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Parallel Domain Decomposition and Load Balancing UsingSpace-Filling Curves�Srinivas Aluru Fatih E. SevilgenDept. of CS School of EECSNew Mexico State University Syracuse UniversityLas Cruces, NM 88003-8001 Syracuse, NY 13244-4100email: aluru@cs.nmsu.edu sevilgen@top.cis.syr.eduAbstractPartitioning techniques based on space-�llingcurves have received much recent attention due totheir low running time and good load balance char-acteristics. The basic idea underlying these methodsis to order the multidimensional data according toa space-�lling curve and partition the resulting one-dimensional order. However, space-�lling curves arede�ned for points that lie on a uniform grid of a par-ticular resolution. It is typically assumed that the co-ordinates of the points are representable using a �xednumber of bits, and the run-times of the algorithmsdepend upon the number of bits used.In this paper, we present a simple and e�cient tech-nique for ordering arbitrary and dynamic multidimen-sional data using space-�lling curves and its applica-tion to parallel domain decomposition and load bal-ancing. Our technique is based on a comparison rou-tine that determines the relative position of two pointsin the order induced by a space-�lling curve. The com-parison routine could then be used in conjunction withany parallel sorting algorithm to e�ect parallel domaindecomposition.1 IntroductionMany scienti�c and engineering applications involv-ing iterative methods can be represented by computa-tional graphs [11]. The nodes of the computationalgraph represent tasks that can be executed concur-rently. The edges of the graph represent the commu-nication required between tasks from one iteration tothe next. Computational graphs derived from manyapplications are such that the nodes correspond totwo- or three-dimensional coordinates and the edgesare limited to vertices that are physically proximate.Examples of such applications include �nite elementmethods, PDE solvers and molecular dynamics simu-lations. To parallelize the application on a collection ofp processors, the computational graph should be par-titioned to the p processors. The partitioning problem�This research is supported by the Sandia National Labora-tories and National Science Foundation under CCR-9702991.

has three requirements: balancing workload, minimiz-ing interprocessor communication and minimizing therunning time of the partitioning algorithm itself. It isa very di�cult task to ful�ll these con
icting require-ments.There is currently a signi�cant interest in the re-search community for using space-�lling curves forpartitioning multidimensional graphs. Ou [12] andPilkington et al. [14] have shown that space-�llingcurve based partitioning techniques provide consider-ably good quality partitions with very low costs. Sim-ilar techniques have been used by Parashar et al. [13]and Warren et al. [16] for parallel Adaptive Mesh Re-�nement and the N-body problem, respectively. Theunderlying idea is to map multidimensional data toone dimension where the partitioning is trivial. Thereare many ways to map multidimensional data to onedimension. However, a mapping that could be used inpartitioning algorithms should preserve the proximityinformation present in the multidimensional space tominimize communication costs. Experimental [1, 6]and analytical [9, 7, 3] studies show that space-�llingcurves provide such mappings. Unfortunately, space-�lling curves are de�ned for points that lie on a uni-form grid of a particular resolution [15]. It is typicallyassumed that the coordinates of the points are rep-resentable using a �xed number of bits, and the run-times of the algorithms depend upon the number ofbits used. Let l be the largest distance and s be thesmallest distance between any pair of points. If all thepoints are known in advance, l and s can be computedbeforehand and dlog lse bits are su�cient to representthe points. Thus, current algorithms have a runningtime proportional to log ls and are di�cult to use forarbitrary and dynamic points.In this paper, we present a simple technique for or-dering arbitrary and dynamic multidimensional datausing space-�lling curves. For the Z-curve and theGraycode space-�lling curves, we present comparisonroutines that �nd which of given two points appears�rst in the order induced by the space-�lling curve.The comparison routines takes O(d log log ls) time for



Figure 1: Z-curve for grids of size 2 � 2, 4 � 4 and8� 8.two d-dimensional points, where l and s need not beknown in advance. Moreover, if bit shifting is as-sumed to be a constant time operation, the compar-ison routines take only O(d) time. Our method notonly makes the application of space-�lling curves toarbitrary points more e�cient but also makes it pos-sible to apply these strategies in the dynamic case.2 Space-Filling CurvesIn this section, we describe the notion of space-�lling curves and describe some of the popularly usedcurves. We �rst restrict our attention to square two-dimensional grids of size 2k � 2k. Space-�lling curvescan be described in a variety of ways. They can bedescribed recursively. The curve for a 2k � 2k grid iscomposed of four 2k�1� 2k�1 grid curves. The curvescan also be speci�ed by bit interleaving - the positionof a grid point along the curve can be described byinterleaving the bits of the coordinates of the pointwith the interleaving function being a characteristicof the curve.Z-Curve. The Z-curves [10] for 2�2, 4�4 and 8�8grids are shown in Figure 1. The curve for a 2k � 2kgrid is composed of four 2k�1�2k�1 grid curves one ineach quadrant of the 2k� 2k grid. The order in whichthe curves are connected is the same as the order oftraversal of the 2 � 2 curve, and this holds true forall space-�lling curves. Alternatively, given a point intwo dimensions and assuming that each coordinate isrepresented using k bits, the position of the point onthe Z-curve can be obtained by interleaving the bitsrepresenting the x and y coordinates, starting fromthe x coordinate. For example, (3; 5) = (011; 101)translates to 011011 = 27. All the space-�lling curvescan also be described in such a fashion using a suitablebit-interleaving function.Graycode Curve. The graycode curve [4] uses thesame bit interleaving function as the Z-curve. Whilethe Z-curve visits points in the numerical order ofthe results of applying the interleaving function to the

Graycode curve Hilbert curve
Figure 2: Graycode and Hilbert curves for grids of size8� 8.points, the graycode curve visits them in the graycodeorder (see Figure 2). The curve can be described re-cursively as follows: Place four curves of the previousresolution in the four quadrants. Flip the upper quad-rant curves once around one of the coordinate axes andthen around the other axis. The curves in the lowerquadrants are left as they are.Hilbert Curve. The Hilbert curve [5] is a smoothcurve that avoids the sudden jumps present in the Zand the Graycode curves (Figure 2). The curve is com-posed of four curves of the previous resolution placedin the four quadrants. The curve in the lower leftquadrant is rotated clockwise by 90o and lower rightone is rotated counterclockwise by 90o.The curves can be easily extended for cases whenthe dimension spans are uneven and for higher dimen-sional grids. Consider a 2k � 2m grid (k > m). Onecan use 2k�m curves each for a 2m�2m grid and placethem next to each other. If needed, the curves can betilted upside down as appropriate, to avoid suddenjumps. A higher dimensional curve can be obtainedby using a template of the same dimension (such as a2 � 2 � 2 grid for three dimensions). A detailed de-scription of space-�lling curves for uneven dimensionspans and higher dimensions can be found in [6].3 Space-Filling Curves for ArbitraryPointsConsider the problem of ordering a given set of npoints in the order in which a particular space-�llingcurve visits them. We will use square grids in two-dimensions for ease of presentation. The same tech-niques can be easily extended to higher dimensions.The traditional method relies on the assumptionthat the coordinates of the points are representable us-ing k-bit integers (for some �xed k). An index is calcu-lated by interleaving the bits of these integers with theinterleaving function of the space-�lling curve. Sorting



these indices gives the order of the points according tothe space-�lling curve. Although the method is verysimple and easy to implement it does not solve theproblem for arbitrary points. If ls , the ratio of thelargest distance to the smallest distance between anytwo points, is greater than 2k, the coordinate valuesof the points cannot be represented by k-bit integersdistinctly.For arbitrary points, we could adopt the follow-ing strategy: We start with a square (root cell) largeenough to contain all of the given n points. We cancontinuously subdivide the square into grids of resolu-tion 2k�2k (starting with k = 0 and increasing k) un-til no grid cell contains more than one point. As eachgrid cell contains only one point, the order in whichthe curve visits the grid cells also determines the orderin which the curve visits the points. The running timeof this algorithm is proportional to k, which dependson the distribution of the points. In the worst case, lsgrid lines are necessary to separate the closest points.Thus, the upper bound on k is O(log ls ).Before we proceed to describe an algorithm with abetter running time, it is necessary to introduce someterminology: Assume a sequence of 2k� 2k grids (0 �k <1) imposed on the root cell. We use the term cellto describe each grid cell of any of these hypotheticalgrids. A cell can be subdivided into four subcells ofequal size. Let us name the subcells with respect to thecell as though the center of the cell is the origin and thehorizontal and vertical lines denote the x and y axes,respectively. We can label the upper right subcell assubcell I (following the usual quadrant I notation) andso on. The root cell contains 22k cells of length l2k . Aline is called a k-boundary if it contains an edge of acell of length l2k .The procedure we adopt to order given n pointsaccording to a given space-�lling curve is as follows:We will devise a comparison routine that takes twopoints as input and determines which of the two is�rst visited by the space-�lling curve. This is doneby �rst determining the smallest subcell of the rootcell that encloses the two points followed by deter-mining the order in which the curve visits the foursubcells of this subcell. Note that the order in whichthe space-�lling curve visits two points is independentof the position and the presence of other points. Oncewe design such a comparison routine, we can use anysorting algorithm to order the points. In the follow-ing, we describe such a technique for some space-�llingcurves.Consider a rectangle R that has the given twopoints at the opposite ends of a diagonal. The small-
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Figure 3: A root cell of length l and a rectangleR. Thebig dashed lines are 1-boundaries, the small dashedlines are 2-boundaries and the dotted lines are 3-boundaries. 2-boundaries are also 3-boundaries and1-boundaries are also 2-boundaries and 3-boundaries.est subcell of the root cell enclosing the two points isalso the smallest subcell that encloses the rectangleR, which we will determine. We use the techniqueproposed by Aluru et al. [2] for this purpose. Thesmallest subcell of the root cell enclosing R is of sizel2k�1 , where k is the smallest number such that a k-boundary crosses the rectangleR (see �gure 3). To de-termine this, we examine boundaries parallel to eachcoordinate axis in turn.Consider boundaries parallel to the y-axis. Thesecan be speci�ed by their distance from the y-axis. Thefamily of k-boundaries is speci�ed by i l2k , 0 � i � 2k.We need to �nd the smallest integer k such that ak-boundary parallel to y-axis passes through R, i.e.the smallest k such that xmin < i l2k < xmax for somei. By minimality of k, only one k-boundary passesthrough R. Let j be the smallest integer such thatl2j < (xmax�xmin). j = dlog2 lxmax�xmin e. There is atleast 1 and at most 2 j-boundaries passing throughR.These boundaries are given by h1 = d 2jxminl e l2j andh2 = b 2jxmaxl c l2j . Since k � j, any k-boundary is alsoa j-boundary, forcing the k-boundary passing throughR to coincide with h1 or h2. Let a be d 2jxminl e. h1 =a l2j and h2 = h1 or (a + 1) l2j . If h2 6= h1, let a0 bethe even integer among a and a + 1. Otherwise, leta0 be equal to a. It is clear that j � k is equal to thehighest power of 2 that divides a0. One way to �nd



this is j � k = log2(1 + fa0 � (a0 � 1)g)� 1.We use the computation of the smallest cell en-closing a given rectangle as a basic operation. Thisoperation requires the computation of logarithm andexponent with base 2. If we assume that each coordi-nate of any point is represented using a single machineword, we do not need arbitrarily large exponents. Ex-ponentiation to the base 2 can be accomplished bybit-shifting. We feel that bit shifting and computingthe logarithm can be taken to be constant time op-erations, and experimental results indicate that it isreasonable to do so. Under these assumptions, thesmallest cell can be found in O(d) time for d dimen-sions.Nevertheless, we are interested in a careful analysisof the complexity. Let l be the largest distance ands be the smallest distance between any pair of points.In the algorithm for computing the smallest cell en-closing two points, we �rst compute the j-boundaryfollowing which 2j is computed. We need at most lsboundaries parallel to an axis to separate the closestpoints. Therefore, 2j is at most ls . We can compute2j in O(log j) = O(log log ls ) time. This is an im-provement over the O(log ls ) factor present in otheralgorithms. However, we found that using bit shiftingto compute 2j is much faster in practice.It is important to re
ect more on the complexity ofthe basic operation of computing the smallest cell en-closing two points. An analogy can be drawn to sort-ing algorithms. An optimal sorting algorithm takesO(n logn) time assuming that two numbers can becompared in constant time. This is clearly not validif we use multi-precision numbers or if we look at thebit complexity of comparing two numbers. We sim-ply make the assumption that certain basic operationson machine words can be performed in constant time,which is reasonable in practice. In a similar manner,if bit shifting operation on a machine word is taken tobe a constant time operation, computing the smallestcell requires only O(d) time for d dimensions.Once we �nd the smallest subcell, the order inwhich the space-�lling curve visits the two points canbe determined if we know the order in which the foursubcells of the smallest subcell containing the twopoints is visited by the curve. For the Z-curve, thisorder is always subcell III, subcell II, subcell IV andsubcell I, irrespective of the position and the size ofthe subcell. For example, if one of the points is insubcell I and the other is in subcell III, the point insubcell III is visited before the point in subcell I.The order in which the graycode curve visits thesubcells depends on the location of the cell in the grid

it belongs to. Fortunately, there are only two di�erentorders possible: subcell III, subcell II, subcell I, andsubcell IV or subcell I, subcell IV, subcell III, and sub-cell II. We refer to the former as \-order and the latteras [-order. Each row of cells in a grid has a uniqueorder. If we number the rows in a grid bottom-up, the\-order can only be found at the odd numbered rowsand even numbered rows have [-order. To comparetwo points in graycode order, we check the location ofthe smallest cell. If it is on one of the odd numberedrows, the comparison is performed using the \-orderand [-order is employed otherwise.A similar comparison routine for the Hilbert curveseems to be more complicated and may be impossiblein constant time because of the combined e�ect of twodistinct rotations. In other words, all the bits of thecoordinates of subcells are necessary to �nd the orderfor the Hilbert curve.The comparison routines described above can beeasily extended to d-dimensional space. In this case,the cells are d-dimensional hypercubes and the k-boundaries are (d � 1)-dimensional hyperplanes per-pendicular to an axis. For the smallest cell containingtwo points p1 and p2, we need to check each axis inturn and �nd the smallest integer k such that a k-boundary intersects the hyperrectangle R de�ned byp1 and p2. This procedure requires O(d) operations.Subcells of the smallest cell containing the points andthe order of the subcells can be determined in O(d)time. Thus, comparison of two points requires O(d)operations and has a bit-complexity of O(d log log ls ).4 Parallel Domain DecompositionTo e�ect parallel domain decomposition on p pro-cessors, we adopt the following strategy: We �rst sortthe data along the space-�lling curve using a standardsorting algorithm. The resulting sorted data is cut intop equal parts and distributed to the p processors. Anyparallel sorting algorithm can be used in conjunctionwith the comparison routines designed in the previoussection. Parallel sorting also has the desirable side ef-fect of distributing the sorted data. Hence, a separatedistribution phase is not necessary.We implemented the space-�lling curve based par-titioning algorithm described above in C with calls tothe MPI on an Intel Paragon. We have employed par-allel sample sort algorithm [8] because of its practicale�ciency and scalability and chose the Z-curve. Wetested our implementation with three di�erent graphsizes and two types of distributions for each size: uni-form and non-uniform. The uniform distributions aregenerated using a uniform random number generator.The graphs chosen for the non-uniform distributions



Graph 1 Graph 2 Graph 3
Figure 4: The graphs on which our results for non-uniform distributions are presented. Graph 1 has 6019 nodes,Graph 2 has 10166 nodes and Graph 3 has 15606 nodes.are shown in Figure 4. The run times of parallel do-main decomposition for di�erent numbers of proces-sors are shown in Table 1. The times are in secondsand are averaged over 10 runs.The main purpose of this experiment is to check therunning times for same graph sizes but di�erent distri-butions. Apart from minor 
uctuations attributableto the randomnature of sample sort, the running timesdo not considerably di�er from uniform distribution tonon-uniform distribution. Note that there is a super-linear speedup for small processor sizes. This anomalyis because sample sort algorithm does not performwellfor very small number of processors.It is very important to be able to determine theprocessor a given data point is allocated to. The com-parison routines described in the previous section canbe used to solve this problem as well. We can use anarray of length p to store the coordinates of the �rstpoint stored on each processor i.e. processor bound-aries. By a simple binary search on this array using theprescribed comparison algorithm, the processor con-taining a given data point can be determined.5 Parallel Incremental Load BalancingMany scienti�c simulations requires the computa-tional graph to change with time. Although thesechanges are very small compared to the whole graph,they may cause imbalance in the workload. Sinceload imbalance is one of the reasons of degrading per-formance of applications, the graph should be redis-tributed. However, it is very expensive to redistributethe graph from scratch each time when there is achange. There are two popular approaches to solvethis problem: In the �rst approach, we wait until thechanges exceed a threshold value following which loaddistribution is performed from scratch. In the second

approach, we use the previous domain decompositioninformation to improve the performance of the loadbalancing algorithm, i.e. we perform incremental loadbalancing.Space-�lling curve based partitioning has twophases: sorting the multidimensional data and par-titioning the ordered list to processors. After thechanges in the graph, it may not remain sorted. Ifthe changes are local to the processor, readjusting thegraph locally in each processor is su�cient. However,there may be vertices that go beyond the processorboundaries. The idea is to determine the processorsresponsible for each of them and send them to the ap-propriate processors so that local readjustments areenough. We sort all the vertices that need to be sent toother processors and �nd the positions of the processorboundaries on this sorted array using binary search.For the sort and search operations, we employ the pro-posed comparison routines. After the processors re-sponsible for the vertices are determined, an all-to-allcommunication is su�cient to exchange them. At thispoint, all the vertices within the processors are local.We sort the the vertices locally within the processorsto achieve the global order. We now can partitionit again to balance the workload. Since space-�llingcurves preserve locality, the changes are expected tobe mostly local.6 Conclusions and Open ProblemsPartitioning workloads evenly among processors isan important problem in parallel and distributed com-puting. Such a problem is especially hard for non-uniform data in a multi-dimensional space. Space-�lling curve based partitioning method is one of thewidely used techniques because of its proximity pre-serving characteristic. The heart of this technique is



Number Graph size (# of vertices)of 6019 10166 15606Nodes non-uniform uniform non-uniform uniform non-uniform uniform2 19.32 29.28 75.25 102.60 87.44 176.714 6.33 6.53 11.27 10.12 19.09 15.668 2.44 2.19 4.61 3.92 7.79 6.5416 1.20 1.27 2.29 2.30 3.50 3.4732 1.91 1.74 2.08 2.43 2.78 3.43Table 1: Parallel partitioning time (in seconds) for uniform and non-uniform graphs of di�erent sizes.to sort the multidimensional data according to a space�lling curve. In this paper, we presented practicallye�cient algorithms to linearly order points in a multi-dimensional space using the Z-curve and the Graycodecurve, without making any assumptions on the pre-cision or distribution of the points. We have demon-strated the practicality of our technique using the IntelParagon. Another popular curve used in partitioningalgorithms is the Hilbert space-�lling curve. It wouldbe of much interest to determine if our technique canbe extended to the Hilbert space-�lling curve as well.Space-�lling curves are used for partitioning be-cause they are \proximity preserving" mappings ofmultidimensional space to a one-dimensional space.However, the quality of partitioning obtainable by us-ing space-�lling curves has only been studied exper-imentally. Analytical studies are usually limited tocases where points occupy every cell in a �xed grid.It is computationally more e�cient, especially in par-allel, to use space-�lling curves for ordering multidi-mensional data. Therefore, it is important to studythe quality of the orderings obtainable by space-�llingcurves.AcknowledgmentsWe wish to thank Chao Wei-Ou for providing usthe computational graphs on which our experimentalresults about graph partitioning are presented. We aregrateful to Sandia National Laboratories for allowingus to use their Paragon, on which our experimentalresults are reported.References[1] D.J. Abel, D.M. Mark, A comparative analysis ofsome two-dimensional orderings; International Jour-nal of Geographical Information Systems, 4(1) (1990)21-31.[2] S. Aluru, G.M. Prabhu and J. Gustafson, Trulydistribution-independent hierarchical algorithms forthe N-body problem, Proc. Supercomputing '94,(1994) 420-428.
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