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Abstract

The thesis deals with the new evolutionary paradigm based on the concept of Estimation of

Distribution Algorithms (EDAs) that use probabilistic model of promising solutions found so far to

obtain new candidate solutions of optimized problem.

There are six primary goals of this thesis:

1. Suggestion of a new formal description of EDA algorithm. This high level concept can be used to
compare the generality of various probabilistic models by comparing the properties of underlying

mappings. Also, some convergence issues are discussed and theoretical ways for further improvements
are proposed.

2. Development of new probabilistic model and methods capable of dealing with continuous

parameters. The resulting Mixed Bayesian Optimization Algorithm (MBOA) uses a set of decision

trees to express the probability model. Its main advantage against the mostly used IDEA and EGNA
approach is its backward compatibility with discrete domains, so it is uniquely capable of learning

linkage between mixed continuous-discrete genes. MBOA handles the discretization of continuous
parameters as an integral part of the learning process, which outperforms the histogram-based
approach. The original metrics for MBOA is derived as the incremental version of Bayesian Dirichlet

metrics (BDe). Its usefulness for modelling of Boolean functions is also investigated and confirmed.

3. Parallelization of EDA algorithms. Different versions of parallel EDA algorithms are proposed for
fine-grained, coarse-grained and multithreaded environment. All these algorithms use the original
principle of restricted ordering of nodes in Bayesian network to minimize the communication between

parallel processes:

• The pipelined Parallel Bayesian Optimization algorithm (PBOA) is proposed and simulated

for fine-grained type of parallelism. The target platform for its implementation can be

Transputers, or one-purpose MIMD processor.

• Distributed Bayesian optimization algorithm (DBOA) is proposed and implemented for

coarse-grained type of parallelism. The experiments are running on the uniform cluster of Sun

Ultra 5 workstations connected by fast Ethernet switch. Both PBOA and DBOA are based on
the parallelization of classical Pelikan’s BOA code.

• The multithreaded MBOA algorithm, which uses original MBOA code with mixed decision

trees model, was simulated in Transim tool.

In all parallel algorithms the additional progress towards realtime performance can be achieved by
choosing the KBOA version of BOA algorithm. The concept of KBOA is based on the partial (local)

information about the linkage. This information is used to adjust the prior of probabilistic model and

injection of building blocks is used to improve the quality of initial population.

4. Extension of single-objective EDA to multi-objective EDA. The experiments show that the realized

Pareto-strength BOA algorithm, which utilizes a promising Pareto-strength niching technique,

outperforms the classical constraint- or weighting-based approach and is comparable to best
recombination-based multiobjective-algorithms of its time - SPEA and NSGA. A completely new

optimization technique for MBOA core was designed in collaboration with the author of SPEA2. This
new selection operator based on epsilon-archives leads to implementation of Bayesian Multi-objective
Optimization Algorithm (BMOA).

5. Design of the modular development system DEBOA for rapid prototyping of optimization
applications on the basis of BOA algorithm. The general requirements on the development system are

identified including modularity and visualization of results. The design of the development system
itself is realized on the platform of Java language, which ensures great portability. DEBOA system

can be easily extended to support new types of fitness functions as well as new types of visualizations.
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6. Testing of the developed algorithms on well-known benchmarks as well as several real-world

problems, mainly from the area of circuit design.

Key Words: Bayesian network, Gaussian network, Estimation of Distribution Algorithm, Factorized

Distribution Algorithm, Bayesian Optimization Algorithm, Univariate Marginal Distribution

Algorithm, Bivariate Marginal Distribution Algorithm, Bayesian-Dirichlet metric, scoring metric,
dependency structure, machine learning, linkage learning, decision graph, kernel distribution, mixture

model, formal description, building block corruption, convergence, hypergraph bisectioning,

knapsack problem, additively decomposable function, multiobjective optimization, Pareto set, niching,
Pareto-strength fitness, epsilon dominance, pipelined processing, distributed processing,
multithreaded processing, scalability, rapid prototyping of BOA application.
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1 Introduction

In natural evolution, populations of individuals compete to survive and reproduce. Relatively

fit individuals survive longer and thus reproduce more. The fitter examples of random

variations accumulate and average fitness tends to increase with time. According to the

Darwinian theory, this process of natural selection is responsible for the development of all

life forms on Earth.

A common way of pursuing this approach for computational purposes involves use of the

crossover-based genetic algorithms [41]. In this approach, candidate solutions are represented

as strings of characters and reproduction involves the production of new individuals through

the pairwise recombination operators. This produces two offspring strings which then replace

relatively unfit individuals from the population. According to the building-block hypothesis
and schema theorem of Holland [50] GA is an efficient search method. However, empirical

work has shown that in some cases the efficiency is hard to guarantee because there is a deep
contradiction between the building-block hypothesis and the schema theorem.

To avoid the disruption of building blocks a new Estimation of Distribution Algorithms

(EDAs) have been recently proposed. These evolutionary optimization algorithms incorporate
methods for automated learning of linkage between variables of the encoded solutions. The

process of sampling new individuals from a probabilistic model respects these mutual
dependencies among the string variables such that disruption of important building blocks is

avoided.

My research focused on development of new types of EDA algorithms with various

probabilistic models. The following three initial chapters are dedicated to the brief

introduction to investigated areas – genetic algorithms (Chapter 2), probabilistic models 

(Chapter 3) and optimization via probabilistic models (Chapter 4). Different disadvantages of

classical genetic algorithms are highlighted and the utilization of probabilistic models in

evolutionary computation is justified. In Chapter 5 the state-of-the-art is analyzed and the

main open problems that remain to be solved are identified. The first open problem is the lack

of formal basis in present EDA papers. This formal approach together with the other

theoretical foundations was proposed in Chapter 6. Chapter 7 defines the benchmark instances
used in the experimental parts of chapters 8-10. It contains both the adopted well-established

benchmarks as well as my new mixed continuous-discrete benchmark. The second open
problem lies in the existence of application areas where present EDA algorithms are

unapplicable or ineffective:
- continuous optimization

- realtime optimization
- multi-objective optimization

Consequently, the Chapter 8 proposes new type of EDA based on the idea of CART model
(Classification And Regression Trees), which is applicable also for problems with continuous

or even mixed parameters. In Chapter 9 the optimization of large problems is enabled by

parallel processing – different versions of EDA algorithms are proposed for fine-grained,

coarse-grained and multithreaded environment. Also the usage of heuristics for software

acceleration is discussed. Chapter 10 proposes new multiobjective-capable EDA algorithms:

first version which combines the classical EDA together with the Pareto-strength approach

and second one which incorporated the reliable epsilon-dominance concept into new CART-

based EDA.
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Finally, Chapter 11 deals with the design and implementation of fast prototyping tool, which

enables fast development of EDA applications using Java language.

Chapters 2, 3, 4 contain a review of existing sources, whereas chapters 5, 6, 8, 9 and 10
present an original outcome of my research (the way in which their sub-chapters are

composed is further explained in 5.2). Chapter 11 is an extension of MSc. thesis I supervised.



15

2 Classical genetic algorithms

Genetic algorithms (GA), first proposed by Holland in 1975 [50], are a class of computational

techniques that mimic natural evolution to solve problems in a wide variety of domains.

Generally, the optimization techniques can be divided into three broad classes:

Fig. 2.1: Simplified classification of search techniques

Calculus based techniques are only suitable for a restricted set of well-behaved systems. The

set of possible solutions can be enormous, which rules out the enumerative techniques too.

Only the guided random search techniques, for example genetic algorithms, provide robust

and well scalable approach applicable even to black-box optimization. They are able to use
additional information to guide the search, which reduces the search space to manageable

sizes.

2.1 Principles

Genetic algorithms (GA) are a family of computational models inspired by evolution. These

algorithms encode a potential solution to a specific problem on a simple chromosome like

data structure and apply recombination operators so as to preserve critical information.

Genetic algorithms are often viewed  as function optimizer, although  the range of problems is

quite broad. GA is any population based model that uses selection and recombination

operators to generate new sample point in a search space.

The reproduction process is performed in such a way that only the chromosomes which

represent a better solution are given more chances to reproduce than those chromosomes

which are poorer solutions. The goodness/fitness is defined in the frame of the population.

The terms string / individual are also used as synonyms for chromozome.
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2.1.1 Evolutionary cycle

The genetic algorithm manipulates the most promising strings in the search space to obtain an
improved solution. It operates through a simple cycle:

initialize
population

select parents
for mating

create offspring
by crossover

mutate offspring

replace offspring
to population

are termination
criteria met?

finish

no

yes

Fig. 2.2: Flowchart of classical genetic algorithm

Each cycle produces a new generation of possible solutions (individuals) for a given problem.

At the beginning, a population of possible solutions is created. Each individual in this

population is represented as a string (the chromozome) to be manipulated by the genetic

operators. Traditionally, binary encodings have being used because they are easy to

implement. But many optimization problems use continuous parameters. A common

technique for encoding them in the binary form uses a fixed-point integer encoding, each
parameter being coded using a fixed number of bits. The binary code of all the parameters can

then be concatenated in the strings of the population. A drawback of encoding parameters as
binary strings is the presence of Hamming barrier (large Hamming distances between the

codes of some adjacent integers), which can be solved by usage of Gray code.

In the next stage, the individuals are decoded and evaluated according to their performance in
relation to the target response. This determines how fit this individual is in relation to the

others in the population. Based on each individual's fitness, a selection mechanism chooses

the best pairs for the genetic manipulation process. The selection policy is responsible to

assure the survival of the fittest individuals. Mainly the truncation selection method will be

used in this thesis. It selects the best 1/s part of the current population, where s determines

selection pressure. To select a population of the same size as the population before selection

is, s copies of selected solutions can be created.
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Crossover is one of the genetic operators used to recombine the population genetic material. It

takes two chromosomes and swaps part of their genetic information to produce new
chromosomes. This operation is similar to sexual reproduction in nature. In the usual

approach, parent genotypes are split at a certain point, forming a left part and a right part. The
right part from one parent is then joined to left part from other, and vice versa.

This is the most frequently used one-point crossover. However, a number of other operators
have been introduced since the basic model was proposed. They are usually better adapted to

constraints of a particular problem.

Fig. 2.3: Example of one-point crossover

The recombination process alone cannot explore search space sections not represented in the
population's genetic structures. This could make the search get stuck around local minima.

Here mutation goes into action. The mutation operator introduces new genetic structures in
the population by randomly changing some of its genes, helping the algorithm escape local

minima traps. Since the modification is totally random and thus not related to any previous
genetic structures present in the population, it creates different structures related to other

sections of the search space.

After applying crossover and mutation to the set of promising solutions, the population of

new candidate solutions replaces the original one and the next iteration is executed, unless the

termination criteria are met. For example, the run can be terminated when the population

converges to a single solution, or the population contains a good enough solution, or a

maximum number of iterations has been reached.

2.1.2 Problem dependent issues

When designed properly, the recombination operator assures that the most fit genetic

structures, called building blocks, are retained for future generations. For critical review of

this assumption see chapter 2.3. 

Also, the key issue to the algorithm performance is the choice of underlying encoding for the

solution of the optimization problem (the individual in the population). Namely the ordering

of parameters can affect the mutation and cross-over operations significantly.

The lack of methodologies dealing with proper choice of encoding and recombination
operator for given problem is one of the strongest disadvantages of classical GAs. My thesis

research focused on Estimation of Distribution Algorithms, where the recombination
operators are replaced by more advanced and parameter-less statistical techniques, that are

even robust to ordering of parameters/genes.
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2.2 Formal description

Theoretical computer science operates with formally defined objects. Several formalisms have
been introduced in the field of GAs (see [2], [114]). This chapter in an extraction of Back’s

formal definition of evolutionary algorithms presented in [2].  It serves as a basis for my own
formal description of Estimation of Distribution Algorithms introduced in 6.1.

Definition 2.1 (General Evolutionary Algorithm) :

A general evolutionary algorithm is defined as an 8-tuple

( )λµι ,,,,,EA sΦ,Ω,ΨI= , (2.1)

where:

(i) I is the space of individuals (a set of chromosomes) ,

(ii) Φ : I→R denotes a fitness function assigning real values to individuals,

(iii) µ is the number of parent individuals, while λ denotes the number of offspring

individuals,

(iv) }:{}:|,...,{
01

λµλλ ωωωω IIIIΩ
iz

→∪→= ΘΘΘΘ is a set of probabilistic genetic

operators
i

Θω each of which is controlled by specific parameters summarized in the sets

⊂Θi R,

(v)
µλµλ IIIs

s
→∪ +

Θ )(: denotes the selection operator, which may change the number of

individuals from λ or λ+µ to µ, where µ, λ∈N and µ = λ is permitted. An additional set sΘ

of parameters may be used by the selection operator.

(vi) µµ II →Ψ : is the generation transition function which describes the complete process

of transformation of current population P into subsequent one by applying genetic operators

and selection:

01

... ΘΘΘ=Ψ ωωω oooo
jii

s

))...))(((...(()(
01

PQsP
jiis

ΘΘΘΘ ∪=Ψ ωωω ,

where },...,1{},...,{ 1 zii j ⊆ and },{ PQ ∅∈

(vii) },{: falsetrueI →µι is the termination criterion.

Definition 2.1 is based on high-level description where the population of individuals is

manipulated by genetic operators and undergoes a fitness-based selection process. This is

captured in the generation transition function Ψ , iterated application of which generates a

population sequence and leads to definitions of the running time and the result of EA (see

appropriate definitions in [2]).
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Once the definition of the general EA and its computation is available, we can immediately

establish formal definitions of genetic algorithm:

Definition 2.2 (Genetic Algorithm) :

( )λµι ,,,,,EA sΦ,Ω,ΨI=
is called Genetic Algorithm iff

(i) I = {0,1}
n
,

(ii) ))),((()(: δδ Θϒ=∈∀ xxx FΦI , where
+→Θ× RR δ:δ denotes a scaling function, F

denotes the optimization problem and ϒ is a decoding function

(iii) }:,:,:{ }{},{}{
NN

p
NN

zp
NN

p IIrIIrIImΩ
ccm

→→→= , where }{
m

pm is a mutation

with a probability pm, },{ zp
c

r is a z-point crossover with probability pc and }{
c

pr is an uniform

crossover with probability pc.

(iv) )))((()( },{}{ PrmsP zpp
cm

=Ψ ,

(v) NN IIs →: is the proportional selection operator, which selects individuals from

population ))}(),...,(()),...,(),...,({()}(),...,({)( 1
1

1
0

0
1

0
0

10 txtxtxtxtttP N
n

N
n

N −
−

−
−

− == xx

according to the selection probability density function ps:

∑ −
= Φ

Φ
=

1

0
))((

))((
))((

N

j
j

i
i

s
t

t
tp

x

x
x (2.2)

(vi) ι is the termination criterion defined as



 >

=
otherwisefalse

ttiftrue
tP

,

,
))((

maxι (2.3)

or as



 >

=
otherwisefalse

btPbiftrue
tP

,

))((,
))((

maxι , (2.4)

where the bias b(P(t)) of population is calculated as

{ }∑ ∑∑−
=

−
=

−
= −= 1

0

1

0

1

0
)(,))(1(max

.

1
))((

n

j

N

i
i
j

N

i
i
j txtx

Nn
tPb . (2.5)

(vii) N== µλ
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2.3 Disadvantages of classical recombination

Holland's schema analysis [50] provides an explanation how the classical GA explore the
space of possible genotypes. In this analysis we assume that the GA is a way of processing

genotype features rather then genotypes themselves - a feature being simply a set of values in
specific positions.

2.3.1 Schema growth under pure reproduction

A particular feature is defined in terms of a schema. This is a genotype-like string with

specific values in some positions and `don't care' values (asterisks) in others. An example is:

*10**0****

This schema has ten characters in all, including seven "don't care" values. It will match any
10-character genotype with a 1 in the second position, a 0 in the third position and a 0 in the

sixth position. The genotypes, which match the schema, are referred to as its instances.

Note that we can construct a schema, which will match some specific genotype by replacing
any one of its characters with asterisks. There are thus 2n schemas matching to any genotype

of length n. There are potentially N*2
n

schemas for a population of N genotypes of length n,

although in practice there will usually be fewer due to duplication. (There are always at least

2
n
.) The defining length of a schema δ is the number of positions between its first and last

specific position. Its order ο is the number of specified bits. Thus the defining length of

"*10**0****" is 5 and its order is 3.

Fitness value of a schema is defined as the average fitness of its instances. We can think of

GA as carrying out "schema processing". The goal of the GA is the multiplication of highly fit

schemas in the population. As Holland [50] has shown, this goal is achieved by ordinary

reproduction (that is, genotype-copying) without the need for crossover. Under this scenario,

the evolutionary process involves repeatedly selecting an individual and making its copy.

Provided that genotypes are selected with a probability proportional to their fitness, the
growth formula for schemas in a pure-reproduction scenario is [41]

F

HF
tHmtHm

)(
),()1,( ⋅=+ , (2.6)

where H is a schema, m(H,t) is the number of instances of H in the population at time t, F(H)

is the fitness of H and F is the average fitness.

If we assume FcHF .)1()( += , we can write m(H,t) as
tcHmtHm )1).(0,(),( += . (2.7)

We see that under pure reproduction, schemas can be expected to grow exponentially if the

average fitness of the schema is higher than the average fitness of the population. Unfit

schemas gradually get squeezed out of the population because their instances tend not to be

reproduced.
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2.3.2 Schema growth under reproduction with crossover

If the original population does not contain a good solution then the pure reproduction method
obviously cannot succeed in finding it. Some source of novelty is required. The reproduction

regime is typically modified to use crossover. This ensures that novel genotypes can be

generated. Unfortunately, the crossover method involves cutting parental genotypes into two

parts and thus runs the risk of slicing up and destroying useful schemas.

We therefore need to determine the extent to which the destructive properties of the crossover

operator undermine schema processing. In the schema analysis, this is dealt with by

introducing a schema conservation probability to the growth formula. The probability of

schema destruction depends on the defining length of the schema and the probability pc of

crossover itself. Longer schemas have a higher probability of being destroyed under

crossover. The probability of destruction is thus the ratio of defining length to genotype

length.(In Goldberg's book - it is the ratio of defining length to genotype length - 1) and the
probability of conservation is the complement of this:
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




−
⋅−⋅⋅≥+

1

)(
1

)(
),()1,(

n

H
p

F

HF
tHmtHm c

δ
(2.8)

Accounting for the destructive effects of a mutation operation require further change to the

formula (see [41]).

The destructive properties of the crossover operation are assumed to be negligible with
schemas of short defining length since, in this case, the bracketed part of the growth formula

evaluates to a value close to 1. This leads directly to the so-called schema theorem, which

states that "short, low-order, above-average schemata receive exponentially increasing trials

in subsequent generations".

2.3.3 The shortness and low-epistasis assumptions

According to the schema theorem, schemas will only be correctly preserved if they are of

short defining length. In fact a schema will only be preserved correctly if its fitness advantage

(the excess of its fitness over the average fitness) is greater than its vulnerability - the ratio of
its defining length to the genotype length.

The schema theorem also covertly introduces an assumption concerning schema fitness. It

explicitly refers to "above-average schemata" and is thus implicitly assuming that schemas
have an independent fitness value. However, in the crossover scenario, instances do change

from generation to generation. Thus the fitness value of a particular schema may vary. A
schema which is assumed to have a constant fitness value under crossover has an independent

impact on fitness since its fitness value is not affected by its genetic context. Conversely, a

schema fitness value which does change under crossover is affected by context. The technical

term for the situation where schema fitness is affected by context is epistasis. The schema

theorem assumes that schema fitness is not affected by context. It thus introduces the

assumption of low epistasis.

It can be shown that for typical fitness assignment and for typical genotype length both the

shortness and low-epistasis assumptions are easily violated.
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schema shortness

low epistasis

increasing schema length

high epistasis

Schema theorem BB hypothesis

violation !

violation !

Fig. 2.4: Schema theorem assumptions violate building block hypothesis assumptions

2.3.4 The building blocks hypothesis

The credibility of the crossover GA does not rest solely on the schema theorem. It also rests

on the so-called building-block hypothesis. This states that the crossover GA works well when

short, low-order, highly fit schemas recombine to form even more highly fit, higher-order

schemas. The ability to produce fitter and fitter partial solutions by combining blocks is

believed to be the primary source of the GA's search power. Unfortunately, when we examine

the assumptions introduced by the building-block hypothesis, we find that they contradict

those introduced by the schema theorem.

The building-block hypothesis assumes that the fitness of any block is typically affected by

the other blocks on the genotype. If this were not the case it would be meaningless to talk
about a building-block process. Thus the building-block hypothesis implicitly assumes only a

positive effect of epistasis on fitness and thus contradicts the low-epistasis assumption
introduced by the schema theorem.

Considering the length implications of the building-block hypothesis we uncover a further

contradiction. During the building-block process, the schemas that require processing at any

given stage are actually the blocks that have been put together by the prior building-block

process. Except at the initial stage, the defining length of these schemas is related to the

defining lengths of the components of the blocks. If we make the conservative assumption

that, on average, the defining lengths of blocks will be at least the sum of the defining lengths

of the components, then we see that real schema length will increase at least exponentially

during the building-block process. We see that the building-block hypothesis (which depends

on negligible schema length) is very likely to be violated in all but the initial stage of

processing. It demands increasing schema length and thus violates the shortness assumption

introduced by the schema theorem.

The scenario, in which fitness is affected by epistatic interactions between parts of the

genotype has, of course, been intensively investigated by the GA community. The
construction of the so-called deceptive problem is typically a matter of deliberately

introducing epistasis ("nonlinearity") in an encoding (see 7.4).
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2.3.5 Alternatives for schema processing

There are two major approaches to resolve the problem of building-block disruption. The first
approach is based on manipulating the representation of solutions in the algorithm in order to

make the interacting components of partial solutions less likely to be broken by

recombination operators. Various reordering and mapping operators were used. However,

reordering operators are often too slow and lose the race against selection, resulting in

premature convergence to low-quality solutions. Reordering is not sufficiently powerful in

order to ensure a proper mixing of partial solutions before these are lost. This line of research

has resulted in algorithms which evolve the representation of a problem among individual

solutions, e.g. the Messy Genetic Algorithm (mGA, [42]), the Gene Expression Messy

Genetic Algorithm (GEMGA, [55]), the Linkage Learning Genetic Algorithm (LLGA, [44]),

or the Linkage Identification by Non-linearity Checking Genetic Algorithm (LINC-GA, [84]).

A different way to cope with the disruption of partial solutions is to change the basic principle
of recombination. In the second approach, instead of implicit reproduction of important

building blocks and their mixing by selection and two-parent recombination operators, new
solutions are generated by using the information extracted from the entire set of promising

solutions. These Estimation of Distribution Algorithms (for introduction see chapter 4) are
subject of my research. They are insensitive to ordering of genes, like messy GAs, but they

allow also for solving functions with higher degree of epistasis.
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3 Probabilistic models

Probabilistic inference has become a core technology in AI, largely due to developments in

graph-theoretic methods for the representation and manipulation of complex probability

distributions. Even more importantly, the graph-theoretic framework has allowed for the

development of Estimation of Distribution Algorithms, which in many cases provide orders of

magnitude speedups over brute-force search methods and better robustness than classical

evolutionary methods.

3.1 Notation

Consider a set X={X0,..., Xn-1} of n discrete random variables where each variable Xi

may take on values from a finite domain A. Capital letters such as X1, X2, X3 denote
variable names, and lowercase letters such as x1, x2, x3 denote specific values taken by
those variables. If not all the variables Xi are defined over the same domain A, then the set
of values Xi can attain is denoted as Dom(Xi) and the cardinality of this set is denoted as
||X i|| = |Dom(Xi)|. Sets of variables are denoted by boldface capital letters such as X and
assignments of values to the variables in these sets are denoted by boldface lowercase
letters such as x (I use Dom(X) and ||X|| in the obvious way). The term p(Xi,Xj,Xk)
denotes the joint probability of discrete random variables Xi,Xj,Xk whereas p(Xi|Xj,Xk) denotes
the conditional probability of Xi given Xj,Xk. Note that the terms p(X), p(Xi,Xj,Xk) and
p(Xi|Xj,Xk) denote probability distributions, but p(x), p(xi,xj,xk) and p(xi|xj,xk) denote one
probability value. An alternative notation for p(xi) is also p(Xi=xi).

Boldface symbol Пi denotes the set of random variables which completely determine the
probability distribution of variable Xi, such that Xi is independent of the other variables from
X \ Пi given the variables from Пi. Lowercase boldface symbol πi denotes one concrete
configuration from Dom(Пi) assigned to variables in Пi.

Now consider a data set D={x
0
,x

1
,…,x

N-1
} containing N samples from p(X) distribution. I use

superscript numbers to denote the index of concrete sample vector within the data set. The
counts of some patterns in the data set are denoted m. For example m(xi,xj,xk) denotes the
number of sample vectors in the data set matching with the concrete values of i-th, j-th and k-
th coordinate, whereas m(Xi,Xj,Xk) denotes the count table of size ||Xi||.||Xj||.||Xk||.

Throughout this thesis some chapters deal with probabilistic models over continuous or mixed
domains. For these purposes I use analogical notation as in the discrete case, but I prefer the
letter Y to denote set of continuous random variables {Y0,..., Yn-1}. Thus, for example f(Y)
denotes the joint probability density function whereas p(X) denotes joint probability
distribution. Analogically f(Yi,Yj,Yk) denotes the joint probability density function and
f(Yi|Yj,Yk) denotes the conditional probability density function. Lowercase letters such as y1,
y2, y3 denote specific values taken by variables, so for example f(yi|yj,yk) denotes one
concrete value of the local conditional probability density.

Note that during this thesis I use 2 as the implicit base for logarithms, if not specified
otherwise.
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Note that the probability density functions have following properties:

1),,( =∫∫∫ kjikji dydydyyyyf (3.1)

ikjikj dyyyyfyyf ∫= ),,(),( (3.2)
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1),|(:),( =∀ ∫ ikjikj dyyyyfyy (3.4)

D is used in the superscript in pD(X) resp. fD(y) to indicate that the probability distribution

resp. probability density function refers to the distribution of the samples within the dataset D.

3.2 Introduction

3.2.1 Bayesian network (BN)

Bayesian networks are graphical representations of probability distributions. These networks

provide a compact and natural representation, effective inference, and efficient learning. They

have been successfully applied in expert systems, diagnostic engines, and optimal decision

making systems.

A Bayesian network consists of two components. The first is a directed acyclic graph (DAG)
in which each vertex corresponds to a random variable. This graph describes conditional

independence properties of the represented distribution. It captures the structure of the
probability distribution, and is exploited for efficient inference and decision making. Thus,

while Bayesian networks can represent arbitrary probability distributions, they provide
computational advantage to those distributions that can be represented with a sparse DAG.

The second component is a collection of conditional probability distributions (CPDs) that
describe the conditional probability of each variable given its parents (ancestors) in the graph.

Together, these two components represent a unique probability distribution.

S

A B E p(S|A,B,E)

1 1 1 0.95

1 1 0 0.95

1 0 1 0.20

1 0 0 0.05

0 1 1 0.00

0 1 0 0.00

0 0 1 0.00

0 0 0 0.00

B EA

Fig. 3.1: A simple Bayesian network structure and the associated CPD for variable S

(showing the probability values for S=1)

Definition 3.1 (Conditional independence) :

Let p(X) be a joint probability distribution over the variables in X and let U, V, W be the

subsets of X. U and V are conditionally independent, given W, if for all u∈Dom(U),

v∈Dom(V) and w∈Dom(W), we have that p(u|v,w)=p(u|w) whenever p(v,w)>0.
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Definition 3.2 (Bayesian network) :

More formally, a Bayesian network  (BN) for X is the pair B = (G, L). G is a DAG whose

nodes correspond to the random variables X0,…,Xn-1, and whose edges encode the

following set of independence statements: each variable Xi is independent of its

nondescendants X \ Пi, given its parents Пi in G. The set composed of a variable and its

parents is usually referred to as a family. The second component L specifies the

conditional probability p(Xi|Пi) for all variables Xi.

Any distribution p(X) that satisfies the independence statements encoded in the graph

G can be factorized as

∏
−
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− =

1

0

10 )|(),...,(
n

i

iin XpXXp Π . (3.5)

3.2.2 Bayesian network with local structure

In its most naive form, a CPD is encoded by means of a tabular representation that is
locally exponential in the number of parents of a variable Xi: for each possible
assignment of values to the parents of Xi, we need to specify a distribution over the
values X can take. For example, consider the simple network in Fig. 3.1, where the
variables A, B, E and S correspond to the events "alarm armed", "burglary", "earthquake",
and "loud alarm sound" respectively. Assuming that all variables are binary, a tabular
representation of the CPD for S requires eight parameters, one for each possible state of
the parents. One possible quantification of this CPD is given in Fig. 3.1. Note, however, that
when the alarm is not armed (i.e., when A = 0) the probability of S = 1 is zero, regardless of
the values B and E. Thus, the interaction between S and its parents is simpler than the
eight-way situation that is assumed in the tabular representation of the CPD.

The locally exponential size of the tabular representation of the CPDs is a major problem in

learning Bayesian networks. It can be simplified using context-specific independence (CSI,
see [34]). These independence statements imply that in some contexts, the conditional

probability of variable X is independent of some of its parents. For example, in the network
of Fig 3.1, when the the alarm is not set (i.e., the context defined by A = 0), the

conditional probability does not depend on the value of B and E, i.e. p(S | A=0, B=b,

E=e) is the same for all values b and e of B and E. As we can see, CSI properties

induce equality constraints among the conditional probabilities in the CPDs.

p(S)=0.00
B

E

A

p(S)=0.95

p(S)=0.20p(S)=0.05

0

0

0

1

1

1

Fig. 3.2: Decision tree as an alternative representation of a local CPD structure
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In Fig. 3.2 efficient CPD representation based on decision trees is described. Each leaf in

the decision tree describes a probability for S, and the internal nodes and arcs encode
the necessary information to decide how to choose among leaves, based on the values of

S’s parents. For example, in the tree the probability of S = 1 is 0 when A = 0,
regardless of the state of B and E; and the probability of S = 1 is 0.95 when A = 1 and

B = 1, regardless of the state of E. In this example, the decision tree requires four
parameters instead of eight.

Incorporating local structure representations into the learning procedure leads to two

important improvements in the quality of the induced models. First, the induced

parameters are more reliable. Since these representations usually require less parameters,

the frequency estimation for each parameter takes, on average, a larger number of

samples into account and thus is more robust. Second, the global structure of the

induced network is a better approximation to the real (in)dependencies in the underlying

distribution. The use of local structure enables the learning procedure to explore networks

that would have incurred an exponential penalty (in terms of the number of parameters re-

quired) and thus would have not been taken into consideration.

3.2.3 Gaussian network

This section deals with a domain composed of a set of continuous random variables. Its

probabilistic model is a joint probability density function (PDF).

As a continuous variant of (3.5) it can be shown that each joint PDF can be factored into
local terms as
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In the case of Gaussian network we assume that the value of each continuous random variable

Yi fulfills the normal (Gaussian) probability density function N(µ,σ), where the mean value µi

of Yi is affected by linear combination of “parent” values Yj from Пi. The strength of influence

between Yi and Yj is expressed by regression coefficient bji, the conditional deviation of Yi

from the predicted value is denoted σi.

Definition 3.3 (Gaussian network) :

Gaussian network (GN) for Y is the pair G = (G,L). G is a DAG whose nodes correspond

to the random continuous variables Y0,…,Yn-1, and whose edges encode the
independence assertions such that Yi and (Y \ Пi) are independent given Пi. The second

component L specifies the set of local probability density functions having the form of

linear-regression model:
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where N(Yi;µ,σ) is an univariate normal (Gaussian) distribution with mean µ and standard

deviation σ>0. The local parameters of GN are given by ),,( ii σµ ii bθ = , where bi =

(b0i,b1i,…,bi-1 i)
t
is a column vector containing the linear regression coefficients. A missing arc

from Yj to Yi implies that bji=0.
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µ1

f(Y0) = N(µ0,σ0)

Y1

Y0µ0

f(Y1|Y0) = N(µ1+b01(Y0−µ0),σ1)

Fig. 3.3: Gaussian network for 2 variables. The variable Y0 is independent and is expressed by

unidimensional normal density with parameters µ0, σ0. Variable Y1 is expressed by conditional normal

density where the mean value µ1 linearly changes with Y0. The confidence region of resulting joint
probability density function has the elliptical shape with the slope b01.

It should be noted that each n-dimensional normal distribution for domain Y with mean

vector µ and the covariance matrix Σ can be equivalently expressed in the conditional
factored form as a Gaussian network and vice versa. The principle of transformation from

unconditional normal distribution to conditional normal distribution follows from (3.3).
However, instead of the linear regression, more general formula can be used for each local

conditional PDF. This allows us to capture the factorization of a distribution which is more
general than n-dimensional normal distribution.

3.2.4 Mixture distributions 

Usually the sample points do not exhibit the multivariate normal distribution perfectly. For
example in Fig. 3.3 you see that the density of samples (shown as bold crosses) is segmented

and can be better approximated as a mixture of 2 normal distributions.

The key issue is the notion of clusters, which are possibly overlapping subsets of the original

data set D. The nonoverlapping case of clustering is called partitioning. The use of clusters

allows us to efficiently break up non-linear interactions so that we can use simpler models to

get an adequate representation of data set.

Definition 3.4 (Mixture of multivariate normal distributions) :

More formally, consider the clustering of original data set D into k clusters

D=D0∪D1∪…∪Dk-1. The mixture of multivariate normal distributions f(Y) can be written as

the sum of particular multivariate normal distributions
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The reason why we require to have an Di in the superscript in
i

Df is to indicate that the i-th

multivariate normal distribution is based upon the i-th cluster of samples. Each probability

distribution is weighted by coefficient βi∈[0,1]. In case the sum of all these weights equals to

1, the result is again a probability distribution.
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Y1

Y0µ0 D0
µ0 D1

µ1 D0

µ1 D1

f0(Y)

f1(Y)

Fig. 3.4: The sample points from Fig. 3.3 can be partitioned into clusters D0,D1 and better
approximated using mixture of two multivariate normal distributions.

The mixture approach is also used for discrete domains where the set of samples is sometimes
clustered using Hamming distance. The joint probability distribution can then be written as
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3.2.5 Normal kernels

A joint normal kernels distribution is a mixture of joint normal distributions, where each point
y

j
in the modeled data serves as a center of one mixture component:
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such that all dimensions of mixture component are unbiased and independent:
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Using kernel distributions corresponds to using a fixed zero-mean normally distributed
mutation for each promising solution as is often done in evolution strategies.

x
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0
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1
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******* ******* * *****

Single Gaussian
Kernel Density Estimation

Fig. 3.4: Single Gaussian versus kernel density estimation for one variable.
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3.3 Construction of probabilistic models

As in many machine learning problems, the problem of learning a graphical model from data
can be divided into the problem of parameter learning (parameter fitting) and the problem of

structure learning. Much progress has been made on the former problem, while the problem of
learning the structure of a graph from data is significantly harder. In practice, most structure

learning methods are heuristic methods that perform local search.

3.3.1 Fitting CPD parameters

Suppose we have a data set D containing N samples from the unknown joint probability

distribution p(X). The goal is to estimate the original distribution from the sample set D.

Remember that the Bayesian network is composed of two components B=(G,L). Sometimes

the independence assertions encoded in the acyclic graph G are predefined. This is the

simplest case, because only the parameters of CPD need to be estimated. For example assume

that G is empty and all variables are independent.
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In this trivial case each local CPD can be represented by univariate probabilities estimated as

N

xm
xp i
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Note that this CPD representation needs only |Dom(Xi)|-1 parameters, because the last

parameter is supplement to 1. In the case of general G the CPDs are estimated as
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where ),( iπixm denotes the number of simultaneous occurrence of ix and iπ in the dataset,

whereas )( iπm denotes the number of occurrences of iπ . Note that for small data sets it is

better to use the Bayesian estimate instead (see 3.3.3).

3.3.2 Fitting PDF parameters

For continuous domains the situation is similar. For example assume that the dependency

graph G is empty and all variables are independent.
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In the case of Gaussian network the joint probability density function among independent

variables can be factored as a product of one-dimensional independent normal densities
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The vector of mean values µ={µ 0,..., µ n-1} can be estimated from data set D using the

following equation for each component:
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Since all the variables are independent, each component of vector σ can be estimated from D

as:
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Now let us consider more complicated case – a Gaussian network with predefined arbitrary

dependence graph G. For each variable Yi the mean value µi can be estimated using (3.17)

again. The regression coefficients bi=(b0i,b1i,…,bi-1 i)
t

can be estimated for example by min-

square method and σi can be estimated as the standard deviation of the true value Yi from the

value predicted by regression model
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Another method for obtaining parameters of Gaussian network follows from the equality with

the n-dimensional unconditional joint PDF with mean vector µ (estimated as (3.17)) and the

covariance matrix Σ (computed as

Σ ∑ −
= −−≈ 1
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)).((./1

N

j
TjjN µyµy ) (3.20)

or the precision matrix W (which is equal to Σ−1 ).

Y2

Y1Y0

Fig. 3.4: An example of Gaussian network structure for variables Y0, Y1 and Y2

For example, if the data satisfies the independence constraint shown in previous figure, then

the relationship between covariance matrix and the desired regression coefficients holds
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Generaly, the multidimensional normal PDF fNM can be written as
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where |Σ | denotes the determinant of covariance matrix. Given (3.21) the Gaussian network

can be obtained using the chain rule for factorization as
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where the subscript terms (Yi,Πi) resp. (Πi) select from the mean vector and from the

covariance matrix only those components corresponding to variables from the set {Yi}+Πi

resp. Πi. Now the expression (3.22) can be transformed into the Gaussian network form, such

that the regression coefficients and conditional deviation parameter can be identified. For

further details see [19].

3.3.3 Bayesian versus classical estimation

The Bayesian estimation relates to Bayes theorem to estimate the probabilistic model. There

is a slight controversy between two statistical schools: the classical and the Bayesian school.

The classical school usually considers probabilities as an objective property of the nature,

which can be measured with sufficient accuracy (and sufficient certainty) by repeating an

experiment sufficiently many times. This is the frequentist interpretation of probabilities. The
Bayesians on the other hand claim that probabilities merely signify our (lack of) knowledge of

the world, and that they thus depend mainly on how much information we have about the
problem. This makes probabilities in one sense subjective, in that people with different

knowledge assign different probabilities to the same events (see also [54],[51]).

As an example, consider a scientist whose assistant flips a coin, notes the result, and puts a

handkerchief over it, without letting the scientist see the result. Clearly the scientist and the

assistant have different opinions of the probability of the coin being heads up.

The typical way to reason in a Bayesian manner is to accept more or less vague prior

conception of the world. Then you make some observations or experiments, and given these

you modify the conception to include the newly acquired knowledge. This can be repeated, so

that further experiments may make your knowledge more relevant. In formulas this process is

described by Bayes theorem

),(

),().,|(
),|(

IDp

IMpIMDp
IDMp = , (3.23)

where p(D|M,I) is the probability of getting the data D given the current model (or hypothesis)

M and the background information (or context of the whole experiment) I, p(M,I) is the prior
probability of the model, i.e. what it is known about the world before the observations, and

p(M|D,I) is the posterior probability, or what you believe after observation of the data.

The term p(D,I) expresses the whole probability of observation of data D, independently on

the model M. It can thus be considered as a normalizing constant. For the model-estimation

purposes the background information I can be omitted too. The simplified equation can be

written as

)().|()|( MpMDpDMp ∝ (3.24)

where operator ∝ denotes the proportionality.

Classically there is a difference between a probability distribution and its parameters. For
example there may be a random variable Y with a normal distribution with mean value µ,

and standard deviation δ. Then it is possible to talk about the probability of Y having an

outcome in some small interval, but it is normally not possible to talk about the

probability of µ having some value.
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In Bayesian statistics the parameters are just another set of random variables with some

distributions, corresponding to the uncertainty about their real values. If a number of

samples are taken from the variable Y, the parameter µ can (classically) be estimated as the

mean value of these observations. But if this experiment is repeated, and the same number

of samples are taken for each of several different estimates of µ, these estimates will differ

slightly from each other. This motivates considering µ itself (at a fixed sample size) as a

random variable. The interpretation is that after having seen a certain number of samples,

each value of the parameter has a certain probability. Of course the standard deviation of µ
gets smaller as the sample size increases, and the estimate gets closer to the "true" value.

The classical approach uses the concept of maximum likelihood estimation (MLE). This

means that the estimated value of the parameter is the one that maximizes p(D|M). The

Bayesian way of thinking is rather that what ought to be maximized is not the probability of

getting the data that we already got, but the probability of the parameter given the data,

p(M|D). As can be seen from (3.24), the relation between these two is just the prior

probability distribution for the parameter p(M), i.e. what we expect about the parameter

(or about the whole model including its parameters) before observing the data.

As an example, consider estimating the probability of heads on a (possibly unbalanced)

coin by tossing it several times and counting the number of heads and tails. Let us
denote the parameter, the probability of heads, for q. The probability of getting cH

heads out of c = cH + cT tosses is

TH
cc

H
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To find the maximum likelihood estimate, differentiate with respect to q:
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Equating with zero (and ignoring the trivial solutions q = 0 and 1 - q = 0) gives

c

c

cc

c
qqcqc H

TH

H
TH =

+
=⇒=− ).)1( (3.27)

This is the classical estimate of the parameter q of a Bernoulli random variable. As

expected, q
) can be shown to converge to the "true" value of q when the number of

tosses increases. However, for small sample sizes (3.27) may give unsatisfactory results.
For example, if after three tosses there has been two heads and one tail, it gives that the

most likely q is two thirds. Even worse, if after two tosses there have been two tails,

(3.27) gives the estimate that q = 0, i. e. that it is impossible to get a head. This is

especially serious if the estimates are to be used as a basis for further probability

calculations. Just because some event never occurred in the training data it does not

necessarily mean that it is impossible. (Of course, we could test the estimate at some

confidence level and reject it if it is too uncertain, but the point is that we do not want
to reject any of the scare data, but use it for exactly what it is worth.)
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Let us compare this outcome with the Bayesian estimate. First, a prior distribution for q

is needed. Since the value of q may be anything, suppose first that we assume all
probabilities q to be equally likely. Then the prior distribution of the model is

1)()( == qpMp (3.28)

(where p(q) is now actually a probability density function for q) and the posterior

distribution becomes
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Now, this is not a binomial distribution, since it is not to be considered as a

distribution for cH any more, but as a distribution for the parameter q. Note that (3.29)

is not an equality, but we have to normalize it to find the distribution. The calculation is
slightly involved, but the result of integrating the right hand side (skipping the binomial

coefficient which does not depend on q) is
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This gives the distribution for q as
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which is a Beta distribution with parameters cT + 1 and cH + 1. Now, we are not really

interested in the value of q which maximizes this term (which would be the same q as in the

classical case), but more in the expectation of q. To calculate E(q) we first use (3.30) again to

evaluate the integral
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and then use this to calculate the expectation
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Note that for large samples this converges to the same result as the classical estimate,
eq. (3.27), but for small samples it will tend more towards the value 1/2. For example,

for two tails in two tosses it still estimates the probability of a head in the next toss to
1/4. Also note that since we have arrived at a whole distribution for q we need not stop

at calculating the expectation, but can also get the variance which can be used as a
measure of how certain the estimate is.
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Usually the above prior for q is not used, but rather the more general form
11 )1()( −− −∝ αα qqqp (3.34)

for which a similar calculation gives the estimate of q as
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Note that this has as special cases the classical estimate when α = 0 and Laplace's

formula for successions when α = 1. The parameter α expresses how much importance

we give the prior and how much we trust the data directly.

Equation (3.35) holds for an estimation of probability of coin heads. The estimation of

CPDs from the set of samples D can be done in the same way. Let us consider the
independent discrete variable Xi with ||Xi|| possible values – there is an analogy with a

die having ||Xi|| sides. We deal with the vector of parameters ),...,,( 110 −=
i

Xqqqq , each

parameter
i

xq denotes probability estimate for one concrete side xi of the die. The prior

distribution for the whole q vector is selected as
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This makes the posterior distribution of the parameters q a multi-Beta distribution
(for more details see [47]):
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Here Γ(x) is the gamma function which is defined for all positive real numbers and
coincides with the factorial of x-1 for all positive integers x. The normalizing
constant is here determined only by identification with a multi-Beta distribution,
and is not easy to calculate directly.

Now we can use a very similar derivation as in (3.33), identifying )|(. Dpq
i

x q with a

new multi-Beta distribution, and take the quotient between the old and new normalizing

constants. The resulting estimate of probability of one concrete outcome xi is:
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The main critique from the classical statisticians is that a Bayesian needs to assert a "highly

subjective" prior distribution before being able to calculate anything. However, in practice the
Bayesian and classical results will converge very quickly to the same values, as the number of

observations increases, as long as the prior is "reasonable" (nonzero everywhere for example).

Also, when so called non-informative priors are used, the results are in many cases identical

to the classical results. The problem with the classical method of estimation is that it may not

work well for rare samples of data.
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3.3.4 Learning BN by MDL metrics

In previous chapters we discussed the estimation of parameters L. Now let us consider a more

general case when both components of probabilistic model B=(G,L) are unknown. First of all

the independence assertions G are determined and then the set of local parameters L for given

G is estimated.

One of the most frequent approaches is the MDL principle motivated by universal coding.

The MDL framework dictates that the best model for a given data set is the one that

minimizes the coding length/cost of both the data and the model. If a model fits the data

exactly, the data need not be encoded and the cost is that of coding the model. If the data is

not represented by a model, the cost is that of encoding the data. One can show that

minimizing the MDL is equivalent to selecting the model that minimizes the Bayes risk

assuming cost of errors is uniform, i.e. for a data set D, the MDL prefers the model M for

which p(M|D) is maximized. This can be shown by a simple application of Bayes rule which,

after taking the logarithm of each side reduces this to

))(log())(log())|(log())|(log( DpMpMDpDMp +−−=− (3.39)

Noting that p(D) is a constant for all models being compared, and that the minimal cost of

encoding an object requires at least logarithm of its probability in bits, we see that MDL is

proper for choosing the model with the maximum likelihood given the data. The lesson here is
that a penalty must be paid if more complex models are used. The formula above gives the

appropriate tradeoff.

Now the representation length required for the storage of both the network and the coded data

will be expressed. To store a network B = (G, L) we need to describe X, G and L to describe

X, we store the number of variables, n, and the cardinality of each variable Xi. Since X is the

same for all candidate networks, we can ignore the description length of X in the comparisons

between networks.

To describe the DAG G, it is sufficient to store for each variable Xi a description of Πi

(namely, its parents in G). This description consists of the number of parents, k, followed by

the index of the set Πi in some (agreed upon) enumeration of all ( )n
k sets of this cardinality.

Since we can encode the number k using log(n) bits, and we can encode the index using

log ( )n
k bits, the description length of the graph structure is
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To describe the CPDs in L, we must store the parameters in each conditional probability

table. For the table associated with Xi, we need to store ||Πi||(||Xi|| — 1) parameters. The
representation length of these parameters depends on the number of bits we use for each

numeric parameter. The usual choice in the literature is ½log(N).
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Thus, the encoding length of Xi‘s CPD is

( ) NXXDL iitab log)1||(||||||
2

1
, −= ii ΠΠ (3.41)

To encode the training data, we use the probability measure defined by the network B to

construct a Huffman code for the instances in D. In this code, the exact length of each

codeword depends on the probability assigned to that particular instance. We can approximate

the optimal encoding length using –log pB (x) as the encoding length of each instance x in the

network B. Thus, the description length of the data is approximated by
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We can rewrite this expression in a more convenient form, as a sum of terms that are “local”

to each CPD:
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iBiBi xpxpXH is the conditional entropy of Xi, given Πi.

Finally, the MDL score of a candidate network structure G, assuming that we choose

parameters L as prescribed in equation (3.14), is defined as the total description length
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The MDL metrics coincides with the so called Bayesian information criterion (BIC) which

contains only DLdata and DLtab. In the binary case, BIC assigns the network structure a score
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Thus the BIC score is the negative of the MDL score, when we ignore the description of G.

According to the MDL principle, we should strive to find the network structure that

minimizes this description length. In practice, this is usually done by searching over the space

of possible networks.

3.3.5 Learning BN by Bayesian-Dirichlet metrics (BDe)

Scores for learning Bayesian networks can also be derived from methods of Bayesian

statistics. A prime example of such scores is the Bayesian-Dirichlet metrics (BDe), proposed
by Heckerman et al. [47]. This score is based on earlier work of Cooper and Herskovits [27]

and Buntine [21]. The BDe score is (proportional to) the posterior probability of each network

structure, given the data. Learning amounts to searching for the network(s) that maximize this

probability.

Let h
sB denote the hypothesis that the underlying distribution satisfies the independencies

encoded in G (see [47] for a more elaborate discussion of this hypothesis). The posterior

probability we are interested in is )|( DBp h
s .
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Using Bayes' rule we write this term as

( ) ( ) ( )h
s

h
s

h
s BpBDpDBp || ∝ . (3.46)

The term )( h
sBp is the prior probability of the network structure, and the term )|( h

sBDp is

the probability of the data, given that the network structure is G.

There are several ways of choosing a prior over network structures. Heckerman et al. suggest
choosing a prior

( ) )',( GGδκcBp h
s = , (3.47)

where c is a normalization constant, ( )',GGδ is the difference in edges between G and a prior

network structure G ', and 0 < κ ≤ 1 is penalty for each such edge.

For a given hypothesis
h
sB about the independence structure G, let BsΘ represent the vector

of parameters for the CPDs quantifying G (a random vector which represents estimate of L).

To evaluate the )|( h
sBDp we must consider all possible parameter assignments to G. Thus,
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h
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h
s dBpBDpBDp |,|| (3.48)

where ( )h
sBs BDp ,| Θ is defined by (3.5), and ( )h

sBs Bp |Θ is the prior density over parameter

assignments to G. Heckerman et al. (following Cooper and Herskovits [27]) identify a set of

assumptions that justify decomposing this integral:

1. Local distribution functions belong to the exponential family

2. The parameters of local CPDs are mutually independent
3. The parameters of local CPDs have conjugate priors

4. Database is complete

Roughly speaking, they assume that each distribution p(Xi|πi) can be learned independently of

all other distributions. Using this assumption, they rewrite )|( h
sBDp as

( ) ( )∏∏∫ ∏
−

=
ΘΘ













=

1

0

||
),(

| ||
n

i

X
h
sX

x

xm
x

h
s ii

i

i

i
dBpBDp

i

ii

i

i

π
ππ

π
πθ , (3.49)

where
i
π|

i
XΘ denotes a vector of parameters of size ||Xi|| which serves for learning p(Xi|πi).

The coordinates of this vector are denoted
i
π|

i
xθ . This decomposition is analogous to the

transformation of equation (3.42) into (3.43). When the prior on each multinomial

distribution
i
π|

i
XΘ is a Dirichlet prior, the integrals in (3.49) have a closed-form solution

(see [47]).

I briefly review the properties of Dirichlet priors. For more detailed description, I refer the

reader to DeGroot [31]. A Dirichlet prior for a multinomial distribution XΘ of a variable X is

specified by a set of hyperparameters {m’(x) | x∈ Dom(X)}.



40

We say that it has a Dirichlet distribution if
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If the prior is a Dirichlet prior, the probability of observing a sequence of values of X with

counts m(x) is
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Note that the parameters m’(x) denote the priors for observed m(x). Returning to the BDe

score, if we assign to each
i
π|

i
XΘ a Dirichlet prior with hyperparameters m’(xi,πi), then
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If we replace ∑
i

x ixm ),(' iπ with )(' iπm and introduce symbol ξ which denotes the

background context of the Bayesian inference, then we obtain the final BDe metrics
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It is necessary to establish the prior values )(' iπm and ),(' iπixm which denote the expected

values of counts )( iπm and ),( iπixm . The simplest approach was used in the K2 algorithm

proposed in Cooper and Herskovits in [27], they used uniform assignment for priors
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It can be shown that asymptotically for N→∞ both BDe and MDL metrics prefer the same

networks.

The problem of finding the best network given a scoring metric has been proven to be NP-

complete for most Bayesian and non-Bayesian metrices (see [23]). However, since most of

the commonly used metrics (such as the BDe and MDL metrics) can be decomposed into
independent terms each of which corresponds to one variable (node), to construct a network, a

greedy algorithm, local hill-climbing, or simulated annealing can be used very efficiently.
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In my experiments I have used a simple greedy search algorithm. Each iteration of the

algorithm, the graph operation that improves the network score the most is performed. The
simple operations that can be performed on a network include edge additions, edge reversals,

and edge removals. Only operations that keep the network acyclic are allowed and the number
of parents of each node is bound by a constant in order to avoid superfluously complex

models. The construction finishes when no operations are allowed or no applicable graph
operation improves the score.

3.3.6 BDe metrics for Bayesian networks with local structure

It has been shown (see [24] or [96]) that the Bayesian score can be computed for Bayesian

networks where the independence constraints are encoded by a decision graph for each of the

variables in a very similar way.

Conditional probabilities for a variable Xi are stored in a decision graph Gi, i.e. for each

variable there is one decision graph. The outer product from BDe remains the same. The
middle product runs over all leaves of the decision graph Gi corresponding to the variable Xi.

The inner-most product runs over all possible instances of the variable Xi. Thus,
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where h
sB is now the hypothesis that the independence constraints can be expressed by the set

of decision graphs G0,…,Gn-1; Li is the set of leaves in the decision graph Gi for Xi, m(i,l) is

the number of instances in D which end up the traversal through the graph Gi in the leaf i,

m(xi,i,l) is the number of instances that have Xi = xi and end up the traversal of the graph Gi in

the leaf l. The values m'(i,l) and m' (xi,i,l) represent our prior knowledge about the values of

m(i,l) and m(xi,i,l).
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trees can be written as

∏∏ ∏ +Γ
+Γ

Γ
=

−

= ∈ ii x

i

n

i Ll i

ih
s

h
sK lixm

Xlim

X
BpBDp )1),,((

||)||),((

||)(||
).|()|,(

1

0

2 ξξ , (3.56)

To favor simpler networks to the more complex ones we can set the prior probability of a

network )|( ξh
sBp to decrease exponentially with the description length of the set of

parameters they require (see the MDL chapter for DLtab). Thus,
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where c is a normalization constant which does not affect the relative comparisons.

Each iteration, the greedy construction of decision graphs examines all possible operators and

selects the one that improves the score most. The operators include (1) splitting a leaf of some

decision graph on a variable that was not encountered on the path from the root to the leaf and

(2) merging two leaves into a single leaf.
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3.3.7 Learning Gaussian networks structure

For Gaussian networks we can also use Bayesian approach to search for proper network
structure. The BGe metrics (Bayesian metrics for Gaussian networks having score

equivalence) was proposed by Geiger & Heckerman in [38]:
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where e
SB denotes the event (hypothesis) that the data D were sampled from minimal

Gaussian network with structure G , ξ denotes the background information, Πi denotes the set

of  parent variables of Yi in G, i
Π,

i
YD resp. i

ΠD denotes the data D restricted only to

i
Π∪}{

i
Y resp.

i
Π columns and e

SC

B denotes the Gaussian network with complete structure

(with no missing edges). This equation holds under similar assumptions (parameter

independence, parameter modularity, etc. - see 3.3.5) as the BDe metrics.

Note that this direct search for G is quite time-consuming, because the computation of

)|( , ξ,i
Π e

S
Y

C

i BDf resp. )|( ξ,i
Π e

S
C

BDf involves the estimation of parameters for e
S

C

B

itself (see 3.3.2).

However, it is possible to adopt additional assumptions and heuristics that make the search for

structure faster.

3.3.8 Learning normal mixtures

Finding an estimate of the maximum likelihood parameters of a mixture model, for a given
data set, is a non-linear constrained optimization problem which is difficult to solve. The EM

(Expectation-Maximisation) algorithm provides a numerical method for estimating these
maximum likelihood parameters. In the context of finding an optimal normal mixture model,

the data is implicitly modelled as consisting of k populations, or groups, with each assumed to

be normally distributed. The incompleteness arises from the fact that the population of origin

of a given data point is unknown. If the group membership were known for each data point,

finding an estimate of the maximum likelihood parameters would simply be a matter of

finding the sample mean and covariance matrix for each group of data, then determining the

weightings of the components by the fraction of points in the sample belonging to each group.

The EM algorithm alternately estimates the group membership of the data points using a

previous estimate of the parameters of the model, and then updates this estimate of the

parameters using the estimate of the group membership of the data points:

Begin by initializing the parameters of the model. For example let each covariance matrix be

of the form
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where each δi is equal to roughly 20%  of the length of the range of Yi, and assign each mean

vector µi to a randomly chosen location in the feature space. Let pi be the fraction



43

∑ −
=

=
1

0
)(

)(
)(

k

j jj

ii
i

f

f
p

y

y
y

β

β
, (3.59)

The EM algorithm effectively splits each data point y among the k-mixture Gaussian

according to the fraction pi(y). (That is, the probability that a point belongs to population i is

estimated by pi). The new estimate for the weight of each component Gaussian is given by
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The re-estimates for the parameters µi and Σi of the i-th component Gaussian are calculated by
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Now recalculate the fraction pi and repeat the process until the likelihood no longer increases,

or until the number of iterations exceeds some predetermined number. The final parameters of

each component µi and Σi are transformed into factorized conditional form (see [19]) and the

coefficients βi are used for proportional selection of components during sampling.

To obtain better results with EM algorithm, it is also possible to use some explicit clustering

technique for preprocessing. See paper [19] for detailed description of IDEA algorithms with
k-means clustering or leader-k clustering, where Euclidean or Mahalanobis metrics is used for

distance of data samples.

3.3.9 Learning normal kernels

The construction of Gaussian normal kernels (see 3.2.5) is straightforward and does not

require any search for structure. Simply, the mean of each kernel is equal to coordinate of one

sample. The variance of kernels δ is the only parameter that is not easy to determine. It can be

either fixed to a relatively small value, or it is possible to directly take up methods for

adapting the variance of each kernel from evolution strategies.

3.4 Model sampling

Once the desired probability distribution is  found, new samples can be generated using Gibbs

sampling ([39]) or Probabilistic Logic Sampling (PLS, [48]).

3.4.1 Gibbs sampling

Gibbs sampling, named by its authors Geman &; Geman [39] after the physicist J.W. Gibbs,

can be the easiest to implement. In its basic form, it changes just one component of X, say the

i-th component Xi, at a time. All other components preserve their values, but the i-th
component is chosen by re-sampling from the marginal distribution                      

p(Xi|X0,…,Xi-1,Xi+1,…,Xn-1). With this algorithm, the acceptance probability is always 1, so
transitions are never rejected. The choice of component i can be deterministic or random.
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Gibbs sampling yields a particularly slow algorithm if there is strong coupling between

components of X, i.e. whenever the "mountain" p(X) is high, and has sharp ridges that are not
conveniently aligned with the coordinate axes.

3.4.2 PLS algorithm

The Probabilistic Logic Sampling (PLS, [48]) takes advantage on how a Bayesian network

defines a probability distribution. It generates the values for the variables following their

ancestral ordering which guarantees that p(X) will be instantiated every time, whereas Gibbs

sampling converges to the true p(X) distribution only after large number of re-sampling. The

pseudo-code for PLS can be written as:

Find an ancestral ordering o=(o0,o1,…,on-1) of nodes in Bayesian network;
for i:=0 to n-1 do

begin

i
oX := new sample from )|(

ii
ooXp Π ;

end

3.5 Cross validation of model construction

The accuracy of model estimating techniques presented in previous chapters  can be

determined by cross-validation. Some reference probabilistic model is sampled to obtain the

test data which are then used to estimate new model. The agreement between those two

models determines the accuracy.

A popular measure for estimating the approximation error between distributions is the entropy

distance proposed by Kullback and Leibler.

Definition 3.5 (KL divergence) :
The Kullback Leibler divergence between two distributions p and p) is defined as
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)) (3.63)

The KL measure has the following properties:

- 0),( ≥ppKL )

- 0),( =ppKL )
iff pp

)=

Note that the equality pp )= means that both models return the same value given the same

argument, but both models might be of different structure. For example if the problem is

additively decomposable into independent subproblems, then the product of such local
probability distributions gives the same results as the n-dimensional joint probability

distribution over the whole Dom(X).

KL divergence between constructed model and complete joint probability distribution can
also serve as a metrics for model construction.
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4 EDA algorithms

In previous chapter I have introduced useful probabilistic models and algorithms to find such

models. This chapter elaborates on how these probabilistic models can be used for

optimization tasks in Estimation of Distribution Algorithms (EDAs, also called PMBGA -

Probabilistic Model-Building Genetic Algorithms). See excellent reviews [92] and [65].

4.1 Notation

For the description of Estimation of Distribution Algorithms I extend the notation for
probabilistic models introduced in chapter 3.1. The genotype of length n is interpreted as a
vector of random variables X=(X0,..., Xn-1). The terms gene, random variable and
dependency graph node are equivalent in the EDA framework. Upper case symbol Xi means
the i-th gene variable, lower case symbol xi means one concrete allele. Note that in 3.1 the
boldface symbols such as X denote sets of random variables whereas in EDA framework I use
the same notation for random vectors, nevertheless both definitions result in the joint
probability distribution p(X). The parent population of chromozomes D can be written as a
data set of N concrete vector samples D={x

0
,x

1
,…,x

N-1
}={(x

0
0,x

0
1,…,x

0
n-1),(x

1
0,x

1
1,…,x

1
n-

1),…,(x
N-1

0,x
N-1

1, …,x
N-1

n-1)}. I use superscript numbers to denote the index of concrete
individual within the population, such that xj denotes the concrete instance of j-th
chromozome, F(x

j
) denotes its fitness and x

j
i denotes the concrete value of i-th gene of j-th

chromozome. I use symbol D(t) to emphasize the instantaneous content of population in time
t, then x

j
(t) denotes its j-th chromozome and pD(t)(X) denotes the joint probability distribution

of chromozomes in D(t). Symbol P(t) denotes the whole population from which D(t) was
selected and L denotes its size. Usually 50% selection presure is used, so L=2*N.

4.2 Basic principles

The general procedure of EDA algorithm is similar to that of GA, but the classical

recombination operators are replaced by probability estimation followed by probability

sampling. First, the initial population of EDA is generated randomly. In each iteration,

promising solutions are selected from the current population of candidate solutions and the
true probability distribution of these selected solutions is estimated. New candidate solutions

are then generated by sampling the estimated probability distribution. The new solutions are
then incorporated into the original population, replacing some of the old ones or all of them.

The process is repeated until the termination criteria are met.

The pseudo-code of general EDA algorithm can be written as follows:

Set t := 0;
Randomly generate initial population P(0);
while termination criteria are not satisfied do
begin

Select a set of promising/parent solutions D(t) from P(t);
Estimate the probability distribution of the selected set D(t);
Generate a set of new strings O(t) according to the estimate;
Create a new population P(t+1) by replacing part of P(t) by O(t);
Set t := t+1;

end
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To better understand the basic principles of EDAs, I apply the simplest version of this

approach to well known OneMax function (see chapter 7.4). Suppose we try to obtain the

maximum of function ∑ −
=− = 1

010 ),...,(
n

i inOneMax xxxF . For example let the chromozome

length be n=5, the whole population size is 10 and the parent population size is 5. See the

following figure.

index x0x1x2x3x4 FOneMax

0 10110 3

1 01100 2

2 00100 1

3 11100 3

4 00000 0

5 01110 3

6 10101 3

7 00100 1

8 10010 2

9 01010 2

index x0x1x2x3x4 FOneMax

0 10110 3

1 01100 2

3 11100 3

5 01110 3

6 10101 3
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p(X3=1)=0.4
p(X4=1)=0.2

p(X2=1)=1.0

index x0x1x2x3x4 FOneMax

0 01110 3

1 10100 2

2 10100 2

3 01110 3

4 11101 4

sam
pling

re
pla

ce
m

en
t

probabilistic model

D(0)

P(0)

O(0)

t:=t+1

Fig. 4.1: Example of EDA cycle for OneMax problem of size n=5 with independent genes/variables.

The initial population is obtained by random sampling of probability distribution

∏ −
== 1

0
)()(

n

i iXpp X . The initial distribution is uniform, so ∀i∈{0,…,n-1}: p(Xi=1) = p(Xi=0)

= 0.5. An example of concrete population P(0) shown in the figure. The better half of P(0) is

selected into D(0) with respect to FOneMax. You see that individuals no. 0,1,3,5,6 are selected.

Then the probability model is estimated from D(0). Since the genes in OneMax problem are

independent, there are no edges between nodes in the graph. The estimated frequency of 1-

alleles is shown above the nodes. Then O(0) is generated using these frequencies. When we

evaluate O(0), we see that the last individual in O(0) is better than any previous solution.

During replacement stage, P(1) is created by replacing the worst part of P(0) (individuals

2,4,7,8,9) by O(0). And the whole cycle is repeated until termination criteria are met or

maximum number of generations is reached.
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4.3 Initial discrete probabilistic models

4.3.1 Without dependencies – PBIL, UMDA, cGA

In all the algorithms belonging to this category it is assumed that all parameters of a given

problem are independent. That is, the n-dimensional joint probability distribution of solutions

can be factored as a product of independent univariate probability distributions.

PBIL

The Population Based Incremental Learning (PBIL) was introduced by Baluja in [3]. The

solutions are represented by binary strings of fixed length, but the population of solutions is

replaced by the so-called probability vector (p0, p1,…, pn-1), where pi refers to the probability

of obtaining a value of 1 in the i-th gene. This vector is initially set to assign each value at the

same position with the same probability pi = 0.5. At each generation a number of solutions is

generated using this vector. Then the few best solutions are selected and the probability vector

is shifted towards the selected solutions by using Hebbian learning rule:

)1(
1

)1( =+−= iii Xm
N

pp αα , (4.1)

where N is the size of selected population, ]1,0(∈α is a parameter of the algorithm and

)1( =iXm denotes numer of individuals in the selected part of population having Xi=1. Note

that PBIL with 1≠α introduces conservativeness, which is not typical for EDAs.

PBIL has received much attention from EDA researchers. For comparison of PBIL with

heuristic approaches see [4], [75], for proposed PBIL extensions see [5], [63] and theoretical

aspects of PBIL includes the paper [49].

UMDA

The Univariate Marginal Distribution Algorithm (UMDA) was introduced by Műehlenbein in

[76]. In contrast to PBIL, the population of solutions is kept and processed. In each iteration

the frequency functions on each position for the selected set of promising solutions are

computed and these are then used to generate new solutions. The new solutions replace the

old ones and the process is repeated until the termination criteria are met. From the

implementation point of view the UMDA matches the pseudo-code of typical EDA algorithm

(see 4.2), except that the dependence graph of constructed probabilistic model contains no
edges.

The probabilistic model is as simple as possible:

∏ −
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)()(

n

i iXpp X , (4.2)

where each univariate marginal distribution )( iXp is estimated from marginal frequencies:

N

Xm
Xp i

i
)1(

)1(
=

== , (4.3)

where N is the size of selected population and )1( =iXm denotes number of individuals in the

selected part of population having Xi=1.

For a mathematical analysis of UMDA see papers [76], [74] and [80]. A modification of

offspring generation proposed in [106] enables UMDA to solve problems with constraints.
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For its simple implementation UMDA is still very popular, namely in combination with the

clustering approach.

cGA

In the compact Genetic Algorithm (cGA) proposed by Harik et. al. in [46] the population is

replaced by a single probability vector like in PBIL. However, unlike the PBIL, it modifies

the probability vector so that there is direct correspondence between the population that is
represented by the probability vector and the probability vector itself. Two individuals are

generated from this vector of probabilities, the competition between them is carried out and
the winner is used for vector update. But instead of shifting the vector proportionally to the

distance from either 0 or 1, each component of the vector is updated by shifting its value by
the contribution of a single individual to the total frequency assuming a particular population

size. By using this update rule, theory of simple genetic algorithms can be directly used in
order to estimate the parameters and behavior of the cGA.

4.3.2 Bivariate dependencies – BMDA, MIMIC, Dependency trees

All algorithms described in previous chapter perform similarly. They work very well for

linear problems where they achieve linear or sub-quadratic performance, depending on the

type of a problem, but they fail on problems with strong interactions among variables.

Obviously the independence assumption is not valid for most optimization problems, because
interdependencies between the variables usually exist. In some cases it is sufficient to

consider second-order statistics and use the following algorithms based on pairwise
dependencies. In contrast to algorithms from previous chapter, the problem with

determination of dependencies occurs.

MIMIC

The Mutual Information Maximization for Input Clustering (MIMIC) algorithm was

developed by De Bonet et. al. in [12]. Each generation MIMIC selects promising solutions
and searches for the best permutation between the variables in order to maximize the so-called

mutual information of neighboring variables. The chain probability distribution can be written
as
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XXpXpp X , (4.4)

where o=(o0,o1,…,on-1) is a permutation of numbers from {0,1,…,n-1}. The Kullback-Leibler
divergence (see 3.5) between the chain and the complete joint distribution is minimized. The

greedy algorithm starts in a variable with the lowest unconditional entropy. The chain is
expanded by adding a new variable that minimizes the conditional entropy of the new variable

given the last variable in the chain. Once the full chain is constructed for the selected
population of promising solutions, new solutions are generated by sampling the distribution.

COMIT

The COMIT algorithm (Combining Optimizers with Mutual Information Trees) was proposed
by Baluja and Davies in [8] and [9]. A dependency tree encodes the probability distribution

where the variable in the root of the tree is independent, and each other variable is conditioned
on its parent in the tree. COMIT uses minimum spanning tree technique - one variable is

randomly chosen to form the root of the tree, and then the remaining variables are "hanged" to
the existing tree so that the mutual information between the parent of the new variable and the

variable itself is maximized.
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Once a whole tree is constructed, new solutions are generated according to the distribution

encoded by the constructed dependency tree and the conditional probabilities estimated from
the population. Moreover, MIMIC hybridizes the EDA approach with local optimizers – the

newly generated solutions can be improved by local search.

BMDA

The Bivariate Marginal Distribution Algorithm (BMDA) was proposed by Pelikan and
Műehlenbein in [89]. The pairwise dependencies in BMDA are discovered by Pearson’s chi-

square statistics. In my master thesis [xvi] I implemented BMDA with the following form of
Pearson’s chi-square statistics:
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where N is the size of parent population and m(xi,xj), m(xi) resp. m(xj) denote the number of

individuals in the parent population with concrete values of xi and/or xj. From the theoretical

point of view this metric can be seen as statistical testing of hypothesis – for example binary

genes Xi and Xj are considered to be independent at 95% confidence level if 84.32
, <jiχ . Like

COMIT, BMDA also uses a variant of minimum spanning tree technique to learn a model.

However, during construction of the tree, if none of the remaining variables can be “hanged”
to existing tree, then BMDA starts to form another tree from remaining variables. The final

probability distribution is thus a forest distribution (a set of mutually independent dependency
trees):
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where V is the set of vertices of dependency tree, R is the set of root nodes and Xj(i) denotes

the parent node of Xi. Given the tree dependence structure, the univariate marginal probability

distributions )( rXp are estimated from the promising/parent population as (4.3) and the

bivariate conditional probability distributions )|( )(iji XXp are estimated as

)(

),(
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ij
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xxm
xxp = . (4.7)

Fig. 4.2: Example of dependency graph for: a) MIMIC, b) COMIT, c)BMDA
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4.4 Advanced discrete probabilistic models

The algorithms presented in previous section can identify, propagate, and mix building blocks
of order two. Nonetheless, capturing only some pair-wise interactions has still shown to be

insufficient for solving problems with multivariate or highly overlapping building blocks.
That is why following algorithms have been proposed.

4.4.1 Explicit factorization – FDA

The Factorized Distribution Algorithm (FDA, see [81]) uses a fixed dependency graph

throughout the whole computation. The model is allowed to contain multivariate marginal

and conditional probabilities, but FDA learns only the CPT parameters, not the

dependency graph. The problem must be decomposed and factorized in advance by expert.
For additively decomposed functions this decomposition is theoretically justified, but for real

world problems the factorization is not straightforward. However, the theoretical results for
FDA are very important for understanding the behavior of EDAs, see papers

[77],[78],[79],[80],[122] and [74].

4.4.2 Clustering – EcGA

Extended compact Genetic Algorithm (EcGA) was proposed by Harik in [45]. The basic idea

is to use a marginal product model to estimate the joint probability distribution. The variables
are grouped together and each group of variables is assumed to be independent of the rest. If

we consider each group as one independent multinomial variable, the model is an analogy to
UMDA model:
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i ipp XX , (4.8)

where X0,…,Xk-1 are disjoint subsets of variables from X. Each generation the algorithm that
carries out the grouping begins with n groups, one variable in each group. Then the algorithm

iteratively merges two groups that maximize the improvement of the model with respect to
Bayesian Information Criterion (BIC, see 3.3.4). If no more improvement is possible, the

current model is used. The advantage of using MDL-based metrics is that they penalize
complex models when they are not supported by significant statistical evidence. If the

constructed model reflects a proper decomposition of the problem, EcGA is a very powerful

algorithm [108], [107]. However, many real-world problems contain overlapping

dependencies, which cannot be accurately modeled by dividing the variables into disjoint

partitions. This can result in poor performance of EcGA on those problems.

4.4.3 Bayesian network – BOA, EBNA, LFDA

The Bayesian Optimization Algorithm (BOA) was developed by Martin Pelikan in [87],[88].

It uses Bayesian network (BN) to encode the structure of a problem (see 3.2.1):
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The methods and metric for BN building were adopted from the area of data mining, namely

from Heckerman, Geiger & Chickering [47]. The Bayessian Dirichlet metric (BDe) is used to

measure the quality of the network. A special case of  BD metric, so-called K2 metric, is used

when no prior information about the problem is available. For detailed explanation of

methods for learning BN structure using BD metric see chapter 3.3.5.



51

Many algorithms can be used to build up the network from parent population. The optimal
search is NP-hard, so in the implementation [91] a simple greedy algorithm was used with

only one edge addition in each step. It is a variant of Algorithm B from Buntine [21]. The

Algorithm B starts with an arc-less structure G and for each edge that can be added it

computes the K2 metrics of the structure G’ that can be constructed from G by adding this

edge. The edge giving the highest metrics improvement is then added to the network G. This

process is repeated until no more improvement is possible. By the term ‘edge can be added’

we mean the test whether the edge keeps the network acyclic, does not exceed the limit of

incoming edges and does not belong to the network yet. To reduce the space of networks,

number of incoming edges into each node in G is  limited to k. After the construction of DAG

G the parameters L of BN are estimated (see also 3.3.1) as:
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i ≈ , (4.10)

where ),( iπixm denotes the number of simultaneous occurrence of ix and iπ in the parent

population, whereas )( iπm denotes the number of occurrences of iπ .

The new individuals are generated using PLS algorithm (see 3.4.2). First, the variables
(genes) are ordered in the topological order according to BN and each iteration, the variables

whose parents are already determined are generated using the conditional probabilities. This is
repeated until all the variables are generated.

The complete BOA evolutionary cycle is shown in the following figure.
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genes  X0 ..... Xn-1

Fig. 4.3: BOA evolutionary cycle

The BOA algorithm attracted much attention during few last years. An empirical comparison

between BMDA and BOA can be found in [xiv]. A study on incorporating prior problem-
specific information to improve the performance of BOA in graph partitioning can be found

in [xi]. For theoretical analysis see [93], [99] or Pelikan‘s disertation [100].
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Also many improvements have been proposed. See [94] and [97] for a modification of the

BOA approach in order to model hierarchical problems using so called Huffman network. In
[95] a combination of BOA , BMDA and UMDA with clustering techniques is used to

optimize symmetrical problems. Very significant advancement is proposed in [96], where
BOA is adapted to include binary decision diagrams (BDD) that ensure compact

representation of Bayesian networks (for more detailed explanation of BDD advantages see
3.2.2 and for BD metrics with local structure see [24] and chapter 3.3.6).

Other work that uses Bayesian approaches to optimization with EDAs, but in this case the

Bayesian network paradigm is not used, is that of Zhang (see [120] and [121]).

A discussion of the use of Bayesian networks as an extension to tree models can also be found

in [9]. Another algorithm that uses Bayesian networks to model promising solutions was

independently developed by Etxeberria and Larrañaga in [32], who called it the Estimation of

Bayesian Network Algorithm (EBNA). Several criteria for guiding the search for good model

structures based on different scoring – BIC, K2+penalty as well as on testing conditional

(in)dependencies between variables (so called algorithm PC) have been implemented in [68].

For application of the EBNA approach see [10] and [11].

Műhlenbein and Mahnig [79] later improved the original FDA by using Bayesian networks

together with the greedy algorithm for learning the networks described above. The

modification of FDA was named the Learning Factorized Distribution Algorithm (LFDA).
The complexity of learnt model is controlled by the BIC criterion in conjunction with the

restriction of the maximum number of incoming edges in BN. Another two variants FDA-BC
and FDA-SC have been proposed by Ochoa et. al. in [85] and [86].

Fig. 4.4: Example of dependency graph for: a) EcGA, b)BOA/EBNA/LFDA

4.5 Continuous probabilistic models

There are two basic approaches to extending EDAs for problems with real parameters:
1. Map the problem to the domain of discrete strings, solve the discrete problem, and

map the solution back to the problem's original domain.

2. Let the parameters be continuous (like in evolution strategies) and use a proper

model for this continuous domain.

The first approach has been used in genetic and evolutionary algorithms for decades, but is

not scalable in the EDA framework, since the complexity of required discrete probabilistic

model exponentially increases with the required precision of solution. See [98] for example

of BOA with fixed-width and fixed-height histogram discretization. This section reviews

EDAs based on the second approach.
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4.5.1 Without dependencies – UMDAc, SHCLVND, PBILc

All algorithms discussed in this section perform similarly, since they factorize the joint
probability density function as a product of one-dimensional and independent normal

densities (see also 3.3.2):
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The Univariate Marginal Distribution Algorithm for Continuous domains (UMDAc) was
introduced by Larrañaga et. al. in [67] and [69]. For each variable two parameters are

estimated from the parent population – the mean value and the standard deviation – using
equations (3.17) and (3.18).

Rudlof and Köppen in their SHCLVND (Stochastic Hill Climbing with Learning by Vectors

of Normal Distributions, [103]) replace the population of solutions by a vector of mean values

of Gaussian normal distribution µi for each optimized variable. The standard deviation σ is

stored globally and it is the same for all variables. After generating a number of new

solutions, the Hebbian learning rule is used to shift the mean values µi towards the best of the

generated solutions and the standard deviation σ is reduced to make future exploration of the

search space narrower.

In [111] Sebag and Ducoulombier implemented PBILC – the extension of PBIL to continuous

spaces. The adaptation of the vector of means µ={µ 0,..., µ n-1} is done as:

( )worst
i

best
i

best
iii yyytµtµ −++−=+ 21)()1()1( αα , (4.12)

where α is the learning parameter and yi
best1 , yi

best2 and yi
worst denote the i-th coordinate of 

best, second best and worst individual in the population. Also various heuristics for modifying

the σ parameter have been exploited.

Another implementation of real-coded EDA based on interval adaptation can be found in

Servet et. al. [112]. This algorithm stores for each variable left and right boundary of its

interval and the frequency of occurrence of alleles from the right half of the interval. Each

time new solutions are generated using the corresponding intervals, the best solutions are

selected and the frequencies are shifted towards them. If these frequencies get close to either 0

or 1, the interval is reduced to the corresponding half of it.

4.5.2 Bivariate dependencies - MIMICc
G

MIMICc
G

was introduced by Larrañaga et. al. in [67] and [69]. The underlying probability
model for neighbouring pair of variables in the chain is assumed to be a bivariate Gaussian. In

the first step of structure learning, the variable with the smallest sample variance is chosen. In
following steps, the variables Yi with the smallest value of

2

222

j

jiji

Y

YYYY

σ

σσσ −
(4.13)

are linked to the chain (here Yj denotes the previously linked variable).
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4.5.3 Multivariate normal distribution – EMNA

The EMNA approach [70] is based on the direct estimation of a multivariate normal density
function at each generation. The vector of means and the variance-covariance matrix are

estimated using their straightforward mathematical definition (3.17) and (3.20). There is no

need to search for the dependency graph in EMNA, because the resulting probability model is

equivalent to Gaussian network with complete dependency graph. However, the

straightforward mathematical form of multivariate normal density function is hard to sample

and needs to be converted into factorized form.

4.5.4 Gaussian network – EGNA

The Gaussian network is the basic model used by Larrañaga et al. in their EGNA algorithm
[67]. The value of continuous parameter Xi is defined by the normal Gaussian probability

density function, where the mean value µi of Xi is affected by linear combination of “parent”

values (see 3.2.3). In the EGNAee the Gaussian network is induced at each generation by

means of edge exclusion tests, whereas in the EGNABGe the Bayesian score ([38]) is used  and

in EGNABIC the BIC score  (3.3.4) is used. For more details see [66],[68] and [69].

Application of EGNA can be found in [10].

This simple-peak Gaussian model is not able to effectively describe and process non-linearity

and symmetry (the shape of reliable sampling region is elliptical), as it is shown in 3.2.4.

Moreover, in EGNA there have been problems with using higher order factorizations, because

the multivariate statistical analysis for getting the exact coefficients of Gaussian network is

computationally prohibitive.

4.5.5 Gaussian mixtures and kernels – IDEA

The IDEA (Iterated Density Estimation Evolutionary Algorithm) framework was proposed by

Bosman and Thierens in [14].

In addition to using one probability density function (like in EGNA) it is also possible to use

each solution as a source of elementary normal PDF - the Gaussian kernel (see [19] or 3.2.5

for details). Another models within the IDEA framework are based on the mixture

distributions. First, the clustering strategy is applied to divide the samples into clusters and for

each cluster one Gaussian network is used. We assume that the space of optimized parameters

can be divided into some few regions where the fitness function has only single local extreme.

This is more general than usage of the single linear regression for the entire space of

parameters. Moreover, efficient EM algorithm can be utilized to search for the mixture

effectively. For more details on learning mixture distributions see the explanation in chapter

3.3.8. Some experiments in continuous optimization using IDEA can be found in [16], [17]

and [18].

However, the drawback of all clustering techniques (including IDEA) is that different clusters
do not share any mutual information. The sampling of solutions in all regions is performed

independently, even if solutions from different regions might have some common features and
might have the same important building blocks. This becomes more evident in the case of

Gaussian kernels, where the linkage information is completely missing and the performance
of optimization depends mainly on the density of search space sampling and kernel variance.
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4.6 Continuous EDA vs. evolution strategies

Generally, we can state that classical Evolution Strategies (ES) also use normal PDFs. One
might therefore say that there already exist algorithms that operate in a similar fashion as the

continuous EDAs. In this section, I describe how ES differs from EDAs and point out that
there are fundamental differences that distinguish the approaches from one another. My goal

is not to go give a description of ES, but to point out the similarities and differences. This

section is a summary of more detailed comparison which can be found in [19].

In ES, the parents are recombined and subsequently mutated as is the case for the simple GAs.

However, the mutation operator has always been the most important one for ES. This operator

samples from normal PDFs and makes the ES appear similar to the EDAs with normal PDFs.

With each variable, a normal PDF is associated. Each normal PDF can either be allowed to

have identical standard deviations in each dimension, allowed to be aligned with the axes of

the search space without necessarily identical standard deviations or allowed to be any

arbitrary n-dimensional normal PDF. This comes down to a covariance matrix with

respectively either similar entries on the diagonal and zero entries off the diagonal, non-
similar entries on the diagonal and zero entries off the diagonal or an arbitrary symmetric

covariance matrix.

However, the way in which the normal PDF is found in the next generation is different. In the
EDA approach the PDF is estimated from the promising part of population. For the ES

approach however, the variables that code the matrix are incorporated into the genome. The
direction as well as the length of the step in which we move the normal PDF is subject to

evolution itself. This means that we can regard the ES approach as moving the normal PDF in
some direction. In other words, the ES in this case can be seen as evolving to find local

gradient information on how to best traverse the search space.

Concluding, the two approaches are fundamentally different. This becomes clear for instance

on problems in which local information is important, such as Rosenbrock's function, which

has a narrow valley. The bottom of this valley has a unique minimum. However, the gradient

along the bottom of the valley is very small. EDA based approach will quite easily find the

valley, but will not be able to traverse the valley to find the global minimum. The reason for

this is that density estimation converges on a certain part of the valley since samples are only

available in that part of the search space. On the other hand, once the ES is inside the valley, it

can adapt its mutation direction and stepsize to follow the valley to its minimum in a gradient

descent fashion. Even though this is a time consuming process, the ES is not as likely to
prematurely converge on such a problem as is the EDA approach.
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5 Research objectives

5.1 Open problems

There is currently a considerable amount of research surrounding Estimation of Distribution

Algorithms. However, the following open problems can be identified:

1. There does not appear to be a complete formal framework for EDAs.

2. The research on general models for continuous domains should be refined – the

present models are computationally expensive or too simplified.
3. Computational complexity of model construction significantly restricts the size of

solvable problems.
4. Existing EDAs are not applicable to problems with multiple objectives.

5. Modular development system for rapid prototyping of EDA applications is missing.
6. The efficiency of EDAs for real world problems was not investigated – most empirical

studies deal only with synthetic benchmarks with bounded degree of epistasis.

5.2 Research outline

This dissertation solves all the open problems stated in previous section. The main goals

include :

1. Identification of the common features of existing EDAs and creation of their formal

description (chapter 6).

2. Development of new probabilistic model which is effectively applicable to real-valued

or even mixed optimization problems (chapter 8).

3. Time analysis of main EDA components for the purpose of algorithmic simplification

and parallel implementation. Development of new parallel methods and heuristics

providing for realtime performance (chapter 9).
4. Extension of EDA framework for multiobjective optimization (chapter 10).

5. Design and implementation of modular development system for rapid prototyping of
EDA applications (chapter 11).

6. Investigation of EDA performance on real world problems, namely from the area of
circuit design (throughout all experiments, for example see chapter 7 for definition of

hypergraph partitioning benchmark and its multiobjective version).
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Chronologically my research can be divided into two epochs. In the first epoch I used for

experiments the original Pelikan’s implementation of simple BOA algorithm with Bayesian
network model (see [91]). A number of modifications to this baseline code have been

suggested and its capabilities have been improved according to the established goals. In the
second epoch I implemented my own MBOA algorithm with mixed binary decision trees and

used it as a basis for further improvements. This subdivision is crucial to clear up the
organization of following chapters. Each of the chapters 8-10 is devoted to different goal.

Usually in its first subsection the problem is introduced and analyzed, in the second
subsection the solution for BOA is proposed and in the last subsection the solution for MBOA

is proposed. The detailed guidelines are shown in the following table. 

Tab. 5.1. The organization of chapters 8-10

Probability model

Goal

Bayesian network (original

Pelikan’s BOA core [91])

Mixed Binary Decision

Trees (my own code)

Solving continuous & mixed

problems

incompetent model for

continuous domain

chapter 8.2

(implemented MBOA)

Parallel processing chapter 9.3 (simulated PBOA)

& 9.4 (implemented DBOA)

chapter 9.5

(simulated in Transim)

Multiobjective optimization chapter 10.2

(implemented Pareto BOA)

chapter 10.3

(implemented BMOA)
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6 Theoretical background

6.1 Formal approach to EDAs

The following paragraphs describe my original formal definition of Estimation of Distribution

Algorithm. The reasons for formal approaches are straightforward since: (i) problem

specification is rigorous, (ii) a mathematical apparatus can be applied to investigate their

properties, and (iii) tools for automatic analysis, verification and design can be developed. As

the baseline I use Back’s formal definition of evolutionary algorithms presented in [2] and

shortly summarized in chapter 2.2. I use also some symbols from EDA notation defined in
chapter 4.1.

Definition 6.1 (Estimation of Distribution Algorithm) :

An Estimation of Distribution Algorithm is defined as an 11-tuple

( )λµιωρ ,,,,,,,,,EDA rsΨΦ,I M= , (6.1)

where:

(i) I=A
n

is the space of individuals of length n over the domain A,

(ii) Φ : I→R denotes a fitness function assigning real values to individuals (in EDA

framework often denoted as F(x)),

(iii) { }]1,0[:| →ΜΜ= IM is the space of admissible probabilistic models,

(iv) λµλµ ++ → IIΨ : is the generation transition function,

(v) ρ : I
µ×M→R denotes the metrics for evaluating probabilistic models,

(vi) ω : M→ Iλ denotes the model sampling operator (non-deterministic),

(vii) µλµ IIs →+: is the (µ+λ)-selection operator, which selects the parent population D(t)

from population P(t). The most frequent truncation selection operator is defined as

s(µ+λ)(P(t))=D(t) such that:∃x∈P(t) \ D(t) : (∃x’∈D(t) : Φ(x) > Φ (x’)),

(viii) λµλλµ +++ → IIr : is the replacement operator, which creates new population P(t+1)

from the old population P(t) and offspring population O(t). The most frequent replace-

worst operator is defined as P(t+1) = r(µ+λ+λ)(P(t),O(t))= s(µ+λ)(P(t))∪O(t),

(ix) },{: falsetrueI →+λµι is the termination criterion,

(x) µ is the number of parent individuals (often denoted as N), while λ denotes the number of

offspring individuals (usually equal to N, so L = λ+µ = 2*N).

Definition 6.1 is based on high-level concept, where each probabilistic model M is a mapping

from the space of strings to the space of probability values. Since M specifies some
probability distribution, it must hold

1)( =∑
∈I

M

x

x (6.2)

This concept is also extendable for continuous domains I⊆Rn, where M specifies the

probability density function:

1)( =∫
∈I

dM

y

yy (6.3)
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Definition 6.2 (Optimal choice of model) :

A choice of model Μ*∈M is optimal with respect to the parent population D(t)∈I
µ

and

metrics ρ : I
µ×M→R, iff

)),((maxarg* MtDM
M

ρ
M∈

= (6.4)

Note that without loss of generality I considered a metrics which should be maximized.

Definition 6.3 (Competent sampling of model) :
Assume that there exists some arbitrary ordering among the genes from I (binary relation “<”)

and that FM(x) denotes cumulative probability distribution with respect to the model M:

∑
<

∈∀
=

xx
x

xx

'
'

)'()(

I
M MF (6.5) 

or cumulative probability density function

∫=
y

yyy

"0"

')'()( dMMF , (6.6)

where “0” denotes infimum of all genes from I with respect to the relation “<”.  The

competent model sampling operator is a non-deterministic function ω : M→ I
λ

defined as

)()( 1 χω −= MM F , (6.7)
 

where χ∈[0,1] denotes an uniform random variable sampled anew for each call of sampling

operator. Also the random generation of initial population can be described as the competent

sampling of uniform model, which has the following property

||

1
)'()(:',

I
MMI uniformuniform ==∈∀ xxxx . (6.8)

 

Thus, competent sampling operator ω(M) generates individuals with frequency asymptotically

proportional to their probability in M. For example Probabilistic Logic Sampling (PLS, see

3.4.2) is competent sampling operator, but Gibbs sampling (see 3.4.1) is not – it only

approximates the PLS.

Definition 6.4 (Offspring population) :

A population O(t)∈I
λ

obtained by repetitive sampling of the optimal model of parent

population D(t)∈I
µ 

is called offspring population:
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Definition 6.5 (Generation transition function of EDA algorithm) :

Given an EDA algorithm with replacement operator λµλλµ +++ → IIr : , the function

Ψ : Iµ+λ→I
µ+λ

is called generation transition function of EDA algorithm iff
))(),(())(( tOtPrtP =Ψ , (6.10)

where P(t)∈I
µ+λ

is the population of individuals in time t, and O(t)∈I
λ

is its corresponding

offspring population from definition 6.4.  Using all the EDA components, Ψ  can be written

as:















=Ψ

∈
))),(((maxarg),())(( MtPstPrtP

M
ρω λ

M
. (6.11)



61

Definition 6.6 (Population sequence of EDA algorithm) :

Given an EDA algorithm with generation transition function Ψ : Iµ+λ→I
µ+λ

and an initial

population P(0)∈Iµ+λ, the sequence P(0), P(1), P(2),… is called a population sequence or

evolution of P(0) iff
))(()1(:0 tPtPt Ψ=+≥∀ (6.12)

Definition 6.7 (Running time of EDA algorithm) :

Given an EDA algorithm with generation transition function Ψ : Iµ+λ→Iµ+λ and an initial

population P(0)∈Iµ+λ, the time T is called running time of EDA algorithm iff

( ){ }truePtT
t =ΨΝ∈= ))0((|min ι . (6.13)

Like in the case of classical GAs, the termination is often based on bias measurement (see

equations 2.4 and 2.5).

Definition 6.8 (Result of EDA algorithm) :

Given an EDA algorithm with generation transition function Ψ : Iµ+λ→Iµ+λ and an initial

population P(0)∈I
µ+λ

, the chromozome x*∈I is called a result of EDA algorithm iff

)(minarg* xx Φ= , for every U
T

t

t
P

0

))0((
=

Ψ∈x . (6.14)

Definition 6.9 (Bayesian network) :

Bayesian network is a pair B=(G,L), where G=(V,E)  is a Directed Acyclic Graph (DAG) with

V={0,…,n-1}, E⊆V×V ; and L is a set of local CPDs

L = { Li | Li : ]1,0[
|| →× i

Π
AA , i ∈ {0,…,n-1}} (6.15)

where }),(|{ EijX ji ∈=Π .

Since each Li specifies local conditional probability distribution p(Xi|Πi), it must hold

1),(:)(

)(

=∈∀ ∑
∈∀

ii
XDomx

iiiii xDom πΠπ L (6.16)

For EDA algorithms with simpler models (UMDA, BMDA, etc.) the formal definition can be

easily obtained by modifying the domain of Li and by specifying additional constraints for E.

For example in the case of BMDA we allow only 1|| ≤iΠ , such that

Li :




=→×
∅=→
1||]1,0[

]1,0[

i

i

ifAA

ifA

Π
Π

EDA algorithms with decision graphs (resp. trees) can be formally defined after introducing

some reflexive, symmetrical and transitive binary relation
||||

ii
ΠΠ

AAi ×⊆ϕ (equivalence) for

each decision graph, such that vuvuvu i
Π

,:,
|| ⇔∈∀ iA ϕ traverse to the same leaf. These

equivalence constraints imply from context-specific independence statements (CSI, see

3.2.2). Now Li can be defined as

Li : ( ) ]1,0[
|| →× iAA ϕi

Π
, (6.17)

where iA ϕ||
i

Π
is a quotient set containing one element for each ϕi-equivalence class from

the set
||

i
Π

A .
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You see that expression (6.17) does not define more general probability distribution than
(6.15), but it requires less parameters which can be (on average) estimated more

robustly – the reasons for preferring decision graphs are quantitative.

Theorem 6.1 (Model factorization) :
Each probabilistic model M (for discrete domains) can be expressed in the factorized form as

Bayesian network B=(G,L), such that
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Proof: Using the probability chain rule each discrete joint probability function can be

factorized for example as
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The tabular representation of Li can be obtained from the i-th fraction by assigning instances

to variables X0,...,Xi. In the case of low-epistatic problems the dependency graph can be

further „sparsed“ by conditional independence tests (Xj can be omitted from Πi iff

)\|()|( jiiii XXpXp ΠΠ = ).

Note that the same theorem does not hold for Gaussian network, because it is not guaranteed

that the factored local terms fit the linear regression model.

6.2 Convergence problems and possible EDA improvements

This chapter analyzes the role of probabilistic model in EDA algorithm and proposes future
improvements which imply from relation between probabilistic model and other parts of

EDA. The goal is to provide qualitative description of EDA convergence under some
assumptions, not to provide quantitative analysis, which can be found elsewhere (see papers

[93] and [99]).

6.2.1 Model accuracy

The key issue in EDAs is the role of accuracy of probabilistic model construction. To clarify

it, I formulated the following theorem:

Theorem 6.2 (Distribution preservation) :

If the EDA algorithm fulfills the following conditions, then the distribution of individuals in

the generated offspring population approaches the distribution of individuals in the parent

population.

The sufficient (but not necessary) conditions are:
1. All possible probabilistic models are admissible

2. Entropy-based metrics is used for model selection (for example DLdata from MDL)
3. No model complexity penalty is used (DLtab = DLgraph = 0)

4. Competent sampling operator is used
5. Population is sufficiently large
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Proof: Let pD(t)(X) denote the distribution of individuals in the parent population D(t). The
optimal model is selected as
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The population contains N. pD(t)(x) copies of individual x, thus
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Assume that 0)(: >∀ xx M , such that log(0) error does not occur. Since all probabilistic

models are admissible, in M there must exist a model M*, for which the sum gives minimum

(from the Gibbs theorem it follows that
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where the equality holds iff )()(: )( xxx Mp tD =∀ ). Thus M* is either identical to pD(t)(X) or

contains the decomposition of pD(t)(X) with the correct independence assertions. By its
competent sampling EDA generates offspring population O(t).

)()(*)( )()( XXX tDtO pMp =≈

Because this sampling is not deterministic, the offspring population size needs to be

sufficiently large in order that the equality pO(t)(X)= pD(t)(X) holds.

This theorem confirms that EDA algorithm with overfitted probabilistic model is unable to

introduce new genetic material. This is one extreme, analogical to pure reproduction scenario

for GAs (see 2.3.1). Another extreme is EDA algorithm with very rough probabilistic model,

which massively explores the new search space. Obviously, the tradeoff between exploration

and exploitation of search space is controlled by accuracy of probabilistic model construction.

Simple models are less conservative, allow for escaping from local extremes, but are more

sensitive to benchmark deceptiveness.

Concluding, a model M that perfectly fits the data D (i.e. an apparently optimal solution) may

be less desirable than one that does not fit the data. This is known as overfit or
overspecialization. The world is inherently simple. Therefore the smallest model that is

consistent with the samples is the one that is most likely to deal with unknown solutions
correctly. The problem of trading off the simplicity of a model with how well it fits the

training data is a well-studied problem. In statistics this is known as the bias-variance
tradeoff, in Bayesian inference it is known as penalized likelihood, and in pattern

recognition/machine learning it  manifests itself as the minimum message length (MML) or
minimum description length problem (MDL).

6.2.2 Fitness nonlinearity checking

Very significant improvement of EDA algorithm can be proposed after investigating the

relationship between the probability which is assigned to each individual by the probabilistic

model and the fitness of this individual.
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Consider  the simple EDA algorithm:

index x0...xn-1 fitness

. . .

. . .

. . .

selection
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probabilistic model
M(x)

D(t)

P(t)

O(t)

t:=t+1

index x0...xn-1 fitness

. . .

. . .

. . .

index x0...xn-1 fitness

. . .

. . .

. . .

Fig. 6.1: Illustration of simple EDA cycle.

Without loss of generality let us assume that the parents are selected by fitness-proportional

selection (but it can be shown that similar conclusion will be obtained for truncation selection,

tournament selection, etc.). In the first generation the individuals for D(0) are selected
proportionally from the initial population P(0):
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Again, let us focus on the ideal case with overfitted model. From previous chapter we know

that under this pure reproduction scenario the probability distribution M(x) is equal to

distribution of individuals in D(t):

∑
∈∀

= =∈∈=

)0('

0
)'(

)(
))0(|)0(()(

P

t
F

F
PDpM

x

x

x
xxx . (6.21)

It the offspring population is of sufficient size, it also holds
)())0(|)0(( xMPOp =∈∈ xx (6.22)

For simplicity, let us assume that the replacement is defined as P(t+1) = O(t), which is quite

common for simple GA without elitism.

Then, in second generation it holds:
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Generally, in generation number t the ideal probability distribution should correspond to t

iterations of proportional selection operator:
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, (6.24)

where c is constant for given t. It can be shown, that under pure reproduction scenario the

model of EDA algorithm converges to one individual with the highest fitness value when t

approaches infinity.

This equation can be generalized for schema processing - we can view every schema as

having a fitness value, which is defined as the average fitness of its instances. Provided that
schemas are selected with a probability proportional to their fitness, and reproduced by

sampling of overfitted model, the probability of schema H in generation t is again:

)(.)( HFcHM t
t = (6.25)

The significance of this equation is remarkable. Every computation with probabilities in

EDAs can be converted into computation with fitness values! I strongly believe that future

EDAs should use the fitness values for linkage learning. The present EDA algorithms

discover linkage by statistical analysis methods, but the required population size is large. The

fitness nonlinearity checking is supposed to be more accurate and should work on smaller

populations.

6.2.3 Bayesian evolution

From equation (6.21) you see that under pure reproduction scenario the probability

distribution of individual x is conditioned on its occurrence in the initial population
P(0). This effect can be also described using the Bayesian framework. See the following

figure which provides more intuitive view of meaning of probabilistic model.

All solutions

Feasible solutions

P(0)...One concrete population

S = Promissing part of all solutions

D = Promissing part of population

M = probabilistic model

unuseful re-exploration

bad abstraction

(unuseful generality)

good abstraction

(useful generality)

likelihood P(D|M)

inaccuracy of model

non-generality of model

(due to overfitting)

Fig. 6.2: The role of probabilistic model within EDA framework. Without loss of generality the

situation in the first generation is analyzed. Note that the sets of individuals are shown with  solid
boundary, but in real world the boundaries are probabilistic or fuzzy.
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First, the random initial population P(0) is generated from the set of feasible solutions. Then,

the selection operator takes P(0) and it returns its superior part denoted D(0). The Estimation
of Distribution Algorithm then tries to build the probabilistic model M for dataset D(0), using

well known Bayesian or non-Bayesian methods adopted from the area of data mining and
knowledge discovery.

The key issue is the relation between the set of individuals generated by sampling model M

and the set S which denotes the globally superior part of feasible solutions. In the desired case
both sets are equal. But in the real case the complete set S is not available, only its concrete

subset D(0) obtained from concrete P(0). We would like EDA to abstract the common

properties of solutions from D(0) and to include them into estimated model M, assuming that

these properties are the ones that make the fitness of solutions in S superior.

Thus, the key issue in EDA algorithms is to estimate and sample the distribution p(x∈S) as

reliably as possible, independently of the optimization environment. For example in the first

generation it should be independent of the choice of initial population:

∑
∀

∈∈∈=∈
)0(

))0(()).0(|)0(()(

P

PxpPxDxpSxp (6.26)

This brings us into Bayesian character of evolutionary process itself, which was firstly

recognized by Gottvald in [43]. He proposed that the result of each optimization step should

be seen only within the context of previous optimization steps performed, using the Bayesian

theorem to recursively update the knowledge about the problem. I believe that this concept of

Bayesian evolution enables future improvements of EDA algorithms.

6.2.4 Solution encoding

It is desirable that the encoding makes the representation as robust as possible. This means

that even if a piece of the representation/string is randomly changed, it will still represent a
similar individual. This is the key property determining the effectivity of linkage

identification. Intuitively, it is unreasonable to look for some dependencies in the genotype
domain if similar genotypes are decoded into phenotypes of completely distinct meaning and

quality.
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7 Selected benchmarks

7.1 Hypergraph partitioning

The decomposition of the system such as communication networks, complex data base system

and VLSI layout are usual tasks to be solved. These tasks can be often formalized as a 

partitioning of hypergraph into k partitions – it is a well known problem of graph theory.

Throughout the experiments I have investigated a special case of k-way partitioning for k=2,

called bisectioning. If necessary the k-way partitioning can be found by recursive 2-way

bisectioning (see [xii]).

The particular bisectioning problem is defined as follows: Let us assume a  hypergraph
H=(V,E), with n =|V| nodes and m = |E| edges. We are supposed to find that bisection 

(V1,V2) of V into equal sized parts (|V1|=|V2|, V=V1∪V2, V1∩V2=∅) that minimizes the

number of hyperedges that simultaneously coincide with both sets V1, V2. Such a set of

external hyperedges can be denoted as Ecut(V1,V2). The primary objective function/cost of the
hypergraph bisectioning is the number of external hyperedges, C1, shortly called cut size:

|}|{||),(|),(1 212121 ∅≠∩∧∅≠∩∈== VeVeEeVVEVVC cut (7.1)

Each solution of the bisection is encoded as a binary string x=(x0, x1, …, xn-1). The value of xi

represents the partition number, the index i specifies the node number. For the case of simple

graph bisectioning we have proposed the following cut size calculation:
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where the coefficient rij∈ equals to one in case the net/edge exists between node i and j,

otherwise rij = 0. We are also able to deal with multigraphs, by setting rij according to the

degree of edge between i and j.

In case of k-way partitioning the equation for C1 is not binary, because the string is

alphabetical:
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In case of hypergraphs the useful term for cost is quite complex, so we use the direct

enumeration of external edges instead.
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V1 V2

e5

e1

e2

e3
e4

external edges Ecut={e1,e4}

Fig. 7.1: An illustration of graph bisection with C1=2.

All the sampling operators (see chapter 3.4) used in EDAs produce individuals with arbitrary

balance. To satisfy the balance constraint (7.3), a repair operator has to be used. It normalizes

each individual to keep its balance in the considered bound. Naturally, this operation can

partly change the cut size, but this effect does not cause an extra genetic drift of the

population, because for each individual the genes are selected for normalization randomly.

Furthermore, this random normalization does not introduce any statistical bias to the
population,  so the model estimation algorithm is not confused.

Four sets of graph structures are used as benchmarks:

1. Regular graphs [110] with grid structure (mostly square), denoted by Gridn, where n

specifies the number of nodes. Graphs with the horizontal bottle-neck in the middle

are denoted Gridn.c, where c specifies the bottleneck’s minimal cut size. The regular

graphs with bottleneck appear to be a proper test benchmarks with many local optima

and one known global optimum.

Fig. 7.2: An illustration of regular graph Grid64.2 with 2-edges horizontal bottleneck in the dashed
cut line.

2. Hypergraphs representing real circuits, denoted by ICn. The global optima is not 

known. The structure of circuits can be characterized as a random logic. The

hypergraph IC67 consists of 67 nodes and 134 edges/nets; IC116 consists of 116
nodes and  329 edges/nets; and IC151 consists of 151 nodes and 419 edges/nets. Also

a fractal circuit Fract149 belongs to the hypergraphs, it consists of 149 nodes and 147
edges/nets.

3. Geometric graphs, denoted by Un.d. These graphs are generated randomly - n vertices

are placed in the unit square and their coordinates are chosen uniformly. An edge

exists between two vertices if their Euclidean distance is l or less, where the average

expected vertex degree is specified by d=nπ l
2
.
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Fig. 7.3: An example of geometric graph - U120.5.

4. Caterpillar graphs CATk_n, with n nodes, k articulations and (n-k)/k legs for each

articulation.

Fig. 7.4: An illustration of caterpillar graph - CAT3_21.

7.2 Multiobjective hypergraph partitioning

For some experiments with multiobjective BOA algorithm a multiobjective hypergraph
partitioning benchmark was used. It is an extension of hypergraph partitioning, where the

balance constraint is replaced by second cost function C2, shortly called “balance”:

||||),(2 2121 VVVVC −= (7.5)

For binary encoded solutions X=(x0, x1, …, xn-1) of hypergraph bisectioning the following
form of C2 function was derived:
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7.3 Multiobjective knapsack problem

In the field of multi-objective optimization the 0/1 knapsack problem has become a

standard benchmark. Results of several comparative case studies are available in the

literature, accompanied by test data through the Internet.

Generally, the  0/1 knapsack problem consists of set of items, weight and profit associated

with each item, and an upper bound of the capacity of the knapsack. The task is to find  a

subset of items which maximizes the sum of the profits in the subset, yet all selected items fit

into the knapsack so as the total weight does not exceed the given capacity.
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This single objective problem can be extended to multiobjective problem by allowing more

than one knapsack:

weight w1,1

profit p1,1

KNAPSACK 1: KNAPSACK 2:

Capacity c1 Capacity c2

item 1

weight w2,1

profit p2,1

Fig. 7.5: An illustration of multiobjective knapsack problem.

Formally, the multiobjective 0/1 knapsack problem is defined in the following way: Given a
set of n items and a set of m knapsacks, with

jip , profit of item j according to knapsack i

jiw , weight  of item j according to knapsack i

ci capacity of  knapsack i

find a vector x = (x0 ,…,xn-1) ∈ {0,1}
n
, such that xj =1 iff item j is selected and 

F(x)=(F1(x),…,Fm(x)) is maximum, where
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and  for which the  constraint is fulfilled
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The complexity of the problem solved  depends on the values of knapsack capacity.

According to [123] I used the knapsack capacities stated by the equation:
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The encoding of solution into chromosome is realized by binary string of the length n. To

satisfy the capacity constraints it is necessary to use repair mechanism on the generated
offspring to be the feasible one. The repair algorithm removes items from the knapsack step

by step until the capacity constraints are fulfilled. The order in which the items are deleted is

determined by the maximum profit/weight ratio per item; the maximum profit/weight ratio qj 

is given by the equation
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jim
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,

,

1
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=
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The items are considered in increasing order of the qj, i.e. item with the lowest profit per

weight unit is removed first. This mechanism respects the capacity constraints while
decreasing the overall profit as little as possible.
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7.4 Additively decomposable functions with binary parameters

A OneMax function is a function whose value depends only on the number of ones in an input
string. The function values for the strings with the same number of ones are equal:
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The other additively decomposable discrete functions are created by concatenating basis

functions of a small order. The contributions of all the functions are added together to

determine the overall fitness. Let us have a function Fk defined for strings of length k. Then,
the function additively composed of l functions Fk is defined as
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where X is the set of n variables and Si for i∈{0,…,l-1} are subsets of k variables from X. Sets

Si can be either overlapping or non-overlapping and they can be mapped onto a string (the

inner representation of a solution) so that the variables from one set are either mapped close to

each other or spread throughout the whole string. Each variable will be required to contribute

to the function through some of the subfunction. A function composed in this fashion is

clearly additively decomposable of the order of the subfunctions it was composed with.

A deceptive function of order 3, denoted by 3-deceptive, is composed of separable building

blocks of order 3, each with a fitness contribution of
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where u is the number of ones in the building block. The overall fitness is computed by

summing the contributions of individual BBs.

The trap function of order 5, denoted by trap-5,  is defined as the sum of contributions of
distinct building blocks of length n=5, each of which is given by
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uifu
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54
)(5 (7.14)

where u is the number of ones in the building block. Both functions have one global optimum
in 111 …1 and a deceptive attractor in 000 …0.

Tab. 7.1. Segments of 3-deceptive function

Triplet 000 001 010 011 100 101 110 111

F3deceptive 0,9 0,8 0,8 0 0,8 0 0 1

On the complete table of F3deceptive values we can demonstrate its deceptivity. The average

fitness for schema “0**” is (0.9+0.8+0.8+0.4)/4=0.625, but the average fitness for schema

“1**” is (0.8+0+0+1)/4=0.45. Thus, the classical GA prefers the schema “0**”, even if the
schema “1**” leads to global optimum.
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7.5 Functions with continuous arguments

In chapter 8 some well-known continuous benchmarks are used, such as Griewank,
Michalewicz and Rosenbrock function, see [19].  Their definition is given in Tab. 7.2, all of

the test functions should be minimized. For testing I used benchmark instances with n=10
parameters, the optimization stops when a maximum precision of 6 digits is reached.

Tab. 7.2. Continuous benchmarks

Name Definition Domain

Griewank
1
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100
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i iii yyy
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n

See also Fig. 7.5 – Fig. 7.7 where a fitness landscape of benchmark instances with n=2

parameters is shown.

Fig. 7.6: 2-dimensional Griewank function.
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Fig. 7.7: 2-dimensional Michalewicz function.

Fig. 7.8: 2-dimensional Rosenbrock function.



74

An analogy of discrete 2-deceptive function is the continuous 2-deceptive function, defined as
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Non-overlapping pairs of neighboring variables contribute to the overall fitness by
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where F2c is a one-dimensional deceptive function defined on [0,1] as
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Fig. 7.9: Function F2c.

If both variables are treated independently, the search will progress toward the local optimum.

Moreover, the global optimum is very isolated and its attraction is very small. This represents

quite difficult benchmark.

7.6 Functions with mixed parameters

For experiments with MBOA algorithm (see 8.5) I prepared my own mixed continuous-
discrete benchmark. Each chromozome is composed of binary genes bi and continuous genes

ci, where each pair (bi,ci) is an argument of primitive deceptive-like function Fm:
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8 BOA for continuous and discrete problems

In this chapter I identify some disadvantages of present probabilistic models used in EDAs to

solve optimization problems with continuous parameters and propose more general and

efficient model based on the decision trees. In my Mixed Bayesian Optimization Algorithm

(MBOA) I implemented the decision trees with mixed decision nodes, inspired by the CART

model, so MBOA is suitable for both continuous and/or discrete optimization problems.

8.1 Present approaches

8.1.1 BOA with marginal histogram models

The most straightforward way how to solve continuous benchmarks by BOA is to transform

each continuous parameter into binary parameter and use the Bayesian network model for

such a binary encoding.
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Fig. 8.1: Converting continuous values of variable Yi into bins of discrete variable Xi using fixed width
histogram (left) and fixed height histogram (right).

See the papers [118] and [98] for further details on this approach. Unfortunately, this

approach is not scalable. With the increasing precision of encoding the BN parameter

k becomes unmanageably large and the complexity of BN construction grows exponentially.

8.1.2 IDEA and EGNA

The other way of solving continuous optimization problem by EDA is to let the parameters Yi

be continuous (like in evolutionary strategies) and find a proper model for this continuous

domain. For continuous domains there is an IDEA (see [19] or 4.5.4) approach  used to

discover and encode the parameter dependencies – estimating Gaussian networks model

(which has beeen used also in EGNA algorithm, see 4.5.4), Gaussian kernels and mixtures of

Gaussians. See chapter 3.3.7 and 3.3.8 for description of methods for learning these models. 
In chapter 3.2.4 I show that the simple Gaussian network is not accurate and some clustering

needs to be preprocessed. The clustering models (like mixture of Gaussians) are accurate, but
not compatible with discrete domains. This is the  reason for proposing new model.
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8.2 Mixed decision trees model for local parameters

Binary decision trees (BDT) have been successfully used in EDAs [96] for discrete
optimization problems – in combination with the Bayesian network. In Mixed Bayesian

Optimization Algorithm (MBOA) design I have extra focused on non-binary problems too.

8.2.1 Topology of CART model

From the area of data mining I adopted the idea of CART model [20] (Classification and

Regression Tree), which is usable also for continuous and categorical splits:

f(X0)=...f(X0)=...

x1

x2

f(X0)=...

x1

x1

x2∈{0,1} x2∈{3,4}

x1<3.2 x1>3.2

x1<7 x1>7

x1>5.8

f(X0)=...

f(X0)=...

x1<5.8

Fig. 8.2: An example of CART model which comprises of one categorical split on variable X2 and

three continuous splits on variable X1. The leaf nodes conditionally determine the probability density

functions for target variable X0.

From the CART model I adopted the idea of mixed splitting, but for time simplicity I omitted

the additional CART methods, e.g. the final pruning of constructed tree.

8.2.2 Recursive splitting

For each “target” random variable Xi MBOA builds one decision tree. The parent variables Πi

contained in split nodes of i-th decision tree are used to cut the space of all chromozomes  into

parts, where the variable Xi is more linear or predictable.

The building of decision trees starts from empty trees and it recursively adds the splitting

nodes until no splitting is favourable:

Function RecursiveSplitting(Population Pop, TargetVariable Xi,
ListOfCandidateSplitVariables Pa) : DecisionTreeNode

Begin
fTemp := EstimateElementaryPDF(Pop,Xi,Pa);
If “fTemp is sufficiently detailed” then return new LeafNode(fTemp);
For Each Variable Xj in Pa do

Ej := Find_optimal_threshold_of_Xj_with_respect_to_Xi;
ModelGain := Evaluate_the_split_quality(“Xj≤Ej”, Xi);
Save the Xj and Ej with the highest ModelGain;

End for
Pop1 := SelectIndividuals (Pop,”Xj ≤ Ej”);
Pop2 := SelectIndividuals (Pop,”Xj > Ej”)
return new SplitNode(new SplitCondition(”Xj ≤ Ej”),

RecursiveSplitting(Pop1,Xi, Pa\{Xj}),
RecursiveSplitting(Pop2,Xi, Pa\{Xj}));

End;
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The step of split condition finding and evaluation is essential. The algorithm uses a greedy

search, that is, it picks the best candidate and never looks back to reconsider earlier choices.
The choice is based on the equation we derived from the Bayesian-Dirichlet metrics (for

details on this metrics see 8.3.1). You see that the continuous-valued decision attributes are
incorporated into the learned tree by dynamically defining new binary attributes that partition

the continuous attribute value into two intervals (Xj≤Ej and Xj>Ej). The threshold Ej is

selected among the candidate thresholds to maximize the metrics.

In the RecursiveSplitting procedure the list of candidate split variables is given in advance,

which allows for the future parallelization, see 9.2.2 and 9.5.1.

8.2.3 Elementary probabilistic models

The leaf nodes define the elementary models for obtaining the “target” variable Xi. For

continuous variables one-dimensional normal PDF can be estimated and used as the leaf (the

estimation of PDF parameters was stated in 3.3.2). But I obtained better results with Gaussian

kernels (3.3.8) or with the local linear regression model.  The parameters of local regression

model can be obtained in the same way as in the Gaussian network case, but I proposed also

approximation of coefficients by Widrow-Hoff rule [8] known from iterative training of linear

perceptron (using the original notation for those skilled in the NN art):

xww )()()1( ydtt −+=+ α , (8.1)

where w is the estimated vector of regression coefficients, α is the learning rate, d is the
desired output of regression model (the mean value of variable Xi in our case), y is the actual

output of regression model (the predicted Xi) and x is the vector of differences of parent

variables Πi from their mean value.

8.3 Building mixed decision trees

8.3.1 Derivation of DT metrics from BDe

To derive an incremental decision tree metrics (DT metrics) for evaluation of one potential

split node, let us start from BDe metrics for decision graphs from 3.3.6:
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Now let us separate this metrics into local terms, assuming that the problem of finding the

proper BN structure h
sB can be decomposed into independent subproblems of finding local

decision graphs Gi :
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and let us focus only on the decision graph Gi for variable Xi:
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Now consider the algorithm for building the decision tree for the target variable Xi. We need

to derive the equation for addition of Xj split:

leaf0 leaf1 ..... leafh ..... leaf|Li|-1

old decision nodes

leaf0 leaf1 .....                 ..... leaf|Li\{h}|-1

old decision nodes

Xj

leafh0 ...... leafh| |Xj|| -1

DECISION TREE  Gi: DECISION TREE G'i:

Fig. 8.3: Adding Xj split.

This operation replaces the leaf node number h by decision node Xj and introduces new leafs

h0,…,h||Xj||-1. This results in a new tree G’i. The relative increase of model quality for Xi is:
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Now the prior values need to be specified. From the K2 approach it follows the uniform

assignment 1),,(' =lixm i and ||||),,('),(' ix i Xlixmlim
i

== ∑ . Analogically, we can set

1),,(' =hixm i and ||||),(' iXhim = . But to derive more compact form of equation, I suggest to

set the priors for leaf h as the sum of priors for leafs h0,…,h||Xj||-1:
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The first fraction is constant if ||Xi|| and ||Xj|| are constant. We are interested only in the
relative comparison. Let us call the second fraction gain(Xi,leafh). It can be further simplified,

because the new leafs h0,…,h||Xj||-1 were created by splitting the original leaf h. It holds
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This metrics is especially suitable for split-and-conquer approach. You see that all the counts

m(xi,i,l) we need to know for splitting of the leaf number h can be determined only among the

individuals which match the conditions leading from the root to this leaf. Let us denote this

subpopulation D‘(t). From this point of view the addition of a new split can be also seen as

the recursive addition of a first parent variable Xj to the set Πi in the classical BN. The

metrics based on such idea can be written as:
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Note that the population is splitted recursively, so the terms m(xi, xj) now denote the counts of

some patterns only within D‘(t) and N denotes size of D‘(t).
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8.3.2 DT metrics implementation

Since the values of Γ function grow to large numbers for the real computation I use logarithm

of this metric. All the arguments of Γ function are integer numbers smaller than 2*N, so I can

precompute the array of cumulative logarithms Γ’[1]…Γ’[2*N] such that Γ’[i]=log2Γ(i)=

log2((i-1)!) by recursive formula

)1(log]1['][':1

0]1['

2 −+−Γ=Γ>∀
=Γ

iiii
(8.12)

Now the metric can be written as
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From empirical analysis of (8.13) it follows that this metrics has problems to distinguish

between splits when the numbers m(xi, xj) are small (e.g. 0,1,2). This is caused by the

properties of Γ function, because Γ’[1]=Γ’[2]=0. To achieve better distinguishability for
small numbers I suggest the following modification

)(log]1['][':1

0]1['

0]0['

2 iiii +−Γ=Γ>∀
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(8.14)

This formula is based on factorials, such that Γ’[i]=log2(i!).

8.3.3 Example of DT metrics usage

Consider the population of parents D(t)={0000, 0000, 0101, 0101, 1001, 1101, 1101, 1110}.

For example we want to build the decision tree for variable X3 and we are interested in quality

of X1 split. The aggregation table for this case is:

x3 = 0 x3 = 1 ∑=
3

),()( 131 x
xxmxm

leaf 0:      x1 = 0 m(x3=0, x1=0) = 2 m(x3=1, x1=0) = 1 m(x1=0)=3

leaf 1:     x1 = 1 m(x3=0, x1=1) = 1 m(x3=1, x1=1) = 4 m(x1=1)=5

∑=
1

),()( 133 x
xxmxm m(x3=0) = 3 m(x3=1) = 5 N=8

According to equations (8.14) and (8.13) the score for this aggregation table is

92.1]25[']23[']25[']23['

]14[']11[']11[']12[']48['),(log 13
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−+Γ++Γ++Γ++Γ++Γ=

&

XXgain
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The whole recursive building of decision tree for x3 can be shown as:

Population: 

x0 x1 x2 x3

0  0  0  0

0  0  0  0
0  1 0  1

0  1  0  1

1  0  0  1

1  1  0  1

1  1  0  1

1  1  1  0

Split on x0 :
x3=0  x3=1

x0 = 0    2       2

x0 = 1    1       3

gain = 1.40

Split on x1 :

x3=0  x3=1
x1 = 0    2       1

x1 = 1    1       4

gain = 1.92

Split on x2 :

x3=0  x3=1

x2 = 0    2       5

x2 = 1    1       0

gain = 1.65

Sub-population x1=0: 

x0 x1 x2 x3

0  *  0  0

0  *  0  0

1  *  0  1

Sub-population x1=1: 

x0 x1 x2 x3

0  *  0  1

0  *  0  1

1  *  1  0

1  *  0  1

1  *  0  1

Split on x0 :

x3=0  x3=1

x0 = 0    2       0

x0 = 1    0       1

gain = 1.54

Split on x2 :
x3=0  x3=1

x2 = 0    0       3

x2 = 1    0       0

gain = 1.07

Split on x0 :

x3=0  x3=1

x0 = 0    0       2

x0 = 1    1       2

gain = 1.07

Split on x2 :

x3=0  x3=1

x2 = 0    4       0

x2 = 1    0       1

gain = 2.22

Fig. 8.4: Example of recursive building of decision tree for x3.

And the obtained decision tree is

0                 1

p(x3) = 0.0 p(x3) = 1.0         p(x3) = 1.0 p(x3) = 0.0

x2

x1

x0

0                 1 0                 1   

Fig. 8.5: Example of final decision tree for x3.

8.3.4 Model complexity penalization

In principle the described decision tree algorithm can grow each branch of the tree just deeply

enough to perfectly classify the training examples. In the previous example in Fig. 8.5 we

obtained fully determined decision tree. Sampling of probabilistic model with fully

determined trees will produce the duplicate of original population – no uncertainty is present.

We must avoid overfitting, such that more simpler trees are produced.
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Population: 

x0 x1 x2 x3

0  0  0  0

0  0  0  0

0  1  0  1

0  1  0  1

1  0  0  1

1  1  0  1

1  1  0  1

1  1  1  0

Split on x0 :

x3=0  x3=1

x0 = 0    2       2

x0 = 1    1       3

gain = 1.40

Split on x1 :

x3=0  x3=1

x1 = 0    2       1

x1 = 1    1       4

gain = 1.92

Split on x2 :

x3=0  x3=1

x2 = 0    2       5

x2 = 1    1       0

gain = 1.65

p(x3| x1=0) = 0.33 p(x3 | x1=1) = 0.8

Fig. 8.6: Decision tree with reduced complexity.

In 3.3.6 the prior probability for binary decision graph was stated as

∑= −
i i
LNh

s cBp
||)log5.0(
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where c is a normalization required for the prior probabilities of all networks to sum to 1 and

|| iL is the number of leaves in i-th graph. The value of a normalization constant does not

affect the result, since we are only interested in relative comparisons of networks and not the

absolute value of their likelihood. This assignment is sufficient to bias the model construction
to networks with less parameters and avoid superfluously complex network structures.

Now consider non-binary trees. The relative increase of penalty score after removing one leaf
number h and adding new leaves h0,…,h||Xj||-1 is
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For practical purposes I use logarithm of the metrics, thus the leaf penalty has also to be in

logarithmic form.

Npenalty 2log5.0log −= (8.16)

And for non-binary trees the penalty is

)1||)(||1||)(||log5.0(log 2 −−−= ij XXNpenalty (8.17)

Note that the population size N in the penalty equation is not sized down recursively, it is the

size of original parent population.

8.3.5 Adaptation for continuous parameters

My initial DT metrics equation is restricted to attributes that take on a discrete set of values.

First, the target attribute whose value is predicted by the learned tree must be discrete valued.

Second, the attributes tested in the decision nodes of the tree must also be discrete valued.
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This second restriction can easily be removed so that continuous-valued decision attributes

can be incorporated into the learned tree. This can be accomplished by dynamically defining
new discrete-valued attributes that partition the continuous attribute value into a discrete set of

intervals. In particular, for an attribute Yj that is continuous-valued, the algorithm can
dynamically create a new Boolean attribute Xj that is true if Yj < Ej and false otherwise. The

only question is how to select the best value for the threshold Ej. Clearly, we would like to
pick a threshold, Ej, that produces the highest DT metrics score. By sorting the individuals

according to the value of continuous attribute Yj, then identifying adjacent examples that
differ in their target variable, we can generate a set of candidate thresholds midway between

the corresponding values of Yj. These candidate thresholds can then be evaluated by

computing the metrics associated with each. Such a technique can be used for each of the

continuous candidate attributes Yj, and the best can be selected. This dynamically created

binary/Boolean attribute can then compete with the other discrete-valued candidate attributes

available for growing the decision tree.

This dynamical approach produces far more smoother discretization than the histogram-based

approach in [98] and [57].

Now let us focus on the first restriction – the continuous target attribute Yi. We can also use

dynamical discretization for it, assuming that the strongest dependencies are the most

relevant, i.e. the threshold Ei which maximizes the metrics is the best one. But this approach

becomes computationally expensive when we consider both continuous split attribute and
continuous target variable – we should evaluate each combination of possible thresholds Ei

and Ej. In this case I use a heuristics simplification instead – for given Ej I choose Ei using the
following two steps:

1. Determine Mi as the median of Yi values among the individuals satisfying the

condition “Xj<Ej”.
2. Determine Ei such that the number of all individuals satisfying the condition

“Mi<Xi<Ei” resp. “Mi>Xi>Ei” is equal to m/2, where m denotes the number individuals

satisfying the condition “Xj<Ej”.

Yi

Yj

Ej

Ei

Mi

m=4

m/2

m/2

Fig. 8.7: Determination of Ei threshold for given Ej threshold.

Regardless of population size, this Ei can be determined for given Ej in constant time (using
the sophisticated data structures for fast determination of medians). Practical experiments

confirm that this assignment is acceptable in most situations. Note that the trivial choosing Ei

as the median of Yi values is similar to fixed-height histogram discretization and choosing Ei

as the average of Yi values is similar to fixed-width histogram discretization. Also note that

the determined value Ei is used only for metrics evaluation, but can be omitted after that.



84

8.3.6 Adaptation for categorical and integer parameters

The metrics derived in 8.3.1 is inherently compatible with integer domains, creating ||Xj||
leaves for integer attribute Xj. However, for better results it might useful to deal with integer

parameters in the same way as with continuous parameters, such that the threshold Ej is found

and only two leaves („Xj≤Ej“ and „Xj>Ej“) are created in each step. Since the number of

leaves is reduced, the elementary model estimation for each leaf takes, on average, a
larger number of samples into account and thus is more robust.

Categorical parameters are special type of integer parameters. For example the age of the
person is a common integer parameter, but the first digit of a zip-code of its address is the

categorical parameter. It does not make sense to split the numerical identification of
categories into two intervals, because the categories are not mutually comparable. Instead of

using some threshold, it makes sense to use arbitrary partitioning of categories into subsets.

My MBOA algorithm uses a hill-climbing algorithm to split the set of possible Xj categories
into left and right subset. It starts with the empty right subset and it tries to move categories

from left subset to right subset until the maximum of DT metrics is reached. This results in a

new binary attribute X’j which is true if Xj belongs to the left subset and false otherwise. This

new attribute then competes with the other candidates for split. Also the target variable Xi can

be of categorial type, but in this case the number of target categories of Xi does not affect the

complexity of the tree, so Xi remains unchanged.

Tab. 8.1. An example of contingency table with partitioned domain of categorical attribute Xj.
Xi = 0 Xi = 1 Xi = 2 Xi = 3

Xj ∈ {0,2} m(Xi=0, X’j=0) m(Xi=1, X’j=0) m(Xi=2, X’j=0) m(Xi=3, X’j=0)

Xj ∈ {1,3} m(Xi=0, X’j=1) m(Xi=1, X’j=1) m(Xi=2, X’j=1) m(Xi=3, X’j=1)

8.4 Optimizing multimodal functions

8.4.1 Using fitness for preserving divergence

I proposed an additional technique which enables MBOA to optimize multimodal functions.

The fitness value is allowed to act as a split in decision trees, like the ordinary continuous
variable. This “pseudo-fitness” value is always treated as an independent parameter, it’s value

is generated first and the genes are generated thereafter. By shifting the distribution of

“pseudo-fitness” towards the lower values we can slightly bias the exploitation of search

space towards the regions where the minor solutions occur. Due to this advancement MBOA

achieves better divergence. Of course, after generation of the whole chromozome the

“pseudo-fitness” value is replaced by the true fitness value.

8.4.2 Restricted tournament replacement

The next advantage of MBOA is the utilization of RTR (Restricted Tournament Replacement)
proposed by Martin Pelikan in [97]. In the replacement stage each new individuals competes

with the Euclidean-nearest individual among 20 randomly selected individuals. This also
ensures better niching.
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8.5 Experiments

During the experiments I compared the efficiency of MBOA approach with the other EDA
and IDEA algorithms. First of all I proved the backward-compatibility with the binary

domain. I compared the performance of MBOA with the Pelikan’s original simple BOA
algorithm on several deceptive functions:

Tab. 8.2. Results for 3-deceptive and trap-5 function (see 7.4)- the average number of fitness

evaluations required to reach the global optima in 10 runs, with min. population size L.

Algorithm\Benchmark 3-deceptive function, n=90 trap-5  function, n=90

MBOA 43530 evaluations, L=3800 53280 evaluations, L=5500

Simple BOA 43510 evaluations, L=3800 54310 evaluations, L=5500

Secondly, I have used some continuous benchmarks to compare MBOA with the best IDEA

algorithms in [19]. IDEA1 uses non-clustered normal mixture of 10 PDFs, IDEA2 and IDEA5
use Euclidean 2-means clustering with normal mixtures of 10 PDFs, IDEA3 uses

Mahalanobis leader 3½ clustering with normal mixtures of 10 PDFs, IDEA4 uses non-
clustered normal mixture of 5 PDFs and IDEA6 uses Mahalanobis leader 5 clustering with

normal mixtures of 5 PDFs.

Tab. 8.3. Griewank function (see 7.5), problem size n=5, domain= [-5,5]5.

Algorithm Fitness evaluations to get the global optima

(avg. for 10 runs, 7-digit precision)

MBOA with univariate Gaussian leaves 19790, L=120

IDEA1 51832, L=1100

IDEA2 72552, L=1750

IDEA3 89718, L=2250

Tab. 8.4. Michalewicz function (see 7.5), n=5, domain= [0,π]5
.

Algorithm Fitness evaluations to get the global optima

(avg. for 10 runs, 7-digit precision)

MBOA with univariate Gaussian leafs 7690, L=120

IDEA4 28903, L=1300

IDEA5 16596, L=750

IDEA6 22118, L=1000
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Thirdly, I tested the scalability of MBOA on continuous two-deceptive function (see 7.5) and

I examined how the number of fitness evaluations grows with the problem size.

Tab. 8.5. The scalability for continuous two-deceptive function.

Algorithm Continuous two-deceptive function, 5-digit precision

MBOA with Gaussian-kernels leafs O(n
1.79

) (n=10-50, L=300-3500)

Simple BOA with fixed-width histogram

discretization, see [98]

O(n
2.1

)   (4 bins,  n=10-40, L=1000-7400)

Simple BOA with fixed-height histogram

discretization, see [98]

O(n2.1) (16 bins, n=10-30, L=3500-17000)

Fourthly, I prepared own mixed continuous-discrete benchmark (defined in 7.6), which is

very hardly sensitive to correctness of DT building algorithm. Dependencies between mixed
parameters have to be necessarily discovered to find the global optimum. Because of the

benchmark deceptiveness the algorithm fails if the dependency metric prefers certain domain
over another domain.

Tab. 8.6. The average number of evaluation for mixed benchmark.

Problem size n=10 n=20 n=30 n=40 n=50

MBOA with Gaussian-kernels leafs 23100

L=600

67800

L=1200

126000

L=1800

214800

L=2400

291000

L=3000

The empirical results show that in the field of discrete optimization problems the MBOA is

backward-compatible with the original BOA algorithm and provides similar results. The

results for continuous Griewank and Michalewicz function confirm the assumption that
MBOA overcomes the IDEA approach.

On the two-deceptive continuous benchmark I showed that the scalability of MBOA is better

than the scalability of discretization approach based on histogram models [98]. The MBOA
was also able to solve the difficult mixed continuous-discrete benchmark.The results indicate

that the main potential of my algorithm lies in solving high-dimensional problems with
stronger parameter nonlinearities.

8.6 Application of BDT for Boolean function modelling

This chapter briefly describes the application of BDe-driven BDT-building algorithm for

modelling of Boolean functions. For further details see the papers [ii] and [iii].

Binary Decision Diagrams (BDDs) are commonly used for representation of Boolean

functions. This representation is very suitable for practical purposes, for example it can be

directly converted into circuit design. Each decision node represents the Shannon’s expansion

of the Boolean function

)( 01 FxFxF ii += (8.18)

where i is the index of the decision node, F0 and F1 are the functions of the nodes pointed to

by 0- and 1- edges, respectively. Terminal nodes represent the logic values (1/0).
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In the area of circuit design there are many heuristics used to construct optimal decision graph
for given function. If the Boolean function is given in the form of complete truth table, we can

adopt our decision-tree building algorithm, which works with the function table in the same
manner as with the population of individuals. Only one tree is built – the function value acts

as the target variable and the input variables are candidates for splits:

Truth table:

x1 x2 x3 F

0 0  0 0

0 0  1 1

0 1 0 0

0 1  1 1

1 0  0 0

1 0  1 1

1 1  0 1

1 1  1 1

Split on x1 :

F=0 F=1

x1 = 0    2       2

x1 = 1    1       3

gain = 1.40

Split on x2 :

F=0 F=1

x2 = 0    2 2

x2 = 1    1      3

gain = 1.40

Split on x3 :

F=0 F=1

x3 = 0   3 1

x3 = 1   0 4

gain = 3.14

Sub-table x3=0: 

x1 x2 x3 F

0 0 * 0

0 1 * 0

1 0 * 0

1  1  *  1

Final sub-table x3=1: 

x1 x2 x3 F

0 0 * 1

0 1 *  1

1 0 * 1

1 1 * 1

Split on x1 :

F=0 F=1

x0 = 0    2       0

x0 = 1   1 1

gain = 1.22

Split on x2 :

F=0 F=1

x2 = 0   2 0

x2 = 1   1 1

gain = 1.22

Final sub-table x1=0: 

x1 x2 x3 F

* 0 * 0

* 1 * 0

Sub-table x1=1: 

x1 x2 x3 F

* 0 * 0

* 1 * 1

Final sub-table x2=0: 

x1 x2 x3 F

* * * 0

Final sub-table x2=1: 

x1 x2 x3 F

* * * 1

Fig. 8.8: Building decision tree for F= x1x2+x3

The motivation for using BDe metrics is straightforward – we believe that during the topdown

tree induction the inputs which affect the function value most should be used first, which

hopefully leads to less complex trees. Note that we use statistical methods to measure the

relationship between function value and input value, but the resulting tree for Boolean

function must be fully determined (without avoiding overfitting).

My decision tree building algorithm is able to induce decision trees only. BDDs or oriented

BDDs (OBDDs) can be constructed from decision trees using two basic reduction rules: 1)

sharing all equivalent sub-graphs and 2) reduction of nodes with identical ancestor nodes.
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Fig. 8.9: Conversion from BDT to BDD

The time complexity of our BDT construction is O(n
2
2

n
), where n is the number of function

inputs. This is significant improvement when compared with the classical greedy BDD

construction - O(n!2
n
) or with the dynamic programming approach - O(n

2
3

n
). We must

include the complexity of conversion from BDD to BDT, but it does not exceed the BDT

construction complexity.

The typical benchmark for BDD construction algorithms is the multiplexor function

F=x0x1+x2x3+…+ xn-2xn-1. See the following figure where an example with n=4 is shown.

0                 1

0          1
x3

0          1
x2

0                        1
x0

x1

0          1
x3

0           1
x2

0 1

0

0

0 1

1

0              1

0           1
x0

x1

0              1
x3

0           1
x2

0 1

Fig. 8.10: BDT-model of Boolean function F=x0x1+x2x3

Fig. 8.11: BDD after removing duplicate subgraphs
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This multiplexor benchmark is very sensitive to proper ordering of variables during topdown

recursion.  Improper ordering would lead to exponentially large decision graph:

x1
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x1x1x1

x4
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x2

x4 x4 x4

x3

x3

10

x1

x4

x0

x2

x5

Fig. 8.12: The effect of variables ordering

The results in Tab. 8.7 confirm that our algorithm was able to correctly construct the decision

tree and reduce it to decision graph with size complexity O(n).

Tab. 8.7. The results for multiplexor benchmark

Number of variables n 4 6 8 10 12 14 20

Number of BDT decision nodes 6 14 30 62 126 254 2046

Number of reduced BDD decision nodes 4 6 8 10 12 14 20

We are also able to build models for multi-valued functions when using the metrics for integer

domains:

53

x1

x0

x2

4

x0

x1

0 1

0 1

0 1

1 00 1

Fig. 8.13: An example of tree for multi-valued function a) truth table, b) BDD

Our results confirm that BDe metrics can be utilized for many engineering tasks like Boolean

function modelling. The advantage of suggested approach lies in low BDT construction

complexity. However, further improvements are needed to deal with symbolic representation

of  functions and to obtain ordered BDD.

x0 x1 x2 F

0 0 0 3

0 0 1 5

0 1 0 3

0 1 1 4

1 0 0 4

1 0 1 4

1 1 0 4

1 1 1 5
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9 Design of parallel EDA algorithms

9.1 Classical concept for parallel GAs

The usual concept of classical parallel GA is inspired by nature. The population is divided

into a few subpopulations or demes, and each of these relatively large demes evolves

separately on different processors. Exchange between subpopulations is possible via a

migration operator. The term islands model is easily understandable; the GA behave as if the

world was constituted of islands where populations evolve isolated from each other. On each

island the population is free to converge toward different optima. The migration operator is

supposed to mix good features that emerge locally in the different demes.

migration path

local subpopulation

ISLANDS MODEL STEPPING STONES MODEL

Fig. 9.1: Classical models of parallel GAs

Many topologies can be defined to connect the demes, but the most common models are the

island model and the stepping stones model. In the basic island model, migration can occur
between any subpopulations, whereas in the stepping stone demes are disposed on a ring and

migration is restricted to neighbouring demes. From literature it is known that the topology of
the space is not so important as long as it has high connectivity and small diameter to ensure

adequate mixing as time proceeds.

9.2 Parallelization of EDA

The most significant difference between classical GA and the EDA algorithm lies in the

character of creation of new population. Classical GA uses pairwise recombination whereas

EDA uses the whole parent population for estimation of probabilistic model. In case of

classical GA the crossover can be performed even locally, but in case of EDA the classical

models of parallelism are useless, because the accuracy of estimated model decreases rapidly

with decreasing size of parent population. For example 10 probabilistic models estimated

from local subpopulations of size N/10 would produce worse quality offspring than the

sequential model estimated from population of size N. The only way how to design a parallel

EDA algorithm is to propose new paradigms for parallel construction and sampling of single
probabilistic model in the pseudo-sequential manner.

9.2.1 Time profile of BOA

I investigated the execution profile of BOA. This empirical analysis identifies the main
performance bottleneck of BOA – the construction of probabilistic model.
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Fig. 9.2: The time profile of average run of BOA algorithm for 3-deceptive function

Nearly all the execution time of sequential BOA is spent to find the dependence graph of

Bayesian network. The remaining time includes estimation of local CPDs parameters, BN

sampling, fitness computation and selection/replacement. In comparison to the construction of

dependence graph many of those remaining  tasks are easy to be done in parallel, in obvious

manner or in similar manner as in the classical GAs, but they take only less than 5% of the

overall time. Thus, some method for parallel BN construction needs to be proposed in
following chapters.

The sequential Bayesian network construction starts with an empty network (all variables

independent, like in UMDA algorithm). It performs a greedy addition of edges into the
network, which works in the following way:

Start with an empty network B;
for each edge do ...  O(n2)

begin

Compute the score of its eventual appending to B; ...  O(N)
end
while any edge can be appended to B do ...  O(k.n)
begin

for each appendable edge do ...  O(n2)
begin

Select the edge (j,i) giving the highest score;
end

Append the edge (j,i) to the network B;
for each appendable edge ending in node i do ...  O(n)
begin

Update the score of its eventual appending to B; ...  O(2k.N)

end
end

By the term „appendable edge“ I mean the edge which does not violate the acyclicity of

dependence graph and does not exceed the maximum number of incoming edges k. The

resulting time complexity of sequential BN construction can be expressed by the term:

O(n
2
) . O(N) + O(k.n) . ( O(n

2
) + O(n) . O(2

k
.N) ) = O(k . n

3
) + O(k . n

2
. 2

k
. N)

As shown in [87], the time complexity for generating N’’ new individuals (offspring) is only

O(knN’), where N’’ is proportional to the number of parents N.
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The time complexity for offspring evaluation depends on the complexity of fitness

computation itself and in the case of additively-decomposable functions is O(nN’).

If we consider k to be constant and N resp. N’’ to be proportional to n (see [93] and [99] for
discussion about relation between population size and problem size), then the time complexity

of sequential BN construction is O(n
3
), whereas the time complexities for offspring

generation and evaluation are O(n
2
). This confirms our empirical observations about time

profile of BOA.

9.2.2 Parallel BN construction

The goal is to utilize more processors when searching for a good network. Our consolation is

that the BDe metric is separable and can be written as a product of n factors, where i-th factor

expresses the influence of edges ending in the variable Xi. Thus, for each variable Xi the set of

parent variables Πi can be determined independently. It is possible to utilize up to n
processors, each processor corresponds to one variable Xi and it examines only edges leading

to this variable. Note, that even for the estimation of local CPD each processor needs the full
copy of parent population.

Usually we can use only m processors. If m<n, then each processor evaluates only edges

ending in its subset of nodes. For example see Fig. 9.3 where n=6 and m=2, such that each

processor manages incoming edges of n/m=2 nodes.

X2
X5

X4
X3

X1

CPU 0

CPU 1CPU 2

X0

Fig. 9.3: CPU0 is adding edges ending in nodes 0 and 1; CPU1 is adding edges ending in nodes 2 and
3; CPU2 is adding edges ending in nodes 3 and 4. Note that in the case of naïve parallel BN

construction the acyclicity might be violated (dot line)!

In Fig. 9.3 you see that the naïve parallel BN construction might produce the unwanted

cycles. The addition of edges is parallel, so we need an additional mechanism to keep the

dependence graph acyclic. The most advantageous way how to handle this problem is to

predetermine the topological ordering of nodes in advance. At the beginning of each

generation, the random permutation of numbers {0,1,…,n-1} is created and stored in the

o=(o0,o1,…,on-1) array. Each processor uses the same permutation (for example the initial seed

of  permutation generator is distributed via set of processors in the initial phase such that all

generated permutations are identical). The direction of all edges in the network should be

consistent with the ordering, so the addition of an edge from
j

oX to
i

oX is allowed if only

j<i. Evidently, the variable
0

oX has no predecessor and is forced to be independent, thus the

space of possible networks is reduced. To compensate this phenomenon the processors
generate new permutation after each generation.
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X0X2

X1

CPU 0

CPU 1CPU 2

o1=0

o0=1

o2=2

Fig. 9.4: Example of BN construction with m=n=3. Permutation vector o=(1,0,2) determines the

topological ordering of nodes such that the dashed edges are not allowed.

9.2.3 Complexity of parallel BN construction

The advantages of predetermined ordering of nodes are noticeable. I completely removed the

communication overhead even if the quality of generated network is almost the same as in the

sequential case (see 9.2.4). Each processor can create its part of probabilistic model

independently of the other processors, because the acyclicity constrains are implicitly

satisfied. The parallel BN construction can be written as:

Start with an empty network B;
Generate random permutation o=(o0,…,on-1);
Assign ending nodes to each of m≤n parallel processes;
Distribute the permutation o among the parallel processes;

for each ending node oi do in parallel ...  O(n/m)
begin

for j := 0 to i-1 do ...  O(n)
begin

Compute the score of eventual appending (oj,oi) to B; ... O(N)
end
while incoming_node_degree d(oi) < min(k,i) do ...  O(k)

begin

for each unapplied starting node oj having j<i do ...  O(n)
begin

select the edge (oj,oi) giving the highest score;
end

Append the selected edge (oj,oi) to the network B;
Remove the node oj from the set of unapplied parents of oi;
for each unapplied starting node oj having j<i do ...  O(n)
begin

Update the score of eventual appending (oj,oi) to B;...  O(2k.N)
end

end
end

The time complexity of parallel BN construction can be expressed by the term:

O(n/m).(O(n).O(N) + O(k).O(n) + O(k).O(n).O(2
k
.N)) = O(k.n

2
.2

k
.N / m)

After simplification it gets O(n
3
/m). Note that a linear speedup can be reached, when

compared with time complexity O(n
3
) of sequential BN construction.
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9.2.4 Validation of proposed BN construction

Theorem 9.1 (Generality of model with restricted dependencies) :
The restricted ordering of nodes does not affect the generality of induced model.

Proof: From the chain rule of probability we know that each joint probability can be

factorized as

∏
−

=
−− =

1

0

110110 ),...,,|(),...,,(
n

i

iin XXXXpXXXp (9.1)

Assume the ordering permutation (o0, o1, ..., on-1). After reordering the variables the chain rule
can be still applied to obtain factorization which does not violate the nodes ordering:

∏
−

=
−−

=
1

0

),...,,|(),...,,(
110110

n

i

ooooooo
iin

XXXXpXXXp (9.2)

Note, however, that this proof does not consider the case of limited order of dependencies in
BN, which might cause slight degradation of created model in parallel BOA. It should be also

noted that the BDe metrics is not sensitive to directionality of edges in the dependency graph,
which also justifies the usage of predetermined ordering of nodes.

9.3 Design of pipelined PBOA algorithm

9.3.1 Computing platform

The pipelined algorithm PBOA is the first of my three parallel BOA algorithms. All these

algorithms use parallel dependency graph construction based on the principle of restricted

ordering of nodes, they differ mainly in the way how the offspring is being generated.  PBOA

was proposed for fine-grained type of parallelism. The target platform for its implementation

can be for example the Transputers with their tightly-connected communication channels, or

one-purpose MIMD processor. Each processing element has its own local memory with

complete copy of the whole population.

9.3.2 Pipelined processing

Let us consider usage of m=n processors (resp. processing elements). First the BN is

constructed. The i–th processor determines the set of parent variables
i

oΠ and it estimates

the parameters of CPD for )|(
i

oΠ
i

oXp . Fig. 9.5 shows an example of parallel construction

of BN with n=4 variables and m=4 CPUs, including the parallel estimation of local CPDs.

X1

CPU2:

p(X2|X1X3)=0.8

p(X2|X1X3)=0.3

p(X2|X1X3)=0.2

p(X2|X1X3)=0.6

X2 X0

X3

CPU3:

p(X0|X3X2)=0.1

p(X0|X3X2)=0.9

p(X0|X3X2)=0.7

p(X0|X3X2)=0.2

CPU1:

p(X3|X1)=0.3

p(X3|X1)=0.6

CPU0:

p(X1)=0.8

Fig. 9.5: An example - splitting of BN construction between 4 processing elements. The ordering

permutation is o=(1,3,2,0), so the variable X1 is independent. Parts of BN (including local CPD

tables) which are estimated by different CPUs have different color shades.
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Now, let us focus on the pipelined offspring generation. PBOA can generate offspring in a
linear pipeline way, because in the fine-grained architecture there are negligible

communication latencies. It takes n cycles to generate the whole chromozome. For example
let us consider the first chromozome. Its o0-th bit is generated independently in processor

number 0 at time t. Then, its o1-th bit is generated in processor number 1 at time t+1
conditionally on the o0-th bit received from neighbouring processor number 0, etc. Generally,

i
oX is generated in CPU number i at time t+i conditionally on },...,{

10 −
⊆

i
oo XX

i
oΠ . The

advantage is that each CPD is sampled locally at the place where it had been estimated.

CPUm-1

CPU1

clk

CPU0

CPU1

local memory

local memory

local memory

local memory

X1

X2

X3

X0

Fig. 9.6: Pipelined generation of ofspring according to the BN constructed in 9.5. The dashed arrows

mean ungenerated variables.

After the offspring generation each processor has its full local copy of new population. The

evaluation of new population is splitted into subsets and each processor evaluates different

subset. The fitness values transfer uses the same channels as the generated chromozomes, so

there is some slight delay before each processor receives each fitness value. Fortunately, most

of this transfer can be overlapped with evaluation of next individuals, only small delay O(m)
remains at the end. This delay is constant for given m, so this approach is scalable.

After the evaluation stage each processor replaces the better part of population to get the

promising solutions required for estimation of local probabilistic model in the next
generation. The complexity of replace operation is only O(N . log N), so it is very fast and it

can be done redundantly in all processors.
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9.3.3 Timing diagram and workload balance

The detailed timing diagram for PBOA can be seen in Fig. 9.7. Note that in this concrete

example the first processor deals with the variable X1 independent, such that the set Π1 is

empty. Generally, the parents of variable
i

oX are chosen from the set of max. i-1 variables

allowed. We see that the amount of work required to determine the parents of
i

oX increases

with i. According to my empirical observation as well as the analysis of parallel BN

construction algorithm from chapter 9.2.3, this amount of work grows almost linearly with i.

This is why the number of evaluated individuals in each processor is inverse linearly

proportional to i. This enables PBOA to reduce the synchronization delay before the final

select operation, which can be understood as the barrier type of synchronization.

CPU0

CPU1

CPU2

CPU3

selectestimate P(X1) generate x1
1, x1

2,... evaluate x0,x1,...xs0-1

selectestimate Π2,P(X2|Π2) generate x2
1, x2

2,... eval. xs1,...

selectestimate Π1,P(X1|Π1) generate x0
1, x0

2,... eval.

selectestimate Π3,P(X3|Π3) generate x3
1, x3

2,... evaluate xs0,...,xs1-1

Fig. 9.7: The complete PBOA cycle for the BN example from Fig. 9.5.

For large problems the proportion between BN construction time and the remaining time

increases, as follows from the complexity of parallel BN construction (see chapter 9.2.3).

Sometimes the evaluation operation does not suffice to reduce the synchronization time

before select.

In this case some workload balance is necessary. Remember that the time for determining

i
oΠ is proportional to i. Let us for example consider m=n/2, so each processor is responsible

for 2 nodes. We can re-arrange the pairs of nodes such that the first processor deals with
0

oX

and
1−n

oX , the second processor deals with
1

oX and
2−n

oX , etc. Due to this re-arrangement

the sum of work for estimating each pair of CPDs is the same, see Fig. 9.8. Of course, the

offspring generation now requires bidirectional communication channels, because the

ordering of processors which confirms topological ordering of nodes is now

CPU0→CPU1→…→ CPUm-1→ CPUm-1→CPUm-2→ …→CPU0.

CPU0

CPU1

CPU2

select

select

select

selectCPU3 eval.

eval.

eval.

eval.

gen.gen.

gen.

gen.

gen.

gen.

gen.

gen.

est.

est.

est.

est.

est.

est.

est.

est.

Fig. 9.8: Workload balance principle for pairwise re-arrangement.
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It is also possible to use another type of balancing (non-equally sized groups of nodes) if

m<<n, see Fig. 9.9. The i-th boundary for grouping the nodes can be computed approximately

as min /2 .

0
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12

14

16

CPU0 CPU1 CPU2 CPU3

Fig. 9.9: Workload balance principle for m<<n.

9.3.4 Empirical results

No fine-grained architecture was available at the time of PBOA design, so I simulated the 

PBOA principles using the Sun Enterprise 450 server. The experiments were mainly focused
on empirical proof of usability of restricted ordering of nodes (see the theorems in chapter

9.2.4). To investigate this I compared PBOA with the sequential Pelikan’s BOA. Both
algorithms use the limit of incoming edges k=3.
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Fig. 9.10: Average final proportion of correct BBs for 3-deceptive function.
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Fig. 9.11: Average number of generations until convergence for 3-deceptive function. The population
size was changed linearly according to problem size (from L=1000 for n=33 to L=6000 for n=198).

Fig. 9.10 and 9.11 confirm that for 3-deceptive function the population size needed to get the

same quality of solution as well as the number of generations until successful convergence are

really not affected by the restricted ordering of nodes. The same result was also obtained for

trap-5 function.

Tab. 9.1. The results of grid graphs bisectioning (see 7.1)

Graph name Grid 100.2 with bottleneck Grid 100.10

BOA: Min. population size for 90% success 2500 2400

PBOA: Min. population size for 90% success 2600 2500

BOA: Avg. # of generations until convergence 47,9 57,9

PBOA: Avg. # of generations until convergence 51,2 66,3

BOA: Average # of fitness evaluations 119750 138960

PBOA: Average # of fitness evaluations 133120 165750

The values in Tab. 9.1 indicate that for real problems like graph bisectioning the PBOA needs

slightly higher population size and number of generations, but this is not critical because the

additional work can be also done in parallel.

9.4 Design and implementation of distributed DBOA algorithm

9.4.1 Computing platform

My Distributed Bayesian optimization algorithm (DBOA) was proposed and implemented for

coarse-grained type of parallelism. Its target platform is for example the cluster of

workstations connected by fast Ethernet network. The experiments were run on the uniform

cluster of Sun Ultra 5 workstations with UltraSPARC II processors at 270 MHz. The

hardware multiport router has been Summit48 (from Extreme Networks), which is able to

transfer up to 100 Mb/s between pairs of distinct workstations simultaneously. I used the MPI

C++ library version 1.2 which provides the well known standard for message passing

communication.
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Summit 48
router

Fig. 9.12: DBOA platform.

9.4.2 Distributed processing

At the beginning of DBOA cycle each processor has the full copy of the parent population

and it constructs the part of BN dependence graph, in the same way like PBOA.

Unfortunately, the communication delays are too long to use pipelined generation of

offspring. Thus, DBOA uses distributed generation of offspring, each processor generates the
whole subpopulation of chromozomes. See Fig. 9.13 for comparison of both types of

offspring generation.
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Fig. 9.13: Comparison of offspring generation. PBOA distributes the work between processors

„horizontally“ and DBOA „vertically“.

Note that for this kind of offspring generation each processor needs to use the complete

probabilistic model, which is constructed piecewise. Thus, a necessary step between model

estimation and offspring generation is the gathering of local parts of model. Each processor
exchanges its part of model with the other processors. To reduce the amount of

communication between processors I propose to exchange only the parts of dependence
graph, not the parameters of local CPDs. Remember that it is the most time consuming task in

parallel BOAs to determine each set Πi, but once this set was determined the parameters of

local CPDs can be estimated quite fast. Note that Πi can be specified using only array of k
integers, where k is the maximal number of incoming edges, whereas parameters of local CPD

grow exponentially with k, they need 2
k

floating point numbers. For DBOA implementation it

seems to be more advantageous to re-estimate the CPD parameters in each processor

redundantly after receiving Πi.
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9.4.3 Implementation – MPI library

The Message Passing Interface (MPI) is a portable message-passing standard that facilitates
the development of parallel applications and libraries. The standard defines the syntax and

semantics of a core of library routines useful to a wide range of users writing portable

message-passing programs in Fortran 77 or C. The available implementations run on both

tightly-coupled, massively-parallel machines (MPPs), and on networks of workstations

(NOWs).

Though much of MPI serves to standardize the ``common practice'' of existing systems, MPI

has gone further and defined advanced features such as user-defined datatypes, persistent

communication ports, powerful collective communication operations, and scoping

mechanisms for communication. No previous system incorporated all these features.

9.4.4 Pairwise versus collective communication

MPI provides a set of pairwise send and receive functions that allow the communication of
typed data with an associated tag. Typing of the message contents is necessary for

heterogeneous support - the type information is needed so that correct data representation

conversions can be performed as data is sent from one architecture to another. The tag allows

selectivity of messages at the receiving end: one can receive on a particular tag, or one can

wild-card this quantity, allowing reception of messages with any tag. Message selectivity on

the source process of the message is also provided.

If the communication does not need to be overlapped with the computation, we can use

blocking send and receive functions. The send call blocks until the send buffer can be

reclaimed (i.e., until the sender can safely over-write the contents of message). Similarly, the

receive function blocks until the receive buffer actually contains the contents of the message.

MPI also provides non-blocking send and receive functions that allow the possible overlap of

message transmittal with computation, or the overlap of multiple message transmittals with

one-another. Non-blocking functions always come in two parts: the posting functions, which

begin the requested operation; and the test-for-completion functions, which allow the

application program to discover whether the requested operation has completed.

Question about the nature of the underlying protocol implementing the communication arises:

if the send has completed, does this tell us anything about the receiving process? Can we

know that the receive has finished, or even, that it has begun? Both blocking and non-

blocking point to point communications have modes. The mode allows one to choose the

semantics of the send operation and, in effect, to influence the underlying protocol of the

transfer of data. In standard mode the completion of the send does not necessarily mean that

the matching receive has started, and no assumption should be made in the application

program about whether the out-going data is buffered by MPI. In buffered mode the user can
guarantee that a certain amount of buffering space is available. The catch is that the space

must be explicitly provided by the application program. In synchronous mode a rendezvous
semantics between sender and receiver is used. Finally, there is ready mode. This allows the

user to exploit extra knowledge to simplify the protocol and potentially achieve higher
performance. In a ready-mode send, the user asserts that the matching receive already has

been posted.
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Collective communications transmit data among all the processes specified by a

communicator object. One function, the barrier, serves to synchronize processes without
passing data. Briefly, MPI provides the following collective communication functions.

• barrier synchronization across all processes

• broadcast from one process to all
• gather data from all to one

• scatter data from one to all
• allgather: like a gather, followed by a broadcast of the gather output

• alltoall: like a set of gathers in which each process receives a distinct result

• global reduction operations such as sum, max, min, and user-defined functions

• scan (or prefix) across processes
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Fig. 9.14: Comparison of collective communication.

Figure 9.14 gives a pictorial representation of broadcast, scatter, gather and allgather. Many
of the collective functions also have „vector“ variants, whereby different amounts of data can

be sent to or received from different processes.
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9.4.5 Workload balancing and usage of nonhomogeneous computational resources

For DBOA it is also possible to use workload balancing shown in Fig. 9.9, but this fixed

balancing is unusable if the computing environment is shared with other tasks. For

example imagine that all the Sun workstations are dedicated to Web browsing and

only the background time is used for network computation. In this case a dynamic

workload balancing needs to be used. I implemented the farmer-workers model. CPU0

acts as a farmer which is responsible for job scheduling. Using the MPI routines, the whole

DBOA cycle can be designed as follows:

Generate random permutation o=(o0,…,on-1) in CPU0;
Distribute the permutation o from CPU0 to CPU1…CPUm-1 using Broadcast();
Fill the job-queue in CPU0 with all job numbers 0…n-1 in decreasing order;
for k:=1 to m-1 do in each CPUk parallel
begin
while job-queue in CPU0 is not empty do

begin

receive next job number i from CPU0;

Determine },...,{
10 −

⊆
i

oo XX
i

oΠ from Parents(t);

end

Put the dependence graph together from local sets
i

oΠ using Algather();

for j:=0 to n-1 do
begin

Estimate CPD parameters of )|(
jj

oXp oΠ from Parents(t);

end

Generate subpopulation Offspringk(t);
Put global Offspring(t) together from Offspringk(t) using Allgather();
Evaluate subpopulation Offspringk(t);
Put the fitness together from evaluated subpopulations using Allgather();

Parents(t+1) := select the best (Parents(t) ∪ Offspring(t));

end

According to my empirical observations, the more time-consuming jobs (jobs of determining

i
oΠ with higher number i) should be performed first, because the processes are better

synchronized before the barrier if performing finer final steps.

CPU0 denotes a farmer task which is not used for computation. Most of its time the farmer
task is waiting for a job request. It is suspended until an interrupt from communication

subsystem occurs. Fortunately, the „mpirun“ command used for executing DBOA allows us
to specify which task is mapped to which workstation. I map the farmer task and the first

worker task to the same workstation, such that only negligible computational power is wasted
by farmer. For calculation of effectivity and speedup of DBOA I use the number of

workstations instead of the number of tasks.

Note that in previous paragraphs I discussed only the balancing of workload during
construction of dependence graph. Another balancing needs to be proposed for generating and

evaluating of offspring. Each Offspringk(t) subpopulation can be of different size to

better reflect the non-homogeneous computational environment. Unfortunately the size of

each subpopulation has to be determined in advance before generating and evaluating starts.

Thus, in the case of offspring generation and evaluation the workload distribution is not

dynamical, it is changed only from one generation to another.
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I used the timing routine Wtime() from MPI to measure the computational resources of each

process and the results from the actual generation are used to modify the workload balance in
the next generation.

I use the following equation which assumes that the amount of work is proportional to the

number of offspring in the sub-population to be generated and evaluated. Let m denote the
number of workstations, si(t) denotes the size of subpopulation in i-th workstation in

generation number t and di(t) denotes the measured time of its generation and evaluation.
Then, the si(t+1) is calculated as

∑
−

=

⋅=+
1

0

)()().(

)(
)1(

m

j

jji

i
i

tdtstd

ts
Nts (9.3)

This calculation is done in farmer and it is based on measurements from workers.

Recomputed si(t+1) values are sent to workers using Scatter() at the beginning of next DBOA

cycle. During the first DBOA cycle the workload balance is uniform.

9.4.6 Collective communication improvement

In chapter 9.4.2 I already mentioned that the gathering of local parts of model Πi is not

buffer-space demanding operation, so classical Allgather() operation is sufficient. In the case

of gathering of offspring subpopulations the situation gets more complicated. In typical

problems the chromosome consists of several hundreds of genes and the population consists

of several thousands of chromosomes. Thus, the population is quite large and it is difficult to

gather it quickly among the processes. The collective MPI communication cannot be used

because of performance degradation:

- the collective communication is far more slower than the pairwise communication

- the collective communication routines do not support non-blocking processing

I proposed and implemented a special stepwise algorithm to replace the Allgather() routine. In
the i-th step each worker number j sends the known part of population to the worker number

j+2^(i-1) and receives the next part from worker number j-2^(i-1). Thus, the communication
distance and the number of transferred subpopulations in each step doubles. The principle is

shown in the next figures.

worker0

worker1

worker2

worker3

Fig. 9.15: Example of initial state with 4 distributed subpopulations  (black fields).
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Fig. 9.16: Two steps of gathering of the offspring. The subpopulations generated or received in the

previous step are marked black, the transferred subpopulations are gray.

Advantages of this approach are

1. The full pairwise transfer speed is used.
2. The operation is not atomic, but it consists of non-blocking operations, so the

population transfer can be overlapped by fitness computation.
3. The number of initiation latencies is only log(m).

9.4.7 Timing diagram

Fig. 9.17 shows a timing example of one DBOA cycle run on 3 workstations. See that

the last workstation seems to be less powerful or seems to be used also by other

tasks, such that only residual computational resources are used for BN construction

and BN sampling. The workload balancing methods ensure that all workstations

finish the BN construction and the BN sampling in the same time, because BN

gathering or offspring gathering steps can be considered as the barrier

synchronization.

CPU 0

CPU 1

CPU 2

BN

gathering

BN construction: BN sampling

Offspring

gathering

Performance

measurements

Farmer-workers

architecture

Overlapped

by fitness

computation

Fig. 9.17: Example of timing diagram for one DBOA cycle.
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9.4.8 Results

For testing I used several deceptive functions and two combinatorial problems - knapsack
problem and graph partitioning  (see chapter 7). I examined the performance of whole DBOA 

and the performance of parallel BN construction alone.

Tab. 9.2. The results for 3-deceptive function (7.4), n=198, L=5000

m=1 m=2 m=3 m=4 m=5 m=6

Avg. execution time for 1 generation [s] 42.64 22.03 15.59 12.25 10.47 9.22

Speedup S 1.00 1.94 2.73 3.48 4.07 4.63

Efficiency  100S/P [%] 100 96.8 91.2 87.0 81.4 77.1

Avg. BN construction time [s] 40.97 20.91 14.19 10.88 9.00 7.81

Speedup S 1.00 1.96 2.89 3.76 4.55 5.25

Efficiency 100S/P [%] 100 98.0 96.3 94.1 91.0 87.4

I also found that for the case of the geometric random graph partitioning the efficiency of the

parallelization increases when the problem size grows (Fig. 9.18a) and that this efficiency is

nearly not affected by the population size (Fig. 9.18b).
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9.5 Design and simulation of multithreaded MBOA algorithm

9.5.1 Parallel MBOA analysis

In MBOA algorithm a set of binary decision trees/graphs is used to express the probability

model. Many ideas for parallel MBOA algorithm can be adopted from the DBOA design, see

9.4. Namely the concept of restricted ordering of nodes can be used again to keep the

dependencies acyclic and to remove the need for communication during parallel construction

of probabilistic model.

An ordering permutation (o0,o1,…,on-1) means that the variables },...,{
10 −ioo XX can serve as

splits in the binary decision tree of target variable
i

oX .

The MBOA differs from BOA in the heterogeneous model parameters. The decision trees can

be used also for continuous or mixed domains, so the decision nodes in the trees can have

parameters of various types: real numbers for splitting on real-coded parameters, sequences of

integers for splitting on categorical parameters, etc. Also the leaf nodes in the trees can

contain various structured parameters: a list of Gaussian kernels, a list of Gaussian network

coefficients, probability bias for binary leafs, etc. You see that the disadvantage of decision

trees lies in their complicated structure. It is very difficult task for each process to convert the

parameters of decision tree into one linear data stream, which has to be exchanged with the

other processes.

It would be far more comfortable if each decision tree could be used exactly in the same place

where it has been built. Thus, the goal of this chapter is to design the distributed MBOA
algorithm, which does not need to exchange the decision trees between processes. It uses the

distributed generation of offspring in the “vertical” manner (see Fig. 9.14 left), but it was
designed for use on cluster of workstations. Multithreaded processing was proposed to

overcome large communication latencies.

9.5.2 TRANSIM tool

I was looking for suitable way to implement multithreaded MBOA. Unfortunately the current

implementation of MPI standard does not contain support for multithreaded processing.

Another possibility was to use multithreaded nature of Unix system, but I was looking for

concept at higher level of abstraction. Finally, I decided to simulate the multithreaded MBOA

algorithm using the well known TRANSIM tool.

Transim is a CASE tool used in the design of parallel algorithms. It can be used as a
performance prediction tool for sizing parallel systems, a rapid prototyping tool and an aid to

conceptualization. The major function of Transim is the prediction of time performance early
in the life cycle before coding has commenced - obtaining this information early enables the

sizing of parallel systems to be carried out prior to purchasing hardware or writing extensive
code.

Although the general ideas behind the toolset could be applied in many fields of parallel

processing, Transim itself is applicable only to loosely coupled medium grain machines -
specifically those consisting of transputers connected with Inmos links.
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The internal model, although somewhat stylised, is based on the transputer T800 family.

Transim can simulate a single processor or a complex network.  It can simulate a single
process or a large application in which many individual processes are to be active on each

processor (a processor is often termed a 'node' in Transim parlance).  Parallel execution,
alternation, channel communication, time-slicing, priorities, interruption, concurrent operation

of links and the effects of external memory are taken into account.

The statements of the input language are of five categories: control, compile-time arithmetic
for setting global parameters, software description including timing constructs, hardware

description and mapping statements. The software description language is a subset of

transputers’ Occam language with various extensions.  It is not intended as a general purpose

programming language, it is too small subset for that - but to provide a control structure

whereby the performance properties of an application may be expressed. The software and

hardware are mapped together in a separate mapping section at the end of input file.

9.5.3 Multithreaded processing

The whole architecture of multithreaded MBOA is shown in Fig. 9.20. The farmer thread is
responsible for dynamic workload assignment, builder threads are responsible for

building decision trees and generator threads are responsible for generating new
genes. The buffer threads are used only for buffering dataflow between builders and

generators, because Transim does not support buffered channels. All the threads
builderi, bufferi and generatori are mapped to the same i-th workstation.
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Fig. 9.20: Architecture of multithreaded MBOA in Transim. The dashed curves separate processes
mapped to different hardware.
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The Transim processes communicate through pairwise unidirectional channels. The array of

external channels ch.master.in is used by farmer to receive the job requests and the array of
external channels ch.master.out is used to send the jobs to builders. The two-dimensional

array of external channels ch.network is used to transfer the partially-generated population
between generators. The internal channels ch.buffer.in, ch.buffer.req and ch.buffer.out are

used for exchange of local parts of model (decision tree) between builder and generator.

The principles of the most important threads builder and generator will be illustrated by
fragments of Transim input file. The non-intuitive statements of input language will be

explained as they appear.

First see the code of builder thread:

PLACED PAR i=0 FOR NUMWORKERS
INT prev,next,j,prefetch.prev,prefetch.next,prefetch.j:
SEQ | builder

ch.farmer.in[i]  ! i | REQ.LENGTH
ch.farmer.out[i] ? prefetch.j
ch.farmer.out[i] ? prefetch.prev
ch.farmer.out[i] ? prefetch.next
WHILE prefetch.j < n

SEQ
j    := prefetch.j
next := prefetch.next
gene := prefetch.gene
PRI PAR
SEQ | getjob

ch.farmer.in[i]  ! i | REQ.LENGTH
ch.farmer.out[i] ? prefetch.j
ch.farmer.out[i] ? prefetch.prev
ch.farmer.out[i] ? prefetch.next

SEQ | build
ch.buffer.in[i] ! prev | WORK.LENGTH
SERV(j*TIMESLICE)
ch.buffer.in[i] ! j | WORK.LENGTH
ch.buffer.in[i] ! next | WORK.LENGTH

Each builder requests for a job via ch.farmer.in[i] and it receives job info from

ch.farmer.out[i]. More precisely, it receives the job number j, the number of workstation

working on job j-1 and the number of workstation requesting the farmer for job j+1. The

useful computation is simulated by a SERV() command. You see that the time for building the

decision tree for variable
j

oX is proportional to j and is scaled by TIMESLICE constant. The

building of decision tree is overlapped by high priority communication (see the sequence

named „getjob“) which serves for prefetching next job from farmer.
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Now see the code of generator thread. This fragment is very simplified, ignoring the initial

stage of generating independent variable and the final stage of broadcasting of full population:

PLACED PAR i=0 FOR NUMWORKERS
INT from,to,population,j:
SEQ | generator
WHILE TRUE

SEQ
ch.buffer.req[i] ! i | WORK.LENGTH
ch.buffer.out[i] ? from
PAR

SEQ | recvpred
ch.network[from][i] ? population

SEQ | recvmodel
ch.buffer.out[i] ? j
ch.buffer.out[i] ? to

SERV(GENSLICE)
ch.network[i][to] ! population | j * N

Each generator receives from builder (via buffered channels) the number of workstation from

which it receives the population with genes },...,{
10 −j

oo XX generated. Simultaneously it also

receives from builder the decision tree for gene
j

oX and the number of consecutive

workstation. Then the SERV() command simulates sampling of decision tree. According to
my empirical observations the sampling time is almost constant,  independent of j. At the end,

the population with generated },...,{
0 j

oo XX is sent to consecutive workstation.

Note that the priority of threads is crucial. The generator thread should have high priority and
the workstation processor should use the builder threads to overlap the communication

latency between generators. But in principle, it is impossible to remove all the
communication latencies completely (for example there remain no decision trees to build

when generating the last gene
1−n

oX ).

9.5.4 Simulated results

The Transim is able to simulate the capacity of real communication channels, so the speed of

external channels was set to 100Mb/s (like the speed of Summit48 Ethernet switch) and their

communication latency was set to 0.5 ms (like the average software latency in MPI). The

speed of internal channels was set to maximum, because in the real implementation the
builder and generator would communicate via shared memory space. According to my

empirical experience with sequential MBOA on Athlon-600 processor, the TIMESLICE
constant was set for about 7.5 ms and the GENSLICE was set for 10 ms. The job assignment

does not need extra communication buffers, so the constants WORK.LENGTH and
REQ.LENGTH were set to 1.
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Fig. 9.21: The total simulated time of multithreaded MBOA for varying problem size n and varying

number of processors m for fixed population size L=2200.

9.6 Knowledge-based KBOA algorithm

Previous sections discussed parallel processing as the brute force approach to shorten the

optimization time. Another possibility to accelerate BOA is to use an additional knowledge

about the problem, such that sooner convergence is achieved. This capability can be added to

sequential BOA as well as it can be combined with parallel processing.

For many combinatorial problems the information about the structure of the problem is

available. If the information is complete, the dependence graph can be constructed in-hand by

the expert. This method is used in the FDA (see 4.4.1). An useful benchmark for knowledge-

based experiments is a hypergraph partitioning (see 7.1). The structure of partitioning

problem is given by the list of edges between hypergraph nodes, but the decomposition of the

problem in the sense of FDA is not simple because the variables of the cost functions are

overlapping. We can only expect that adjacent nodes in the hypergraph are dependent, but we
have no exact knowledge about the degree of independence between non-adjacent nodes.  The

purpose of this chapter is to design a Problem Knowledge-based BOA algorithm (KBOA)
which uses the partial (local) knowledge about the linkage to improve the quality of

probabilistic model.

The KBOA algorithm was proposed in a cooperation with my supervisor. He is the first
author of very successful paper [xi], which was cited in IlliGAl reports [96] and [99].

9.6.1 Utilization of prior knowledge

The prior information about the problem can be used in the BDe metric (see 3.3.5) in two
ways.
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First, let us consider the term )|( ξBp - the prior probability of the network B. According to

[47] we use a simple assignment δκξ cBp =)|( , where c is a normalization constant, 

]1,0(∈κ is a penalty constant factor, and δ is the number of edges in the Bayesian network

having no match in given hypergraph. Remember that for practical reasons we use logarithm

of BDe metric, so

)log(.)log()|(log κδξ += cBp (9.4)

If we omit the logarithm of normalization constant, we get )log(. κδ . In fact, this means that

we increase the value of BDe metric by adding some penalty value log(κ) for all added edges

that have no counterpart in the partitioned hypergraph. A very strong penalization log(κ)=10
6

is used, so the greedy algorithm that constructs the dependency graph prefers edges only

between adjacent nodes of hypergraph (local information about the problem). As lately as no

neighbouring couples of nodes remain, the addition of edges continues for non-adjacent nodes

of the hypergraph.

Secondly, the prior knowledge about the optimized problem is also represented by numbers

)('
i

Xm π and ),('
i

Xixm π . It can be shown, that the values of )('
i

Xm π and

),('
i

Xixm π express our belief in the accuracy of the values )(
iXm π and ),(

i
Xixm π (see

3.3.3 for the introduction to Bayesian estimation). When  these numbers increase their value,
the BD metric will tend more towards the prior assignment of distribution, when those

numbers decrease the influence of sampled values )(
i

Xm π and ),(
i

Xixm π becomes more

significant. However, in our preliminary experiments the usage of this type of knowledge has

not significantly affected the optimization performance, so we omitted this second method.

9.6.2 Injection of building blocks

The standard BOA uses the random set of solutions in the initial population. In KBOA the

initial solutions are affected by injection of clusters of predefined size. A predefined part of a

population is generated by simple heuristics - the neighbouring nodes are aggregated into

supernodes. An example of the detection of such a supernode in a hypergraph is shown in Fig.

9.22.
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Fig. 9.22: Clustering technique based on the ratio of external/internal edges. Node 5 is the seed of the

cluster, node 3 with the minimal ratio 1/2  is added, then node 6 with minimal updated ratio 0/2 is

added.

First, a random node is selected to be the seed of the cluster. Then the effect of addition of

each neighbouring node is expressed by the number of eventual external and internal

hyperedges incident of this node. Each step the node having minimal ratio external/internal

edges is selected. When maximum size of cluster is reached or all neighbours are selected,

next cluster is created.



113

The cluster injection serves as a source of low-order building blocks. In the case of

hypergraph bisection it stops when one half of the nodes are included in clusters. Then the
nodes from clusters are assumed to be in one partition and the remaining nodes are in the

second partition.

9.6.3 Results

The behaviour of KBOA was tested on the set of benchmarks, such as grid and random

geometric graphs as well as real hypergraphs. We have performed various experiments to

demonstrate the efficiency of the developed algorithm KBOA with comparison to the original

BOA algorithm.
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In Fig. 9.23 the comparison of BOA and KBOA  is shown on four groups of graphs. The best

known solutions are determined by KBOA itself or well known hMetis program [56]. We
performed ten independent runs for KBOA and BOA on each of the 14 test graphs with

different type and size. According to our results in [xiv] we  limited the maximal incoming
degree of BN nodes to k=3. The population size is the same for BOA and KBOA and it is

settled to the value so that the KBOA was successful for all ten runs for the case of grid
graphs. For the next types of graphs the population size is scaled linearly with the size of the

problem (as suggested in [93]). The KBOA outperforms BOA in all tests of graph
bisectioning. The time consumption for both algorithms is comparable. Let us note that BOA

algorithm is theoretically capable to reach the similar cut size as KBOA but with about five

times greater population size (for our test graphs) and rapid increase of computation time.

In Fig. 9.24 the performance of KBOA algorithm on the hypergraph IC151 for different size

of injected clusters is shown. The size of clusters is expressed as a percentage of the number

of hypergraphs nodes. The proper value is about 5% of what we used in all our trials. In case

of smaller clusters the injection of proper building blocks is weak, in case of larger clusters

the injection leads into local optima.

In Fig. 9.25 a presentation of average order of building blocks in the population is depicted.

This experiment is done for grid graph Grid100.2 with cluster size as a parameter. Because

two complement optimal bisections are known, we separate all the chromozomes into two

groups according to their similarity to each of the possible optima and the calculation is based
on the Hamming distance. It can be seen that for small cluster size the average order of BBs in

the first generation is about 50%. For this experiment the population size is set to L=300-2400
for KBOA and to L=2400 for BOA to get the global optimum for all sizes of cluster. A strong

influence of the injection of clusters on the speed up of the evolution can be recognized. Let
us note that the 1% KBOA is affected only by the usage of prior probability (penalization) of

the Bayesian network (see chapter 5) and only this phenomenon differs 1% KBOA from the
original BOA.

The concept of cluster injection into the initial population detected on the hypergraph

structure seems to be a really promising tool for enhancement of population genotype. This

phenomenon leads to the meaningful reduction of number of cost function evaluations and

population size.
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10 Design of multiobjective EDA

Many real-world problems have multiple non-commensurable and often competing

objectives. While in the case of single-objective optimization the optimal solution is simply

distinguishable, this is not true for multiobjective optimization. The desired set of solutions

should contain all possible trade-offs among the multiple, competing objectives. These

solutions are optimal, nondominated, in that there are no other solutions superior in all

objectives.  The main attention in this chapter is focused on the incorporation of well known

multiobjective niching techniques into classical structure of BOA to find the so called Pareto

optimal set. I have designed two variants of  multiobjective BOA according to Pareto-strength

concept and epsilon-dominance concept.

10.1 Introduction

10.1.1 Motivation

Research in the design of multi-objective evolutionary algorithms has mainly focused on the

fitness assignment and selection part. In contrast, the variation operators could be used from

the single objective case without modification, which gave them only little attention.  Some

studies indicate, however, that the existence of multiple objectives influences the success

probabilities of mutations which in turn has consequences for the choice of the mutation

strength [105],[72].  For recombination it is also unclear whether combining parents that are

good in different objectives improve the search as they could create good compromise

offspring [58], or whether they contain such incompatible features that a  combination does

not make sense, thus advocating mating restrictions. The fact that recombination generally is a

„contracting“ operator might also conflict with the goal to reach a broad distribution of
Pareto-optimal solutions.

In this chapter I investigate the use of EDAs for multi-objective optimization problems to

overcome the aforementioned difficulties when creating offspring from a set of diverse
parents from different trade-off regions. Moreover, the utilizing of Estimation of Distribution

Algorithms reduces the disruption of building blocks and the removes necessity of ad hoc
setting of  parameters like crossover, mutation and selection rate.

10.1.2 Problem specification

To formalize the multiobjective optimization a number of relevant concepts (see [123])
should be defined.

Definition 10.1 (Multiobjective optimization problem) :

A general multiobjective optimization problem MOP can be defined as a vector function f 

that maps a tuple of n parameters to a tuple of m objectives:

optimize z = F(x)=(F1(x),F2(x),…, Fm (x)) (10.1)

subject to g(x) = (g1(x),g2(x),…, gk (x)) ≤ 0

where x = (x0 , x1,…..,xn-1) ∈ A
n
, z = (z1, z2,…,zm) ∈ R

m
. Then x is called decision vector, A

n

is the parameter space, z is the objective vector, and R
m is the objective space. The constraint

vector g(x) ≤ 0 determines the set of feasible solutions.
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The set of solutions of MOP includes all decision vectors for which the corresponding

objective vectors cannot be improved in any dimension without degradation in another - these
vectors form so called Pareto optimal front. The idea of Pareto optimality is based on the

Pareto dominance relation.

Definition 10.2 (Pareto dominance) :
Let’s consider – without loss of generality - a maximization MOP. A decision vector a

dominates decision vector b iff

∀ i∈{1,2,..,m}: Fi(a)≥ Fi(b) ∧ ∃ i∈{1,2,..,m}: Fi(a )>Fi(b) (10.2)

We denote this relation “a f b”.

According to (10.2) the Pareto-dominance concept introduces irreflexive, antisymmetrical and
transitive binary relation between objective vectors. If we add reflexivity (such that solutions

with the same objective vectors are considered to dominate each other) then it forms a partial

ordering relation on the space of objective vectors.

Definition 10.3 (Pareto optimality) :

The vector a is said to be Pareto optimal iff in a parameter space An there exists no vector b

which dominates vector a

∃ b∈A
n
: b f a (10.3)

Definition 10.4 (Pareto optimal set) :
Pareto optimal set is the set of all Pareto optimal solutions

{ a∈A
n

| ∃ b∈A
n
: b f a } (10.4)

In the objective space the set of nondominated solutions lie on a surface known as Pareto

front. The goal of the optimization is to find a representative sampling of solutions along the
Pareto front.
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Fig. 10.1: Illustration of Pareto optimality concept and Pareto dominance relation
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Definition 10.5 (Pareto front) :

Pareto front is the set of objective vectors of all Pareto optimal solutions

{ F(a)=(F1(a), F2(a),…, Fm (a)) | a∈A
n ∧ ∃ b∈A

n
: b f a } (10.5)

Note that the Pareto optimal set is defined in the parameter space, while the Pareto front is

defined in the objective space.

From example in Fig. 10.1 you see that with respect to solution B there exist some indifferent

solutions (e.g. E,F,G,H,I), some solutions dominated by B (e.g. C,D) and some solutions
which dominate B (e.g. A).

10.1.3 Traditional approaches

Historically, multiple objectives have been combined to form a scalar objective function

through weighted sum of individual objectives or by turning objectives into constraints.
Setting of weights and specification of penalty functions is not a simple task and these values 

can be found only experimentally.
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Fig. 10.2: The disadvantages of traditional methods

Weighted-sum method

In this approach the original vector-valued objective function is replaced by a scalar-valued

objective function. The objective function of the individual x is computed as a weighted sum

of all objective functions:

)()(

1

xx ∑
=

=
m

i

iiFwF , (10.6)

where wi are weight coefficients. It is well known the sensitivity of the optimization process

to these values. These algorithms do not preserve Pareto-optimal solutions but provide mostly

solutions from extremes of the Pareto-front.

In Fig. 10.2 (left) there is an example with two-objective vectors. You see that equally

preferred solutions are connected with the line of slope –w2/w1. This is not as general as the

Pareto-dominance relation, because the C solution from Pareto-front is less preferred.
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Constraint method

In this approach only one objective function F1(x) is used and the other objective functions

are replaced by normalization operator which modifies each individual to keep its value in the

considered bound. This operation can unfavourably change the objective function F1 of each

individual. This effect may cause an extra genetic drift of the population.

In Fig. 10.2 (right) there is an constraint example with two-objective vectors. You see that
solutions A,C are not allowed even if they are from Pareto-front. Moreover, D is more

preferred than B.

10.1.4 Earlier MOEAs

From the theory of Pareto optimal set it is evident that the multiobjective optimization

algorithms should be able to find  as many Pareto optimal solutions as possible. Many studies

have depicted different ways how multi-objective evolutionary algorithms (MOEAs) can

progress towards the Pareto-optimal solutions.

After the very preliminary Vector Evaluated Genetic Algorithm (VEGA) [109] the early

MOEAs were inspired by Goldberg’s idea of nondominated sorting [41] along with a niching

mechanism. These include Multi-Objective Genetic Algorithm (MOGA) [33], Nondominated
Sorting Genetic Algorithm (NSGA) [113] and Niched Pareto Genetic Algorithm (NPGA)

[52]. All these successful algorithms work in a similar manner: (i) the fitness of a solution
was assigned using the extent of its domination in the population and (ii) the diversity among

solutions was preserved using a niching strategy.

10.1.5 Advanced MOEAs

In order to ensure convergence to the true Pareto-optimal solutions, an elite-preservation

operator was absent in the earlier algorithms. Thus, the latter approaches mainly concentrated

on how elitism could be introduced in an MOEA. This resulted in a number of better

algorithms - Strength Pareto Evolutionary Algorithm (SPEA) [123], Pareto-Archived
Evolution Strategy (PAES) [59], NSGA-II [29], and others. A wide review of basic

approaches and the specification of original Pareto evolutionary algorithms include the
dissertations [26], [115], [123]. From the latest period let me also mention an interesting

Pareto-Envelope based Selection Algorithm (PESA [60]) and the very good algorithm SPEA2
[125] which approximates the true Pareto front.

10.1.6 EDA approaches

As far as I know presently there are only two other research groups working on multiobjective

EDAs. The first one is that of Bosmann and Thierens. Their Multi-objective Mixture-based
Iterated Density Estimation Algorithm (MIDEA) [117] combines the IDEA approach

described in 4.5.5 with the approach similar to NSGA. The selection operator picks the best
samples according to domination count and the diversity among solutions in the objective

space is implicitly preserved due to clustering of solutions before construction of probabilistic
model.
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The MIDEA was published later than my papers concerning Pareto-strength BOA described

in the next chapter (see [vii], [viii]), so no empirical comparison was possible. But I believe
both algorithms would perform similarly because MIDEA is also comparable to the original

SPEA algorithm I was inspired by. Bosman and Thierens have not assured the ability of
MIDEA to converge to the true optimal Pareto-set. The diversity preservation in MIDEA is

questionable, because each generations the solutions are “re-clustered”. The centers of
clusters would “shrink” nearer and nearer to each other if the population is likely to converge

to an ``easy to find'' middle region of the Pareto set. In this case some epsilon-dominance
concept (proposed for BMOA algorithm in 10.3) will improve MIDEA.

The  second paper on multiobjective BOA [57] was recently published by Nazan Khan from

Illigal laboratory. It combines BOA with NSGA-II principle. From the theoretical point of

view this paper contains no additional proposals concerning the unique properties of EDAs,

but the remarkable think is the usage of multiobjective deceptive benchmarks in the

experiments. These benchmarks completely confuse the NSGA-II algorithm with classical

recombination operators.

10.2 Multiobjective BOA with Pareto-strength fitness

10.2.1 Pareto-strength principle

Pareto-strength BOA algorithm is a modification of original Pelikan’s BOA core [91] based

on Bayesian network model. This standard BOA is able to find mostly one optimal solution at

the end of the optimization process, when the whole population is saturated by phenotype-

identical individuals. To overcome this problem a promising Pareto-strength niching

technique is applied, published in [123]. The space of objective vectors is divided into

rectangles corresponding to the combinations of solutions from Pareto-set. The Pareto-

strength fitness assignment tries to replace the objective vector by the scalar fitness value

according the following two rules (see Fig. 10.3):

1. Individuals dominated by smaller number of nondominated individuals are preferred.

2. Dominated individuals having more neighbours in their „niche“ are penalized.

F2

F1

most preferred regions

least preferred region

F2

F1

most preferred solution

least preferred solutions

Fig. 10.3: Illustration of intuitive rules for Pareto-strength fitness assignment
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10.2.2 Design of multiobjective BOA

Pareto BOA algorithm can be described by the following steps:

Step 1: Initialization: Generate an initial population P0 of size L randomly.

Step 2: Fitness assignment: Evaluate the initial population.

Step 3: Selection: Select the parent population of size N as  the best part of current population

by 50% truncation selection.

Step 4: Model construction: Estimate the distribution of the selected parents using Bayesian

network construction.

Step 5: Offspring  generation: Generate  new  offspring  (according to the distribution 

associated to the Bayesian network).

Step 6: Nondominated  set  detection and fitness assignment: Current  population  and

offspring are joined, nondominated solutions are found, evaluated and stored at the top

of the new population. Then dominated offspring and parents are evaluated separately.

Step 7: Replacement: The new population is completed by offspring  and the best part of

current population, so the  worst individuals from current population are canceled to

keep the size of the population constant.

Step 8: Termination: If maximum number of generations Ng is reached or stopping criterion

is satisfied then the last Pareto front is presented, else go to Step 3.

The most important part of the Pareto BOA algorithm is the procedure for detection of

nondominated solutions (current Pareto front) and sophisticated Pareto-strength fitness
calculation. The procedure for current nondominated and dominated set detection is described

in following steps:

1. For each individual x in the population P compute vector of the objective functions

))(,),(),(()( 21 xxxxF mFFF K= (10.7)

2. Detect  subset of nondominated solutions

{ }jkkjj PPP xxxxx f:| ∈∃∧∈= (10.8)

Note: If two or more individuals have the same fitness vector )(xF , then only one

of them is accepted.
3. For each nondominated solution x

j compute its strength value as
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(10.9)

The fitness  for nondominated solutions is equal to the reverse of the strength value

)(1)(
jj

sF xx =′ .

4. For each dominated solution x
i

determine the fitness as






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



+=′ ∑

j

ji sF

x

xx )(11)( , (10.10)

where ijj P xxx f∧∈ . In the original approach [123] all individuals dominated by the

same nondominated individuals have equal fitness. I proposed an extension by adding a

term )1()(. +Prc ix into the denominator (10.10), where )( ir x is the number of

individuals from P (not only from nondominated solutions) which dominate x
i and
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coefficient c is set to very small number, for example 0.0001. This term is used to

distinguish the importance of individuals in the same “niche” (being dominated by the
same nondominated solutions).

This type of fitness evaluation has the following advantages:

• For all nondominated individuals 1)( ≥′ i
F x , for dominated individuals holds

1)( <′ iF x . If the replace-worst strategy is used, implicit Pareto elitism is included.

• Individuals from Pareto front dominated smaller set of individuals receive higher

fitness, so the evolution is guided towards the less-explored search space.

• Individuals having more neighbours in their „niche“ are more penalized due to the

higher )(
j

s x value of associated nondominated solution.

• Individuals dominated by smaller number of nondominated individuals are more

preferred.

The whole structure of Pareto-strength based BOA algorithm is stated in Fig. 10.4.
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Truncate selection
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Dominated solutions

Population(t) Archive (t)
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X3

X2

X1

X0

Fig. 10.4: Architecture of Pareto-strength BOA
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10.2.3 Parallel Pareto-strength fitness assignment

In chapter 9.4 I proposed the distributed BOA algorithm. This approach can be extended to
the distributed Pareto BOA. I propose the following modification of the procedure for Pareto-

front detection and Pareto-fitness assignment:

First, each processor would compute the vector of objective functions for all individuals from

its part Pk of population P.  Then, each processor detects its local set of nondominated

solutionsPk as

{ }ji
k

i
k

jj
k PPP xxxxx f:| ∈∃∧∈= (10.11)

and the master processor creates the global nondominated setP from the union of local

nondominated setsPk as
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Fig. 10.5: Parallel Pareto-set selection

The strength values for nondominated solutions fromP can be obtained as the sum of local

strength values computed in parallel by all processors:

{ }
1

|

)(
+

∧∈

=
∑

P

P

s k

ij
k

ii

j

xxxx

x

f

(10.13)



123

master

slave 1 slave 2

3

2

2
4

2

1

1
2

3+2=5

2+1=3

2+1=3

4+2=6

Fig. 10.6: Parallel Pareto-strength computation

After that, all nondominated solutions and their strength values are known, so each processor

is able to compute the Pareto fitness for all individuals from its part of population according

to equations (10.9) and (10.10).

The first version of Pareto multiobjective algorithm is described in [vii], focused on

bipartitioning of hypergraph. In the next chapter the problem of biobjective optimization of
knapsack problem is described more in detail.

10.2.4 Comparison with advanced techniques on multiobjective knapsack problem

In this comparison I have focused on the bi-objective optimization of knapsack problem (see
7.3) which belongs to the well known test benchmarks. In order to be able to compare my

algorithm with other published evolutionary algorithms I used two of the three benchmarks
published on the web site [http://www.tik.ee.ethz.ch/~zitzler/testdata.html] specified for 100

(Kn100) and 250 items (Kn250) and two knapsacks. I have compared my results with
published results achieved by two evolutionary algorithms SPEA [119] and NSGA [113].

These two algorithms represent the well working evolutionary multiobjective algorithms.

In Fig. 10.7 and 10.8 the history of evolution process for the benchmark Kn100 is depicted.
The 1st, 25th, 50th and 100th generation of one run of Pareto optimal BOA is shown. In

experiment I set the population size L=4000, but only 500 of the randomly chosen

individuals/solutions are shown in the graph. The X-coordinate of each point  equals to the

function value F1(x) and the Y-coordinate equals to the function F2(x). This experiment shows

the dynamics of the evolution process and the creation of Pareto front.
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In Fig. 10.9 there is the comparison of the final Pareto front produced by Pareto BOA

algorithm and by the SPEA [123] and NSGA algorithms [113] for the case of Kn100
benchmark and in Fig. 10.10 for the case of Kn250 benchmark. I performed 5 independent

runs and constructed the final Pareto front from the 5 particular Pareto fronts. From Fig. 10.9
it is evident that for Kn100 the Pareto solutions produced by my Pareto BOA in the middle

part of Pareto front are slightly better than the Pareto solutions produced by SPEA and
NSGA. What is more important – my Pareto BOA produces more solutions in the Pareto front

margins.

In Fig. 10.10 we see that for Kn250 the difference between Pareto fronts is more expressive –

my Pareto BOA outperforms the SPEA and NSGA. I used the following setting for my

algorithm: for the Kn100 I set the population size L to 2000, for the case of the Kn250 the

population size L equals to 5000. The number of generations used is about 300. The

computation time is about 15 minutes for the Kn100. In case of the Kn250 the time was 2

hours for L=5000 and about 40 minutes for L=2000. To reduce the computation time I

consider the implementation of parallel version of the Pareto BOA algorithm. It would be also

possible to shorten the computational time by decreasing the size of population, but I wanted

to keep those predefined values used also in my previous experiments.
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In the context of algorithm comparison an important question arises: What measure should be

used to express the quality of the results so that the various evolutionary algorithms can be
compared in a meaningful way. In [123] two measures are described. One of them denoted as

S represents the size of the objective space covered, the second measure denoted C represents
the coverage of two sets according to their dominance. I preferred in my comparison the

topology/shape of the Pareto fronts.

All experiments were run on Sun Enterprise 450 machine (4 CPUs, 4 GB RAM), in future I

consider the utilizing the cluster of Sun Ultra 5 workstations for parallel version of Pareto-
BOA.
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10.2.5 Summary

I have modified the evaluation and replacement phase of the standard BOA algorithm by
utilizing the concept of a Pareto-strength fitness published for SPEA algorithm in [123].

The Pareto BOA performance was compared to two well known evolutionary algorithms

SPEA and NSGA on two multiple 0/1 knapsack problems Kn100 and Kn250. Let me note

that the SPEA is modern multiobjective optimization algorithm which was able to surpass

other existing algorithms on many test problems and was applied successfully various

computer engineering design problems. That is why I compare the performance of my and

SPEA algorithm. The Pareto solutions produced by my algorithm are uniformly distributed

along the Pareto front which is broader than in the case of NSGA and SPEA algorithms.

Many problems remain to be solved, namely the large computational complexity. To reduce

the computational complexity I proposed the idea of the parallelization of Pareto BOA

including the decomposition and detection of the Pareto front. This approach is an extension
of distributed BOA proposed in chapter 9.4.

The next possible improvement lies also in more sophisticated niching technique,

modification of replacement phase of the algorithm and  introduction of problem knowledge
into optimization process.

10.3 BMOA: Multiobjective BOA with epsilon-dominance

My earlier Pareto-strength BOA algorithm (see 10.2) using the original Pelikan’s BOA core

[91] with Bayesian network model was comparable to the best multiobjective-algorithms of

its time - SPEA and NSGA. However, I decided to create new algorithm to be competitive to

the recent SPEA2 [125] and NSGA-II [29] algorithms. The aim was also to develop

completely new multiobjective technique for my perspective MBOA core based on mixed

decision trees model. I started the joint research with Marco Laumanns from ETH Zűrich, one

of the SPEA2 authors. Our new Bayesian Multi-objective Optimization Algorithm (BMOA)

reflects all the new studies related to the theoretical convergence analysis [104],[72]. It has

both properties of converging to the true Pareto-optimal front and maintaining a widely spread

distribution of solutions. In our paper [i] we derived design guidelines for a successful
selection scheme in EDAs. In connection with the construction of the probabilistic model we

developed new selection operator based on ε-archives [72].  Chapters 10.3.1 - 10.3.5 are

summary of our joint work on sequential BMOA. Chapter 10.3.6 describes a parallel
extension of BMOA I proposed later.

10.3.1 Design guidelines

For the design of a multi-objective BOA the baseline algorithm we used is a generic

convergent MOEA [72] with a guaranteed spread of solutions. Some important aspects have

to be taken into account, some of which stemming from the peculiarities of multi-objective

optimization problems, others from the necessity of the probabilistic model building

techniques.
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Preliminary tests with a simple (µ+λ)-strategy and fitness assignment based on the dominance

grade have shown that a trivial multi-objective extension leads to poor performance. The

population is likely to converge to an ``easy to find'' region of the Pareto set and more and

more duplicate solutions are produced. The resulting loss of diversity leads to an insufficient

approximation of the Pareto set and is especially harmful for building a meaningful

probabilistic model. Therefore the following design requirements are essential:

1. Elitism (to preclude the problem of gradual worsening and enable convergence to the
Pareto set),

2. Diversity maintenance in objective space (to enable a good approximation of the whole

Pareto set), and

3. Diversity maintenance in decision space (to avoid redundancy and provide enough

information to build a probabilistic model).

10.3.2 A new selection operator

From the existing selection/archiving operators in evolutionary multi-objective optimization,

the ε-archive [72] has been designed to meet the requirements 1 and 2 above. The aim is to

approximate the set of Pareto-optimal solutions. The algorithm maintains a finite-sized

archive of non-dominated solutions, which gets iteratively updated in the presence of every

new solution. The non-domination check is performed with a new ε-dominance operator,

which ensures that no two neighboring solutions (within a ε-neighborhood) are non-

dominated to each other.

The use of ε-dominance also makes the algorithms practical by allowing a decision-maker to

control the difference in objective function values (by choosing an appropriate ε) between two

consecutive Pareto-optimal solutions.

log(F1)/log(1+epsilon)

log(F2)/log(1+epsilon)

1 2 3 4

1

2

3

4

Fig. 10.11: The basic idea of ε-dominance. The objective space is divided into ε-boxes. Each ε-box

can contain only one solution. This avoids outbreak of “easy to get” solutions from the middle region.
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As the time goes to infinity it can be proven that for each objective coordinate the distance

between “boxed” Pareto-front and the global Pareto-set will be less than (1+ε). For example

by setting ε=10e
-6

we reach 6-digit accuracy.

This method was proposed for use in classical MOEAs, because it maintains a minimal set of

solutions that ε-dominate all other solutions generated so far. However, as this set can become

very small, the scheme has to be modified to provide enough decision space diversity for

BOA. The new selection operator is described in Alg. 1. The idea is that now also dominated

individuals are allowed to survive, depending on the number of individuals that they are

dominated by.

Algorithm 1 Select(Ar, P, µ, ε)
Input: old parent set Ar, candidate set P,

minimum size µ, approximation factor ε
Output: new parent set Ar'

for all x ∈ P do

B := {y ∈ Ar | ∀Fi: log Fi(y) / log (1+ε) =  log Fi(x) / log (1+ε) }

if B = ∅ then

Ar:=Ar∪{x}
else if ∃y∈B such that xf y then

Ar:=Ar \ B∪{x}
end if

end for

Ar’ := {y∈Ar |∃z∈Ar: zf y}
D := Ar \ Ar’

if |Ar'| < µ then

Fill Ar' with µ—|Ar'| individuals y∈D in increasing order

of |{z∈Ar’∪D | zf y}|
end if

Return: Ar’

The algorithm consists of two parts – insertion of individuals from P to Ar and selection of

most promising part of Ar into Ar’. The insertion rules for ε-archive are straightforward:

a new solution is added if the ε-box is empty

a new solution replaces the old solution in the ε-box if the new solution strictly

dominates the old one

otherwise the new solution is omitted

10.3.3 The (µ+λ, ε) – BMOA

The combination of the selection operator (Alg. 1) and the variation based on the probabilistic

model results in a Bayesian Multi-objective Optimization Algorithm described in Alg. 2. In

this (µ + λ, ε) - BMOA, µ denotes the (minimum) number of parents that survive to the

next generation being the input to build the model, λ the number of samples from the model

in one generation and ε the factor that determines the granularity of the approximation.
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Algorithm 2 (µ+λ,ε) - BMOA

while |Ar| < µ do

Randomly create an individual x.

Ar := Select(Ar, {x}, µ, ε)
end while

while Termination criteria not fulfilled do

Create Bayesian Model M from Ar.

Sample λ new individuals from M.

Mutate these individuals and put them into B.

Ar := Select(Ar,B,µ,ε)
end while

Each individual sampled from the model is additionally mutated by flipping each bit
independently with probability 1/n. From the theoretical point of view the mutation step is

necessary to ensure the reachability of all solutions. It is not common in the EDA framework,

but in conjunction with steady-state replacement and ε-archiving this guarantees (see [72])

that in the limit the non-dominated population members converge to a representative

subset of the Pareto set in the sense that each Pareto-optimal point is ε-dominated by at

least one population member.

10.3.4 Empirical study of BMOA

The behavior of the resulting Bayesian Multi-objective Optimization Algorithm (BMOA) was

empirically investigated on the multi-objective knapsack problem with m = 2 objectives to

demonstrate the applicability of the approach.
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Fig. 10.12. Progress of the population of (500+500, ε)-BMOA on the KP-100-2 for ε = 10
-6

(left) and ε =

0.005 (right) after t = 12000 and t = 100000 function evaluations.

Fig. 10.12 shows the progress of the population for different ε values for a typical run. With

a small ε, it can be seen that the population is more concentrated near the middle of the

Pareto set compared to the larger ε value, where the population is distributed more evenly

and broadly.

Fig. 10.13 displays the number of Pareto-optimal solutions found and the empirical

approximation quality εmin over time.

εmin := Min{ε ∈ R
+
| ∀x ∈ {0,1}

n ∃ y∈Ar  with  (1 + ε) F(y) > F(x)} (10.14)
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It indicates how the algorithm can be tuned by different settings of the µ and ε values. For

larger values of both parameters, more dominated individuals will be allowed in the

population: Whereas a large ε value means that the individuals have to compete for less

available "slots", a larger µ simply enlarges the storage. As discussed before, more individuals

lead to a more accurate model estimation, but if the fraction of dominated individuals is large,

a lot of sampling (and search) effort might be wasted on exploring previously visited regions

and thereby increasing the running time.
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Fig. 10.13 Average number of Pareto-optimal solution contained in the population (left) and empirical

approximation quality εmin (right) for KP-100-2 for different µ and ε values.

10.3.5 Comparison with other MOEAs

In order to evaluate BMOA with respect to other MOEAs we use the results of the

comparative case study from [125] and focus on the large instances of the knapsack problem

with n=750.

Table 10.3 compares BMOA to different algorithms using the coverage metric C(A,B). It

calculates the relative number of non-dominated individuals contained in the population of

algorithm B that are dominated by at least one individual from the population of algorithm

A of a given point in time. The (3000+3000, 10-6)-BMOA is able to dominate more that

half of the other algorithms' populations on nearly all instances, with the best results

on the four-objective problem. The other algorithms are not able to dominate any of
BMOA's non-dominated points, but they generally find a broader distribution.

Tab. 10.3. Results of the coverage measure C (�,�) to compare the (3000 + 3000,10
-6

)-BMOA with

NSGA-II, PESA, SPEA, and SPEA2 after t = 480000 function evaluations, median of 30 runs.

C(BMOA, �), C(�, BMOA) KP-750-2 KP-750-3 KP-750-4

NSGA-II 0.71, 0.00 0.56, 0.00 0.72, 0.00

PESA 0.71, 0.00 0.64, 0.00 0.97, 0.00

SPEA 0.52, 0.00 0.63, 0.00 0.99, 0.00

SPEA2 0.58, 0.00 0.48, 0.00 0.80, 0.00
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10.3.6 Parallel BMOA

Because of its relatively large population size, the BMOA proceeds much slower than
other MOEAs and it requires more CPU time due to the estimation of the probabilistic

model. To overcome this difficulty a parallel version BMOA can be designed on the

basis of multithreaded BOA with decision trees (see 9.5). But this concept of

parallelism needs some extension for efficient parallel manipulation with ε-archive.

I propose to replace the sequential Select(Ar, P, µ, ε) from Alg 1. by two parallel steps.

The first step is the parallel insertion of P into Ar. It uses a hash function h(x) which

transforms m-dimensional coordinate of corresponding ε-box to integer number in the range

{0,..,v-1}, where v is the number of processors.

h(x) : A
n→ {0,..,v-1}, such that
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The old parent set Ar, and the candidate set P is splitted into m groups Ari = {x | x∈Ar ∧
h(x)=i}, Pi = {x | x∈P ∧ h(x)=i}. Then in each processor i the insertion of individuals from Pi

to Ari is performed independently. If the hash function is of good quality then each processor

is responsible for almost the same number of ε-boxes. At the end of the first step the sets Ari

are merged into one set Ar.

The second step is the parallel selection of individuals from Ar to Ar’ according to increasing
number of individuals who dominate them. For this task the methods from 10.2.3 can be

adapted.

10.3.7 Summary

A Bayesian Multi-objective Optimization Algorithm  (µ+λ,ε)-BMOA has been designed

using a probabilistic model based on binary decision trees and a special selection scheme

based on ε-archives. The convergence behavior of the algorithm can be tuned via the values of

µ, the minimal population size to estimate the probabilistic model, and ε, the approximation

factor.

The algorithm was empirically tested on different instances of the 0/1 multi-objective

knapsack problem.  The BMOA is able to model the distribution of the non-dominated points

in the population well and to improve these. In order to find also the outer region of the Pareto

set, large µ and ε values are required which slows down the optimization process

considerably. To keep the optimization time acceptable I proposed the parallelization of

BMOA.

Further research could assess BMOA on other multi-objective combinatorial optimization

problems with stronger variable interactions (see [57]) and on continuous problems. From the

decision-aid  point of view it would be interesting to exploit the Bayesian model also outside

the algorithm itself. The compact description of the model could assist a decision maker who

can analyze the decision trees  to get more insight into the structure of the Pareto set and to

learn about correlations in the decision problem at hand.
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11 Prototyping EDA applications

This part is an extension of Radim Kostka‘s master thesis [61] I supervised. We deal with the

design of the modular development system DEBOA for the rapid prototyping of optimization

applications on the basis of BOA algorithm with binary decision graphs. The general

requirements on the development system are identified including modularity and visualization

of results. The design of the development system itself is realized on the platform of Java

language, which ensures great portability. DEBOA system can be easily extended to support

new types of fitness functions as well as new types of visualizations.

11.1 Motivation

The creation of a well-performing classical evolutionary algorithms highly depends on
problem encoding, genetic operators and control parameters. In the field of classical EAs

there are many development environments for fast prototyping, but in the field of EDAs these
tools are missing. We investigated the Pelikan’s BOA code with binary decision trees and

designed the DEBOA development system for fast prototyping of optimization tasks. This
approach is also usable for MBOA algorithm with mixed decision trees.

In the next section an overview of several typical development systems based on classical

evolutionary algorithms is discussed. In chapter 11.3 the common features of existing systems

are summarized and the most important requirements for modern development system are

specified. In chapters 11.4 and 11.5 the design and implementation details of the DEBOA

development system are present and the most important parts from the user guide are

included.

11.2 Particular  EA tools

A number of EA tools have been investigated to identify the most important features of
development systems.

11.2.1 G.O.D.

The Genetic Object Designer (GOD) [40] is a Windows based genetic algorithm shell using

EOS (Evolutionary Object System) library. It facilitates the exploration of many variants of

the traditional GA when optimizing a specific problem. GOD comes with a built-in interpreter

of EPL language (Evolutionary Programming Language) for purposes of specifying the

domain specific parts of genetic algorithm. The final GA can also be exported to application

written in C++ using the “Generate C++ Code” option.

11.2.2 GADESIGN

The GADesign toolkit was created at Brno University of Technology by Libor Kriz [62] as a

part of his master thesis. Its modular concept is based on the platform of object-oriented

Pascal language in the frame of the Borland Delphi system. This development tool allows for

design of proper genetic algorithm without detailed knowledge of genetic theory using only

an intuitive process of specification of the genetic classes, functors and parameters.
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The user code can be loaded from DLL or interpreted using built-in interpreter of Pascal-like

language. The creation of stand alone application is possible by using the DLL library
containing GADesign evolutionary engine.

11.2.3 GALIB

Galib [119] a source code library of genetic algorithm objects. It allows for using genetic

algorithms in any C++ program. The library includes basic types of genetic algorithms,

chromozome encoding and  genetic operators.

11.3 Demands on development system

The most advantageous features of existing development systems can be generalized as

follows.

11.3.1 Visualization

By the visualization I mean the ability of EA development system to provide as many

information about the evolution as possible. The common visualization can be divided into
two classes:

visualization of EA evolution process
visualization of current population distribution in solution space

11.3.2 Extensibility

Modern EA toolkits should be implemented in a modular way, such that a new operator,

visualization or fitness function can be added. After building a final source code for solved

optimization task two extensibility modes can be used:

Interpreted code

Binary code using DLL files

The interpreted mode uses a built-in interpreter of pseudo-programming language in which

the user code can be written. The binary one is faster, because the precompiled binary code is

dynamically loaded and executed (for example from .DLL file or Java .class file).

11.3.3 Reusability

Most of EA toolkits support only prototyping, but some of them can also export settings and
operators into final application such that the optimization engine needs not to be programmed

again. For example the core of reusable EA toolkit is contained in .DLL file and its API

functions are called from the source code generated according to optimal settings found.

11.3.4 Portability

By the portability I mean the transfer of EA toolkit from one platform to another. Usually the

commercial toolkits contain platform-specific binaries whereas the open-source toolkits are

easily portable.
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11.4 Design and implementation of DEBOA system

11.4.1 Java language

We adopted the original BOA package in C++ [96] and proposed new object oriented

modular design based on Java language. It fulfills the following properties:

- redesign of BOA core

- reusability of BOA core for variety of applications

- visualization of BOA evolution process

- interactive parameter settings

Java contains several features that argue for it. It is widely distributed and has become one of
the major programming languages. The development kit, including compiler and debugger, is

freely available on a number of different computer platforms. The core libraries contain many
functions which can be used directly and need not be adopted from external libraries, which is

not the case in C++ for instance. Another important point for future work is the built-in
support for multithreading and distributed computing.

Java is a strictly object-oriented language. By combining the object-oriented design with the

other Java features, my project has several unique advantages:

o in the Java applet mode it is suitable for WWW presentations

o pre-compiled modules with new visualizations and new fitness computation can be

dynamically loaded during run-time as new classes

o the class files are easily portable, no need to distribute the source code

o the class containing optimization core is reusable, it can be easily incorporated into the

final project

11.4.2 Modular design

For object oriented design the “design patterns” technique was used. The simplified scheme

of DEBOA system is shown in the following UML diagram.

Fig. 11.1: The UML diagram of DEBOA classes
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11.4.3 Visualization of characteristics

The following common visualizations were implemented:
Statistics – basic statistics of optimization process

Fitness – graph of minimal, average and maximal fitness function values

Fitness Hist – fitness distribution histogram

Similarity – minimal, average and maximal Hamming distance between individual

genotype and global optimum genotype if known

Similarity Hist – similarity distribution histogram

Fig. 11.2: Fitness distribution histogram

Moreover, the visualization of BOA probabilistic model was included:
Decision – decision trees for each variable/gene of the chromosome

Fig. 11.3: Binary decision diagram from DEBOA
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11.4.4 Tool for rapid prototyping

Due to modular architecture the system can be easily extended. New experiments are
inherited from the class develop.user.Experiment. Both types of extensibility are supported. I

created the class ExperimentCreator for loading of built-in experiments and class

ExperimentLoader for dynamical loading of experiments during run-time. Thanks to the class

ProxyConnection the dynamical loading is transparent and can be done from local filesystem

as well as from URL.

To create new experiments the users can use these steps :

1) Create new file NewExperiment.java

2) Import interface develop.boa using the directive import, if methods working with

populations or other data types defined in this package should be redefined

3) Create new class by extending already existing class develop.user.Experiment using

keyword extends
4) Declare new variables and data types for new experiment

5) Define the method Init() that sets up the parameters of the experiment (name, menu
items names, names of user graphs, etc.) and the flag isBestDefined if the best

individual is defined
6) If required, redefine methods FitnessFunction(), isOptimal(), howSimilarToOptimal(),

Init(), updateStatistics(), alterPopulation(), LoadData(), SaveData(),
DrawUserGraph1(), DrawUserGraph2()

7) Compile new experiment using command: javac NewExperiment.java

Each experiment class provides support for common visualizations. For example the method

howSimilarToOptimal() computes the Hamming distance between individual and global

optimum, which is needed for Similarity graph. Moreover, the base class

develop.user.Experiment declares methods DrawUserGraph1(java.awt.Graphics g) and

DrawUserGraph2(java.awt.Graphics g). The addition of application-specific visualizations

can be implemented by redefining them.

11.4.5 Built-in benchmarks

The following implicit benchmarks were implemented:

Graph partitioning (see 7.1)

Knapsack problem (see 7.3)

Optimization of artificial functions  (see 7.4) - OneMax function, 3-deceptive

function, etc.

11.5 User guide

11.5.1 DEBOA versions

The  development system DEBOA can be used in two versions :

Java Applet – this version is designed for the presentation of the system in WWW

browsers, which include built-in JVM (Java Virtual Machine) interpreter.

Java Aplication – the full version which allows for designing new applications.
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To compile and run  DEBOA it is necessary to use JDK 1.1.8 or higher (Java Development

Kit), that includes Java interpreter, compiler and AppletViewer for running applets, and
operating system with GUI, because the system runs only in graphical mode.

In case of Java applet the www browser is usable. But it is important to set access rights for

unsigned Java Applets in the browser:
read  / write access to user files

dialogs opening

If a browser is not capable of setting access rights for Java, it is still possible to run system

with following constraints :

System is not allowed to generate output files of BOA nor the output files defined by the

user parameters „Evolution history file“ and „Data file for experiment to save“. Thus, in

window „Parameters“ these settings must be set blank.

System is also not allowed to read user defined classes with experiments nor user data

files, thus also parameters „Data file for experiment to load“ and „Experiment class

filename“ in the same window must be set blank. Only predefined experiments are

accessible.

11.5.2 Running the system

After compiling and launching the program (applet or application version) the main window
opens. There are two equivalent ways to switch between windows of the program :

user menu
button panel located below the menu bar

The “Main” window contains controls button for loading experiments and for loading or

saving user data. The user can run, step and stop the optimization process thanks to control

panel of the application that is accessible in the window „Control“. The menu „Windows“

gives the user access to all windows displaying the visualized characteristics. The menu

„User“ gives the user access to user defined graphs. The user can define two user output

graphs altogether with their names that will appear in the menu „User“. These items can differ

from experiment to experiment, see section 11.4.4.

11.5.3 Loading user defined experiments

Let us suppose that you have created the new experiment called MyExperiment. After its

compilation you get file MyExperiment.class. Furthermore let us suppose that this experiment

will load the data from file C:\my.dat and write the data to file C:\my.out.

1) Launch DEBOA
2) Switch to window „Parameters”

3) Set the parameter „Data file for experiment to load  :“ to  „C:\my.dat“
4) Set the parameter „Data file for experiment to load  :“ to  „C:\my.out“

5) Set the parameter „Enter Experiment class filename or press button to locate it“ to
„$path\MyExperiment.class“, where $path is the path to file MyExperiment.class. In

case that we want to run the experiment placed on the WWW we can do that by
specifying the URL of the file instead of path, for example:

„http://www.experiments.com/MyExperiment.class“

6) Switch to window „Control“ and run the experiment
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11.5.4 Description of output files

Our DEBOA system produces the output files:
*.fitness - the history of min./max./avg. fitness

*.log – more detailed history, including best individuals

*.model – the history of model evolution, a set of decision graphs for each generation

Note: * is the name of output file specified in „Parameters“ window

11.6 Future work

DEBOA is based on Pelikan’s BOA code with binary decision graphs model, but can be

easily modified for MBOA code with mixed decision trees. The future work lies in the

implementation of parallel BDTs construction using multithreaded features of Java language.
This multithreaded parallel version of MBOA was proposed and simulated in chapter 9.5. It

will speed up the execution time linearly with increasing number of processors used. Reusing
of such a toolkit in the final project will result in creation of parallel application.
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12 Conclusion and future work

The main contributions and conclusions of this thesis can be summarized as follows:

• A new paradigm for Evolutionary Computation was explored and the new formal
specification of EDA algorithm was formulated.

• It was developed a new probabilistic graphical model composed of binary decision

trees with mixed decision nodes, which is more accurate and reliable model than the

pure Bayesian network, more general model than Gaussian network and more useful

for building blocks evolution than mixtures of Gaussians. 

• A new advanced EDA algorithm MBOA (Mixed Bayesian Optimization Algorithm)
for solving problems with real-valued parameters was designed and implemented. Its

main advantage against the mostly used IDEA and EGNA approach is the backward

compatibility with discrete domains, so it is uniquely capable of learning linkage

between mixed continuous-discrete genes. MBOA handles the discretization of

continuous parameters as an integral part of the learning process and the divide-and-

conquer approach used for construction of decision trees exhibits high performance.

For experiments with MBOA a new mixed continuous-discrete benchmark Fmixed was

established, which is very hardly sensitive to correctness of decision tree building

algorithm. MBOA was able to find global optimum, so the dependencies within each

pair of deceptive mixed parameters have been successfully discovered.

• Original concept of parallelization of BN construction was proposed on the basis of

predefined ordering of BN nodes. Parents for each node can be found separately
without checking for acyclic dependency graph. This completely removes the need for

communication between parallel processes and enables nearly linear speedup. It
should be emphasized that the usage of concepts of parallel construction of

probabilistic model is not limited only to the area of Estimation of Distribution

Algorithm. The graphical probabilistic model became an important tool in the artificial

intelligence, expert systems, data mining, etc.

• Three different versions of parallel EDA algorithms were proposed. The pipelined

Parallel BOA algorithm (PBOA) was proposed for fine-grained type of parallelism
with tightly connected communication channels. Simulation results showed that the

quality of generated network was almost the same as in the sequential case. The
Distributed Bayesian Optimization Algorithm (DBOA) was proposed and

implemented for coarse-grained type of parallelism using the message passing
communication (MPI). The experiments were successfully run on the uniform cluster

of Sun Ultra 5 workstations with UltraSPARC II processors connected by fast
Ethernet multi-port router. In the multithreaded MBOA algorithm an efficient parallel

construction and sampling of binary decision trees was proposed and successfully

validated via simulation in Transim tool.
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• Additional methods for utilization of prior knowledge were suggested to speed up the

convergence. In a Problem Knowledge-based BOA algorithm (KBOA) the partial

(local) information about the problem was used to adjust the prior of probabilistic

model and injection of building blocks was used to improve the quality of initial

population.

• Multi-criterial BOA algorithms were designed. The first one was the Pareto BOA
algorithm based on promising Pareto-strength fitness technique. It was comparable to

the best recombination-based multi-objective algorithms of its time - NSGA and

SPEA. More recent is the Bayesian Multi-objective Optimization Algorithm (µ+λ,ε)-

BMOA, which has been designed using a probabilistic model based on binary decision

trees and a special selection scheme based on epsilon-archives. The convergence

behavior of the algorithm can be tuned via the values of µ, the minimal population size

to estimate the probabilistic model, and ε, the approximation factor. The algorithm

was empirically tested on different instances of the 0/1 multi-objective knapsack

problem and successfully compared to NSGA-II and SPEA2 algorithms.

• Visual environment DEBOA for rapid prototyping of BOA optimization applications

was developed. It includes all the important features of evolutionary toolkits –

visualization, extensibility, reusability and portability. Due to using of Java language

this system fulfills all the requirements for modern development system. One of its

unique properties is the ability to be executed as java applet for WWW presentations.

As far as I know, DEBOA is the only development environment based on Bayesian

optimization algorithm for efficient solution of complex optimization problems with

high epistasis.

The future work will be oriented towards the application of proposed parallel construction of
dependence graph and usage of proposed mixed decision tree model and its metrics in non-

evolutionary tasks like artificial intelligence, expert systems and data mining.
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Pareto optimality, 115

Pareto set, 115

Pareto-strength fitness, 119

PBIL, see Population-Based Incremental

Learning

PBOA, see Parallel Bayesian Optimization
Algorithm

PDF, see probability density function
pipelined processing, 95

PLS, see Probabilistic Logic Sampling
PMBGA, see Probabilistic Model-Building

Genetic Algorithm
population sequence, 59
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Population-Based Incremental

Learning (PBIL), 47
probabilistic model, 25

Probabilistic Model-Building
Genetic Algorithms (PMBGA),

45
probability density function

(PDF), 28
probability-fitness relationship, 63

Problem Knowledge-based

Bayesian Optimization 

Algorithm (KBOA), 111

result of EDA algorithm, 59

running time of EDA algorithm,

59

sampling

- Probabilistic Logic Sampling

(PLS), 44

- Gibbs sampling, 43

- competent, 59

scoring metric

- Bayesian-Dirichlet metric, 38
- Bayesian metric for Gaussian networks,

42
- K2 metric, 38

- BIC metric, 37
- MDL metric, 37

SPEA, see Strength Pareto Evolutionary
Algorithm

Strength Pareto Evolutionary Algorithm

(SPEA), 118

time profile of BOA, 91

UMDA, see Univariate Marginal Distribution

Algorithm

Univariate Marginal Distribution Algorithm

(UMDA), 47
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