we call Group-Insert(д, v), which returns a
new group дnew with a copy of д’s content and v added,
and we replace д with дnew in f omnew . If not, we simply
create a new empty group дnew with v added, and add дnew
to f omnew .

Algorithm 2: Helper function: Group-Insert

15 Function Group-Insert(д, v)

16 дnew = new Group() //create a new group

17 i = j = 1

18 while j ≤ д .lenдth do

19 x = д[j++] //the jth group element in д

20 if x .node ≺d v ∨ x .node ∥d
lef t

v then

21 // copy constructor copying the content of x into y

22 y = new Group-Element(x)

23 // update furthest descendant if necessary

24 if x .desc ≺d v then y .desc = v

25 дnew [i++]=y // insert group element y into дnew

26 else break // found the right position for v

27 дnew [i].node = дnew [i].desc = v

28 i = i + 1

29 //copy the remaining elements of д into дnew

30 while j ≤ д .lenдth do

31 дnew [i++] = new Group-Element(д[j++])

32 return дnew

Algorithm 2 shows the helper function Group-Insert,
which uses linear search to find the correct position of v in
дnew , which keeps Property 2. Furthermore, for a node u in
дnew such thatu ≺d v ,v checks its furthest descendent to see
if it should be replaced withv ; if so, update it inдnew (line 24).
For any u ′ that is positioned after v in дnew , v cannot be u ′’s
furthest descendant as either v ≺d u ′ or v ∥d

lef t
u ′ and thus

we simply copy over the rest (line 31).
We can conclude the following lemma for FOM-Insert:

Lemma 5.2. Given a FOM f om that satisfies Properties 2

and 3, FOM-Insert(f om,v) returns a new FOM with the con-

tent of f om and v inserted that satisfies Properties 2 and 3.

Merge Operation. FOM-Merge is used in the con-
struction algorithm to merge two FOM instances. At
FOM-Merge(f om1, f om2), we create a new FOM f omnew .

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

We first iterate through groups in f om1 and insert them into
f omnew . We then iterate through groups in f om2. For each
group д2 in f om2, we check if some group д1 with SP(д2)

already exists f omnew . If so, we call Group-Merge(д1, д2),
which returns a new group д with merged content, and we
replace д1 with д in f omnew . If not, we simply insert д2 into
f omnew .

Algorithm 3: Helper function: Group-Merge

33 Function Group-Merge(д1, д2)

34 дnew = new Group() //create a new group

35 i = j = k = 1

36 while i ≤ д1 .lenдth ∧ j ≤ д2 .lenдth do

37 x = д1[i] //the ith group element in д1

38 y = д2[j] //the jth group element in д2

39 if x .node ≺d y .node ∨ x .node ∥d
lef t

y .node then

40 z = new Group-Element(x)

41 i = i + 1

42 else if x .node = y .node then

43 z .node = x .node

44 if x .desc ⪯d y .desc then z .desc = y .desc

45 else z .desc = x .desc

46 i = i + 1; j = j + 1

47 else

48 z = new Group-Element(y)

49 j = j + 1

50 дnew [k++] = z //insert group element z into дnew

51 //copy the remaining elements of д1 or д2 into дnew

52 while i ≤ д1 .lenдth do

53 x = д1[i++]

54 дnew [k++] = new Group-Element(x)

55 while j ≤ д2 .lenдth do

56 y = д2[i++]

57 дnew [k++] = new Group-Element(y)

58 return дnew

Algorithm 3 shows Group-Merge, which merges two
groups while maintaining the English order during merge,
and its operation is akin to the merge step in merge sort.
Using a similar correctness proof as merge sort, we can con-
clude the following lemma:

Lemma 5.3. Given f om1 and f om2 that satisfy Property 2,

FOM-Merge(f om1, f om2) returns a new FOM instance with

the merged content of f om1 and f om2 that satisfies Property 2.

What is not obvious is that Property 3 is alsomaintained by
Group-Merge. Consider the process of merging two groups
д1 and д2. Given an element x in д1, x .desc stores the furthest
descendent of x .node in the scope of д1. However, it is pos-
sible that there exists a node u in д2 such that x .desc ≺d u,
which means that u should become the new x .desc after
merging д1 and д2 into дnew . It may seem that Group-Merge
needs to check x .desc against every single node inд2. It turns
out that it is sufficient to only check x .desc against y.desc

of an element y in д2 such that x .node = y.node , and dur-
ing the merge we are guarantee to compare x against y for
x .node = y.node (lines 42ś46). Lemma 5.4 states that doing
so is sufficient to maintain Property 3.

Lemma 5.4. Given two groups д1 and д2 that satisfy Prop-

erty 3, Group-Mergemerges the content of д1 and д2 into дnew
while maintaining Property 3 for дnew .

Proof. Given an element x in д1, say there exists a node u
stored in д2 such that u is the new furthest descendent of
x .node . Then, we have x .node ≺d u. Also, supposeд2 is main-
tained by v . f om. Then we have u ⪯ v since all the nodes
stored inv . f om arev’s ancestors, which leads to x .node ≺ v .
By Property 1, we know v . f om stores all of v’s non-SP an-
cestors. Thus, x .node must be stored in some group ofv . f om.
Since x .node and u are in the same SP DAG, we are guar-
anteed that x .node is also in д2. Thus, there must exist an
element y in д2 such that y.node = x .node and y.desc = u.
Thus, similar to the merge step in merge sort, there must ex-
ist an iteration that performs the comparison between x and
y. As a result, it is sufficient to check for update for x .desc
against y.desc in such an iteration. □

5.2 Reachability Queries Using FOM

We now describe how we do the reachability query between
two nodes u and v . Recall the intuitions discussed in Sec-
tion 4.2. The following lemma formalizes this intuition:

Lemma 5.5. Give two nodes u and v in GN , we have u ≺ v

iff one of the following is true: 1) u ≺d v ; or 2) u ⪯d w ,w ≺ v

wherew is a non-SP node (i.e., a create or put node).

Proof. It is clear that if u ≺d v , or u ≺d w and w ≺ v , we
have u ≺ v . Now we show the other direction also holds. If
u ≺ v , there are two possibilities: 1) u ❀sp v or 2) u ❀nsp v .
The first case u ❀sp v is easy to see that u and v must be in
the same SP DAG and thus we have u ≺d v . Let’s consider
the second case u ❀nsp v . Then the path must pass through
some create or put node because all outgoing non-SP edges
are incident on either create or put nodes. Now we prove
that there exists a nodew that u ⪯d w . If u is a create or put
node, thenw = u. If not, u must have an outgoing SP edge.
Therefore, we can break the non-SP path from u to v into a
SP path and a non-SP path connected via some create or put
nodew . As a result, we have u ❀sp w , i.e., u ≺d w . □

Lemma 5.5 states that in an NSP DAG GN , node u has a
path to v iff: (1) u and v are in the same SP DAG d and there
is an SP path between u and v in d ; or (2) the path passes
through a create or put node that breaks the path into an
SP path and a non-SP path. The first case can be queried
efficiently using prior work [50]. The latter case is where we
apply the FOM data structures. Specifically, when querying
for reachability between u and v , F-Order first queries if
u ≺d v if they are in the same SP DAG; otherwise, F-Order

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

searches whether there exists a non-SP ancestor w stored
with v . f om such that u ⪯d w .

Algorithm 4: Group-Search in Reachability Query

59 Function Precedes(u , v)

60 if SP (u) = SP (v) ∧ u ≺d v then return TRUE

61 else

62 д = v .f om.f ind (SP (u))

63 if д then return Group-Search(u , д)

64 else return FALSE

65 Function Group-Search(u , д)

66 low = 1; hiдh = д .lenдth

67 while low ≤ hiдh do

68 mid = (low + hiдh)/2; m = д[mid]

69 if u ⪯d m .node then

70 return TRUE

71 else if m .node ≺d u ∨m .node ∥d
lef t

u then

72 low =mid + 1

73 else // must be u ∥d
lef t

m .node

74 if u ≺d m .desc then return TRUE

75 else hiдh =mid − 1

76 return FALSE

Algorithm 4 shows the pseudocode for Precedes(u,v),
which checks if SP(u) = SP(v) and u ≺d v . If so, u ≺ v and
we are done. If not, we then check if a non-SP path exists
usingv’s FOM data structurev . f om. We search for a group д
with SP(u) in v . f om; if found, we invoke Group-Search(u,
д) to see if aw exists such that u ⪯d w . If one is found, then
u ❀nsp v ; if not, we conclude that no path exists between u
and v .
By Property 2, elements in a group д is stored in a total

English order. Group-Search uses this fact to apply a process
of elimination akin to that in binary search. As hinted before,
the process of elimination involves some complications Ð
upon encountering an element x , in some cases, we must
compare u against x .desc (line 74) to correctly eliminate half
of the remaining elements to check. This leverages Property 3
to guarantee correctness, which we discuss in Lemma 5.6.

Lemma 5.6. Given a node u and a group д, the search in

Group-Search(u,g) returns true iff there exists an element x

in д such that u ⪯d x .node ; it returns false otherwise.

Proof. First we show that if Group-Search(u,g) returns true,
there exists an element x in д such that u ⪯d x .node . This
is evident from the code: Group-Search(u,g) only returns
true when such a node is found (lines 70 and 74).

Now we show the other direction also hold: if an element
x exists in д such that u ⪯d x .node , Group-Search(u,g)
returns true. That is, if such x exists, Group-Search(u,g)
will find it by correctly eliminating half of the remaining
elements that we don’t need. We will examine this by cases
on the if conditions executed in Group-Search(u,g).
By Property 2, if x .node ≺d y.node or x .node ∥d

lef t

y.node , then x is positioned before y in д. Let’s suppose

that the element we are looking for is x and it exists. If
д[mid].node ≺d u (first part of condition in line 71), then ob-
viously д[mid].node ≺d x .node and we need to only search
the array elements positioned after д[mid]. The code cor-
rectly performs the elimination (line 72).

Nowwe show ifд[mid].node ∥d
lef t

u (second part of condi-

tion in line 71), then we have either д[mid].node ≺d x .node

or д[mid].node ∥d
lef t

x .node . Consider the left sub-DAG GL

containing д[mid].node and the corresponding right sub-
DAG GR containing u. Say G is the SP sub-DAG consists
of GR and GL . Then there are two possibilities for where
x .node can be: either x .node is inGR , then д[mid].node ∥d

lef t

x .node , or sink(G) (the sink node of G) ⪯d x .node , then
д[mid].node ≺d x .node . In either case, д[mid] must be po-
sitioned before x in д, and the code correctly performs the
elimination (line 72).
We now consider the case that u ∥d

lef t
д[mid].node

(line 73). Again, consider the SP sub-DAGG with the left and
right sub-DAGs GL and GR . Say u is in GL and д[mid].node

is in GR . Then it could be either sink(G) ⪯d x .node or
x .node ∈ GL . In the first case, x .node is also a descendent of
д[mid].node . Recall that by Property 3,д[mid].desc stores the
furthest descendent node of д[mid].node . If д[mid].node ≺d
x .node , we are guaranteed that sink(G) ⪯d д[mid].desc . Oth-
erwise, we have д[mid].desc ≺d sink(G) and as a result
д[mid].desc ≺d x .node , which contradicts that д[mid].desc

is д[mid].node’s furthest descendent. Thus, if sink(G) ⪯d
x .node is true, we must have sink(G) ⪯d д[mid].desc , which
leads to u ≺d д[mid].desc (line 74). Now we consider the
second case, x .node ∈ GL . In this case, we have obviously
x .node ∥d

lef t
д[mid].node . By Property 2, we can conclude

that target x must be between positions low andmid −1, and
the code correctly performs the elimination (line 75). □

The last part of the proof in Lemma 5.6 makes it clear why
we must store the furthest descendent with every element
Ð even if the target node is in the part of the array that we
eliminate, we are guaranteed to find it as another element’s
furthest descendent field. Take nodes i and f in Figure 1 for
instance. Say f executes second, and we want to check if
f is reachable from i . We find the group д with SP(i) = B

and invoke Group-Search(i,д). Even though Group-Search
eliminates the second half of д, it still concludes that f is
reachable from i (i.e., returns true), as we have n stored as
l .desc and i ≺d n.

By Lemmas 5.5 and 5.6 and by the operations of Precedes,
we can show the following theorem.

Lemma 5.7. Provided that v . f om satisfies Properties 1ś3,

Precedes(u,v) correctly returns true iff u ❀ v in GN .

Theorem 5.8. Given two executed nodesu andv in NSP DAG

GN . F-Order correctly answers the reachability query between

u and v .

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

Proof. By Lemmas 5.1, 5.2, 5.3, and 5.4, one can inductively
show that Properties 1ś3 on any FOM is maintained at all
times. Then by Lemma 5.7, F-Order can answer the reach-
ability query correctly provided that the FOM instance of
each executed node satisfies Properties 1ś3. □

6 The Performance Bound of F-Order

This section proves the performance bound of F-Order. To
perform a reachability query between two nodes in the same
SP DAG, we utilize the parallel algorithm WSP-Order from
Utterback et al. [50], including scheduling support for main-
taining concurrent order-maintenance (OM) data structures.
In our work, we augmented our scheduler similarly to pro-
vide support for such concurrent OM data structures.

To bound the overhead of WSP-Order and the use of con-
current OM data structures, we invoke the following lemma
shown by Utterback et al. [50]:

Lemma 6.1. Given an SP DAG with work T1 and span T∞,

one can perform reachability maintenance and queries on the

SP DAG in time O(T1/P +T∞) on P processors.

To complete the time bound for F-Order, we need to ac-
count for the additional overhead incurred by the mainte-
nance of and queries on the FOM data structures.

Lemma 6.2. Given an NSP DAG with k number of future

operations, the total number of FOM-Insert invocations is at

most O(k), each with O(k) work.

Proof. Each FOMdata structure stores only non-SP ancestors,
i.e., ancestors that are either create or put nodes. Since there
are k future operations, each FOM instance can have at most
O(k) elements. Therefore, it takes O(k) time to perform a
single FOM-Insert operation (which creates a new copy so
linear work is required). Moreover, by Algorithm 1, F-Order
performs FOM-Insert only on create and put nodes, and
thus FOM-Insert is invoked at most O(k) times. □

Lemma 6.3. Given an NSP DAG with k number of future

operations, the total number of FOM-Merge invocations is at

most O(k), each with O(k) work.

Proof. FOM-Merge operates on inputs of size at most O(k),
and thus each operation incurs at most O(k) work (like the
merge operation in merge sort). By Algorithm 1, F-Order
performs FOM-Merge only on join and sync nodes. Since
there are at most k future operations, there are at most k
join nodes. What’s not as obvious is bounding the number
of FOM-Merge invocations due to sync nodes.

By Algorithm 1, F-Order performs FOM-Insert on a sync
only when the FOM data structures from both of its parents
have changed from that of its corresponding spawn node.

Consider an SP DAG constructed recursively using n par-
allel compositions. We will call the outer-most SP DAG a
level-0 DAG, or G0, and call its left and right sub-DAGs
level-1 DAGs, G0

L
and G0

R
, or simply G1. Since this DAG is

constructed with n parallel compositions, there are n levels
of nested SP DAGs with n sync nodes, one for each level.
Without loss of generality, we will show that, by adding a
new incoming or outgoing non-SP edge into this DAG, the
addition incurs at most one extra FOM-Merge on the closest
enclosing sync node, but not on the other sync nodes at the
outer level.

Imagine today we add an outgoing non-SP edge to the left
sub-DAG at level i , Gi

L
. Consider both the sync node s that

joins togetherGi
L
andGi

R
and its corresponding spawn node

f . The FOM instance from s’s left parent would change. This
may or may not prompt a FOM-Merge at s .

Case 1: Let’s consider the case where it did. Then, it must
be that there is also an incoming or outgoing non-SP edge in
Gi
R
, causing the FOM instance from s’ right parent to change

from that of the f . f om. If so, one extra FOM-Merge would be
incurred compared to not adding that non-SP edge. From the
perspective of the sync node s ′ at level i − 1, however, this
change does not affect whether s ′ performs a FOM-Merge or
not. Without loss of generality, say the DAG consist of Gi

L

and Gi
R
is the left sub DAG at level i − 1 (i.e., Gi−1

L
). Without

adding a new non-SP edge to Gi−1
R

, s ′ will simply inherits
the results of FOM-Merge at s .

Case 2: Let’s consider the other case where this addition
did not prompt s at level i to perform FOM-Merge. Then, it
must be that, the FOM from s’s right parent is the same as
f . f om, the FOM from the corresponding spawn node. Then,
s would have simply inherit the FOM from Gi

L
, incurring

zero additional FOM-Merge operations at level i . Now, it may
incur an extra FOM-Merge at the sync node at level j for some
j < i . But the same argument from case 1 can be applied to
level j and the FOM-Merge stops at level j and not further.
Thus, we can conclude that there are at most O(k) total

FOM-Merge operations, each with O(k) work. □

Now we put the overhead due to maintaining FOM data
structures together.

Lemma 6.4. Given an NSP DAG with work T1 and span T∞.

F-Order runs in time O((T1 + k
2)/P +T∞k) on P processors to

construct the reachability data structure, where k is the number

of future operations.

Proof. By Lemmas 6.2 and 6.3, the construction of FOM data
structures incurs at most O(k2) work and in the worst case,
O(k) multiplicative overhead on the span (if F-Order per-
forms a FOM-Merge or FOM-Insert on every single node
along the span). Adding these overheads and applying
Lemma 6.1, we obtain the bound. □

The bound shown in Lemma 6.4 accounts for only the
construction overhead. To show the full performance bound,
we must also account for the query overhead.

Lemma 6.5. Given two nodes u and v in an NSP DAG GN , a

single reachability query Precedes(u,v) runs in timeO(lg k̂),

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

where k̂ is the number of non-SP ancestors of v from the SP

DAG containing u.

Proof. In the worst case, there is no direct SP path between
u and v , and F-Order needs to perform a search to check if
v . f om stores any descendent node of u. Identifying a group
д with SP(u) in v . f om takes constant time; if д exists, invok-

ing Group-Search(u, д) takes at most O(lg k̂) time (akin to
binary search). □

Theorem 6.6. Given an NSP DAGGN with workT1 and span

T∞, F-Order can race detectGN in parallel in timeO((T1 lg k̂ +

k2)/P+T∞(k+lg r lg k̂)) on P processors, wherek is the number

of future operations, r is the maximum number of readers for

a single memory location, and k̂ is the maximum number of

non-SP nodes in the same SP DAG.

Proof. The total overhead incurred due to reachability
queries is related to how the access history is managed. As
discussed in Section 4, the number of readers per memory lo-
cation at a given moment can be large. However, one can still
show that, the total number of reachability queries through-
out the execution is bounded by 2× the number of reads

during execution [1]. Each query itself incurs O(lg k̂) over-
head Lemma 6.5. Thus, given an NSP DAG with work T1
and span T∞, the total work incurred by reachability queries

using F-Order is O(T1 lg k̂).
Now we consider how queries impact the span of race

detection. Given a single node u along the span of GN

that writes to memory location l . Since F-Order needs to
perform reachability queries between u and every single
reader in reader-list(l), assuming are at most r readers
in reader-list(l), the total number of queries performed
when executing u is at most r . Since all the queries can
be computed independently of each other, such the overall

query overhead has a span of O(lg r lg k̂). In the worst case,
every node u along the span of GN incurs such query over-
head. Then, combining Lemma 6.4, the bound follows. □

7 Implementation and Empirical Analysis

This section briefly describe our prototype implementation of
F-Order and empirically evaluates its performance. We eval-
uate F-Order’s performance across six different benchmarks
and compare it to FutureRD,4 a state-of-the-art sequential
race detector for futures [51]. FutureRD provides the best
sequential running time for race detecting the structured
use of futures which imposes certain programming restric-
tions on where the future get can occur. For race detecting
general futures, the algorithm by Utterback et al. [51] has
an additional α(m,n) overhead compared to the algorithm
by Agrawal et al. [1], but the algorithm by Agrawal et al. [1]
has never been implemented.

4The codebase of FutureRD can be obtained at https://github.com/wustl-

pctg/futurerd.

bench N B reads writes futures strands avg

sw-sf 2048 64 8.59 × 109 4.20 × 106 1024 2054 1.0

hw-sf 10 (images) - 1.73 × 1010 1.64 × 108 3672 9914 14.05

sort 107 8192 2.75 × 108 2.22 × 108 14463 60030 2.95

mm 2048 64 1.72 × 1010 1.43 × 108 18724 79577 20.94

smm 2048 64 9.40 × 108 2.50 × 105 16387 70822 8.24

ferret simlarge - 5.40 × 109 6.23 × 108 256 1280 13.09

sw-gf 2048 64 8.59 × 109 4.20 × 106 1024 5124 1.0

hw-gf 10 (images) - 1.73 × 1010 1.64 × 108 4590 11750 13.1

Figure 2. The characteristics of the benchmarks. The sw and
hw benchmarks have two implementations: structured(sf)
and general futures(gf).

Empirical results indicate that, even though our parallel
race detector incurs higher overhead on one-core execution,
the overhead is never more than 3× compared to FutureRD
(in fact much less for all benchmarks except for hw). Thus,
the fact that we can race detect while executing the program
in parallel quickly pays off in absolute execution times.
Implementation. We have implemented F-Order by ex-

tending the Cilk-F runtime system [43], a work-stealing run-
time system that supports the use of futures. In the implemen-
tation of F-Order, we employed WSP-Order [50] for main-
taining and querying the reachability between two nodes
that are in the same SP DAG (i.e., ≺d and ∥d

lef t
). We imple-

mented the augmentation necessary in the Cilk-F runtime as
proposed by Utterback et al. [50]. As discussed in Section 6,
such an augmentation is necessary in order to provide the
desired performance bound. The construction functions of
the FOM are called via instrumentation inserted into the
parallel control constructs of Cilk-F. The instrumentation on
memory accesses are inserted via ThreadSanitizer [42] pass
implemented in LLVM.
Benchmarks. Six benchmarks are used: matrix multi-

plication (mm), the Strassen matrix multiplication algorithm
(smm), parallel merge sort (sort), the Heart Wall applica-
tion (hw) from the Rodinia suite [11], Smith-Waterman for
sequence alignment (sw), and a content-based image simi-
larity search modified from the PARSEC benchmark suite
(ferret) [6]. We have implemented all the benchmarks with
structured use of futures. The sw and hw benchmarks, in ad-
dition, have a second implementation with a general use of
futures that imposes no restrictions.
FutureRD distinguishes between structured and general

use of futures, and provides better running time for struc-
tureed use of futures. Our race detector does not distinguish
between structured versus general use of futures and pro-
vides the same bound for both uses.

The characteristics of these benchmarks are shown in Fig-
ure 2, including the input sizes and serial base case sizes used.
We also measured the average group sizes; the measurement

indicates that average group sizes (related to k̂) are indeed
small across benchmarks.
Experimental Setup. All experiments were run on a ma-

chine with two 20-core Intel Xeon Gold 6148 processors,

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

bench configuration T1 T20 FutureRD

sw

(structured)

baseline 21.88 2.26 [9.67×] 21.57

reachability 22.49 (1.02×) 2.29 [9.79×] 21.52 (0.99×)

full 697.06 (31.85×) 96.96 [7.18×] 562.55 (26.08×)

hw

(structured)

baseline 15.41 0.98 [15.60×] 15.5

reachability 17.95 (1.16×) 1.03 [17.32×] 15.5 (1.0×)

full 943.33 (61.18×) 72.12 [13.07×] 381.85 (24.63×)

sort

(structured)

baseline 1.33 0.07 [17.17×] 1.34

reachability 5.05 (3.77×) 0.38 [13.04×] 1.34 (1.0×)

full 30.62 (22.87×) 2.2 [13.92×] 19.48 (14.48×)

mm

(structured)

baseline 8.48 0.43 [19.30×] 8.47

reachability 12.97 (1.52×) 0.68 [19.05×] 8.47 (1.0×)

full 484.48 (57.13×) 24.44 [19.81×] 320.46 (37.86×)

smm

(structured)

baseline 2.42 0.14 [16.60×] -

reachability 2.84 (1.17×) 0.16 [17.30×] -

full 51.32 (21.14×) 2.69 [19.01×] -

ferret

(structured)

baseline 7.45 0.65 [11.41×] 7.33

reachability 7.64 (1.02×) 0.66 [11.54×] 7.28 (0.99×)

full 337.23 (45.26×) 32.76 [10.29×] 298.18 (40.68×)

sw

(general)

baseline 21.79 2.28 [9.54×] 21.64

reachability 24.93 (1.14×) 2.28 [10.91×] 21.58 (0.99×)

full 704.72 (32.32×) 100.1 [7.04×] 610.75 (28.22×)

heartwall

(general)

baseline 15.42 0.99 [15.48×] 15.5

reachability 18.56 (1.2×) 1.08 [17.09×] 15.5 (1.0×)

full 934.47 (60.6×) 68.13 [13.71×] 488.13 (31.46×)

Figure 3. Performance of the benchmarks with F-Order and
FutureRD for race detection. Execution time on P processors,
TP , is given in seconds. Numbers in the parentheses show the
overhead compared to the baseline. Numbers in the brackets
show the scalability relative to T1 of the same configuration.
Measurements of smm runningwith FutureRD is not available
because it segfaulted.

clocked at 2.40 GHz, with hyperthreading disabled. Each
core has separate private 32 KB L1 data and 32 KB L1 instruc-
tion caches, and a 1 MB private L2 cache. Each socket has a
27.5 MB shared L3 cache. The machine has 768 GB of main
memory. We limit execution to the first 20 cores, located
on the first socket of the machine, in order to avoid NUMA
overhead. All software is compiled with LLVM/Clang 3.4.1
with -O2 optimizations running on Linux kernel version 4.15.
Each data point is the average of 3 runs.

For each benchmark, we ran three different configurations:
baseline, where the benchmark is compiledwithout any race
detection enabled; reachability, where the benchmark is
compiled with only the reachability component but not the
access history; and full, where the benchmark is compiled
with full race detection.

Practical Performance of F-Order

Figure 3 shows our measurements for the benchmarks. With
the exception of the sort benchmark, we see that the the
reachability versions of F-Order incur very little overhead
when compared to the baseline versions. The overhead is
more pronounced in sort because a majority of the futures

created do little more than generate more futures,5 and even
in the serial base case the work is only θ (B lgB), where B is
the problem size of the serial base case. Moreover, we expect
the reachability overhead of FutureRD is less than that of
F-Order on benchmarks using structured futures because
its reachability algorithm designed for structured futures is
more efficient than its algorithm designed for general futures.
F-Order, however, cannot take advantage of the restrictions
imposed by structured use of futures.

Full race detection versions incur a large increase in over-
head in both F-Order and FutureRD, which comes from the
combination of the memory instrumentation and the sheer
quantity of reachability queries. The additional overhead of
full race detection in F-Order compared to FutureRD is the
price one pays to enable parallel race detection. In F-Order,

each query incurs O(lg k̂) instead of constant time (which is
the case for FutureRD). This overhead is the most evident
in hw; this is because the structure of the parallelism and
the memory access pattern cause significantly more non-SP
queries than in any of our other benchmarks. Even in the case
of the high overhead hw, however, the full race detection ver-
sion of the benchmarks maintain scalability comparable to
that of the baselines. The higher overhead of non-SP queries
in F-Order can be offset by the scalability that F-Order gains.
As shown in Figure 3, the absolute running times of F-Order
on 20 cores are significantly faster than the running time of
FutureRD. In our evaluation, the running times of all bench-
marks with F-Order on 4 cores or more can beat the running
time of FutureRD.

8 Conclusion

In this paper, we propose a parallel race detection algorithm
for task parallel programs that employ futures. In the liter-
ature, researchers have distinguished use of futures to be
structured versus general in the context of studying per-
formance bounds [18, 43]. Moreover, Utterback et al. [51]
showed that, when race detecting sequentially at least, one
can exploit the structured use of futures to obtain lower race
detection overhead. Unfortunately, their algorithms cannot
be parallelized easily. Our proposed algorithm does not cur-
rently exploit the structured use of futures to gain a perfor-
mance advantage. As an interesting research direction, we
plan to investigate whether it’s possible to obtain a more
efficient parallel race detection algorithm when one restricts
to only structured use of futures.

Acknowledgements

This research was supported in part by National Science
Foundation under grants CCF-1527692, CCF-1733873, and
CCF-1910568. We thank the reviewers and our shepherd for
their excellent comments.

5This is also true for mm and smm; their serial base cases, however, perform

much more work, θ (B3).

PPoPP’20, February 22-26 2020, San Diego, CA, USA Yifan Xu, Kyle Singer, and I-Ting Angelina Lee

References
[1] Kunal Agrawal, Joseph Devietti, Jeremy T. Fineman, I-Ting Angelina

Lee, Robert Utterback, and Changming Xu. 2018. Race Detection

and Reachability in Nearly Series-Parallel DAGs. In Proceedings of the

ACM-SIAM Symposium on Discrete Algorithms (SODA). New Orleans,

Louisiana.

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread

Scheduling for Multiprogrammed Multiprocessors. In 10th Annual

ACM Symposium on Parallel Algorithms and Architectures. 119ś129.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread

Scheduling for Multiprogrammed Multiprocessors. Theory of Comput-

ing Systems (2001), 115ś144.

[4] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.

Leiserson. 2004. On-the-Fly Maintenance of Series-Parallel Relation-

ships in Fork-Join Multithreaded Programs. In 16th Annual ACM Sym-

posium on Parallel Algorithms and Architectures. 133ś144.

[5] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race

Detection for Android Applications. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2015). ACM, Pittsburgh,

PA, USA, 332ś348. https://doi.org/10.1145/2814270.2814303

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In PACT. ACM, 72ś81.

[7] Robert D. Blumofe and Charles E. Leiserson. 1994. Scheduling Multi-

threaded Computations by Work Stealing. In Proceedings of the IEEE

Symposium on Foundations of Computer Science. 356ś368.

[8] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi-

threaded Computations byWork Stealing. JACM 46, 5 (1999), 720ś748.

[9] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.

Habanero-Java: the new adventures of old X10. In Proceedings of the

9th International Conference on Principles and Practice of Programming

in Java (PPPJ ’11). 51ś61.

[10] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform Clus-

ter Computing. In 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications. 519ś538.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-

mark suite for heterogeneous computing. In 2009 IEEE International

Symposium on Workload Characterization (IISWC). 44ś54.

[12] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. 2015. Race Detec-

tion in Two Dimensions. In Proceedings of the 27th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA ’15). ACM, Portland,

Oregon, USA, 101ś110. https://doi.org/10.1145/2755573.2755601

[13] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of

Determinacy Races in Cilk Programs. In Proceedings of the Ninth An-

nual ACM Symposium on Parallel Algorithms and Architectures (SPAA).

1ś11.

[14] Mingdong Feng and Charles E. Leiserson. 1999. Efficient Detection of

Determinacy Races in Cilk Programs. Theory of Computing Systems

32, 3 (1999), 301ś326.

[15] Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in

Parallel. Master’s thesis. Massachusetts Institute of Technology, De-

partment of Electrical Engineering and Computer Science, Cambridge,

MA.

[16] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient

and precise dynamic race detection. SIGPLAN Not. 44, 6 (June 2009),

121ś133.

[17] Robert H. Halstead, Jr. 1985. Multilisp: A Language for Concurrent

Symbolic Computation. ACM TOPLAS 7, 4 (Oct. 1985), 501ś538.

[18] Maurice Herlihy and Zhiyu Liu. 2014. Well-structured Futures and

Cache Locality. In Proceedings of the 19th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’14). ACM, Or-

lando, Florida, USA, 155ś166. https://doi.org/10.1145/2555243.2555257

[19] Chun-Hung Hsiao, Satish Narayanasamy, Essam Muhammad Idris

Khan, Cristiano L. Pereira, and Gilles A. Pokam. 2017. AsyncClock:

Scalable Inference of Asynchronous Event Causality. In Proceedings of

the Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’17). ACM,

Xi’an, China, 193ś205. https://doi.org/10.1145/3037697.3037712

[20] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cris-

tiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014.

Race Detection for Event-driven Mobile Applications. In Proceedings of

the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’14). ACM, Edinburgh, United Kingdom,

326ś336. https://doi.org/10.1145/2594291.2594330

[21] Shams Imam and Vivek Sarkar. 2014. Cooperative Scheduling of

Parallel Tasks with General Synchronization Patterns. In Proceedings

of the 28th European Conference on ECOOP 2014 Ð Object-Oriented

Programming - Volume 8586. Springer-Verlag New York, Inc., New York,

NY, USA, 618ś643. https://doi.org/10.1007/978-3-662-44202-9_25

[22] ISOIEC14882 2012. ISO/IEC 14882:2011(E) Information technology Ð

Programming Languages Ð C++. Third Edition, 2012-02-14.

[23] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dy-

namic Race Prediction in Linear Time. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI 2017). ACM, Barcelona, Spain, 157ś170. https:

//doi.org/10.1145/3062341.3062374

[24] Alex Kogan and Maurice Herlihy. 2014. The Future(s) of Shared Data

Structures. In Proceedings of the 2014 ACM Symposium on Principles of

Distributed Computing (PODC ’14). ACM, Paris, France, 30ś39. http:

//doi.acm.org/10.1145/2611462.2611496

[25] I-Ting Angelina Lee and Tao B. Schardl. 2015. Efficiently Detecting

Races in Cilk Programs That Use Reducer Hyperobjects. In SPAA ’15:

Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms

and Architectures (SPAA ’15). ACM, Portland, Oregon, USA, 111ś122.

http://doi.acm.org/10.1145/2755573.2755599

[26] Peng Liu, Omer Tripp, and Xiangyu Zhang. 2016. IPA: Improving

Predictive Analysis with Pointer Analysis. In Proceedings of the 25th

International Symposium on Software Testing and Analysis (ISSTA 2016).

ACM, Saarbrücken, Germany, 59ś69. https://doi.org/10.1145/

2931037.2931046

[27] Li Lu, Weixing Ji, and Michael L. Scott. 2014. Dynamic Enforcement

of Determinism in a Parallel Scripting Language. In Proceedings of

the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’14). ACM, Edinburgh, United Kingdom,

519ś529.

[28] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race De-

tection for Android Applications. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’14). ACM, Edinburgh, United Kingdom, 316ś325.

https://doi.org/10.1145/2594291.2594311

[29] John Mellor-Crummey. 1991. On-the-fly Detection of Data Races

for Programs with Nested Fork-Join Parallelism. In Proceedings of

Supercomputing’91. 24ś33.

[30] Gal Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez Pe-

trank. 2018. BQ: A Lock-Free Queue with Batching. In Proceedings of

the 30th on Symposium on Parallelism in Algorithms and Architectures

(SPAA ’18). ACM, Vienna, Austria, 99ś109.

[31] Robert H. B. Netzer and Barton P. Miller. 1992. What are Race Con-

ditions? ACM Letters on Programming Languages and Systems 1, 1

(March 1992), 74ś88.

[32] Itzhak Nudler and Larry Rudolph. 1986. Tools for the Efficient Devel-

opment of Efficient Parallel Programs. In Proceedings of the First Israeli

Conference on Computer Systems Engineering.

[33] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data

Race Detection. In Proceedings of the Ninth ACM SIGPLAN Symposium

Parallel Determinacy Race Detection for Futures PPoPP’20, February 22-26 2020, San Diego, CA, USA

on Principles and Practice of Parallel Programming (PPoPP ’03). ACM,

New York, NY, USA, 167ś178.

[34] Oracle. 2018. Java Platform Standard Edition 8 API Specification. https:

//docs.oracle.com/javase/8/docs/api/ The Future library is located in

the java.util.concurrent.

[35] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012.

Race Detection for Web Applications. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’12). ACM, Beijing, China, 251ś262. https://doi.org/10.

1145/2254064.2254095

[36] Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data

Race Detection in Multithreaded C++ Programs. (2003), 179ś190.

[37] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2010. Efficient Data Race Detection for Async-Finish

Parallelism. In Runtime Verification, Howard Barringer, Ylies Falcone,

Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore

Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in

Computer Science, Vol. 6418. Springer Berlin / Heidelberg, 368ś383.

[38] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection for

Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’12). 531ś542.

[39] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effec-

tive Race Detection for Event-driven Programs. In Proceedings of the

2013 ACM SIGPLAN International Conference on Object Oriented Pro-

gramming Systems Languages & Applications (OOPSLA ’13). ACM,

Indianapolis, Indiana, USA, 151ś166. https://doi.org/10.1145/2509136.

2509538

[40] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah.

2011. Generating Data Race Witnesses by an SMT-based Analy-

sis. In Proceedings of the Third International Conference on NASA

Formal Methods (NFM’11). Springer-Verlag, Pasadena, CA, 313ś327.

http://dl.acm.org/citation.cfm?id=1986308.1986334

[41] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. 1997. Eraser: A Dynamic Race Detector for Multi-

Threaded Programs. In Proceedings of the Sixteenth ACM Symposium

on Operating Systems Principles (SOSP).

[42] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer: Data Race Detection in Practice. In Proceedings of the Workshop

on Binary Instrumentation and Applications (WBIA ’09). ACM, New

York, New York, 62ś71.

[43] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019. Proactive Work

Stealing for Futures. In Proceedings of the 24th Symposium on Principles

and Practice of Parallel Programming (PPoPP ’19). ACM, New York, NY,

USA, 257ś271. https://doi.org/10.1145/3293883.3295735

[44] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and

Cormac Flanagan. 2012. Sound Predictive Race Detection in Polyno-

mial Time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’12). ACM,

New York, NY, USA, 387ś400. https://doi.org/10.1145/2103656.2103702

[45] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert

Harper. 2009. Beyond Nested Parallelism: Tight Bounds on Work-

stealing Overheads for Parallel Futures. In Proceedings of the Twenty-

first Annual Symposium on Parallelism in Algorithms and Architectures

(SPAA ’09). ACM, Calgary, AB, Canada, 91ś100. https://doi.org/10.

1145/1583991.1584019

[46] Rishi Surendran and Vivek Sarkar. 2016. Automatic Parallelization of

Pure Method Calls via Conditional Future Synthesis. In Proceedings

of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA 2016).

ACM, New York, NY, USA, 20ś38. https://doi.org/10.1145/2983990.

2984035

[47] Rishi Surendran and Vivek Sarkar. 2016. Dynamic Determinacy Race

Detection for Task Parallelism with Futures. Springer International

Publishing, Cham, 368ś385.

[48] Olivier Tardieu, HaichuanWang, and Haibo Lin. 2012. AWork-stealing

Scheduler for X10’s Task Parallelism with Suspension. In Proceedings

of the 17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP ’12). ACM, New Orleans, Louisiana, USA,

267ś276.

[49] Robert Utterback. 2019. https://github.com/wustl-pctg/futurerd. Ac-

cessed in August 2019.

[50] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting An-

gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race

Detection for Fork-Join Programs. In Proceedings of the 28th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA ’16).

ACM, Asilomar State Beach, CA, USA, 83ś94.

[51] Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting An-

gelina Lee. 2019. Efficient Race Detection with Futures. In Proceedings

of the 24th Symposium on Principles and Practice of Parallel Program-

ming (PPoPP ’19). ACM, Washington, District of Columbia, 340ś354.

[52] Jacobo Valdes. 1978. Parsing Flowcharts and Series-Parallel Graphs.

Ph.D. Dissertation. Stanford University. STAN-CS-78-682.

[53] Christoph von Praun and Thomas R. Gross. 2001. Object Race Detec-

tion. In Proceedings of the 16th ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications (OOPSLA

’01). ACM, Tampa Bay, FL, USA, 70ś82.

[54] Caleb Voss, Tiago Cogumbreiro, and Vivek Sarkar. 2019. Transitive

Joins: A Sound and Efficient Online Deadlock-avoidance Policy. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel

Programming (PPoPP ’19). ACM, New York, NY, USA, 378ś390. https:

//doi.org/10.1145/3293883.3295724

[55] Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal. 2018. Efficient

Parallel Determinacy Race Detection for Two-dimensional Dags. In

Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP ’18). ACM, Vienna, Austria,

368ś380.

[56] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient

Detection of Data Race Conditions via Adaptive Tracking. In Proceed-

ings of the Twentieth ACM Symposium on Operating Systems Principles

(SOSP ’05). ACM, New York, NY, USA, 221ś234.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Overview of F-Order
	4.1 Access History in F-Order
	4.2 Reachability Maintenance in F-Order
	4.3 An Illustrating Example

	5 Details of F-Order and Its Correctness
	5.1 Construction of FOM Data Structures
	5.2 Reachability Queries Using FOM

	6 The Performance Bound of F-Order
	7 Implementation and Empirical Analysis
	8 Conclusion
	References

