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Parallel Domain Decomposition and Load Balancing Using
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Dept. of CS
New Mexico State University
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email: aluru@cs.nmsu.edu

Abstract

Partitioning techniques based on space-filling
curves have received much recent attention due to
their low running time and good load balance char-
acteristics. The basic idea underlying these methods
is to order the multidimensional data according to
a space-filling curve and partition the resulting one-
dimensional order. However, space-filling curves are
defined for points that lie on a uniform grid of a par-
ticular resolution. It is typically assumed that the co-
ordinates of the points are representable using a fixed
number of bits, and the run-times of the algorithms
depend upon the number of bits used.

In this paper, we present a simple and efficient tech-
nique for ordering arbitrary and dynamic multidimen-
sional data using space-filling curves and its applica-
tion to parallel domain decomposition and load bal-
ancing. Our technique is based on a comparison rou-
tine that determines the relative position of two points
in the order induced by a space-filling curve. The com-
parison routine could then be used in conjunction with
any parallel sorting algorithm to effect parallel domain
decomposition.

1 Introduction

Many scientific and engineering applications involv-
ing iterative methods can be represented by computa-
tional graphs [11]. The nodes of the computational
graph represent tasks that can be executed concur-
rently. The edges of the graph represent the commu-
nication required between tasks from one iteration to
the next. Computational graphs derived from many
applications are such that the nodes correspond to
two- or three-dimensional coordinates and the edges
are limited to vertices that are physically proximate.
Examples of such applications include finite element,
methods, PDE solvers and molecular dynamics simu-
lations. To parallelize the application on a collection of
p processors, the computational graph should be par-
titioned to the p processors. The partitioning problem
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has three requirements: balancing workload, minimiz-
ing interprocessor communication and minimizing the
running time of the partitioning algorithm itself. Tt is
a very difficult task to fulfill these conflicting require-
ments.

There is currently a significant interest in the re-
search community for using space-filling curves for
partitioning multidimensional graphs. Ou [12] and
Pilkington et al. [14] have shown that space-filling
curve based partitioning techniques provide consider-
ably good quality partitions with very low costs. Sim-
ilar techniques have been used by Parashar et al. [13]
and Warren et al. [16] for parallel Adaptive Mesh Re-
finement and the N-body problem, respectively. The
underlying idea is to map multidimensional data to
one dimension where the partitioning is trivial. There
are many ways to map multidimensional data to one
dimension. However, a mapping that could be used in
partitioning algorithms should preserve the proximity
information present in the multidimensional space to
minimize communication costs. Experimental [1, 6]
and analytical [9, 7. 3] studies show that space-filling
curves provide such mappings. Unfortunately, space-
filling curves are defined for points that lie on a uni-
form grid of a particular resolution [15]. It is typically
assumed that the coordinates of the points are rep-
resentable using a fixed number of bits, and the run-
times of the algorithms depend upon the number of
bits used. Let I be the largest distance and s be the
smallest distance between any pair of points. If all the
points are known in advance, / and s can be computed
beforehand and [log £-| bits are sufficient to represent
the points. Thus, current algorithms have a running
time proportional to log% and are difficult to use for
arbitrary and dynamic points.

In this paper, we present a simple technique for or-
dering arbitrary and dynamic multidimensional data
using space-filling curves. For the Z-curve and the
Graycode space-filling curves, we present comparison
routines that find which of given two points appears
first in the order induced by the space-filling curve.
The comparison routines takes O(dloglog %) time for



Figure 1: Z-curve for grids of size 2 x 2, 4 x 4 and
8 x 8.

two d-dimensional points, where [ and s need not be
known in advance. Moreover, if bit shifting is as-
sumed to be a constant time operation, the compar-
ison routines take only O(d) time. Our method not
only makes the application of space-filling curves to
arbitrary points more efficient but also makes it pos-
sible to apply these strategies in the dynamic case.

2 Space-Filling Curves

In this section, we describe the notion of space-
filling curves and describe some of the popularly used
curves. We first restrict our attention to square two-
dimensional grids of size 2¥ x 2. Space-filling curves
can be described in a variety of ways. They can be
described recursively. The curve for a 2% x 2% grid is
composed of four 2871 x 281 grid curves. The curves
can also be specified by bit interleaving - the position
of a grid point along the curve can be described by
interleaving the bits of the coordinates of the point
with the interleaving function being a characteristic
of the curve.
Z-Curve. The Z-curves [10] for 2x 2, 4 x 4 and 8 x 8
grids are shown in Figure 1. The curve for a 2% x 2%
grid is composed of four 2871 x 251 grid curves one in
each quadrant of the 2% x 2% grid. The order in which
the curves are connected is the same as the order of
traversal of the 2 x 2 curve, and this holds true for
all space-filling curves. Alternatively, given a point in
two dimensions and assuming that each coordinate is
represented using k bits, the position of the point on
the Z-curve can be obtained by interleaving the bits
representing the z and y coordinates, starting from
the z coordinate. For example, (3,5) = (011,101)
translates to 011011 = 27. All the space-filling curves
can also be described in such a fashion using a suitable
bit-interleaving function.
Graycode Curve. The graycode curve [4] uses the
same bit interleaving function as the Z-curve. While
the Z-curve visits points in the numerical order of
the results of applying the interleaving function to the
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Figure 2: Graycode and Hilbert curves for grids of size

8 x 8.

points, the graycode curve visits them in the graycode
order (see Figure 2). The curve can be described re-
cursively as follows: Place four curves of the previous
resolution in the four quadrants. Flip the upper quad-
rant curves once around one of the coordinate axes and
then around the other axis. The curves in the lower
quadrants are left as they are.

Hilbert Curve. The Hilbert curve [5] is a smooth
curve that avoids the sudden jumps present in the Z
and the Graycode curves (Figure 2). The curve is com-
posed of four curves of the previous resolution placed
in the four quadrants. The curve in the lower left
quadrant is rotated clockwise by 90° and lower right
one is rotated counterclockwise by 90°.

The curves can be easily extended for cases when
the dimension spans are uneven and for higher dimen-
sional grids. Consider a 2% x 2™ grid (k > m). One
can use 2°7™ curves each for a 2™ x 2™ grid and place
them next to each other. If needed, the curves can be
tilted upside down as appropriate, to avoid sudden

jumps. A higher dimensional curve can be obtained

by using a template of the same dimension (such as a
2 x 2 x 2 grid for three dimensions). A detailed de-
scription of space-filling curves for uneven dimension
spans and higher dimensions can be found in [6].

3 Space-Filling Curves for Arbitrary
Points

Consider the problem of ordering a given set of n
points in the order in which a particular space-filling
curve visits them. We will use square grids in two-
dimensions for ease of presentation. The same tech-
niques can be easily extended to higher dimensions.

The traditional method relies on the assumption
that the coordinates of the points are representable us-
ing k-bit integers (for some fixed k). An index is calcu-
lated by interleaving the bits of these integers with the
interleaving function of the space-filling curve. Sorting



these indices gives the order of the points according to
the space-filling curve. Although the method is very
simple and easy to implement it does not solve the
problem for arbitrary points. If % the ratio of the
largest distance to the smallest distance between any
two points, is greater than 2*, the coordinate values
of the points cannot be represented by k-bit integers
distinctly.

For arbitrary points, we could adopt the follow-
ing strategy: We start with a square (root cell) large
enough to contain all of the given n points. We can
continuously subdivide the square into grids of resolu-
tion 2% x 2% (starting with k& = 0 and increasing k) un-
til no grid cell contains more than one point. As each
grid cell contains only one point, the order in which
the curve visits the grid cells also determines the order
in which the curve visits the points. The running time
of this algorithm is proportional to k, which depends
on the distribution of the points. In the worst case, %
grid lines are necessary to separate the closest points.
Thus, the upper bound on % is O(log %)

Before we proceed to describe an algorithm with a
better running time, it is necessary to introduce some
terminology: Assume a sequence of 2% x 2% grids (0 <
k < oc) imposed on the root cell. We use the term cell
to describe each grid cell of any of these hypothetical
grids. A cell can be subdivided into four subcells of
equal size. Let us name the subcells with respect to the
cell as though the center of the cell is the origin and the
horizontal and vertical lines denote the x and y axes,
respectively. We can label the upper right subcell as
subcell T (following the usual quadrant I notation) and
so on. The root cell contains 22* cells of length 2% A
line is called a k-boundary if it contains an edge of a

cell of length 2%

The procedure we adopt to order given n points
according to a given space-filling curve is as follows:
We will devise a comparison routine that takes two
points as input and determines which of the two is
first visited by the space-filling curve. This is done
by first determining the smallest subcell of the root
cell that encloses the two points followed by deter-
mining the order in which the curve visits the four
subcells of this subcell. Note that the order in which
the space-filling curve visits two points is independent
of the position and the presence of other points. Once
we design such a comparison routine, we can use any
sorting algorithm to order the points. In the follow-
ing, we describe such a technique for some space-filling
curves.

Consider a rectangle R that has the given two
points at the opposite ends of a diagonal. The small-

(1)) L
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Figure 3: A root cell of length I and a rectangle R. The
big dashed lines are 1-boundaries, the small dashed
lines are 2-boundaries and the dotted lines are 3-
boundaries. 2-boundaries are also 3-boundaries and
1-boundaries are also 2-boundaries and 3-boundaries.

est subcell of the root cell enclosing the two points is
also the smallest subcell that encloses the rectangle
R, which we will determine. We use the technique
proposed by Aluru et al. [2] for this purpose. The
smallest subcell of the root cell enclosing R is of size
2%], where k is the smallest number such that a k-
boundary crosses the rectangle R (see figure 3). To de-
termine this, we examine boundaries parallel to each
coordinate axis in turn.

Consider boundaries parallel to the y-axis. These
can be specified by their distance from the y-axis. The
family of k-boundaries is specified by 72% 0<i< 2"
We need to find the smallest integer £ such that a
k-boundary parallel to y-axis passes through R, i.e.
the smallest k£ such that z,,;n, < ?Zik < Tmag fOr some
7. By minimality of k, only one k-boundary passes
through R. Let j be the smallest integer such that
2% < (Tmaz—Tmin)- § = [log, m] Thereis at
least 1 and at most 2 j-boundaries passing through R.

i

. . 7 .
These boundaries are given by h; = [271%]2—, and

hy = LZJT#J 2% Since k < j, any k-boundary is also
a j-boundary, forcing the k-boundary passing through
R to coincide with h; or hy. Let a be [%] hy =
(12% and hy = hy or (a + l)zi, If hy # hy. let o be
the even integer among a and a + 1. Otherwise, let
a' be equal to a. It is clear that 7 — k is equal to the
highest power of 2 that divides a’. One way to find



thisis j —k =log,(1+ {a'® (¢’ —1)}) - 1.

We use the computation of the smallest cell en-
closing a given rectangle as a basic operation. This
operation requires the computation of logarithm and
exponent with base 2. If we assume that each coordi-
nate of any point is represented using a single machine
word, we do not need arbitrarily large exponents. Ex-
ponentiation to the base 2 can be accomplished by
bit-shifting. We feel that bit shifting and computing
the logarithm can be taken to be constant time op-
erations, and experimental results indicate that it is
reasonable to do so. Under these assumptions, the
smallest cell can be found in O(d) time for d dimen-
sions.

Nevertheless, we are interested in a careful analysis
of the complexity. Let I be the largest distance and
s be the smallest distance between any pair of points.
In the algorithm for computing the smallest cell en-
closing two points, we first compute the j-boundary
following which 27 is computed. We need at most %
boundaries parallel to an axis to separate the closest
points. Therefore, 27 is at most % We can compute
27 in O(logj) = O(loglog %) time. This is an im-
provement over the O(l()gé) factor present in other
algorithms. However, we found that using bit shifting
to compute 27 is much faster in practice.

It is important to reflect more on the complexity of
the basic operation of computing the smallest cell en-
closing two points. An analogy can be drawn to sort-
ing algorithms. An optimal sorting algorithm takes
O(nlogn) time assuming that two numbers can be
compared in constant time. This is clearly not valid
if we use multi-precision numbers or if we look at the
bit complexity of comparing two numbers. We sim-
ply make the assumption that certain basic operations
on machine words can be performed in constant time,
which is reasonable in practice. In a similar manner,
if bit shifting operation on a machine word is taken to
be a constant time operation, computing the smallest
cell requires only O(d) time for d dimensions.

Once we find the smallest subcell, the order in
which the space-filling curve visits the two points can
be determined if we know the order in which the four
subcells of the smallest subcell containing the two
points is visited by the curve. For the Z-curve, this
order is always subcell III, subcell II, subcell IV and
subcell I, irrespective of the position and the size of
the subcell. For example, if one of the points is in
subcell I and the other is in subcell I1I, the point in
subcell TIT is visited before the point in subcell 1.

The order in which the graycode curve visits the
subcells depends on the location of the cell in the grid

it belongs to. Fortunately, there are only two different,
orders possible: subcell IT1, subcell T1, subcell 1, and
subcell IV or subcell I, subcell IV, subcell I11, and sub-
cell IT. We refer to the former as N-order and the latter
as U-order. Each row of cells in a grid has a unique
order. If we number the rows in a grid bottom-up, the
N-order can only be found at the odd numbered rows
and even numbered rows have U-order. To compare
two points in graycode order, we check the location of
the smallest cell. If it is on one of the odd numbered
rows, the comparison is performed using the N-order
and U-order is employed otherwise.

A similar comparison routine for the Hilbert curve
seems to be more complicated and may be impossible
in constant time because of the combined effect of two
distinct rotations. In other words, all the bits of the
coordinates of subcells are necessary to find the order
for the Hilbert curve.

The comparison routines described above can be
easily extended to d-dimensional space. In this case,
the cells are d-dimensional hypercubes and the k-
boundaries are (d — 1)-dimensional hyperplanes per-
pendicular to an axis. For the smallest cell containing
two points p; and po, we need to check each axis in
turn and find the smallest integer & such that a k-
boundary intersects the hyperrectangle R defined by
p1 and py. This procedure requires O(d) operations.
Subcells of the smallest cell containing the points and
the order of the subcells can be determined in O(d)
time. Thus, comparison of two points requires O(d)
operations and has a bit-complexity of O(dloglog %)

4 Parallel Domain Decomposition

To effect parallel domain decomposition on p pro-
cessors, we adopt the following strategy: We first sort
the data along the space-filling curve using a standard
sorting algorithm. The resulting sorted datais cut into
p equal parts and distributed to the p processors. Any
parallel sorting algorithm can be used in conjunction
with the comparison routines designed in the previous
section. Parallel sorting also has the desirable side ef-
fect of distributing the sorted data. Hence, a separate
distribution phase is not necessary.

We implemented the space-filling curve based par-
titioning algorithm described above in C with calls to
the MPI on an Intel Paragon. We have employed par-
allel sample sort algorithm [8] because of its practical
efficiency and scalability and chose the Z-curve. We
tested our implementation with three different graph
sizes and two types of distributions for each size: uni-
form and non-uniform. The uniform distributions are
generated using a uniform random number generator.
The graphs chosen for the non-uniform distributions
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Figure 4: The graphs on which our results for non-uniform distributions are presented. Graph 1 has 6019 nodes,

Graph 2 has 10166 nodes and Graph 3 has 15606 nodes.

are shown in Figure 4. The run times of parallel do-
main decomposition for different numbers of proces-
sors are shown in Table 1. The times are in seconds
and are averaged over 10 runs.

The main purpose of this experiment is to check the
running times for same graph sizes but different distri-
butions. Apart from minor fluctuations attributable
to the random nature of sample sort, the running times
do not considerably differ from uniform distribution to
non-uniform distribution. Note that there is a super-
linear speedup for small processor sizes. This anomaly
is because sample sort algorithm does not perform well
for very small number of processors.

It is very important to be able to determine the
processor a given data point is allocated to. The com-
parison routines described in the previous section can
be used to solve this problem as well. We can use an
array of length p to store the coordinates of the first
point stored on each processor i.e. processor bound-
aries. By a simple binary search on this array using the
prescribed comparison algorithm, the processor con-
taining a given data point can be determined.

5 Parallel Incremental Load Balancing

Many scientific simulations requires the computa-
tional graph to change with time. Although these
changes are very small compared to the whole graph,
they may cause imbalance in the workload. Since
load imbalance is one of the reasons of degrading per-
formance of applications, the graph should be redis-
tributed. However, it is very expensive to redistribute
the graph from scratch each time when there is a
change. There are two popular approaches to solve
this problem: In the first approach, we wait until the
changes exceed a threshold value following which load
distribution is performed from scratch. In the second

approach, we use the previous domain decomposition
information to improve the performance of the load
balancing algorithm, i.e. we perform incremental load
balancing.

Space-filling curve based partitioning has two
phases: sorting the multidimensional data and par-
titioning the ordered list to processors. After the
changes in the graph, it may not remain sorted. If
the changes are local to the processor, readjusting the
graph locally in each processor is sufficient. However,
there may be vertices that go beyond the processor
boundaries. The idea is to determine the processors
responsible for each of them and send them to the ap-
propriate processors so that local readjustments are
enough. We sort all the vertices that need to be sent to
other processors and find the positions of the processor
boundaries on this sorted array using binary search.
For the sort and search operations, we employ the pro-
posed comparison routines. After the processors re-
sponsible for the vertices are determined, an all-to-all
communication is sufficient to exchange them. At this
point, all the vertices within the processors are local.
We sort the the vertices locally within the processors
to achieve the global order. We now can partition
it again to balance the workload. Since space-filling
curves preserve locality, the changes are expected to
be mostly local.

6 Conclusions and Open Problems

Partitioning workloads evenly among processors is
an important problem in parallel and distributed com-
puting. Such a problem is especially hard for non-
uniform data in a multi-dimensional space. Space-
filling curve based partitioning method is one of the
widely used techniques because of its proximity pre-
serving characteristic. The heart of this technique is



Number Graph size (# of vertices)
of 6019 10166 15606

Nodes non-uniform | uniform | non-uniform | uniform | non-uniform | uniform
2 19.32 29.28 75.25 102.60 87.44 176.71
4 6.33 6.53 11.27 10.12 19.09 15.66
8 2.44 2.19 4.61 3.92 7.79 6.54
16 1.20 1.27 2.29 2.30 3.50 3.47
32 1.91 1.74 2.08 2.43 2.78 3.43

Table 1: Parallel partitioning time (in seconds) for uniform and non-uniform graphs of different sizes.

to sort the multidimensional data according to a space
filling curve. In this paper, we presented practically
efficient algorithms to linearly order points in a multi-
dimensional space using the Z-curve and the Graycode
curve, without making any assumptions on the pre-
cision or distribution of the points. We have demon-
strated the practicality of our technique using the Intel
Paragon. Another popular curve used in partitioning
algorithms is the Hilbert space-filling curve. It would
be of much interest to determine if our technique can
be extended to the Hilbert space-filling curve as well.

Space-filling curves are used for partitioning be-
cause they are “proximity preserving” mappings of
multidimensional space to a one-dimensional space.
However, the quality of partitioning obtainable by us-
ing space-filling curves has only been studied exper-
imentally. Analytical studies are usually limited to
cases where points occupy every cell in a fixed grid.
It is computationally more efficient, especially in par-
allel, to use space-filling curves for ordering multidi-
mensional data. Therefore, it is important to study
the quality of the orderings obtainable by space-filling
curves.
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