
����������
�������

Citation: Sultanov, M.A.;

Akimova, E.N.; Misilov, V.E.;

Nurlanuly, E. Parallel Direct and

Iterative Methods for Solving the

Time-Fractional Diffusion Equation

on Multicore Processors. Mathematics

2022, 10, 323. https://doi.org/

10.3390/math10030323

Academic Editors: Theodore E.

Simos and Charampos Tsitouras

Received: 14 December 2021

Accepted: 18 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Parallel Direct and Iterative Methods for Solving the
Time-Fractional Diffusion Equation on Multicore Processors

Murat A. Sultanov 1 , Elena N. Akimova 2,3,* , Vladimir E. Misilov 2,3 and Yerkebulan Nurlanuly 1

1 Department of Mathematics, Faculty of Natural Science, Khoja Akhmet Yassawi International Kazakh-Turkish
University, Turkistan 160200, Kazakhstan; murat.sultanov@ayu.edu.kz (M.A.S.);
yerkebulan.nurlanuly@ayu.edu.kz (Y.N.)

2 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16,
620108 Ekaterinburg, Russia; v.e.misilov@urfu.ru

3 Department of Information Technologies and Control Systems, Institute of Radioelectronics and Information
Technology, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia

* Correspondence: aen15@yandex.ru

Abstract: The work is devoted to developing the parallel algorithms for solving the initial boundary
problem for the time-fractional diffusion equation. After applying the finite-difference scheme to
approximate the basis equation, the problem is reduced to solving a system of linear algebraic
equations for each subsequent time level. The developed parallel algorithms are based on the Thomas
algorithm, parallel sweep algorithm, and accelerated over-relaxation method for solving this system.
Stability of the approximation scheme is established. The parallel implementations are developed
for the multicore CPU using the OpenMP technology. The numerical experiments are performed
to compare these methods and to study the performance of parallel implementations. The parallel
sweep method shows the lowest computing time.

Keywords: Caputo fractional derivative; time-fractional diffusion equation; finite-difference scheme;
Thomas algorithm; parallel sweep method; accelerated over-relaxation method; parallel computing

1. Introduction

The last decades have seen the significant rise of interest to the time-fractional differ-
ential equations [1–5]. This is due to possibility to use these equations for modeling the
multiple phenomena of anomalous diffusion and other processes with memory effects.
Multiple experimental researches [6–8] showed that the assumption of the Brownian mo-
tion in the diffusion processes may not be sufficient for the accurate description of some
physical processes. The fractional differential equations are the powerful mathematical
tool for adequate description of many real physical processes, and their application field
still grows. The qualitive and quantitative aspects of analysis of these nonlocal models are
quite complex for researching.

Thus, development of the efficient numerical algorithms for solving the direct and
inverse problems for fractional differential equations is of considerable theoretical and
practical interest today.

For solving approximately the initial-boundary problems for the time-fractional diffu-
sion equation, one can use various numerical techniques. The sufficient review is presented
in works [9–11]. The most popular methods are: the finite difference method, finite element
method, spectral methods, and meshless techniques. The numerical methods for solving
the fractional differential equations are quite expensive due to nonlocal properties of the
fractional derivatives. Thus, development of the efficient numerical algorithms is a crucially
important problem. The promising way to solve various compute-intensive problems is
parallel computing [12–18]. Several parallel algorithms has been developed specifically for
the fractional differential equations and anomalous diffusion problems [19,20].

Mathematics 2022, 10, 323. https://doi.org/10.3390/math10030323 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030323
https://doi.org/10.3390/math10030323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0068-0996
https://orcid.org/0000-0002-4462-5817
https://orcid.org/0000-0002-5565-0583
https://orcid.org/0000-0003-1557-6857
https://doi.org/10.3390/math10030323
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030323?type=check_update&version=2

Mathematics 2022, 10, 323 2 of 19

In work [21], for solving the SLAE with tridiagonal matrix, the parallel direct algorithm
was implemented. It is based on: partitioning the matrix into blocks, processing the
blocks separately on different processors, and obtaining the final solution by solving the
reduced system.

In work [22], the parallel algorithms were constructed for solving a two-dimensional
partial differential equation with the Riemann–Liouville time derivatives. For solving
the SLAEs arising in this problem, the iterative Krylov subspace methods were used,
namely, the generalized method of minimal residuals, quasiminimal residual method,
and induced dimension reduction method. Parallelization was performed by distributing
the computation between threads.

In our work, we construct the parallel algorithm for solving the one-dimensional time-
fractional diffusion equation (TFDE). The implicit finite difference approximation reduces
the equation to a large system of linear algebraic equations. Three algorithms are applied
to solving this system, namely, the direct Thomas algorithm, the direct parallel sweep
method, and the iterative accelerated over-relaxation method. The parallel algorithms are
implemented on the multicore processors using the OpenMP technology. To assess the
efficiency of the developed parallel algorithms, the numerical experiments are carried out.

The classic Thomas algorithm is widely used for solving the tridiagonal systems
arising in various fields. Its main drawback is the limited potential of parallelization. The
iterative over-relaxation method was implemented for solving the time-fractional diffusion
equation as a serial program in work [23].

In our work, the parallel sweep method is used for the first time to solve the ini-
tial boundary problem for the time-fractional diffusion equation. Its main advantage is
in reducing the computing time in comparison with the classic Thomas algorithm. It
also provides more accurate solution than both Thomas algorithm and the iterative over-
relaxation method.

The article is organized as follows. In Section 2, we present: the considered problem,
the definitions of fractional-order operators used in the work, construct a discretization
of the problem, and show that it can be reduced to solving systems of linear algebraic
equations. In Section 3, we describe the numerical algorithms and their convergence
properties. In Section 4, we construct and implement the parallel algorithms and present
the results of numerical experiments. In Section 5, we discuss these results and highlight
the future research directions. Section 6 concludes our work.

2. Problem
2.1. Statement of the Problem

Consider the basis time-fractional parabolic partial differential equation in the follow-
ing form:

∂αU(x, t)
∂tα

= a(x)
∂2U(x, t)

∂x2 + b(x)
∂U(x, t)

∂x
+ c(x)U(x, t) + d(x, t), (1)

where U(x, t) is the sought function, a(x), b(x), c(x), d(x, t) are the known functions or
constants, 0 < α < 1 is the parameter defining the fractional order of the time derivative.

The problem is on the space interval 0 ≤ x ≤ ` and time interval 0 ≤ t ≤ T. The
boundary conditions are

U(0, t) = g1(t), U(`, t) = g2(t).

The initial condition is
U(x, 0) = g0(x),

where g0(x), g1(t), g2(t) are the given functions.

Mathematics 2022, 10, 323 3 of 19

In this work, we use the Caputo fractional partial derivative in the form Dα of order α
in the form [24]

Dα f (x) =
1

Γ(m− α)

x∫
0

f (m)(t)
(x− t)α−m+1 dt,

with α ∈ (m− 1, m) , m ∈ N, x > 0.
To solve problem (1), assume that the solution exists and satisfies the Dirichlet bound-

ary conditions. Then, we can consider the following definition of the Caputo fractional
partial derivative:

∂αu(x, t)
∂tα

=
1

Γ(1− α)

∞∫
0

∂u(x− s)
∂t

(t− s)−αds. (2)

2.2. Discretization of Equation and Difference Scheme

To construct the discretization of Equation (1) let us introduce the partitioning of
the solution domain. The space interval [0, `] is uniformly split into the grid of m points
with step h = ∆x = `/m. The time interval [0, T] is split into the grid of N points
with step τ = ∆t = T/N. Then, we can denote the grid points for space and time as
xi = ih, i ∈ {0, 1, ..., m} and tj = jτ, j ∈ {0, 1, ..., N}, respectively; and we can denote
the values of the sought function U(x, t) at the grid points as Ui,j = U(xi, tj).

In this work, the first-order approximation [25] is used for computing the Caputo
fractional partial derivative in the left-hand part of Equation (1)

Dα
t Ui,n

∼= σα,τ

n

∑
j=1

w(α)
j (Ui,n−j+1 −Ui,n−j),

σα,τ =
1

Γ(1− α)(1− α)τα
, w(α)

j = j1−α − (j− 1)1−α.

(3)

For the right-hand part, we use the fully implicit finite difference approximation
scheme of the second order. Then, for the grid point (xi, tn), the approximated Equation (1)
is given as

σα,τ

n

∑
j=1

w(α)
j (Ui,n−j+1 −Ui,n−j) =

= ai
Ui−1,n − 2Ui,n + Ui+1,n

h2 + bi
Ui+1,n −Ui−1,n

2h
+ ciUi,n + di,n .

(4)

2.3. Obtaining the SLAE

Then, we transform this equation in the following way:

σα,τ(Ui,n −Ui,n−1) + σα,τ

n

∑
j=2

w(α)
j (Ui,n−j+1 −Ui,n−j) =

=

(
ai
h2 −

bi
2h

)
Ui−1,n +

(
ci −

2ai
h2

)
Ui,n +

(
ai
h2 +

bi
2h

)
Ui+1,n + di,n ;

−piUi−1,n + qiUi,n − riUi+1,n = σα,τ

(
Ui,n−1 −

n

∑
j=2

w(α)
j (Ui,n−j+1 −Ui,n−j)

)
+ di,n , (5)

where
pi =

ai
h2 −

bi
2h

, qi = σα,τ − ci +
2ai
h2 , ri =

ai
h2 +

bi
2h

. (6)

Mathematics 2022, 10, 323 4 of 19

Let us denote

fi,n = σα,τ

(
Ui,n−1 −

n

∑
j=2

w(α)
j (Ui,n−j+1 −Ui,n−j)

)
+ di,n , n > 1,

fi,1 = σα,τUi,0 + di,0 .

(7)

Thus, we obtain the following equation for the point (xi, tn):

− piUi−1,n + qiUi,n − riUi+1,n = fi,n . (8)

Note that the values U0,n and Um,n at the boundary points are given. Then, for all
inner points xi, i ∈ {1, 2, ..., m− 1}, we can combine equations (8) into the system of linear
algebraic equations

AŨn = f̃n , (9)

where

A =

q1 −r1

−p2 q2 −r2

.

−pm−2 qm−2 −rm−2

−pm−1 qm−1

,

Ũn = [U1,n, U2,n, ..., Um−1,n],

f̃n = [f1,n + p1U0,n, f2,n, ..., fm−2,n, ..., fm−1,n + rm−1Um,n].

Matrix A is a square tridiagonal matrix of (m− 1)× (m− 1) dimension. Thus, to nu-
merically solve problem (1), we need to solve systems (9) sequentially at each time level.

2.4. Stability Analysis

Let us prove stability of the finite-difference approximation in Equation (4). To simplify
our proof, we consider the case of d(x, t) = 0.

Theorem 1. The fully implicit finite difference approximation in Equation (4) for 0 < α < 1 and
finite domain 0 ≤ x ≤ 1, with boundary conditions U(0, t) = 0 and U(1, t) = 0 for t ≥ 0 is
unconditionally stable.

Proof. Suppose the solution of Equation (1) has the form Un
j = ξneiωjh, where i is the

imaginary unit, ω ∈ R.
Let us substitute it to Equation (5)

− piξneiω(j−1)h + qiξneiωjh − riξneiω(j+1)h =

= σα,τ

(
ξn−1eiωjh −

N

∑
j=2

wα
j (ξn−j+1eiωjh − ξn−jeiωjh)

)
.

After transforms, we obtain

ξn((−pi − ri) cos (ωh) + qi) =

= σα,τ

(
ξn−1 −

N

∑
j=2

wα
j (ξn−j+1 − ξn−j)

)
.

Mathematics 2022, 10, 323 5 of 19

Now, let us find ξn

ξn =

(
ξn−1 +

N

∑
j=2

wα
j (ξn−j − ξn−j+1)

)/(
(−pi − ri)

σα,τ
cos (ωh) +

qi
σα,τ

)
.

Consider the denominator. Apparently,

(−pi − ri)

σα,τ
cos (ωh) +

qi
σα,τ
≥ 1

for all α, ω, h, τ. Therefore,

ξn ≤ ξn−1 +
N

∑
j=2

wα
j (ξn−j − ξn−j+1), n ≥ 2,

ξ1 ≤ ξ0 .

Since ξ j ≤ ξ j−1(j ∈ {2, 3, ..., n})⇒
N
∑

j=2
wα

j (ξn−j − ξn−j+1) ≤ 0, we can, by mathemati-

cal induction method, say that

ξn ≤ ξn−1 ≤ ... ≤ ξ1 ≤ ξ0 ,

or
|Un

j | ≤ |Un−1
j | ≤ ... ≤ |U1

j | ≤ |U0
j | = | f j|, j ∈ {1, 2, ..., m}.

The approximate solutions converge to exact solution, i.e., the numerical approxima-
tion scheme (4) is stable.

3. Numerical Methods for Solving the Problem

There is a wide variety of numerical methods for solving SLAEs. In this work, for solv-
ing the tridiagonal SLAE (9) we will use the direct Thomas algorithm, direct parallel sweep
method, and iterative accelerated over-relaxation method.

3.1. Thomas Algorithm

Thomas algorithm (in Russian literature also known as sweep method) [26] for solv-
ing the tridiagonal systems was elaborated and investigated independently by many
researchers (I. M. Gelfand and O. V. Lokutsievskii in USSR, and L. H. Thomas in USA).

It is a direct method, that is a simplified form of Gaussian elimination for a systems
with a special matrices. For the system (9) the algorithm may be written as follows:

• The forward elimination phase

α1 = r1/q1, β1 = f̃1/q1,

αi+1 = ri/(qi − piαi), βi+1 = (f̃i + piβi)/(qi − piαi),

i ∈ {1, 2, ..., m− 1}.
(10)

• The backward substitution phase

Um−1,n = βm ,

Ui,n = αi+1Ui+1,n + βi+1 ,

i ∈ {m− 1, m− 2, ..., 1}.
(11)

Mathematics 2022, 10, 323 6 of 19

The algorithm is applicable to the diagonally dominant systems. In our case, this
means that the following property must hold:

|qi| ≥ |pi|+ |ri|, i ∈ {1, 2, ..., m− 1}. (12)

This property holds in the numerical experiments presented below.
While the Thomas algorithm is extremely simple to implement and is very cache-

friendly (since data is read and stored sequentially), it is essentially a serial algorithm.
The flow dependency (meaning that the next coefficient must be calculated using the
previous one) does not permit to use most forms of parallelization or vectorization. Thus,
the parallel tridiagonal solvers are usually based on other methods [27].

3.2. Parallel Sweep Method

In our work, we implement the parallel direct sweep method. It was proposed and
researched in works [28,29].

The idea of parallelization consists in decomposing the interval {1, 2, ..., m− 1} into
L equal subintervals split by the points mk , k ∈ {1, 2, ..., L− 1}. Let us denote m0 = 0,
mL = m for convenience. Then, the subintervals are

{m0 + 1, m0 + 2, ..., m1 − 1},
{m1 + 1, m1 + 2, ..., m2 − 1},
{m2 + 1, m2 + 2, ..., m3 − 1},
...,

{mL−1 + 1, mL−1 + 2, ..., mL − 1}.

Let us introduce the operator

ΛhUi = −piUi−1 + qiUi − riUi+1, i ∈ {1, 2, ..., m− 1}.

The auxillary subtasks may be solved independently for each subinterval
i ∈ {mk + 1, mk + 2, ..., mk+1 − 1}

ΛhYi = 0, Ymk = 1, Ymk+1 = 0,

ΛhVi = 0, Vmk = 0, Vmk+1 = 1,

ΛhWi = f̃i, Wmk = 0, Wmk+1 = 0.

(13)

To solve them, the sweep method may be used in the following form:

• The forward elimination phase

αmk+1 = rmk+1/qmk+1, αi = ri/(qi − piαi−1),

βmk+1 = pmk+1/qmk+1, βi = piβi−1/(qi − piαi−1),

γmk+1 = f̃mk+1/qmk+1, γi = (f̃i + piγi−1)/(qi − piαi−1),

i ∈ {mk + 2, mk + 3, ..., mk+1 − 1}.

(14)

• The backward substitution phase

Vmk+1−1 = αmk+1−1, Ymk+1−1 = βmk+1−1, Wmk+1−1 = γmk+1−1,

Vi = αiVi+1, Yi = αiYi+1 + βi, Wi = αiWi+1 + γi,

i ∈ {mk+1 − 2, mk+1 − 3, ..., mk + 1}.

Mathematics 2022, 10, 323 7 of 19

The values Ui,n in the inner points the interval may be found by superposition

Ui,n = Umk ,nYi + Umk+1,nVi + Wi, i ∈ {mk + 1, mk + 2, ..., mk+1 − 1}. (15)

If we substitute the Formula (15) into the system (9) for points i ∈ {m0, m1, ..., mL}, we
will obtain the reduced system for the values Umk , k ∈ {1, 2, ..., L− 1}

q0 −r0

.

−pk qk −rk

.

−pL qL

·

Um0,n

...

Umk ,n

...

UmL ,n

=

F0

...

Fk

...

FL

,

q0 = qm0 − rm0Ym0+1, r0 = rm0 Vm0+1,

pk = pmk Ymk−1, qk = qmk − pmk Vmk−1 − rmk Ymk+1, rk = rmk Vmk+1,

pL = pmL YmL−1, qL = qmL − pmL VmL−1.

(16)

The parallel sweep algorithm for solving system (9) is summed up in Listing 1.

Listing 1. Parallel sweep algorithm for solving SLAE.

1. Solve the auxillary subtasks (13) on individual subintervals using method (14).
This step may be executed in parallel.

2. Construct the reduced system (16).
This step may by executed in parallel, but requires synchronization or communications
because the coefficients of the reduced systems require values from two adjacent
subintervals.

3. Solve the reduced system. Note that its dimension L is much lower than dimension
(m − 2) of the basis system. Thus, we can solve it by the classic serial Thomas
algorithm. After this step, another synchronization or communication is needed to
store or transfer the computed values at the boundary points of the subintervals.

4. Compute the solution of the basis system using Formula (15).
This step may also be executed in parallel.

Essentially, steps 1 and 4 of the algorithm may be performed independently in parallel,
while steps 2 and 3 require communications and synchronization.

3.3. Correctness and Stability of the Parallel Sweep Method

The sufficient correctness and stability conditions for the parallel sweep methods are

A.
|qi| − |pi| − |ri|
|qi|+ |pi|+ |ri|

≥ θ, θ > 0, max{|qi|, |pi|, |ri|} ≥ C, C > 0.

B. |qi| ≥ |pi|+ |ri|+ δ, δ > 0.
(17)

Note that A→ B.
The following theorem is valid.

Theorem 2. If either condition A or B (17) holds for the basis system (9), then both conditions A
and B are satisfied for the reduced system (16):

1. If condition A holds for (9) for some θ, then condition A holds for (16) with larger θ > θ.
2. If condition B holds for (9), then stronger condition A holds for (16).

Mathematics 2022, 10, 323 8 of 19

Proof. The proof is constructed in work [29].

3.4. Accelerated Over-Relaxation Iterative Method

The accelerated over-relaxation (AOR) iterative method was developed for the systems
with the general dense matrices [30,31].

To formulate this method for Equation (9), let us represent the matrix A as a sum of
three matrices

A = D− L−V,

where D is the diagonal matrix, L is the lower triangular matrix, and V is the upper
triangular matrix. Then, the iterative process is defined as follows:

(D− βL)Ũn
l+1

= [γV + (γ− β)L + (1− γ)D]Ũn
l
+ γ f̃n, (18)

where β is the acceleration parameter, γ is the over-relaxation parameter, and Ũn
l

is the
sought vector at the l-th iteration.

Specific values of this parameters reduce the AOR method to other well-known methods:

• β = 0, γ = 1 is the Jacobi method;
• β = 1, γ = 1 is the Gauss-Seidel method;
• β = γ is the successive over-relaxation method.

The algorithm for solving system (9) by the AOR method is executed as in Listing 2.

Listing 2. AOR algorithm for solving SLAE.

1. Initialize the vector Ũn
0 ← 0 and iteration counter l ← 0.

2. Do

(a) Compute the approximate solution Ũn
l+1

for the next iteration using
Formula (18).

(b) Check if the convergence criterion
∥∥∥Ũn

l+1 − Ũn
l∥∥∥

∞
≤ ε. If the criterion is

satisfied, then finish the process. Otherwise, set l ← l + 1 and repeat (a–b).

3.5. Convergence of the AOR Method

The necessary condition for convergence of AOR method is formulated in work [32].
Let us rewrite method (18) in the form

Ũn
l+1

= Lβ,γŨn
l
+ γ(D− βL)−1 f̃n, (19)

where

Lβ,γ = (D− βL)−1[(1− γ)D + (γ− β)L + γV] = D− γ(D− βL)−1 A, (20)

is the iteration matrix of method.
The following theorem is true:

Theorem 3. If the AOR method (19) converges (i.e., the spectral radius ρ(Lβ,γ) < 1) for some
β, γ 6= 0, then exactly one of the following statements holds:

1. γ ∈ (0, 2) and β ∈ (−∞, 0) ∪ (0,+∞),
2. γ ∈ (−∞, 0) ∪ [2,+∞) and β ∈ (2γ/(2− γ), 0) ∪ (0, 2).

Proof. The proof is constructed similarly as in works [23,32].

Thus, in the numerical experiments, we select the values of parameters β, γ to satisfy
these neccessary conditions.

Mathematics 2022, 10, 323 9 of 19

4. Parallel Implementation and Numerical Experiments
4.1. Parallel Implementation of Algorithms for Solving the TFDE

Numerical simulations for processes described by TFDEs require a lot of computing
time. This is due to a fact of non-local properties of the fractional derivative. For the
time-fractional equations, the computational complexity increases quadratically with the
number of time steps.

Consider the numerical algorithm for solving the initial boundary problem for TFDE (1)
that is presented in Listing 3.

Listing 3. Numerical algorithm for solving the TFDE.

1. Initialize the vectors Ui,j ← 0 for i ∈ {1, 2, ..., m− 1}, j ∈ {1, 2, ..., N}.
2. Initialize the boundary conditions U0,j = g1(jτ), Um,j = g2(jτ) for j ∈ {1, 2, ..., N}

and initial condition: Ui,0 = g0(ih) for i ∈ {0, 1, ..., m}.
3. Initialize the time steps counter n← 1.
4. Compute the coefficients of matrix A using Formula (6).
5. Do while (n ≤ N)

(a) Compute the right-hand part of the SLAE using Formula (7).
(b) Find the approximate solution Un. This can be achieved by either the Thomas

algorithm (Formulas (10)–(11)), the parallel sweep algorithm (Listing 1), or the
AOR method (Listing 2).

(c) Set n← n + 1 and repeat (a–c) for the next time step.

Let us formulate the costliest subroutines of this algorithm.

1. Calculation of the right-hand parts using Formula (7). This procedure requires storing
and processing the whole history of the process. The number of terms in Formula (7)
increases for each subsequent time level, which increase the amount of calculations.

2. Solving SLAE (9) for each subsequent time level.

One way to speed up the computations is applying the parallel computing. In this
work, we develop a parallel implementation of the algorithm for solving the time-fractional
diffusion equation for the superscalar multicore processors using the OpenMP technol-
ogy [33] and automatic vectorization by the Intel C++ Compiler.The parallelization is
performed as follows.

1. The elements fi,n for the individual points i can be calculated independently. Thus,
to parallelize this process, we can distribute the spatial fragments between OpenMP
threads. We decompose the index range i ∈ {0, 1, ..., m} into chunks of length s,
and each thread calculates it’s own set of chunks. This means that if we denote num-
ber of threads omp_num_threads = L, the thread identifier omp_thread_num = l ∈
{0, 1..., L− 1}, the thread l computes fi,n for i ∈ {ls, ls + 1, ..., ls + s}∪
∪{Ls + ls, Ls + ls + 1, ..., Ls + ls + s} ∪ {2Ls + ls, 2Ls + ls + 1, ..., 2Ls + ls + s} ∪
The corresponding C++ code fragment would look like this

for (i n t i = 0 ; i < m; i ++)
f [i] = sigma * U[n − 1] [i] + d (n , i) ;
#pragma omp for schedule (s t a t i c , 1)
for (i n t i 2 = 0 ; i 2 < m; i 2 += s)
for (i n t j = 2 ; j < n ; j ++)
for (i n t i = i 2 ; i < i 2 + s ; i ++)
#pragma vector
f [i] += −sigma * w(j) * (U[n − j + 1] [i] − U[n − j] [i]) ;

In this loops’ kernel, all memory pointers are accessed either uniformly (the same
memory from iteration to iteration), or with unit stride, changing by one element for
the next iteration. This ensures the highest efficiency for the superscalar architectures
with the SIMD instruction sets (AVX2+FMA3 or AVX-512 for modern Intel CPUs). The

Mathematics 2022, 10, 323 10 of 19

experiments show that the optimal value is s = 512 for double precision (8 bytes). This
is probably due to the fact that 512× 8 (bytes) = 4 KB, which is exactly one memory
page and also fits into the L1d cache (which is 32 KB per core for the i7-10700k CPU
used in experiments).

2. The Thomas algorithm is inherently serial. Thus, its implementation is executed in
the OpenMP single section.

3. The parallel sweep algorithm is parallel by design. In Listing 1, steps 1 and 4 are
performed by each OpenMP thread on its own subinterval. To perform steps 2 and
3, we need synchronization by ‘#pragma omp barrier‘ command, which introduces
additional overhead. We will investigate this in the numerical experiments.

4. Computing the next iteration in the AOR method. This process requires the matrix-
vector multiplications, which are parallelized in the same way as described above for

computation of the right-hand parts f̃i,n. The elements of new estimation vector Ũn
l+1

must be calculated sequentially. This fact reduces the efficiency of parallelization.

4.2. Reducing the Cost of Computation of the Right-Hand Parts

Several techniques can be applied for reducing the computational cost for the right-
hand parts. Formula (7) requires O(n) operations at each time level n and O(N2) operations
for the entire process. The cost of SLAE solver at the time level n does not depend on n,
thus, its cost is O(N) overall.

One technique for reducing the cost of computing the right-hand parts is described
in work [34]. Instead of using the uniform grid for computing the approximation of the
fractional derivative, a nested grid is used. The finer mesh is used for the latest history
with successively coarser meshes for the more distant history. This approach utilized the
fading memory property of the fractional derivative, i.e., the fact that the coefficients w(α)

j
in Formula (3) gradually decrease with the increase of the index j.

To implement this approach, we modify Formula (7) in the following way:

fi,1 = σα,τUi,0 + di,0 ,

fi,n = σα,τUi,n−1 − ∑
(j,k)

σ
(j,k)
α,τ w(α)

j,k (Ui,n−j+1 −Ui,n−k) + di,n , n > 1,

(j, k) ∈
{
(2, 2 + θ0), (2 + θ0, 2 + θ1), (2 + θ1, 2 + θ2), ..., (2 + θblogθ nc, n)

}
,

σ
(j,k)
α,τ =

1
Γ(1− α)(1− α)θk−jτα

, w(α)
j,k = (k)1−α − (j− 1)1−α, 0 < α < 1,

(21)

where θ ∈ N is the stretching coefficient, blogθ nc is the integer part.
This approach has complexity O(N · log N), in contrast of O(N2) of the full mem-

ory. In work [34], it was shown that this nested mesh approach preserves the order of
approximation for the fractional derivative.

4.3. Results of the Numerical Experiments

In this section, we apply our parallel implementations of Listing 3 to numerical
solution of the time-fractional diffusion equations. The experiments were performed on
8-core Intel i7-10700k CPU. This section presents the results of the experiments.

4.3.1. Problem 1

Consider the initial boundary value problem for the following equation:

∂αU(x, t)
∂tα

=
∂2U(x, t)

∂x2 , 0 < α < 1, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

with the boundary conditions

Mathematics 2022, 10, 323 11 of 19

U(0, t) =
2tα

Γ(α + 1)
, U(1, t) = 1 +

2tα

Γ(α + 1)
,

and the initial condition

U(x, 0) = x2.

The exact solution of this problem is given in paper [35], it is

U(x, t) = x2 +
2tα

Γ(α + 1)
.

The numerical experiments were performed for the order α = 0.5 on the grid m = 256,
N = 16,384. The following combinations of parameters β, γ were used for Formula (18)
giving various iterative methods:

• Gauss-Seidel method (GS): β = 1, γ = 1;
• Successive over-relaxation method (SOR): β = 1.9, γ = 1.9;
• Accelerated over-relaxation method (AOR): β = 1.99, γ = 1.8.

The problem was also solved by the direct algorithms, namely, the Thomas algorithm
(Formulas (10) and (11)) and the parallel sweep algorithm (Formulas (13)–(16)).

Figure 1 shows the approximate solution for Problem 1 obtained by the Thomas
algorithm. Table 1 presents the results of numerical experiments. It contains the computing
times of solving the Problem 1 by five methods described above. T1 is the computing time
by a single OpenMP thread, i.e., of the serial program implementing the given method.
T8 is the time by a parallel program for the same method run by 8 threads. To assess the
efficiency of the parallel implementation, the speedup coefficient SL = T1/TL is presented,
where L is the number of threads. The table also contains the total number K of iterations
required to solve the problem by the iterative methods, as well as, the average number Kn

of iterations at a single time level. The last column presents the error δ =
∥∥∥Ũ −U

∥∥∥
∞

of the
solution obtained by a given method.

Table 1. Results of experiments for Problem 1.

Method T1 [s] T8 [s] S8 K Kn δ

GS 271 255 1.06 102.7 · 106 6300 1 · 10−3

SOR 132 74 1.78 13.3 · 106 800 1 · 10−3

AOR 121 58 2.08 6.3 · 106 400 1 · 10−3

Thomas Algorithm 8 2.3 3.5 2.4 · 10−7

Parallel Sweep Method 8 2.5 3.2 2.4 · 10−7

4.3.2. Problem 2

This test problem is based on the equation [36]

∂αU(x, t)
∂tα

=
∂2U(x, t)

∂x2 +
Γ(4 + α)

6
x2(2− x)t3 − 4x2(6− 5x)t3+α,

0 < α < 1, 0 ≤ x ≤ 2, 0 ≤ t ≤ 1,

with the boundary conditions

U(0, t) = 0, U(2, t) = 0,

and the initial condition

U(x, 0) = 0.

The exact solution of this problem is given in work [37], it is

Mathematics 2022, 10, 323 12 of 19

U(x, t) = x4(2− x)t3+α.

The numerical experiments were performed for the order α = 0.5 on the grid m = 8192,
N = 8192. The combination of parameters β, γ for the AOR method is β = 1.99, γ = 1.9.

Figure 1. (a) Approximate solution Ũ(x, t) of Problem 1 obtained by the Thomas algorithm; (b) exact
(solid line) and approximate (dots) solutions at several time levels.

Figure 2 shows the approximate solution for Problem 2 obtained by the Thomas
algorithm. Table 2 presents the results of numerical experiments for Problem 2 on the grid
m = 8192, N = 8192.

Mathematics 2022, 10, 323 13 of 19

Figure 2. (a) Approximate solution Ũ(x, t) of Problem 2 obtained by the Thomas algorithm; (b) exact
(solid line) and approximate (dots) solutions at several time levels.

Table 2. Results of experiments for Problem 2 with grid m = 8192, N = 8192.

Method T1 [s] T2 [s] T4 [s] T8 [s] K Kn δ

AOR 144 117 96 92 3.3 · 106 400 1 · 10−3

Thomas 89 64 49 47 1 · 10−6

Parallel Sweep 89 64 49 47 1 · 10−6

For the next experiments, we use the large spatial grid m = 32× 220 for the same
problem. The time grid in this experiment is just N = 64. Thus, the program requires about

Mathematics 2022, 10, 323 14 of 19

20 GB of memory out of 32 GB available on the PC used in tests. Tables 3 and 4 present the
results of numerical experiments for Problem 2 on this grid using the full memory (7) and
logarithmic memory (21) approaches for computing the right-hand parts respectively. It
also contains the execution times for separate subroutines of the parallel program obtained
by profiling with the Intel VTune Profiler.

Table 3. Results of experiments for Problem 2 using the full memory approach with grid
m = 32× 220, N = 64.

Method and Subroutine T1 [s] T2 [s] T4 [s] T8 [s] δ

Thomas Algorithm 0.5 · 10−2

(full memory)
Total 39.5 29.3 25.2 24

Right-hand parts 28 17.8 13.7 12.5
SLAE solver 11.5 11.5 11.5 11.5

Parallel Sweep Method 0.8 · 10−2

(full memory)
Total 40.3 27.5 19.1 17.9

Right-hand parts 28 17.8 13.7 12.5
SLAE solver 12.3 9.3 5.4 5.4

Table 4. Results of experiments for Problem 2 using the logarithmic memory approach with grid
m = 32× 220, N = 64.

Method and Subroutine T1 [s] T2 [s] T4 [s] T8 [s] δ

Thomas Algorithm 0.5 · 10−2

(logarithmic memory)
Total 18.2 16.3 15.9 15.5

Right-hand parts 6.7 4.8 4.4 4
SLAE solver 11.5 11.5 11.5 11.5

Parallel Sweep Method 1.5 · 10−2

(logarithmic memory)
Total 19 14.1 9.8 9.4

Right-hand parts 6.7 4.8 4.4 4
SLAE solver 12.3 9.3 5.4 5.4

5. Discussion

The experiments show that for both problems, the iterative AOR method is clearly
inferior to the much simpler direct methods, such as Thomas algorithm and parallel sweep
method, in terms of both accuracy and computing time. For Problem 1, the AOR method
with tuned parameters requires less iterations and shorter computing time that the Gauss-
Seidel and SOR methods. But its computing time is still 15 to 25 times lower than the
direct methods.

For coarser spatial grids, such as m = 256 for Problem 1 and m = 8192 for Problem 2,
the parallel sweep method is slightly slower than the serial Thomas algorithm. This is
caused by too much parallel overhead (time required for synchronizing the threads) for
the small sizes of the SLAE. The results are more indicative for the large spatial grid
m = 32 × 220 (roughly 32 millions) in the last experiment. Here, the parallel sweep
algorithm for solving the SLAE shows better time than the classic serial Thomas algorithm.

We also note that the percentage of computing the right-hand parts for each time step
is up to two times larger than for solving the SLAE when we use the full memory approach
(see Table 3). The computation complexity of the right-hand parts computing is quadratic,
while direct methods for SLAE are linear. Using the logarithmic memory approach (see
Table 4) reduces the time of computing the right-hand parts 3 to 4 times. Total computing
time reduces up to twofold. The error of the solution remain of the same order than for the
full memory.

Mathematics 2022, 10, 323 15 of 19

Now, the SLAE solver takes more time than right-hand computation. This makes the
effect of using the parallel solver more prominent. The parallel implementation on the basis
of the parallel sweep method reduces the total computing time from 19 to 9.4 s. In contrast,
the implementation which uses the classic serial Thomas algorithm reduces the computing
time from 18 to 15.5 s. Thus, the parallel implementations run on 8 threads, gives the
computing times of 15.5 and 9.4 s for the classic Thomas algorithms and the parallel sweep
method, respectively, a speedup of 1.65 times.

Let us investigate the performance of the procedure of computing the right-hand parts
deeper. Table 5 presents the memory bandwidth utilization for the parallel implementation
of this procedure (for the full memory approach) for various number of the OpenMP
threads measured by the Intel VTune Profiler for the grid size m = 8192, N = 8192.

Table 5. Memory bandwidth utilization for computing the right-hand parts.

Number of Threads DRAM Bandwidth Utilization [GB/s]

1 32
2 50
4 55
8 56

Maximum bandwidth 57

The table shows that even two threads saturate the memory bandwidth and further
increase of the number of the threads produces miniscule improvement. This is confirmed
by the results in Tables 2–4. The largest speedup is about 2 times, regardless of using the
full or logarithmic memory. This is caused by the fact that the calculating the right-hand
parts by Formulas (7) and (21) has low arithmetical intensity. Essentially, we perform one
multiplication and one addition per 3 numbers read from memory. The roofline analysis by
the Intel Advisor [38] confirms that this implementation is memory bound (see Figure 3).

There are several ways to get around this problem. One way is to use the hardware
with higher memory bandwidth. Modern GPUs’ memory bandwidth is dozens of times
higher than CPUs. For example, the NVIDIA RTX 3080 has memory bandwidth of 760 GB/s
in comparison with the Intel i7-10700k with DDR4-4133 used in our experiments, which
has 57 GB/s (with a comparable performance in the double precision arithmetic of about
450–500 GFLOPS).

The computing cluster systems with distributed memory allow the effective summa-
tion of the memory bandwidthes of the individual nodes. It also allows one to solve much
larger problems when the total data would not fit into a memory of a single node. This
makes the parallel sweep algorithm more viable for such systems.

The other way is to increase the arithmetic intensity and efficiency of memory access.
Reusing the data in caches or shared memory can significantly improve the performance.
Several methods for optimizing the computational procedures for fractional derivatives
are proposed in works [39,40]. An algorithm for automatical optimization of the similar
procedure of the matrix-vector multiplication for a multicore processor is presented in
work [41].

Mathematics 2022, 10, 323 16 of 19

Figure 3. Roofline analysis for implementation of the right-hand parts computation procedure.

In future, the Authors plan to develop the efficient numerical algorithms for the for-
ward and inverse 2D and 3D problems for TFDEs. This would require a larger amount
of computations, as well as, larger memory requirements. To obtain more efficient paral-
lelization, various techniques may be implemented, such as using red-black partitioning,
conjugate gradient type methods, preconditioning, higher-order schemes, etc. One of
the promising ways to solve large time-fractional problems is the Parareal method [42].
Currently, it is widely used for numerical solving the initial boundary problems for classical
differential equations with integer orders. Its main idea is the time domain decomposition
using two grids (a coarse one and a fine one). The coarse grid is used to construct the
initial approximations for the subtasks solved on a fine grid and for correcting the solution
of the subtasks. The subtasks on a fine grid may be solved independently for each time
subinterval. This allows one to implement the efficient parallel algorithms for various
high-performance architectures.

6. Conclusions

In this work, the parallel algorithms for solving the initial boundary problem for the
time-fractional diffusion equation are constructed. The algorithms are based on the finite-
difference scheme for approximating the differential equation and the Thomas algorithm,
parallel sweep algorithm, and accelerated over-relaxation method for solving the systems
of linear algebraic equations. The algorithms are implemented for the multicore processors
using the OpenMP technology. The numerical experiments were performed to investigate
the efficiency of the developed parallel algorithms. The Thomas algorithm and parallel
sweep algorithm reduce the total computing time for solving the example problems up
to 25 times in comparison with the over-relaxation method and provides better accuracy.
For the large spatial grids, using the parallel sweep method speed up the computations
up to 2 times on the 8-core CPU in comparison with the classic serial Thomas algorithm.
In future, the Authors plan to implement more elaborate algorithms to circumvent the
limits of memory bandwidth. This would allow one to solve the larger problems.

Mathematics 2022, 10, 323 17 of 19

Author Contributions: Conceptualization, M.A.S., E.N.A., and V.E.M.; methodology, M.A.S., E.N.A.,
and V.E.M.; validation, M.A.S., E.N.A., V.E.M., and Y.N.; formal analysis, M.A.S., E.N.A., V.E.M.,
and Y.N.; investigation, E.N.A., V.E.M., and Y.N.; resources, M.A.S., E.N.A., and V.E.M.; writing—
original draft preparation, M.A.S., E.N.A., and V.E.M.; writing—review and editing, M.A.S., E.N.A.,
V.E.M., and Y.N.; supervision, M.A.S., E.N.A.; project administration, V.E.M.; funding acquisition,
M.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: The first author (M.A.S.) and fourth author (Y.N.) were financially supported by the
Ministry of Education and Science of the Republic of Kazakhstan (project AP09258836). The second
author (E.N.A.) and third author (V.E.M.) received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are the model data. Data sharing is
not applicable to this article.

Acknowledgments: We would like to thank the Editor and Reviewers for providing the valuable
comments on our article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TFDE Time-fractional Diffusion Equation
AOR Accelerated over-relaxation method
SOR Successive over-relaxation method
GS Gauss-Seidel method
SLAE System of linear algebraic equations

References
1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006; Volume 204.
2. Cui, M. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time

fractional diffusion equation. Numer. Algorithms 2013, 62, 383–409. [CrossRef]
3. Jin, B.; Rundell, W. A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 2015, 31, 035003. [CrossRef]
4. Machado, J.T.; Galhano, A.; Trujillo, J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013,

16, 479–500. [CrossRef]
5. Sultanov, M.A.; Durdiev, D.K.; Rahmonov, A.A. Construction of an Explicit Solution of a Time-Fractional Multidimensional

Differential Equation. Mathematics 2021, 9, 2052. [CrossRef]
6. Scher, H.; Montroll, E.W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 1975, 12, 2455–2477. [CrossRef]
7. Kou, S.C. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat. 2008, 2, 501–535. [CrossRef]
8. Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-

ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [CrossRef]
9. Diethelm, K.; Ford, N.; Freed, A.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput.

Methods Appl. Mech. Eng. 2005, 194, 743–773. [CrossRef]
10. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore,

2012; Volume 3.
11. Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: London, UK, 2019.
12. Gong, C.; Bao, W.; Tang, G.; Jiang, Y.; Liu, J. A parallel algorithm for the two-dimensional time fractional diffusion equation with

implicit difference method. Sci. World J. 2014, 2014, 219580. [CrossRef]
13. Akimova, E.N.; Martyshko, P.S.; Misilov, V.E.; Kosivets, R.A. An Efficient Numerical Technique for Solving the Inverse Gravity

Problem of Finding a Lateral Density. Appl. Math. Inf. Sci. 2016, 10, 1681–1688. [CrossRef]
14. Akimova, E.N.; Misilov, V.E.; Tretyakov, A.I. Optimized Algorithms for Solving Structural Inverse Gravimetry and Magnetometry

Problems on GPUs. In Communication in Computer and Information Sciences; Springer International Publishing: Cham, Switzerland,
2017; pp. 144–155._11. [CrossRef]

http://doi.org/10.1007/s11075-012-9589-3
http://dx.doi.org/10.1088/0266-5611/31/3/035003
http://dx.doi.org/10.2478/s13540-013-0030-y
http://dx.doi.org/10.3390/math9172052
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1214/07-AOAS149
http://dx.doi.org/10.1039/C4CP03465A
http://dx.doi.org/10.1016/j.cma.2004.06.006
http://dx.doi.org/10.1155/2014/219580
http://dx.doi.org/10.18576/amis/100506
http://dx.doi.org/10.1007/978-3-319-67035-5_11

Mathematics 2022, 10, 323 18 of 19

15. Akimova, E.N.; Filimonov, M.Y.; Misilov, V.E.; Vaganova, N.A. Simulation of thermal processes in permafrost: Parallel implementation
on multicore CPU. In Proceedings of the 4th International Workshop on Radio Electronics and Information Technologies (REIT-
Autumn 2018), Yekaterinburg, Russia, 16 November 2018; Volume 2274, pp. 1–9. Available online: http://ceur-ws.org/Vol-2274
/paper-01.pdf (accessed on 1 December 2021).

16. Akimova, E.N.; Misilov, V.E.; Sultanov, M.A. Parallel Implementation of the Conjugate Gradient Method for Solving the Inverse
Gravimetry Problem on GPU. In Proceedings of the 18th International Conference on Geoinformatics—Theoretical and Applied
Aspects, Kyiv, Ukraine, 13–16 May 2019; European Association of Geoscientists and Engineers: Houten, The Netherlands, 2019;
pp. 1–5. [CrossRef]

17. Akimova, E.N.; Misilov, V.E.; Sultanov, M.A. Regularized gradient algorithms for solving the nonlinear gravimetry problem for
the multilayered medium. Math. Methods Appl. Sci. 2020, 11, 21 . [CrossRef]

18. Li, X.; Su, Y. A parallel in time/spectral collocation combined with finite difference method for the time fractional differential
equations. J. Algorithms Comput. Technol. 2021, 15, 17483026211008409. [CrossRef]

19. De Luca, P.; Galletti, A.; Ghehsareh, H.; Marcellino, L.; Raei, M. A GPU-CUDA framework for solving a two-dimensional inverse
anomalous diffusion problem. Parallel Comput. Technol. Trends 2020, 36, 311.

20. Yang, X.; Wu, L. A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model. Mathematics
2020, 8, 596. [CrossRef]

21. Wang, Q.; Liu, J.; Gong, C.; Tang, X.; Fu, G.; Xing, Z. An efficient parallel algorithm for Caputo fractional reaction-diffusion
equation with implicit finite-difference method. Adv. Differ. Equ. 2016, 2016, 207. [CrossRef]

22. Alimbekova, N.; Berdyshev, A.; Baigereyev, D. Parallel Implementation of the Algorithm for Solving a Partial Differential Equation
with a Fractional Derivative in the Sense of Riemann-Liouville. In Proceedings of the 2021 IEEE International Conference on
Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–6. [CrossRef]

23. Sunarto, A.; Agarwal, P.; Sulaiman, J.; Chew, J.V.L.; Aruchunan, E. Iterative method for solving one-dimensional fractional
mathematical physics model via quarter-sweep and PAOR. Adv. Differ. Equ. 2021, 2021, 147. [CrossRef]

24. Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [CrossRef]
25. Sunarto, A.; Sulaiman, J.; Saudi, A. Implicit finite difference solution for time-fractional diffusion equations using AOR method.

In Proceedings of the 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech
2014), Jakarta, Indonesia, 13–14 January 2014; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; Volume 495,
p. 012032. [CrossRef]

26. Samarskii, A.A.; Nikolaev, E.S. Numerical Methods for Grid Equations, Volume I: Direct Methods; Birkhäuser: Basel, Switzerland,
1989. [CrossRef]

27. Stone, H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations. J. ACM 1973, 20, 27–38.
[CrossRef]

28. Yanenko, N.; Konovalov, A.; Bugrov, A.; Shustov, G. Organization of Parallel Computing and the Thomas Algorithm Parallelization
(in Russian). Numer. Methods Contin. Mech. (Comput. Cent. Sib. Branch USSR Acad. Sci. Novosib. 1978) 1978, 9, 139–146.

29. Akimova, E.N. Parallel Algorithms for Solving the Gravimetry, Magnetometry, and Elastisity Problems on Multiprocessor
Systems with Distributed Memory (in Russian). Thesis for the degree of Doctor of Physical and Mathematical Sciences, Institute
of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia, 2009; 255p. Available
online: https://www.dissercat.com/content/parallelnye-algoritmy-resheniya-zadach-gravi-magnitometrii-i-uprugosti-na-
mnogoprotsessornyk (accessed on 1 December 2021).

30. Hadjidimos, A. Accelerated overrelaxation method. Math. Comput. 1978, 32, 149–157. [CrossRef]
31. Hughes-Hallett, A. The convergence of accelerated overrelaxation iterations. Math. Comput. 1986, 47, 219–223. [CrossRef]
32. Yeyios, A. A necessary condition for the convergence of the accelerated overrelaxation (AOR) method. J. Comput. Appl. Math.

1989, 26, 371–373. [CrossRef]
33. Chapman, B.; Jost, G.; Van Der Pas, R. Using OpenMP: Portable Shared Memory Parallel Programming; MIT Press: Cambridge, MA,

USA; London, UK, 2007.
34. Ford, N.J.; Simpson, A.C. The numerical solution of fractional differential equations: Speed versus accuracy. Numer. Algorithms

2001, 26, 333–346. [CrossRef]
35. El-Sayed, A.; Gaber, M. The Adomian decomposition method for solving partial differential equations of fractal order in finite

domains. Phys. Lett. A 2006, 359, 175–182. [CrossRef]
36. Ferrás, L.L.; Ford, N.J.; Morgado, M.L.; Rebelo, M. A Numerical Method for the Solution of the Time-Fractional Diffusion Equation.

In Computational Science and Its Applications—ICCSA 2014; Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I.,
Taniar, D., Apduhan, B.O., Gervasi, O., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 117–131.

37. Murio, D.A. Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 2008,
56, 1138–1145. [CrossRef]

38. Intel Corporation. Memory-Level Roofline Analysis in Intel Advisor. Available online: https://www.intel.com/content/www/
us/en/developer/articles/technical/memory-level-roofline-model-with-advisor.html (accessed on 1 December 2021).

39. Gong, C.; Bao, W.; Tang, G.; Yang, B.; Liu, J. An efficient parallel solution for Caputo fractional reaction–diffusion equation.
J. Supercomput. 2014, 68, 1521–1537. [CrossRef]

http://ceur-ws.org/Vol-2274/paper-01.pdf
http://ceur-ws.org/Vol-2274/paper-01.pdf
http://dx.doi.org/10.3997/2214-4609.201902037
http://dx.doi.org/10.1002/mma.7012
http://dx.doi.org/10.1177/17483026211008409
http://dx.doi.org/10.3390/math8040596
http://dx.doi.org/10.1186/s13662-016-0929-9
http://dx.doi.org/10.1109/SIST50301.2021.9465922
http://dx.doi.org/10.1186/s13662-021-03310-2
http://dx.doi.org/10.1016/j.amc.2009.05.018
http://dx.doi.org/10.1088/1742-6596/495/1/012032
http://dx.doi.org/10.1007/978-3-0348-9272-8
http://dx.doi.org/10.1145/321738.321741
https://www.dissercat.com/content/parallelnye-algoritmy-resheniya-zadach-gravi-magnitometrii-i-uprugosti-na-mnogoprotsessornyk
https://www.dissercat.com/content/parallelnye-algoritmy-resheniya-zadach-gravi-magnitometrii-i-uprugosti-na-mnogoprotsessornyk
http://dx.doi.org/10.1090/S0025-5718-1978-0483340-6
http://dx.doi.org/10.1090/S0025-5718-1986-0842131-9
http://dx.doi.org/10.1016/0377-0427(89)90309-9
http://dx.doi.org/10.1023/A:1016601312158
http://dx.doi.org/10.1016/j.physleta.2006.06.024
http://dx.doi.org/10.1016/j.camwa.2008.02.015
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-level-roofline-model-with-advisor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-level-roofline-model-with-advisor.html
http://dx.doi.org/10.1007/s11227-014-1123-z

Mathematics 2022, 10, 323 19 of 19

40. Liu, J.; Gong, C.; Bao, W.; Tang, G.; Jiang, Y. Solving the Caputo fractional reaction-diffusion equation on GPU. Discret. Dyn. Nat.
Soc. 2014, 2014, 820162. [CrossRef]

41. Gareev, R.A.; Akimova, E.N. Analytical modeling of matrix–vector multiplication on multicore processors. Math. Meth. Appl. Sci.
2021, 1–31. [CrossRef]

42. Lions, J.L.; Maday, Y.; Turinici, G. Résolution d’EDP par un schéma en temps «pararéel». C. R. L’Académie Des Sci.-Ser. I-Math.
2001, 332, 661–668. [CrossRef]

http://dx.doi.org/10.1155/2014/820162
http://dx.doi.org/10.1002/mma.7045
http://dx.doi.org/10.1016/S0764-4442(00)01793-6

	Introduction
	Problem
	Statement of the Problem
	Discretization of Equation and Difference Scheme
	Obtaining the SLAE
	Stability Analysis

	Numerical Methods for Solving the Problem
	Thomas Algorithm
	Parallel Sweep Method
	Correctness and Stability of the Parallel Sweep Method
	Accelerated Over-Relaxation Iterative Method
	Convergence of the AOR Method

	Parallel Implementation and Numerical Experiments
	Parallel Implementation of Algorithms for Solving the TFDE
	Reducing the Cost of Computation of the Right-Hand Parts
	Results of the Numerical Experiments
	Problem 1
	Problem 2

	Discussion
	Conclusions
	References

