
Parallel Evolutionary Algorithms

Chapter in the Handbook of Computational Intelligence
edited by Janusz Kacprzyk and Witold Pedrycz

Dirk Sudholt
University of Sheffield, UK

2

Chapter 1

Parallel Evolutionary Algorithms

1.1 Introduction

1.1.1 Motivation

Recent years have witnessed the emergence of a huge number of parallel computer architectures. Almost
every desktop or notebook PC, and even mobile phones, come with several CPU cores built in. Also
GPUs have been discovered as a source of massive computation power at no extra cost. Commercial IT
solutions often use clusters with hundreds and thousands of CPU cores and cloud computing has become
an affordable and convenient way of gaining CPU power.

With these resources readily available, it has become more important than ever to design algorithms
that can be implemented effectively in a parallel architecture. Evolutionary algorithms (EAs) are popular
general-purpose metaheuristics inspired by the natural evolution of species. By using operators like mu-
tation, recombination, and selection, a multi-set of solutions—the population—is evolved over time. The
hope is that this artificial evolution will explore vast regions of the search space and yet use the principle
of “survival of the fittest” to generate good solutions for the problem at hand. Countless applications as
well as theoretical results have demonstrated that these algorithms are effective on many hard optimization
problems.

One of many advantages of evolutionary algorithms is that they are easy to parallelize. The process of
artificial evolution can be implemented on parallel hardware in various ways. It is possible to parallelize
specific operations, or to parallelize the evolutionary process itself. The latter approach has led to a variety
of search algorithms called island models or cellular evolutionary algorithms. They differ from a sequential
implementation in that evolution happens in a spatially structured network. Subpopulations evolve on
different processors and good solutions are communicated between processors. The spread of information
can be tuned easily via key parameters of the algorithm. A slow spread of information can lead to a larger
diversity in the system, hence increasing exploration.

Many applications have shown that parallel evolutionary algorithms can speed up computation and find
better solutions, compared to a sequential evolutionary algorithm. This book chapter reviews the most
common forms of parallel evolutionary algorithms. We highlight what distinguishes parallel evolutionary
algorithms from sequential evolutionary algorithms. And we make an effort to understand the search
dynamics of parallel evolutionary algorithms. This addresses a very hot topic since, as of today, even the
impact of the most basic parameters of a parallel evolutionary algorithms are not well understood.

The chapter has a particular emphasis on theoretical results. This includes runtime analysis, or com-
putational complexity analysis. The goal is to estimate the expected time until an evolutionary algorithm
finds a satisfactory solution for a particular problem, or problem class, by rigorous mathematical stud-
ies. This area has led to very fruitful results for general evolutionary algorithms in the last decade [1, 2].
Only recently researchers have turned to investigating parallel evolutionary algorithms from this perspec-
tive [3, 4, 5, 6, 7]. The results help to get insight into the search behavior of parallel EAs and how parameters

3

and design choices affect performance. The presentation of these results is kept informal in order to make
it accessible to a broad audience. Instead of presenting theorems and complete formal proofs, we focus on
key ideas and insights that can be drawn from these analyses.

1.1.2 Outline

The outline of this chapter is as follows. In Section 1.2 we first introduce parallel models of evolutionary
algorithms, along with a discussion of key design choices and parameters. Section 1.3 considers performance
measures for parallel EAs, particularly notions for speedup of a parallel EA when compared to sequential
EAs.

Section 1.4 deals with the spread of information in parallel EAs. We review various models used to
describe how the number of “good” solutions increases in a parallel EA. This also gives insight into the
time until the whole system is taken over by good solutions, the so-called takeover time.

In Section 1.5 we present selected examples where parallel EAs were shown to outperform sequential
evolutionary algorithms. Drastic speedups were shown on illustrative example functions. This holds for
various forms of parallelization, from independent runs to offspring populations and island models.

Section 1.6 finally reviews a general method for estimating the expected running time of parallel EAs.
This method can be used to transfer bounds for a sequential EA to a corresponding parallel EA, in an
automated fashion. We go into a bit more detail here, in order to enable readers to apply this method
by themselves. Illustrative example applications are given that also include problems from combinatorial
optimization.

1.1.3 Further Reading

This book chapter does not claim to be comprehensive. In fact, parallel evolutionary algorithms represent
a vast research area with a long history. Early variants of parallel evolutionary algorithms have been
developed, studied, and applied more than 20 years ago. We therefore point the reader to references that
may complement this chapter. Cantú-Paz [8] presented a review of early literature and the history of
parallel EAs. The survey by Alba and Troya [9] contains detailed overviews of parallel EAs and their
characteristics.

This chapter does not cover implementation details of parallel evolutionary algorithms. We refer to the
excellent survey by Alba and Tomassini [10]. This survey also includes an overview of the theory of parallel
EAs. The emphasis is different from this chapter and it can be used to complement this chapter.

Tomassini’s text book [11] describes various forms of parallel EAs like island models, cellular EAs,
and coevolution. It also presents many mathematical and experimental results that help understand how
parallel EAs work. Furthermore, it contains an appendix dealing with the implementation of parallel EAs.

The book edited by Nedjah, Alba, and de Macedo Mourelle [12] takes a broader scope on parallel
models that also include parallel evolutionary multiobjective optimization and parallel variants of swarm
intelligence algorithms like particle swarm optimization and ant colony optimization. The book contains a
part on parallel hardware as well as a number of applications of parallel metaheuristics.

Alba’s edited book on parallel metaheuristics [13] has an even broader scope. It covers parallel variants
of many common metaheuristics such as genetic algorithms, genetic programming, evolution strategies, ant
colony optimization, estimation-of-distribution algorithms, scatter search, variable-neighborhood search,
simulated annealing, tabu search, greedy randomized adaptive search procedures (GRASP), hybrid meta-
heuristics, multiobjective optimization, and heterogeneous metaheuristics.

The most recent text book was written by Luque and Alba [14]. It provides an excellent introduction into
the field, with hands-on advice on how to present results for parallel EAs. Theoretical models of selection
pressure in distributed GAs are presented. A large part of the book then reviews selected applications of
parallel GAs.

4

1.2 Parallel Models

1.2.1 Master-Slave Models

There are many ways how to use parallel machines. A simple way of using parallelization is to execute
operations on separate processors. This can concern variation operators like mutation and recombination
as well as function evaluations. In fact, it makes most sense for function evaluations as these operations
can be performed independently and they are often among the most expensive operations.

This kind of architecture is known as master-slave model . One machine represents the master and it
distributes the workload for executing operations to several other machines called slaves. It is well suited
for the creation of offspring populations as offspring can be created and evaluated independently, after
suitable parents have been selected.

The system is typically synchronized: the master waits until all slaves have completed their operations
before moving on. However, it is possible to use asynchronous systems where the master does not wait for
slaves that take too long.

The behavior of synchronized master-slave models is not different from their sequential counterparts.
The implementation is different, but the algorithm—and therefore search behavior—is the same.

1.2.2 Independent Runs

Parallel machines can also be used to simulate different, independent runs of the same algorithm in parallel.
Such a system is very easy to set up as no communication during the run time is required. Only after all
runs have been stopped, the results need to be collected and the best solution (or a selection of different
high-quality solutions) is output.

Alternatively, all machines can periodically communicate their current best solutions so that the system
can be stopped as soon as a satisfactory solution has been found. As for master-slave models, this prevents
us from having to wait until the longest run has finished.

Despite its simplicity, independent runs can be quite effective. Consider a setting where a single run of
an algorithm has a particular success probability, i. e., a probability of finding a satisfactory solution within
a given time frame. Let this probability be denoted p. By using several independent runs, this success
probability can be increased significantly. This approach is commonly known as probability amplification.

The probability that in λ independent runs no run is successful is (1− p)λ. The probability that there
is at least one successful run among these is therefore

1− (1− p)λ. (1.1)

Figure 1.1 illustrates this amplified success probability for various choices of λ and p.
We can see that for a small number of processors the success probability increases almost linearly. If

the number of processors is large, a saturation effect occurs. The benefit of using ever more processors
decreases with the number of processors used. The point where saturation happens depends crucially on p:
for smaller success probabilities saturation happens only with a fairly large number of processors.

Furthermore, independent runs can be set up with different initial conditions or different parameters.
This is useful to effectively explore the parameter space and to find good parameter settings in short time.

1.2.3 Island Models

Independent runs suffer from obvious drawbacks: once a run reaches a situation where its population has
become stuck in a difficult local optimum, it will most likely remain stuck forever. This is unfortunate since
other runs might reach more promising regions of the search space at the same time. It makes more sense
to establish some form of communication between the different runs to coordinate search, so that runs that
have reached low-quality solutions can join in on the search in more promising regions.

In island models, also called distributed EAs, coarse-grained model , or multi-deme model , the population
of each run is regarded as an island. One often speaks of islands as subpopulations that together form the

5

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

number of independent runs

am
p

li
fi

ed
su

cc
es

s
p

ro
b

a
b

il
it

y
p = 0.3
p = 0.1
p = 0.05

Figure 1.1: Plots of the amplified success probability 1− (1− p)λ of a parallel system with λ independent
runs, each having success probability p.

population of the whole island model. Islands evolve independently as in the independent run model, for
most of the time. But periodically solutions are exchanged between islands in a process called migration.

Figure 1.2: Sketch of an island model with 6 islands and an example topology.

The idea is to have a migration topology , a directed graph with islands as its nodes and directed edges
connecting two islands. At certain points of time selected individuals from each island are sent off to
neighboring islands, i. e., islands that can be reached by a directed edge in the topology. These individuals
are called migrants and they are included in the target island after a further selection process. This way,
islands can communicate and compete with one another. Islands that got stuck in low-fitness regions of
the search space can be taken over by individuals from more successful islands. This helps to coordinate
search, focus on the most promising regions of the search space, and use the available resources effectively.
An example of an island model is given in Figure 1.2. Algorithm 1 shows a general scheme of a basic island
model.

There are many design choices that affect the behavior of such an island model.

Emigration policy: When migrants are sent, they can be removed from the sending island. Alternatively,

6

Algorithm 1 Scheme of an island model with migration interval τ

1: Initialize a population made up of subpopulations or islands, P (0) = {P (0)
1 , . . . , P

(0)
m }.

2: Let t := 1.
3: loop
4: for each island i do in parallel
5: if t mod τ = 0 then
6: Send selected individuals from island P

(t)
i to selected neighboring islands.

7: Receive immigrants I
(t)
i from islands for which island P

(t)
i is a neighbor.

8: Replace P
(t)
i by a subpopulation resulting from a selection among P

(t)
i and I

(t)
i .

9: end if
10: Produce P

(t+1)
i by applying reproduction operators and selection to P

(t)
i .

11: end for
12: Let t := t+ 1.
13: end loop

copies of selected individuals can be emigrated. The latter is often called pollination. Also the
selection of migrants is important. One might select the best, worst, or random individuals.

Immigration policy: Immigrants can replace the worst individuals in the target population, random
individuals, or be subjected to the same kind of selection used within the islands for parent selection
or selection for replacement. Crowding mechanisms can be used such as replacing the most similar
individuals. In addition, immigrants can be recombined with individuals present on the island before
selection.

Migration interval: The time interval between migrations determines the speed at which information
is spread throughout an island model. Its reciprocal is often called migration frequency . Frequent
migrations imply a rapid spread of information, while rare migrations allow for more exploration.
Note that a migration interval of ∞ yields independent runs as a special case. Alternatively, instead
of using migration periodically, one can also use a migration probability : every island determines
probabilistically and independently from other islands whether emigrants should be sent or not. A
migration probability of 1/τ has a similar effect as using migration interval τ .

Number of migrants: The number of migrants, also called migration size, is another parameter that
determines how quickly an island can be taken over by immigrants.

Migration topology: Also the choice of the migration topology impacts search behavior. The topology
can be a directed or undirected graph—after all, undirected graphs can be seen as special cases of
directed graphs. Common topologies include unidirectional rings (a ring with directed edges only in
one direction), bidirectional rings, torus or grid graphs, hypercubes, scale-free graphs [15], random
graphs [16], and complete graphs. Figure 1.3 sketches some of these topologies. An important
characteristic of a topology T = (V,E) is its diameter : the maximum number of edges on any
shortest path between two vertices. Formally, diam(T) = maxu,v∈V dist(u, v) where dist(u, v) is the
graph distance, the number of edges on a shortest path from u to v. The diameter gives a good
indication of the time needed to propagate information throughout the topology. Rings and torus
graphs have large diameters, while hypercubes, complete graphs, and many scale-free graphs have
small diameters.

Island models with non-complete topologies are also called stepping stone models. The impact of these
design choices will be discussed in more detail in Section 1.4.

If all islands run the same algorithm under identical conditions, we speak of a homogeneous island
model . Heterogeneous island models contain islands with different characteristics. Different algorithms
might be used, different representations, objective functions, or parameters. Using heterogeneous islands

7

Figure 1.3: Sketches of common topologies: a unidirectional ring, a torus, and a complete graph. Other
common topologies include bidirectional rings where all edges are undirected and grid graphs where the
edges wrapping around the torus are removed.

might be useful if one is not sure what the best algorithm is for a particular problem. It also makes sense
in the context of multiobjective optimization or when a diverse set of solutions is sought, as the islands
can reflect different objective functions, or variations of the same objective functions, with an emphasis on
different criteria.

Skolicki [17] proposed a two-level view of search dynamics in island models. The term intra-island
evolution describes the evolutionary process that takes place within each island. On a higher level, inter-
island evolution describes the interaction between different islands. He argues that islands can be regarded
as individuals in a higher-level evolution. Islands compete with one another and islands can take over other
islands, just like individuals can replace other individuals in a regular population. One conclusion is that
with this perspective an island models looks more like a compact entity.

The two levels of evolution obviously interact with one another. Which level is more important is
determined by the migration interval and the other parameters of the system that affect the spread of
information.

1.2.4 Cellular EAs

Cellular EAs represent a special case of island models with a more fine-grained form of parallelization.
Like in the island model we have islands connected by a fixed topology. Rings and two-dimensional torus
graphs are the most common choice. The most striking characteristic is that each island only contains a
single individual. Islands are often called cells in this context, which explains the term cellular EA. Each
individual is only allowed to mate with its neighbors in the topology. This kind of interaction happens in
every generation. This corresponds to a migration interval of 1 in the context of island models. Figure 1.4
shows a sketch of a cellular EA. A scheme of a cellular EA is given in Algorithm 2.

Cellular EAs yield a much more fine-grained system; they have therefore been called fine-grained models,
neighborhood model , or diffusion model . The difference to island models is that no evolution takes place on
the cell itself, i. e., there is no intra-island evolution. Improvements can only be obtained by cells interacting
with one another. It is, however, possible that an island can interact with itself.

In terms of the two-level view on island models, in cellular EAs the intra-island dynamics have effectively
been removed. After all, each island only contains a single individual. Fine-grained models are well suited
for investigations of inter-island dynamics. In fact, the first runtime analyses have considered fine-grained
island models where each island contains a single individual [4, 5]. Other studies dealt with fine-grained
systems that use a migration interval larger than 1 [3, 7, 6].

8

Figure 1.4: Sketch of a cellular EA on a 7 × 7 grid graph. The dashed line indicates the neighborhood of
the highlighted cell.

Algorithm 2 Scheme of a cellular EA

1: Initialize all cells to form a population P (0) = {P (0)
1 , . . . , P

(0)
m }. Let t := 0.

2: loop
3: for each cell i do in parallel

4: Select a set Si of individuals from P
(t)
i out of all cells neighboring to cell i.

5: Create a set Ri by applying reproduction operators to Si.

6: Create P
(t+1)
i by selecting an individual from {P (t)

i } ∪Ri.
7: end for
8: Let t := t+ 1.
9: end loop

For replacing individuals the same strategies as listed for island models can be used. All cells can be
updated synchronously, in which case we speak of a synchronous cellular EA. A common way of imple-
menting this is to create a new, temporary population. All parents are taken from the current population
and new individuals are written into the temporary population. At the end of the process, the current
population is replaced by the temporary population.

Alternatively, cells can be updated sequentially, resulting in an asynchronous cellular EA. This is likely
to result in a different search behavior as individuals can mate with offspring of their neighbors. Alba,
Giacobini, Tomassini, and Romero [18] define the following update strategies. The terms are tailored
towards two-dimensional grids or torus graphs as they are inspired by cellular automata. It is, however,
easy to adapt these strategies to arbitrary topologies.

Uniform choice: The next cell to be updated is chosen uniformly at random.

Fixed line sweep: The cells are updated sequentially, line by line in a grid/torus topology.

Fixed random sweep: The cells are updated sequentially, according to some fixed order. This order is
determined by a permutation of all cells. This permutation is created uniformly at random during
initialization and kept throughout the whole run.

New random sweep: This strategy is like fixed random sweep, but after each sweep is completed a new
permutation is created uniformly at random.

9

A time step or generation is defined as the time needed to update m cells, m being the number of cells in
the grid. The last three strategies ensure that within each time step each cell is updated exactly once. This
yields a much more balanced treatment for all cells. With the uniform choice model is it likely that some
cells must wait for a long time before being updated. In the limit, the waiting time for updates follows a
Poisson distribution. Consider the random number of updates until the last cell has been updated at least
once. This random process is known as coupon collector problem [19, page 32] as it resembles the process
of collecting coupons, which are drawn uniformly at random. A simple analysis shows that the expected
number of updates until the last cell has been updated in the uniform choice model (or all coupons have
been collected) equals m ·

∑m
i=1 1/i ≈ m · ln(m). This is equivalent to

∑m
i=1 1/i ≈ lnm time steps, which

can be significantly larger than 1, the time for completing a sweep in any given order.
Cellular EAs are often compared to cellular automata. In the context of the latter, it is common practice

to consider a two-dimensional grid and different neighborhoods. The neighborhood in Figure 2 is called
von Neumann neighborhood or Linear 5. It includes the cell itself and its 4 neighbors along the directions
north, south, west, and east. The Moore neighborhood or Compact 9 in addition also contains the 4 cells to
the north west, north east, south west, and south east. Also larger neighborhoods are common, containing
cells that are further away from the center cell.

Note that using a large neighborhood on a two-dimensional grid is equivalent to considering a graph
where, starting with a torus graph, for each vertex edges to nearby vertices have been added. We will
therefore in the remainder of this chapter stick to the common notion of neighbors in a graph (i. e., vertices
connected by an edge), unless there is a good reason not to.

1.2.5 A Unified Hypergraph Model for Population Structures

Sprave [20] proposed a unified model for population structures. It is based on hypergraphs; an extension
of graphs where edges can connect more than two vertices. We present an informal definition to focus on
the ideas; for formal definitions we refer to [20]. A hypergraph contains a set of vertices and a collection of
hyperedges. Each hyperedge is a non-empty set of vertices. Two vertices are neighboring in the hypergraph
if there is a hyperedge that contains both vertices. Note that the special case where each hyperedge contains
two different vertices results in an undirected graph.

In Sprave’s model each vertex represents an individual. Hyperedges represent the set of possible parents
for each individual. The model unifies various common population models:

Panmictic populations: For panmictic populations we have a set of vertices V and there is a single
hyperedge that equals the whole vertex set. This reflects the fact that in a panmictic population each
individual has all individuals as potential parents.

Island models with migration: If migration is understood in the sense that individuals are removed,
the set of potential parents for an individual contains all potential immigrants as well as all individuals
from its own island, except for those that are being emigrated.

Island models with pollination: If pollination is used, the set of potential parents contains all immi-
grants and all individuals on its own island.

Cellular EAs: For each individual, the potential parents are its neighbors in the topology.

In the case of coarse-grained models, the hypergraph may depend on time. More precisely, we have
different sets of potential parents when migration is used, compared to generations without migration.
Sprave considers this by defining a dynamic population structure: instead of considering a single, fixed
hypergraph, we consider a sequence of hypergraphs over time.

1.2.6 Hybrid Models

It is also possible to combine several of the above approaches. For instance, one can imagine an island model
where each island runs a cellular EA to further promote diversity. Or one can think of hierarchical island

10

models where islands are island models themselves. In such a system it makes sense that the inner-layer
island models use more frequent migrations than the outer-layer island model.

Island models and cellular EAs can also be implemented as master-slave models to achieve a better
speedup.

1.3 Effects of Parallelization

An obvious effect of parallelization is that the computation time can be reduced by using multiple processors.
This section describes performance measured that can be used to define this speedup. We also consider
beneficial effects of using parallel EAs that can lead to superlinear speedups.

1.3.1 Performance Measures for Parallel EAs

The computation time of a parallel EA can be defined in various ways. It makes sense to use wall-clock time
as performance measure as this accounts for the overhead by parallelization. Under certain conditions, it
is also possible to use the number of generations or function evaluations. This is feasible if these measures
reflect the real running time in an adequate way, for instance if the execution of a generation (or a function
evaluation) dominate the computational effort, including the effort for coordinating different machines. It
is also feasible if one can estimate the overhead or the communication costs separately.

We consider settings where an EA is run until a certain goal is fulfilled. Goals can be reaching a global
or local optimum or reaching a certain minimum fitness. In such a setting the goal is fixed and the running
time of the EA can vary. This is in contrast to setups where the running time is fixed to a predetermined
number of generations and then the quality or accuracy of the obtained solutions is compared. As Alba
pointed out [21], performance comparisons of parallel and sequential EAs only make sense in case they
reach the same accuracy. In the following, we focus on the former setting where the same goal is used.

Still, defining speedup formally is far from trivial. It is not at all clear against what algorithm a parallel
algorithm should be compared. However, this decision is essential to clarify the meaning of speedup. Not
clarifying it, or using the wrong comparison can easily yield misleading results and false claims. We present
a taxonomy inspired by Alba [21], restricted to cases where a fixed goal is given.

Strong speedup: the parallel run time of a parallel algorithm is compared against the sequential run time
of the best known sequential algorithm. It was called absolute speedup by Barr and Hickman [22]. This
measure captures in how far parallelization can improve upon the best known algorithms. However,
it is often difficult to determine the best sequential algorithm. Most researchers therefore do not use
strong speedup [21].

Weak speedup: the parallel run time of an algorithm is compared against its own sequential run time.
This gives rise to two subcases where the notion of its own sequential run time is made precise.

Single machine/panmixia: the parallel EA is compared against a canonical, panmictic version of
it, running on a single machine. For instance, we might compare an island model with m islands
against an EA running a single island. Thereby, the EA run on all islands is the same in both
cases.

Orthodox: the parallel EA running on m machines is compared against the same parallel EA running
on a single machine. This kind of speedup was called relative speedup by Barr and Hickman [22].

In the light of these essential differences, it is essential for researchers to clarify their notion of speedup.
Having clarified the comparison, we can now define the speedup and other measures. Let Tm denote the

time for m machines to reach the goal. Let T1 denote the time for a single machine, where the algorithm
is chosen according to one of the definitions of speedup defined above.

The idea is to consider the ratio of Tm and the time for a single machine, T1, as speedup. However, as
we are dealing with randomized algorithms, T1 and Tm are random variables and so the ratio of both is a

11

random variable as well. It makes more sense to consider the ratio of expected times for both the parallel
and the sequential algorithm as speedup:

sm =
E (T1)

E (Tm)
.

Note that T1 and Tm might have very dissimilar probability distributions. Even when both are re-scaled
appropriately to obtain the best possible match between the two, they might still have different shapes and
different variances. In some cases it might make sense to consider the median or other statistics instead of
the expectation.

According to the speedup sm we distinguish the following cases:

sublinear speedup: if sm < m we speak of a sublinear speedup. This implies that the total computation
time across all machines is larger than the total computation time of the single machine (assuming
no idle times in the parallel algorithm).

linear speedup: The case sm = m is known as linear speedup. There, the parallel and the sequential
algorithm have the same total time. This outcome is very desirable as it means that parallelization
does not come at a cost. There is no noticeable overhead in the parallel algorithm.

superlinear speedup: If sm > m we have a superlinear speedup. The total computation time of the
parallel algorithm is even smaller than those of the single machine. This case is considered in more
detail in the following subsection.

The speedup is the best known measure, but not the only one used regularly. For the sake of complete-
ness, we mention other measures. The efficiency is a normalization of the speedup:

em =
sm
m
.

Obviously, em = 1 is equivalent to a linear speedup. Lower efficiencies correspond to sublinear speedups,
higher ones to superlinear speedups.

Another measure is called incremental efficiency and it measures the speedup when moving from m− 1
processors to m processors:

iem =
(m− 1) · E (Tm−1)

m · E (Tm)
.

There is also a generalized form where m− 1 is replaced by m′ < m in the above formula. This reflects the
speedup when going from m′ processors to m processors.

1.3.2 Superlinear Speedups

At first glance, superlinear speedups seem astonishing. How can a parallel algorithm have a smaller total
computation time than a sequential counterpart? After all, parallelization usually comes with significant
overhead that slows down the algorithm. The existence of superlinear speedups was discussed controversially
in the literature. But there are convincing reasons why a superlinear speedup might occur.

Alba [21] mentions physical sources as one possible reason. A parallel machine might have more resources
in terms of memory or caches. When moving from a single machine to a parallel one, the algorithm might—
purposely or not—make use of these additional resources. Also, each machine might only have to deal with
smaller data packages. It might be that the smaller data fits into the cache while this was not the case for
the single machine. This can make a significant performance difference.

When comparing a single panmictic population against smaller subpopulations, it might be easier to
deal with the subpopulations. This holds even when the total population sizes of both systems are the
same. In particular, a parallel system has an advantage if operations need time which grows faster than
linearly with the size of the (sub-)population.

We give two illustrative examples. Compare a single panmictic population of size µ with m subpopula-
tions of size µ/m each. Some selection mechanisms, like ranking selection, might have to sort the individuals

12

in the population according to their fitness. In a straightforward implementation one might use well-known
sorting algorithms such as (randomized) QuickSort, MergeSort, or HeapSort. All of these are known
to take time Θ(n lnn) for sorting n elements, on average. Let us disregard the hidden constant and the
randomness of randomized QuickSort and assume that the time is precisely n lnn.

Now the effort for sorting the panmictic population is µ lnµ. The total effort for sorting m populations
of size µ/m each is m · µ/m · ln(µ/m) = µ · ln(µ/m) = µ ln(µ)− µ · ln(m). So, the parallel system executes
this operation faster, with a difference of µ · ln(m) time steps in terms of the total computation time.

This effect becomes more pronounced the more expensive operations are used (w. r. t. the population
size). Assume that some selection mechanism or diversity mechanism is used which compares every indi-
vidual against every other one. Then the effort for the panmictic population is roughly µ2 time steps. But
for the parallel EA and its subpopulations the total effort would only be m · (µ/m)2 = µ2/m. This is by a
factor of m faster than the panmictic EA.

The above two growth curves are actually very typical running times for operations that take more than
linear time. A table with time bounds for common selection mechanisms can be found in Goldberg and
Deb [23]. Figure 1.5 shows plots for the total effort in both scenarios for a population size of µ = 100. One
can see that even with a small number of processors the total effort decreases quite significantly. To put
this into perspective, most operations require only linear time. Also the overhead by parallelization was not
accounted for. But the discussion gives some hints as to why the execution time for smaller subpopulations
can decrease significantly in practice.

0 2 4 6 8 10 12 14 16

200

300

400

number of processors m

to
ta

l
eff

or
t

fo
r

op
er

at
io

n

sequential
parallel

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

·104

number of processors m

to
ta

l
eff

or
t

fo
r

op
er

at
io

n

sequential
parallel

Figure 1.5: Total effort for executing an operation on a single, panmictic population of size µ = 100
(sequential algorithm) and a parallel algorithm with m processors and m subpopulations of size µ/m =
100/m each. The effort on a population of size n is assumed to be n lnn in the left plot and n2 in the right
plot. Note that no overhead is considered for the parallel algorithm.

1.4 On the Spread of Information in Parallel EAs

In order to understand how parallel EAs work, it is vital to get an idea on how quickly information is
propagated. The spread of information is the most distinguishing aspect of parallel EAs, particularly
distributed EAs. This includes island models and cellular EAs. Many design choices can tune the speed
at which information is transmitted: the topology, the migration interval, the number of migrants, and the
policies for emigration and immigration.

13

1.4.1 Logistic Models for Growth Curves

Many researchers have turned to investigating the selection pressure in distributed EAs in a simplified
model. Assume that in the whole system we only have two types of solutions: current best individuals
and worse solutions. No variation is used, i. e., we consider EAs using neither mutation nor crossover. The
question is as follows. Using only selection and migration, how long does it take for the best solutions to
take over the whole system? This time, starting from a single best solution, is referred to as takeover time.

It is strongly related to the study of growth curves: how the number of best solutions increases over
time. The takeover time is the first point of time at which the number of best solutions has grown to the
whole population.

Growth curves are determined by both inter-island dynamics and intra-island dynamics: how quickly
current best solutions spread in one island’s population, and how quickly they populate neighboring islands,
until the whole topology is taken over. Both dynamics are linked: intra-island dynamics can have a direct
impact on inter-island dynamics as the fraction of best individuals can decide how many (if any) best
individuals emigrate.

For intra-island dynamics one can consider results on panmictic EAs. Logistic curves have been proposed
and found to fit simulations of takeover times very well, for common selection schemes [23]. These curves
are defined by the following equation. If P (t) is the proportion of best individuals in the population at
time t then

P (t) =
1

1 +
(

1
P (0) − 1

)
e−at

where a is called growth coefficient. One can see that the proportion of best individuals increases exponen-
tially, but then the curve saturates as the proportion approaches 1.

Sarma and De Jong [24] considered growth curves in cellular EAs. They presented a detailed empirical
study of the effects of the neighborhood size and the shape of the neighborhood for different selection
schemes. They showed that logistic curves as defined above can model the growth curves in cellular EAs
reasonably well.

Alba and Luque [25] proposed a logistic model called LOG tailored towards distributed EAs with
periodic migration. If τ denotes the migration interval and m is the number of islands then

PLOG(t) =

m−1∑
i=0

1/m

1 + a · e−b(t−τ ·i)
.

In this model a and b are adjustable parameters. The model counts subsequent increases of the proportion
of best individuals during migrations. However, it does not include any information about the topology and
the authors admit that it only works appropriately on the ring topology [14, Section 4.2]. They therefore
present a yet more detailed model called TOP that includes the diameter diam(T) of the topology T .

PTOP(t) =

diam(T)−1∑
i=0

1/m

1 + a · e−b(t−τ ·i)
+

m− diam(T)/m

1 + a · e−b(t−τ ·diam(T))
.

Simulations show that this model yields very accurate fits for ring, star, and complete topologies [14,
Section 4.3].

Luque and Alba [14, Section 4.3] proceed by analyzing the effect of the migration interval and the number
of migrants. With a large migration interval, the growth curves tend to make jumps during migration and
flatten out quickly to form plateaus during periods without migration. The resulting curves look like step
functions, and the size of these steps varies with the migration interval.

Varying the number of migrants changed the slope of these steps. A large number of migrants has a
better chance of transmitting best individuals than a small number of migrants. However, the influence
of the number of migrants was found to be less drastic than the impact of the migration interval. When
a medium or large migration frequency is used, the impact of the number of migrants is negligible [14,
Section 4.5]. The same conclusion was made earlier by Skolicki and De Jong [26].

14

Luque and Alba also presented experiments with a model based on the Sprave’s hypergraph formulation
of distributed EAs [20]. This model gave a better fit than the simple logistic model LOG, but it was less
accurate than the model TOP that included the diameter.

For the sake of completeness, we also mention that Giacobini, Alba, and Tomassini [27] proposed an
improved model for asynchronous cellular EAs, which is not based on logistic curves.

1.4.2 Rigorous Takeover Times

Rudolph [28, 29] rigorously analyzed takeover times in panmictic populations, for various selection schemes.
[28] also dealt with the probability that the best solution takes over the whole population; this is not evident
for non-elitistic algorithms. In [29] Rudolph considered selection schemes made elitistic by undoing the last
selection in case the best solution would get extinct otherwise. Under this scheme the expected takeover
time in a population of size µ is O(µ logµ).

In [30] Rudolph considered spatially structured populations in a fine-grained model. Each population
has size 1, therefore vertices in the migration topology can be identified with individuals. Migration happens
in every generation. Assume that initially only one vertex i in the topology is a best individual. If in every
generation each non-best vertex is taken over by the best individual in its neighborhood, then the takeover
time from vertex i equals

max
j∈V

dist(i, j)

where V is the set of vertices and dist(i, j) denotes the graph distance, the number of edges on a shortest
path from i to j.

Rudolph defines the takeover time in a setting where the initial best solution has the same chance of
evolving at every vertex. Then

1

|V |
∑
i∈V

max
j∈V

dist(i, j)

is the expected takeover time if, as above, best solutions are always propagated to their neighbors with
probability 1. If this probability is lower, the expected takeover time might be higher. The above formula
still represents a lower bound. Note that in non-elitist EAs it is possible that all best solutions might get
lost, leading to a positive extinction probability [30].

Note that max j ∈ V dist(i, j) is bounded by the diameter of the topology. The diameter is hence a
trivial lower bound on the takeover times. Rudolph [30] conjectures that the diameter is more important
than the selection mechanism used in the distributed EA.

In Rudolph [31] the author generalizes the above arguments to coarse-grained models. Islands can con-
tain larger populations and migration happens with a fixed frequency. In his model the author assumes that
in each island new best individuals can only be generated by immigration. Migration always communicates
best individuals. Hence, the takeover time boils down to a deterministic time until the last island has been
reached, plus a random component for the time until all islands are completely taken over.

Rudolph [31] gives tight bounds for unidirectional rings, based on the fact that each island with a
best individual will send one such individual to each neighboring island. Hence, on the latter island the
number of best individuals increases by 1, unless the island has been taken over completely. For more dense
topologies he gives a general upper bound, which may not be tight for all graphs. If there is an island that
receives best individuals from k > 1 other islands, the number of best individuals increases by k. (The
number k could even increase over time.) It was left as an open problem to derive more tight bounds for
interesting topologies other than unidirectional rings.

Other researchers followed up on his seminal work. Giacobini, Tomassini, and Tettamanzi [32] pre-
sented theoretical and empirical results for the selection pressure on ring topologies, or linear cellular EAs.
Giacobini, Alba, Tettamanzi, and Tomassini [33] did the same for toroidal cellular EAs. In particular, they
considered takeover times for asynchronous cellular EAs, under various common update schemes. Finally,
Giacobini, Tomassini, and Tettamanzi investigated growth curves for small-world graphs [16].

The assumption from Rudolph’s model that only immigration can create new best individuals is not
always realistic. If standard mutation operators are used, there is a constant probability of creating a clone

15

of a selected parent simply by not flipping any bits. This can lead to a rapid increase in the number of
high-fitness individuals.

This argument on the takeover of good solutions in panmictic populations has been studied as part of
rigorous runtime analyses of population-based EAs. Witt [34] considered a simple (µ+1) EA with uniform
parent selection, standard bit mutations, no crossover, and cut selection at the end of the generation. From
his work it follows that good solutions take over the population in expected time O(µ logµ). More precisely,
if currently there is at least one individual with current best fitness i then after O(µ logµ) generations all
individuals in the population will have fitness at least i.

Sudholt [35, Lemma 2] extended these arguments to a (µ+λ) EA and proved an upper bound of
O(µ/λ · logµ+ log µ). Note that, in contrast to other studies of takeover times, both results apply “real”
EAs that actually use mutation. Extending these arguments to distributed EAs is an interesting topic for
future work.

1.4.3 Maximum Growth Curves

For now, we consider inter-island dynamics in more detail. Assume for simplicity that intra-island takeover
happens quickly: after each migration transmitting at least one best solution, the target island is completely
taken over by best solutions before the next migration. We start with only one island containing a best
solution, assuming that all individuals on this island are best solutions. We call such an island an optimal
island. If migrants are not subject to variation while emigrating or immigrating, we will always select best
solutions for migration and hence successfully transmit best solutions.

These assumptions give rise to a deterministic spread of best solutions: after each migration, each
optimal island will turn all neighboring islands into optimal islands. This is very similar to Rudolph’s
model [31], but it also accounts for a rapid intra-island takeover in between migrations.

We consider growth curves on various graph classes: unidirectional and bidirectional rings, square torus
graphs, hypercubes, and complete graphs. Figure 1.6 shows these curves for all these graphs on 64 vertices.
The torus graph has side lengths 8× 8. The hypercube has dimension 6. Each vertex has a label made of
6 bits. All possible values for this bit string are present in the graph. Two vertices are neighboring if their
labels differ in exactly one bit.

For the unidirectional ring, after i−1 migrations we have exactly i optimal islands, if i ≤ m. The growth
curve is therefore linear. For the bidirectional ring information spreads twice as fast as it can spread in two
directions. After i− 1 migrations we have 2i− 1 optimal islands if 2i− 1 ≤ m.

The torus allows to communicate in two dimensions. After one migration there are 1 + 4 = 5 optimal
islands. After two migrations this number is 1 + 4 + 8, and after three migrations it is 1 + 4 + 8 + 12. In
general, after i− 1 migrations we have 1 +

∑i−1
j=1 4j = 1 + 2i(i− 1) = 1 + 2i2− 2i optimal islands, as long as

the optimal islands can freely spread out in all four directions, north, south, west, and east. At some point
the ends of the region of optimal islands will meet, i. e., the northern tip meets the southern one and the
same goes for west and east. Afterwards, we observe regions of non-optimal islands that constantly shrink,
until all islands are optimal.

The growth curve for the torus is hence quadratic at first, and then it starts to saturate. The deter-
ministic growth on torus graphs was also considered in [36].

For the hypercube, we can w. l. o. g. assume that the initial optimal island has a label containing only
zeros. After one migration all islands whose label contains a single one become optimal. After two mi-
grations the same holds for all islands with two ones, and so on. The number of optimal islands after i
migrations in a d-dimensional hypercube (i. e., m = 2d) is hence

∑i
j=0

(
d
j

)
. This number is close to dj

during the first migrations, and then at some point starts to saturate.
The complete graph is the simplest one to analyze here as it will be completely optimal after one

migration.
These arguments and Figure 1.6 show that the growth curves can tremendously depend on the migration

topology. For sparse topologies like rings or torus graphs, the growth in the beginning is linear or quadratic,
respectively. This is much slower than the exponential growth observed in logistic curves. Furthermore,
for the ring there is no saturation; the linear curves is quite dissimilar to logistic curves.

16

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

number of migrations

fr
a
ct

io
n

of
gl

ob
a
l

op
ti

m
a

unidirectional ring
bidirectional ring
8× 8-torus
6-dimensional hypercube
complete graph

Figure 1.6: Plots of growth curves in an island model with 64 islands. We assume that in between two
migrations all islands containing a current best solution completely take over all neighboring islands in the
topology. Initially, one island contains a current best solution and all other islands are worse. The curves
show the fraction of current best solutions in the system for different topologies: a unidirectional ring, a
bidirectional ring, a square torus, a hypercube, and a complete graph.

This suggests that logistic curves might not be the best models for growth curves across all topologies.
The plots by Luque and Alba [14, Section 4.3] show a remarkably good overall fit for their TOP model.
But this might be due to the optimal choice of the parameters a and b and the fact that logistic curves are
easily adaptable to various curves of roughly similar shape. We believe that it is possible to derive even
more accurate models for common topologies, based on results by Giacobini et al. [32, 33, 16]. This is an
interesting challenge for future work.

1.4.4 Propagation

So far, we have only considered models where migration always successfully transmits best individuals. For
non-trivial selection of emigrants, this is not always given. Also if crossover is used during migration, due
to disruptive effects migration is not always successful. If we consider randomized migration processes,
things become more interesting.

Rowe, Mitavskiy, and Cannings [37] considered a model of propagation in networks. Consider a network
where vertices are either informed or not. In each round, each informed vertex tries to inform each of its
neighbors. Every such trial is successful with a given probability p, and then the target island becomes
informed. These decisions are made independently. Note that an uninformed island might get a probability
larger than p of getting informed, in case several informed islands try to inform it. The model is inspired
by models from epidemiology; it can be used to model the spread of a disease.

The model of propagation of information directly applies to our previous setting where the network is the
migration topology and p describes the probability of successfully migrating a current best solution. Note
that, when looking for estimations of growth curves and upper bounds on the takeover time, we can assume
that p is a lower bound on the actual probability of a successful transmission. Then the model becomes
applicable to a broader range of settings, where islands can have different transmission probabilities.

On some graphs like unidirectional rings, we can just multiply our growth curves by p to reflect the
expected number of optimal islands after a certain time. It then follows that the time for taking over all
m islands is by a factor of 1/p larger than in the previous, deterministic model.

17

However, this reasoning does not hold in general. Multiplying the takeover time in the deterministic
setting with 1/p does not always give the expected takeover time in the random model. Consider a star
graph (or hub), where initially only the center vertex is informed. In the deterministic case p = 1, the
takeover time is clearly 1. But if 0 < p < 1 the time until the last vertex is informed is given by the
maximum of n − 1 independent geometric distributions with parameter p. For constant p, this time is of
order Θ(log n), i. e., the time until the last vertex is informed is much larger than the expected time for
any specific island to be informed.

Rowe, Mitavskiy, and Cannings [37] presented a detailed analysis of hubs. They also shows how to
obtain a general upper bound that holds for all graphs. For every graph G with n vertices and diameter
diam(G) the expected takeover time is bounded by

O

(
diam(G) + log n

p

)
.

Both terms diam(G) and log n make sense. The diameter describes what distance needs to be overcome in
order to inform all vertices in the network. The factor 1/p gives the expected time until a next vertex is
informed, assuming it has only one informed neighbor. We also get diam(G) (without a factor 1/p) as a
lower bound on the takeover time. The additive term + log n is necessary to account for a potentially large
variance, as seen in the example for star graphs.

If the diameter of the graph is at least Ω(log n), we can drop the + log n-term in the asymptotic bound,
leading to an upper bound of O(diam(G)/p).

Interestingly, the concept of propagation also appears in other contexts. When solving shortest paths
problems in graphs, metaheuristics like evolutionary algorithms [38, 39, 40] and ant colony optimization
(ACO) [41, 42] tend to propagate shortest paths through the graph. In the single-source shortest paths
problem (SSSP) one is looking for shortest paths from a source vertex to all other vertices of the graph.
The EAs and ACO algorithms tend to find shortest paths first for vertices that are “close” to the source,
in a sense that their shortest paths only contain few edges. If these shortest paths are found, it enables the
algorithm to find shortest paths for vertices that are further away.

When a shortest path to vertex u is found and there is an edge {u, v} in the graph, it is easy to find a
shortest path for v. In the case of evolutionary algorithms, an EA only needs to assign u as a predecessor
of v on the shortest path in a lucky mutation in order to find a shortest path to v. In the case of ACO,
pheromones enable an ant to follow pheromones between the source and u, and so it only has to decide to
travel between u and v to find a shortest path to v, with good probability.

Doerr, Happ, and Klein [40, Lemma 3] used tail bounds to prove that the time for propagating shortest
paths with an EA is highly concentrated. If the graph has diameter diam(G) ≥ log n, the EA with high
probability finds all shortest paths in time O(diam(G)/p), where p = Θ(n−2) in this case. This result is
similar to the one by Rowe, Mitavskiy, and Cannings [37]; asymptotically, both bounds are equal. However,
the result by Doerr, Happ, and Klein also allows for conclusions about growth curves.

Lässig and Sudholt [6, Theorem 3] introduced yet another argument for the analysis of propagation
times. They considered layers of vertices. The i-th layer contains all vertices that have shortest paths of at
most i edges, and that are not on any smaller layer. They bound the time until information is propagated
throughout all vertices of a layer. This is feasible since all vertices in Layer i are informed with probability
at least p if all vertices in Layers 1, . . . , i − 1 are informed. If ni is the number of vertices in Layer i, the
time until the last vertex in this layer is informed is O(ni · log ni). This gives a bound for the total takeover
time of O(diam(G) · ln(en/ diam(G))). For small (diam(G) = O(1)) or large (diam(G) = Ω(n)) diameters,
we get the same asymptotic bound as before. For other values it is slightly worse.

However, the layering of vertices allows for inclusion of intra-island effects. Assume that the transmission
probability p only applies once islands have been taken over (to a significantly large degree) by best
individuals. This is a realistic setting as with only a single best individual the probability of selecting it
for emigration (or pollination, to be precise) might be very small. If all islands need time Tintra in order to
get to this stage after the first best individual has reached the island, we get an upper bound of

O(diam(G) · ln(en/ diam(G))) + diam(G) · Tintra

18

for the takeover time.

1.5 Examples where Parallel EAs Excel

Parallel EAs have been applied to a very broad range of problems, including many NP-hard problems
from combinatorial optimization. The present literature is immense; already early surveys like the one by
Alba and Troya [9] present long lists of applications of parallel EAs. Further applications can be found
in [10, 12, 13]. Research on and applications of parallel metaheuristics has increased in recent years, due
to the emergence of parallel computer architectures.

Crainic and Hail [43] review applications of parallel metaheuristics, with a focus on graph coloring, par-
titioning problems, covering problems, Steiner tree problems, satisfiability problems, location and network
design as well as the quadratic assignment problems with its famous special cases: the traveling salesman
problem and vehicle routing problems.

Luque and Alba [14] present selected applications for natural language tagging, the design of combina-
torial logic circuits, the workforce planning problem, and the bioinformatics problem of assembling DNA
fragments.

The literature is too vast to be reviewed in this section. Also, for many hard practical problems it is
often hard to determine the effect that parallelization has on search dynamics. The reasons behind the
success of parallel models often remain elusive. We follow a different route and describe theoretical studies
of evolutionary algorithms where parallelization was proven to be helpful. This concerns illustrative toy
functions as well as problems from combinatorial optimization. All following settings are well understood
and allow us to gain insights into the effect of parallelization. We consider parallel variants of the most
simple evolutionary algorithm called (1+1) evolutionary algorithm, shortly (1+1) EA. It is described in
Algorithm 3 and it only uses mutation and selection in a population containing just one current search
point. We are interested in the optimization time, defined as the number of generations until the algorithm
first finds a global optimum. Unless noted otherwise, we consider pseudo-Boolean optimization: the search
space contains all bit strings of length n and the task is to maximize a function f : {0, 1}n → R. We use
the common notation x = x1 . . . xn for bit strings.

Algorithm 3 (1+1) EA for maximizing f : {0, 1}n → R
1: Initialize x ∈ {0, 1}n uniformly at random.
2: loop
3: Create x′ by copying x and flipping each bit independently with probability 1/n.
4: if f(x′) ≥ f(x) then x := x′.
5: end loop

The presentation in this section is kept informal. For theorems with precise results, including all
preconditions we refer to the respective papers.

1.5.1 Independent Runs

Independent runs prove useful if the running time has a large variance. The reason is that the optimization
time equals the time until the fastest run has found a global optimum.

The variance can be particularly large in case the objective function yields local optima that are very
hard to overcome. Bimodal functions contain two local optima, and typically only one is a global optimum.
One such example was already analyzed theoretically in the seminal runtime analysis paper by Droste,
Jansen, and Wegener [44].

We review the analysis of a similar function which leads to a simpler analysis. The function TwoMax
was considered by Friedrich, Oliveto, Sudholt, and Witt [45] in the context of diversity mechanisms. It is
a function of unitation: the fitness only depends on the number of bits set to 1. The function contains two
symmetric slopes that increase linearly with the distance to n/2. Only one of these slopes leads to a global

19

optimum. Formally, the function is defined as the maximum of OneMax :=
∑n
i=1 xi and its symmetric

cousin ZeroMax :=
∑n
i=1(1− xi), with an additional fitness bonus for the all-ones bit string:

TwoMax(x) := max

{
n∑
i=1

xi,

n∑
i=1

(1− xi)

}
+

n∏
i=1

xi.

See Figure 1.7 for a sketch.

0 5 10 15 20

10

12

14

16

18

20

22

number of ones

Figure 1.7: Plots of the bimodal function TwoMax as defined in [45].

The (1+1) EA reaches either a local optimum or a global optimum in expected time O(n log n). Due
to the perfect symmetry of the function on the remainder of the search space, the probability that this is
the global optimum is exactly 1/2. If a local optimum is reached, the (1+1) EA has to flip all bits in one
mutation in order to reach the global optimum. The probability for this event is exactly n−n.

The authors consider deterministic crowding [45] in a population of size µ as diversity mechanism. It
has the same search behavior as µ independent runs of the (1+1) EA, except that the running time is
counted in a different way. Their result directly transfers to this parallel model. The only assumption is
that the number of independent runs is polynomially bounded in n.

The probability of finding a global optimum after O(n log n) generations of the parallel system is am-
plified to 1 − 2−µ. This means that only with probability 2−µ we arrive at a situation where the parallel
EA needs to escape from a local optimum. When all m islands are in this situation, the probability that
at least one island makes this jump in one generation is at most

1− (1− n−n)m = Θ(m · n−n)

where the last equality holds since m is asymptotically smaller than nn.
This implies that the expected number of generations of a parallel system with m independent runs is

O(n log n) + 2−m ·Θ
(
nn

m

)
.

We can see from this formula that the number of runs m has an immense impact on the expected running
time. Increasing the number of runs by 1 decreases the second summand by more than a factor of 2.
The speedup is therefore exponential, up to a point where the running time is dominated by the first

20

term O(n log n). Note in particular that log(nn) = n log n processors are sufficient to decrease the expected
running time to O(n log n).

This is a very simple example of a superlinear speedup, with regard to the optimization time.
The observed effects also occur in combinatorial optimization. Witt [46] analyzed the (1+1) EA on the

NP-hard Partition problem. The task can be regarded as scheduling on two machines: given a sequence
of jobs, each with a specific effort, the goal is to distribute the jobs on two machines to that the largest
execution time (the makespan) is minimized.

On worst-case instances the (1+1) EA has a constant probability of getting stuck in a bad local optimum.
The expected time to find a solution with a makespan of less than (4/3− ε) ·OPT is nΩ(n), where ε > 0 is
an arbitrary constant and OPT is the value of the optimal solution.

However, if the (1+1) EA is lucky, it can indeed achieve a good approximation of the global optimum.
Assume we are aiming at a solution with a makespan of at most (1 + ε) · OPT, for some ε > 0 we can
choose. Witt’s analysis shows that then 2(e log e+e)·d2/εe ln(4/ε)+O(1/ε) parallel runs output a solution of this
quality with probability at least 3/4. (This probability can be further amplified quite easily by using more
runs.) Each run takes time O(n ln(1/ε)). The parallel model represents what is known as a polynomial-time
randomized approximation scheme (PRAS). The desired approximation quality (1 + ε) can be specified,
and if ε is fixed the total computation time is bounded by a polynomial in n. This was the first example
that parallel runs of a randomized search heuristics constitute a PRAS for an NP-hard problem.

1.5.2 Offspring Populations

Using offspring populations in a master-slave architecture can decrease the parallel running time and lead
to a speedup. We will discuss this issue further in Section 1.6 as offspring populations are very similar to
island models on complete topologies.

For now, we present one example where offspring populations decrease the optimization time very
drastically.

Jansen, De Jong, and Wegener [47] compared the (1+1) EA against a variant (1+λ) EA that creates
λ offspring in parallel and compares the current search point against the best offspring. They constructed
a function SufSamp where offspring populations have a significant advantage. We refrain from giving a
formal definition, but instead describe the main ideas. The vast majority of all search points tend to lead
an EA towards the start of a path through the search space. The points on this path have increasing
fitness, thus encouraging an EA to follow it. All points outside the path are worse, to the EA will stay on
the path.

The path leads to a local optimum at the end. However, the function also includes a number of smaller
paths that branch off the main path, see Figure 1.8. All these paths lead to global optima, but these paths
are hard to discover. This makes a difference between the (1+1) EA and the (1+λ) EA for sufficiently
large λ. The (1+1) EA typically follows the main path without discovering the smaller paths branching
off. At the end of the main path it thus becomes stuck in a local optimum. The analysis in [47] shows that
the (1+1) EA needs superpolynomial time, with high probability.

Contrarily, the (1+λ) EA performs a more thorough search as it progresses on the main path. The
many offspring tend to discover at least one of the smaller branches. The fitness on the smaller branches
is larger than the fitness of the main path, so the EA will move away from the main path and follow a
smaller path. It then finds a global optimum in polynomial time, with high probability.

Interestingly, this construction can be easily adapted to show an opposite result. We replace the local
optimum at the end of the main path by a global optimum, and replace all global optima at the end of the
smaller branches by local optima. This yields another function SufSamp′, also shown in Figure 1.8. By
the same reasoning as above, the (1+λ) EA will get stuck and the (1+1) EA will find a global optimum in
polynomial time, with high probability.

While the example is clearly constructed and artificial, it can be seen as a cautionary tale. The reader
might be tempted to think that using offspring populations instead of creating a single offspring can never
increase the number of generations needed to find the optimum. After all, with an offspring population
search is more intense and improvements can be found more easily. As we focus on the number of generations

21

main path
local
optima

global optima

main path
global
optima

local optima

Figure 1.8: Sketches of the functions SufSamp (left) and SufSamp′ (right). The fitness is indicated by the
color.

(and do not count the effort for creating λ offspring), it is tempting to claim that offspring populations are
never disadvantageous.

The second example shows that this claim—however obvious it seems—does not hold for general problem
classes. Note that this statement is also implied by the well-known no free lunch theorems [48], but the
above results are much stronger and more concrete.

1.5.3 Island Models

The examples so far have shown that a more thorough search—by independent runs or increased sampling
of offspring—can lead to more efficient running times.

Lässig and Sudholt [3] presented a first example where communication makes the difference between
exponential and polynomial running times, in a typical run. They constructed a family of problems called
LOLZn,z,b,` where a simple island model finds the optimum in polynomial time, with high probability. This
holds for a proper choice of the migration interval and any migration topology that is not too sparse. The
islands run (1+1) EAs, hence the island model resembles a fine-grained model.

Contrarily, both a panmictic population as well as independent islands need exponential time, with
high probability. This shows that the weak speedup versus panmixia is superlinear, even exponential
(when considering speedups with respect to the typical running time instead of the expected running
time). Unlike previous examples, it also shows that more sophisticated means of parallelization can be
better than independent runs.

The basic idea of this construction is as follows. First imagine a bit string where the fitness describes
the length of the longest prefix of bits with the same value. Generally, a prefix of i leading ones yields
the same fitness as a prefix of i leading zeros, e. g., 111010 and 000110 both have fitness 3. However, the
maximum possible fitness that can be attained by leading zeros is capped at some threshold value z. This
means that—in the long run—gathering leading ones is better than gathering leading zeros. The former
leads to an optimal value, while the latter leads to a local optimum that is hard to escape from.

The effect on an EA is as follows. In the beginning the EA typically has to make a decision whether to
collect leading ones (LO) or leading zeros (LZ). This not only holds for the (1+1) EA but also for a (not
too large) panmictic population as genetic drift will lead the whole population to either leading ones or
leading zeros. After a significant prefix has been gathered, this decision gradually becomes irreversible as
many bits in the prefix need to be flipped at the same time to switch from leading ones to leading zeros or
vice versa. So, with probability close to 1/2 the EA will end up finding an optimum by gathering leading
ones, and again with probability close to 1/2 its population gets stuck in a hard local optimum.

To further increase the difficulty for EAs, this construction is repeated on several blocks of the bit string
that need to be optimized one-by-one. Each block has length `. Only if the right decision towards leading
ones is made on the first block, the block can be filled with further leading ones. Once the first block
contains only leading ones, the fitness depends on the prefix in the second block, and a further decision
between leading ones and leading zeros needs to be made. Only if an EA makes all decisions correctly, it
can find a global optimum. Table 1.1 illustrates the problem definition.

22

x1 11110011 11010100 11010110 01011110 LOLZ(x1) = 4
x2 11111111 11010100 11010110 01011110 LOLZ(x2) = 10
x3 11111111 11111111 00000110 01011110 LOLZ(x3) = 19

Table 1.1: Examples of solutions for the function LOLZ with four blocks and z = 3, along with their fitness
values. All blocks have to be optimized from left to right. The sketch shows in red all bits that are counted
in the fitness evaluation. Note how in x3 in the third block only the first z = 3 zeros are counted. Further
0-bits are ignored. The only way to escape from this local optimum is to flip all z 0-bits in this block
simultaneously.

So, the problem requires an EA to make several decisions in succession. The number of blocks, b,
is another parameter that determines how many decisions need to be made. Panmictic populations will
sooner or later make a wrong decision and get stuck in some local optimum. If b is not too small, the same
holds for independent runs.

However, an island model can effectively communicate the right decisions on blocks to other islands.
Islands that got stuck in a local optimum can be taken over by other islands that have made the correct
decision. These dynamics make up the success of the island model as it can be shown to find global
optima with high probability. A requirement is, though, that the migration interval is carefully tuned so
that migration only transmits the right information. If migration happens before the symmetry between
leading ones and leading zeros is broken, it might be that islands with leading zeros take over islands with
leading ones. Lässig and Sudholt [3] give sufficient conditions under which this does not happen, with high
probability.

An interesting finding is also how islands can regain independence. During migration, genetic informa-
tion about future blocks is transmitted. Hence, after migration all islands contain the same genotype on
future blocks. This is a real threat as this dependence might imply that all islands make the same decision
after moving on to the next block. Then all diversity would be lost.

However, under the conditions given in [3] there is a period of independent evolution following migration,
before any island moves on to a new block. During this period of independence, the genotypes of future
blocks are subjected to random mutations, independently for each island. The reader might think of moving
particles in some space. Initially, all bits are in the same position. But then particles start moving around
randomly. Naturally, they will spread out and separate from one another. After some time the distribution
of particles will resemble a uniform distribution. In particular, an observer would not be able to distinguish
whether the positions of particles were obtained by this random process or by simply drawing them from
a uniform distribution.

The same effect happens with bits of future blocks; after some time all bits of a future block will
be indistinguishable from a random bit string. This shows that independence cannot only be gained by
independent runs, but also by periods of independent evolution. One could say that the island model
combines the advantages of two worlds: independent evolution and selection pressure through migration.
The island model is only successful because it can use both migration and periods of independent evolution.

The theoretical results [3] were complemented by experiments in [49]. The aim was to look at what
impact the choice of the migration topology and the choice of the migration interval have on performance,
regarding the function LOLZ. The theoretical results made a statement about a broad class of dense
topologies, but required a very precise migration interval. The experiments showed that the island model
is far more robust with respect to the migration interval than suggested by theory.

Depending on the migration interval, some topologies were better than others. The topologies involved
were a bidirectional ring, a torus with edges wrapping around, a hypercube graph, and the complete graph.
We considered the success rate of the island model, stopping it as soon as all islands had reached local
or global optima. We then performed statistical tests comparing these success rates. For small migration
intervals, i. e., frequent migrations, sparse topologies were better than dense ones. For large migration
intervals, i. e., rare migrations, the effect was opposite. This effect was expected, however we also found
that the torus was generally better than the hypercube. This is surprising as both have a similar density.

23

Migration interval Ranking
Small migration intervals Kµ ≺ hypercube ≺ torus ≺ ring
Medium migration intervals hypercube ≺ Kµ ≺ ring ≺ torus
High migration intervals ring ≺ torus ≺ hypercube ≺ Kµ

Table 1.2: Performance comparison according to success rates for commonly used migration topologies.
The notion A ≺ B means that topology A has a significantly smaller success rate than topology B.

v∗

v∗ v∗ v∗

Figure 1.9: Sketch of the graph G′. The top shows a configuration where a decision at v∗ has to be
made. The three configurations below show the possible outcomes. All these transitions happen with equal
probability, but only the one on the bottom right leads to a solution where rotations are necessary.

Table 1.2 shows the ranking obtained for commonly used topologies.

Superlinear speedups with island models also occur in simpler settings. Lässig and Sudholt [6] also
considered island models for the Eulerian cycle problem. Given an undirected Eulerian graph, the task is
to find a Eulerian cycle, i. e., a traversal of the graph on which each edge is traversed exactly once. This
problem can be solved efficiently by tailored algorithms, but it served as an excellent test bed for studying
the performance of evolutionary algorithms [50, 51, 52, 53].

Instead of bit strings, the problem representation by Neumann [50] is based on permutations of the
edges of the graph. Each such permutation gives rise to a walk : starting with the first edge, a walk is the
longest sequence of edges such that two subsequent edges in the permutation share a common vertex. The
walk encoded by the permutation ends when the next edge does not share a vertex with the current one.
A walk that contains all edges represents a Eulerian cycle. The length of the walk gives the fitness of the
current solution.

Neumann [50] considered a simple instance that consists of two cycles of equal size, connected by one
common vertex v∗ (see Figure 1.9). The instance is interesting as it represents a worst case for the time
until an improvement is found. This is with respect to randomized local search (RLS) working on this
representation. RLS works like the (1+1) EA, but it only uses local mutations. As mutation operator it
uses jumps: an edge is selected uniformly at random and then it is moved to a (different) target position
chosen uniformly at random. All edges in between the two positions are shifted accordingly.

On the considered instance RLS typically starts constructing a walk within one of these cycles, either
by appending edges to the end of the walk or by prepending edges to the start of the walk. When the
walk extends to v∗ for the first time, a decision needs to be made. RLS can either extend the walk to the
opposite cycle, see Figure 1.9. In this case RLS can simply extend both ends of the walk until a Eulerian
cycle is formed. The expected time until this happens is Θ(m3) where m denote the number of edges.

24

But if another edge in the same cycle is added at v∗, the walk will evolve into one of the two cycles
that make up the instance. It is not possible to add further edges to the current walk, unless the current
walk starts and ends in v∗. However, the walk can be rotated so that the start and end vertex of the walk
is moved to a neighboring vertex. Such an operation takes expected time Θ(m2). Note that the fitness
after a rotation is the same as before. Rotations that take the start and end closer to v∗ are as likely as
rotations that move it away from v∗. The start and end of the walk hence performs a fair random walk
and Θ(m2) rotations are needed on average in order to reach v∗. The total expected time for rotating the
cycle is hence Θ(m4).

Summarizing, if RLS makes the right decision then expected time Θ(m3) suffices in total. But if
rotations become necessary the expected time increases to Θ(m4). Now consider an island model with
m islands running RLS. If islands evolve independently for at least τ ≥ m3 generations, all mentioned
decisions are made independently, with high probability. The probability of making a wrong decision is
1/3, hence with m islands the probability that all islands make the wrong decision is 3−m. The expected
time can be shown to be

Θ(m3 + 3−m ·m4).

The choice m := log3m yields an expectation of Θ(m3), and every value up to log3m leads to a superlinear
speedup, asymptotically speaking. Technically, the speedup is even exponential.

Interestingly, this good performance only holds if migration is used rarely, or if independent runs are
used. If migration is used too frequently, the island model rapidly loses diversity. If T is any strongly
connected topology and diam(T) is its diameter, we have the following. If τ · diam(T) ·m = O(m2) then
there is a constant probability that the island that first arrives at a decision at v∗ propagates this solution
throughout the whole island model, before any other island can make an improvement. This results in an
expected running time of Ω(m4/ log(m)). This is almost Θ(m4), even for very large numbers of islands.
The speedup is therefore logarithmic at best, or even worse.

This natural example shows that the choice of the migration interval can make a difference between
exponential and logarithmic speedups.

1.5.4 Crossover between Islands

It has long been known that island models can also be useful in the context of crossover. Crossover usually
requires a good diversity in the population to work properly. Due to the higher diversity between different
islands, compared to panmixia, recombining individuals from different islands is promising.

Watson and Jansen [54] presented and analyzed a royal road function for crossover: a function where
crossover drastically outperforms mutation-based evolutionary algorithms. In contrast to previous examples
studied theoretically [55, 56, 57, 58, 59] their goal was to construct a function with a clear building-block
structure. In order to prove that a GA was able to assemble all building blocks, they resorted to an island
model with a very particular migration topology. In their single-receiver model all islands except one evolve
independently. Each island sends its migrants to a designated island called receiver. This way, all sending
islands are able to evolve the right building blocks, and the receiver is used to assemble all these building
blocks to obtain the optimum.

Figure 1.10: The topology for Watson and Jansen’s single-receiver model [54].

25

Figure 1.11: Vertex Cover instance with bipartite graphs. The blue vertices denote selected vertices. In
this configuration the second component shows a locally optimal configuration while all other components
are globally optimal.

This idea was picked up later on by Neumann, Oliveto, Rudolph, and Sudholt [7] in a more detailed
study of crossover in island models. We describe parts of their results as their problem is more illustrative
than the one by Watson and Jansen. The former authors considered instances of the NP-hard Vertex
Cover problem. Given an undirected graph, the goal is to select a subset of vertices such that each vertex
is either selected or neighboring to a selected vertex. We say that vertices are covered if this property holds
for them. The objective is to minimize the number of selected vertices. The problem has a simple and
natural binary representation where each bit indicates whether a corresponding vertex is selected or not.

Prior work by Oliveto, He, and Yao [60] has shown that evolutionary algorithms with panmictic popu-
lations even fail on simply structured instance classes like copies of bipartite graphs. An example is shown
in Figure 1.11. Consider a single bipartite graph, i. e., two sets of vertices such that each vertex in one set
is connected to every vertex in the other set. If both sets have different sizes, the smaller set is an optimal
vertex cover. The larger set is another vertex cover. It is, in fact, a non-optimal local optimum which is
hard to overcome: the majority of bits has to flip in order to escape. If the instance consists of several
independent copies of bipartite graphs, it is very likely that a panmictic EA will evolve a locally optimal
configuration on at least one of the bipartite graphs. Then the algorithm fails to find a global optimum.

Island models perform better. Assume the topology is the single-receiver model. In each migration a
2-point crossover is performed between migrants and the individual on the target island. All islands have
population size 1 for simplicity. We also assume that the bipartite subgraphs are encoded in such a way
that each subgraph forms one block in the bit string. This is a natural assumption as all subgraphs can be
clearly identified as building blocks. In addition, Jansen, Oliveto, and Zarges [61] presented an automated
way of encoding graphs in a crossover-friendly way, based on the degrees of vertices.

The analysis in [7] shows the following. Assume that the migration interval is at least τ ≥ n1+ε for
some positive constant ε > 0. This choice implies that all islands will evolve to configurations where all
bipartite graphs are either locally optimal or globally optimal. With probability 1− e−Ω(m) we have that
for each bipartite graph at least a constant fraction of all sender islands will have the globally optimal
configuration.

All that is left to do for the receiver island is to rely crossover combining all present good building blocks.
As 2-point crossover can select one block from an immigrant and the remainder from the current solution
on the receiver island, all good building blocks have a good chance to be obtained. The island model finds

a global optimum within a polynomial number of generations, with probability 1− e−Ω(min{nε/2,m}).

1.6 Speedups by Parallelization

1.6.1 A General Method for Analyzing Parallel EAs

We now finally discuss a method for estimating the speedup by parallelization. Assume that, instead
of running a single EA, we run an island model where each island runs the same EA. The question is
by how much the expected optimization time (i. e., the number of generations until a global optimum is
found) decreases, compared to the single, panmictic EA. Recall that this speedup is called weak orthodox
speedup [21].

In the following we sometimes speak of the expected parallel optimization time to emphasize that we
are dealing with a parallel system. If the number of islands and the population size on each island is fixed,

26

we can simply multiply this time by a fixed factor to get the expected number of function evaluations.
Lässig and Sudholt [4] presented a method for estimating the expected optimization time of island

models. It combines growth curves with a well-known method for the analysis of evolutionary algorithms.
The fitness-level method or method of f -based partitions [62] is a simple yet powerful technique. The idea
is to partition the search space into non-empty sets A1, A2, . . . , Am such that the following holds.

• for each 1 ≤ i < m each search point in Ai has a strictly worse fitness than each search point in Ai+1

and

• Am contains all global optima.

The described ordering with respect to the fitness f is often denoted

A1 <f A2 <f · · · <f Am.

Note that Am can also be redefined towards containing all search points of some desired quality if the goal
is not global optimization.

We say that a population-based algorithm A (including populations of size 1) is in Ai or “on fitness
level i” if the best search point in the population is in Ai. Now, assume we know that si is a lower bound
on the probability that the algorithm finds a solution in Ai+1 ∪ · · · ∪Am if it currently is in Ai. Then the
reciprocal 1/si is an upper bound on the expected time until this event happens. If the algorithm is elitist
(i. e. it never loses the current best solution) then it will never decrease its current fitness level. A sufficient
condition for finding an optimal solution is that all sets A1, A2, . . . , Am−1 are left in the described manner
at least once. This implies the following bound on the expected optimization time.

Theorem 1 (Wegener [62]) Consider an elitist EA and assume a fitness-level partition A1 <f · · · <f
Am where Am is the set of global optima. Let si be a lower bound for the probability that in one generation
the EA finds a search point in Ai+1 ∪ · · · ∪Am if the best individual in the parent population is in Ai. Then
the expected optimization time is bounded by

m−1∑
i=1

1

si
.

The above bound applies to all elitist algorithms. It is generally applicable and often quite versatile
as we can freely choose the partition A1, . . . , Am. The challenge is to find such a partition and to find
corresponding probability bounds s1, . . . , sm−1 for finding improvements. Many papers have shown that
this method—applied explicitly or implicitly—yields tight bound on the expected optimization time of EAs
for various problems [44, 38, 50]. It can also be used as part of a more general analysis [63, 64].

We are being pessimistic in assuming that every fitness level has to be left. In reality, several fitness
levels might be skipped. The fitness-level method often yields good bounds in case not too many levels are
skipped, and if the probability bounds si are good estimates for the real probabilities of finding a better
fitness-level set. Note that the lower bound si must apply regardless of the precise search point(s) in Ai
present in the population, hence we need to consider the worst-case probability of escaping from Ai.

Nevertheless, the fitness-level method often yields tight bounds. Sudholt [65] recently developed a lower-
bound method based on fitness levels that shows in which cases the upper bound is tight. Also, Lehre [66]
recently presented an extension of the method to non-elitist algorithms. Asymptotically, the same bound
as in Theorem 1 applies, if some additional conditions on the selection pressure and the population size are
fulfilled. For the sake of simplicity, we focus on elitist algorithms in the following.

If si denotes the probability of a single offspring finding an improvement, this probability can be
increased by using λ offspring in parallel. We have already seen in Section 1.2 how λ independent trials can
increase or amplify a success probability p to 1− (1−p)λ. The same reasoning applies to the probability si
for finding an improvement on the current best level. Figure 1.1 has shown how this probability increases
with the number of trials. Figure 1.12 shows how the expected time for having a success decreases with
the number of offspring. In fact, the curves in Figure 1.12 are just reciprocals of those in the previous
Figure 1.1.

27

2 4 6 8 10

0

5

10

15

20

number of independent trials

ex
p

ec
te

d
p

ar
al

le
l

ti
m

e

p = 0.3
p = 0.1
p = 0.05

Figure 1.12: Plots of the expected parallel time until an offspring population of size λ has a success, if each
offspring independently has a success probability of p. The dashed lines indicate a perfect linear speedup.

Figure 1.12 shows that the speedup can be close to linear (in a strict, non-asymptotic sense), especially
for low success probabilities. As the probability of increasing the current fitness level i is at least 1−(1−si)λ,
we get the following.

Theorem 2 Consider an elitist EA creating λ offspring independently in each generation. Assume a
fitness-level partition A1 <f · · · <f Am where Am is the set of global optima. Let si be a lower bound for
the probability that in one generation a single offspring finds a search point in Ai+1 ∪ · · · ∪ Am if the best
individual in the parent population is in Ai. Then the expected optimization time is bounded by

m−1∑
i=1

1

1− (1− si)λ
≤ m− 1 +

1

λ

m−1∑
i=1

1

si
.

Note that the first bound for λ = 1 reproduces the previous upper bound from Theorem 1. For the
second bound we have used

1

1− (1− si)µ
≤ 1 +

1

µ
· 1

si
, (1.2)

where the inequality was proposed by Jon Rowe (personal communication, 2011); it can be proven by a
simple induction.

Our estimate of the probability for an improvement increases with the number of islands on the current
best fitness level. In a spatially structured EA these growth curves are non-trivial. Especially with a
sparse migration topology, information about the current best fitness level is typically propagated quite
slowly. The increased exploration slows down exploitation. Still, even sparse topologies lead to drastically
improved upper bounds, when compared to the simple bound for a sequential EA from Theorem 1. The
precise bounds crucially depend on the particular topology.

We first consider a setting where migration always transmits the current best fitness level and migration
happens in every generation. It is possible to adapt the results to account for larger migration intervals.
One way of doing this is to redefine si to represent a lower bound of finding an improvement in a time
period between migrations. Then we get an upper bound on the expected number of migrations. For the
sake of simplicity, we only consider the case τ = 1 in the following.

The following theorem was presented in Lässig and Sudholt [6]; it is a refined special case of previous
results [4]. The main proof idea is to combine the investigation of growth curves with the consideration of
amplified success probabilities.

28

Theorem 3 (Lässig and Sudholt [6]) Consider an island model with µ islands where each island runs
an elitist EA. In every iteration each island sends copies of its best individual to all neighboring islands
(i. e. τ = 1). Each island incorporates the best out of its own individuals and its immigrants.

For every partition A1 <f · · · <f Am if si is a lower bound for the probability that in one generation an
island in Ai finds a search point in Ai+1 ∪ · · · ∪Am then the expected parallel optimization time is bounded
by

1. 2
∑m−1
i=1

1

s
1/2
i

+ 1
µ

∑m−1
i=1

1
si

for every unidirectional ring (a ring with edges in one direction) or any

other strongly connected topology,

2. 3
∑m−1
i=1

1

s
1/3
i

+ 1
µ

∑m−1
i=1

1
si

for every undirected grid or torus graph with side lengths at least
√
µ×√µ,

3. m− 1 + 1
µ

∑m−1
i=1

1
si

for the complete topology Kµ.

Note that the bound for the complete topology Kµ is equal to the upper bound for offspring populations,
Theorem 2. This makes sense as an island model with a complete topology propagates the current best
fitness level like an offspring population.

All bounds in Theorem 3 consist of two additive terms. The second term 1
µ

∑m−1
i=1

1
si

represents a
perfect linear speedup, compared to the upper bound from Theorem 1. The larger we choose the number
of islands µ, the smaller this term becomes. The first additive term is related to the growth curves of
the current best fitness level in the island model. The more dense the topology, the faster information is
spread and the smaller this term becomes. Note that it is independent of µ. It can be regarded as the
term limiting the degree of parallelizability. We can increase the number of islands in order to decrease the
second term 1

µ

∑m−1
i=1

1
si

, but we cannot decrease the first term by changing µ.
This allows for immediate conclusions about cases where we get an asymptotic linear speedup over a

single-island EA. For all choices of µ where the second term is asymptotically no smaller than the first
term, the upper bound is by a factor of order µ smaller than the upper bound from Theorem 1. This is an
asymptotic linear speedup if the upper bound from Theorem 1 is asymptotically tight. (If it is not, we can
only compare upper bounds for a sequential and a parallel EA.)

We illustrate this with a simple and well-known test function from pseudo-Boolean optimization. The
algorithm considered is an island model where each island runs a (1+1) EA; the island model is also called

parallel (1+1) EA. The function LO(x) :=
∑n
i=1

∏i
j=1 xj (LeadingOnes) counts the number of leading

ones in the bit string. We choose the canonic partition where Ai contains all search points with fitness i,
i. e., i leading ones. For any set Ai, 0 ≤ i ≤ n− 1 we use the following lower bound on the probability for
an improvement.

An improvement happens if the first 0-bit is flipped from 0 to 1 and no other bit flips. The probability
of flipping the mentioned 0-bit is 1/n as each bit is flipped independently with probability 1/n. The
probability of not flipping any other bit is (1− 1/n)n−1. We use the common estimate (1− 1/n)n−1 ≥ 1/e
where e = exp(1) = 2.718 . . . , so the probability of an improvement is at least si ≥ 1/(en) for all 0 ≤
i ≤ n − 1. Plugging this into Theorem 3, the second term is 1

µ · en
2 for all bounds. The first terms are

2n · (en)1/2 = 2e1/2n3/2 for the ring, 3n · (en)1/3 = 3e1/3n4/3 for the torus, and n for the complete graph,
respectively.

For the ring, choosing µ = O(n1/2) islands results in an expected parallel time of O
(

1
µ · n

2
)

as the

second term is asymptotically not smaller than the first one. This is asymptotically by a factor of 1/µ
smaller than the expected optimization time of a single (1+1) EA, Θ(n2) [44]. Hence each choice of µ up
to µ = O(n1/2) gives a linear speedup. For the torus we get a linear speedup for µ = O(n2/3) in the same
fashion. For the complete graph this even holds for µ = O(n). One can see here the island model can
decrease the expected parallel running time by significant polynomial factors.

Table 1.3 lists expected parallel optimization time bounds for several well-known pseudo-Boolean func-
tions. The above analysis for LO generalizes to all unimodal functions. A function is called unimodal
here if every non-optimal search point has a better Hamming neighbor, i. e., a better search point can be
reached by flipping exactly one specific bit. ONEMAX(x) =

∑n
i=1 xi counts the number of ones, hence

29

Algorithm ONEMAX LO unimodal, d values Jumpk, k ≥ 3
(1+1) EA O(n log n) [44] O(n2) [44] O(nd) O(nk) [44]

island model on ring O
(
n+ n logn

µ

)
O
(
n3/2 + n2

µ

)
O
(
dn1/2 + dn

µ

)
O
(
nk/2 + nk

µ

)
island model on torus O

(
n+ n logn

µ

)
O
(
n4/3 + n2

µ

)
O
(
dn1/3 + dn

µ

)
O
(
nk/3 + nk

µ

)
island model on Kµ/(1+µ) EA O

(
n+ n logn

µ

)
O
(
n+ n2

µ

)
O
(
d+ dn

µ

)
O
(
n+ nk

µ

)
Table 1.3: Upper bounds for expected parallel optimization times (number of generations) for the (1+1) EA
and the corresponding island model with µ islands in pseudo-Boolean optimization. The last but one column
is for any unimodal function with d function values. The number of function evaluations in the island model
is by a factor of µ larger than the number of generations.

modeling a simple hill climbing task. Finally, Jumpk [44] is a multimodal function of tunable difficulty. An
EA typically has to make a “jump” by flipping k bits simultaneously, where 2 ≤ k ≤ n. The (1+1) EA has
an expected optimization time of Θ(nk), hence growing rapidly with increasing k.

One can see that the island model leads to drastically reduced parallel optimization times. This holds
particularly for problems where improvements are hard to find.

We remark that Lässig and Sudholt [65] also considered parallel EAs where migration is not always
successful in transmitting information about the current best fitness level. This includes the case where
crossover is used during migration and crossover has a certain probability of being disruptive. We do get
upper bounds on the expected optimization time if we know a lower bound p+ on the probability of a
successful transmission. The bounds depend on p+; the degree of this dependence is determined by the
topology. For simplicity we only focus on the deterministic case here.

1.6.2 Speedups in Combinatorial Optimization

The techniques are also applicable in combinatorial optimization. We review two examples here, presented
in [6].

Scharnow, Tinnefeld, and Wegener [38] considered the classical sorting problem as an optimization
problem: given a sequence of n distinct elements from a totally ordered set, sorting is the problem of
maximizing sortedness. W. l. o. g. the elements are 1, . . . , n, then the aim is to find the permutation πopt

such that (πopt(1), . . . , πopt(n)) is the sorted sequence.
The search space is the set of all permutations π on 1, . . . , n. Two different operators are used for

mutation. An exchange chooses two indices i 6= j uniformly at random from {1, . . . , n} and exchanges the
entries at positions i and j. A jump chooses two indices in the same fashion. The entry at i is put at
position j and all entries in between are shifted accordingly. For instance, a jump with i = 2 and j = 5
would turn (1, 2, 3, 4, 5, 6) into (1, 3, 4, 5, 2, 6).

The (1+1) EA draws S according to a Poisson distribution with parameter λ = 1 and then performs
S + 1 elementary operations. Each operation is either an exchange or a jump, where the decision is made
independently and uniformly for each elementary operation. The resulting offspring replaces its parent if
its fitness is not worse. The fitness function fπopt

(π) describes the sortedness of (π(1), . . . , π(n)). As in
[38], we consider the following measures of sortedness:

• INV(π) measures the number of pairs (i, j), 1 ≤ i < j ≤ n, such that π(i) < π(j) (pairs in correct
order)

• HAM(π) measures the number of indices i such that π(i) = i (elements at the correct position),

• LAS(π) equals the largest k such that π(i1) < · · · < π(ik) for some ii < · · · < ik (length of the longest
ascending subsequence),

• EXC(π) equals the minimal number of exchanges (of pairs π(i) and π(j)) to sort the sequence, leading
to a minimization problem.

30

Algorithm INV HAM, LAS, EXC
(1+1) EA O(n2 log n) [38] O(n2 log n) [38]

island model on ring O
(
n2 + n2 logn

µ

)
O
(
n3/2 + n2 logn

µ

)
island model on torus O

(
n2 + n2 logn

µ

)
O
(
n4/3 + n2 logn

µ

)
island model on Kµ/(1+µ) EA O

(
n2 + n2 logn

µ

)
O
(
n+ n2 logn

µ

)
Table 1.4: Upper bounds for expected parallel optimization times for the (1+1) EA and the corresponding
island model with µ islands for sorting n objects.

The expected optimization time of the (1+1) EA is Ω(n2) and O(n2 log n) for all fitness functions. The
upper bound is tight for LAS, and it is believed to be tight for INV, HAM, and EXC as well [38]. Theorem 3
yields the following. For INV, all topologies guarantee a linear speedup only in case µ = O(log n) and
the bound O(n2 log n) for the (1+1) EA is tight. The other functions allow for linear speedups up to
µ = O(n1/2 log n) (ring), µ = O(n2/3 log n) (torus), and µ = O(n log n) (Kµ), respectively (again assuming
tightness, otherwise up to a factor of log n). Note how the results improve with the density of the topology.
HAM, LAS, and EXC yield much better guarantees for the island model than INV. This is surprising as
there is no visible performance difference for a single (1+1) EA.

An explanation is that INV leads to
(
n
2

)
non-optimal fitness levels that are quite easy to overcome.

HAM, LAS, and EXC have only n non-optimal fitness levels that are more difficult. For a single EA both
settings are equally difficult, leading to asymptotically equal expected times (assuming all upper bounds
are tight). However, the latter setting is easier to parallelize as the former as it is easier to amplify small
success probabilities.

We also consider parallel variants of the (1+1) EA for the single source shortest path problem (SSSP) [38].
An SSSP instance is given by an undirected connected graph with vertices {1, . . . , n} and a distance matrix
D = (dij)1≤i,j≤n where dij ∈ R+

0 ∪{∞} defines the length value for given edges from node i to node j. We
are searching for shortest paths from a node s (w. l. o. g. s = n) to each other node 1 ≤ i ≤ n− 1.

A candidate solution is represented as a shortest paths tree, a tree rooted at s with directed shortest
paths to all other vertices. We define a search point x as vector of length n− 1, where position i describes
the predecessor node xi of node i in the shortest path tree. Note that infeasible solutions are possible in
case the predecessors do not encode a tree. An elementary mutation chooses a vertex i uniformly at random
and replaces its predecessor xi by a vertex chosen uniformly at random from {1, . . . , n} \ {i, xi}. We call
this a vertex-based mutation. Doerr and Johannsen [67] proposed an edge-based mutation operator. An
edge is chosen uniformly at random, and the edge is made a predecessor edge for its end node.

The (1+1) EA uses either vertex-based mutations or edge-based ones. It creates an offspring using S
elementary mutations, where S is chosen according to a Poisson distribution with λ = 1. The result of an
offspring is accepted in case no distance to any vertex has gotten worse.

Applying Theorem 3 along with a layering argument as described at the end of Section 1.4.4 yields the
bounds on the expected parallel optimization time shown in Table 1.5.

The upper bounds for the island models with constant µ match the expected time of the (1+1) EA in
case ` = O(1) or ` = Ω(n) as then ` ln(en/`) = Θ(`∗). In other cases the upper bounds are off by a factor of
ln(en/`). Table 1.5 also shows a range of µ-value for which the speedup is linear (if ` = O(1) or ` = Ω(n))
or almost linear, that is, when disregarding the ln(en/`) term.

Note how the possible speedups significantly increase with the density of the topology. The speedups
also depend on the graph instance and the maximum number of edges ` on any shortest path. For a single
(1+1) EA edge-based mutations are more effective than vertex-based mutations [67]. Island models with
edge-based mutations cannot be parallelized as effectively for sparse graphs as those with vertex-based
mutations if the graph is sparse, i. e., m = o(n2). Then the number of islands that guarantees a linear
speedup is smaller for edge-based mutations than for vertex-based mutations. The reason is that with a
more efficient mutation operator there is less potential for further speedups with a parallel EA.

31

Algorithm vertex-based mutation [38] edge-based mutation [67]
(1+1) EA Θ(n2`∗) [40] Θ(m`∗) [67]

island model on ring O
(
n3/2`1/2 + n2` ln(en/`)

µ

)
O
(
m1/2n1/2`1/2 + m` ln(en/`)

µ

)
−→ µ = O((n`)1/2) −→ µ = O((m/n · `)1/2)

island model on torus O
(
n4/3`1/3 + n2` ln(en/`)

µ

)
O
(
m1/3n2/3`1/3 + m` ln(en/`)

µ

)
−→ µ = O((n`)2/3) −→ µ = O((m/n · `)2/3)

i. m. on Kµ/(1+µ) EA O
(
n+ n2` ln(en/`)

µ

)
O
(
n+ m` ln(en/`)

µ

)
−→ µ = O(n`) −→ µ = O(m/n · `)

Table 1.5: Worst-case expected parallel optimization times for the (1+1) EA and the corresponding island
model with µ islands for the SSSP on graphs with n vertices and m edges. The value ` is the maximum
number of edges on any shortest path from the source to any vertex and `∗ := max{`, lnn}. The second
lines show a range of µ-values yielding a linear speedup, apart from a factor ln(en/`).

1.6.3 Adaptive Numbers of Islands

Theorem 3 presents a powerful tool for determining the number of islands that give an asymptotic linear
speedup. However, it would be even more desirable to have an adaptive system that automatically finds
the ideal number of islands throughout the run.

In [5] Lässig and Sudholt proposed and analyzed two simple adaptive schemes for choosing the number
of islands. Both schemes check whether in the current generation some island has found an improvement
over the current best fitness in the system. If no island has found an improvement, the number of islands is
doubled. This can be implemented, for instance, by copying each island. New processors can be allocated
to host these islands in large clusters or by using cloud computing.

If some island has found an improvement, the number of islands is reduced by removing selected islands
from the system and de-allocating resources. Both schemes differ in the way they decrease the number of
islands. The first scheme, simply called Scheme A, only keeps one island containing a current best solution.
Scheme B halves the number of islands. Both schemes use complete topologies, so all remaining islands
will contain current best individuals afterwards.

Both mechanisms lead to optimal speedups in many cases. Doubling the number of islands may seem
aggressive, but the analysis shows that the probability of allocating far more islands than necessary is
very very small. The authors considered the expected sequential optimization time, defined as the number
of function evaluations, to measure the total effort over time. With both schemes it is guaranteed that
the expected sequential time does not exceed the simple bound for a sequential EA from Theorem 1,
asymptotically. The expected parallel times on each fitness level can, roughly speaking, be replaced by
their logarithms.

The following is a slight simplification of results in [5].

Theorem 4 (Lässig and Sudholt [5]) Given an f -based partition A1, . . . , Am and lower bounds s1, . . . , sm−1

on the probability of a single island finding an improvement, the expected sequential times for island models
using a complete topology and either Scheme A or Scheme B is bounded by

3

m−1∑
i=1

1

si
.

If each set Ai contains only a single fitness value then also the expected parallel time is bounded by

4

m−1∑
i=1

log

(
2

si

)
.

32

Actually, for Scheme A we can get slightly better constants than the ones stated in Theorem 4. However,
with a more detailed analysis one can show that Scheme B can perform much better than Scheme A. [5]
contains a more refined upper bound for Scheme B. We only show a special case where the fitness levels
become increasingly harder. Then it makes sense to only halve the number of islands when an improvement
is found, instead of resetting the number of islands to 1.

Theorem 5 (Lässig and Sudholt [5]) Given an f -based partition A1, . . . , Am, where each set Ai con-
tains only a single fitness value and for the probability bounds it holds s1 ≥ s2 ≥ · · · ≥ sm−1. Then the
expected parallel running time for an island model using a complete topology and Scheme B is bounded by

3(m− 2) + log

(
1

sm−1

)
.

Example applications for a parallel (1+1) EA in Table 1.6 show that Scheme B can automatically
lead to the same speedups as when using an optimal number of islands. This holds for ONEMAX, LO,
and the general bound for unimodal functions. For Jumpk is also holds in the most relevant cases, when
k = O(n/ log n), as then the expected parallel time is O(n).

Scheme sequential parallel
ONEMAX A Θ(n log n) O(n log n)

B Θ(n log n) O(n)
LO A Θ(n2) Θ(n log n)

B Θ(n2) O(n)
unimodal f A O(dn) O(d log n)
with d f -values B O(dn) O(d+ log n)
Jumpk A O(nk) O(n log n)
with k ≥ 2 B O(nk) O(n+k log n)

Table 1.6: Asymptotic bounds for expected parallel running times and expected sequential running times
for the parallel (1+1) EA with adaptive population models.

We conclude that simply doubling or halving the number of islands represents a simple and effective
mechanism for finding optimal parameters adaptively.

1.7 Conclusions

Parallel evolutionary algorithm can effectively reduce computation time and at the same time lead to an
increased exploration and better diversity, compared to sequential evolutionary algorithms.

We have surveyed various forms of parallel EAs, from independent runs to island models and cellular
EAs. Different lines of research have been discussed that give insight into the working principles behind
parallel EAs. This includes the spread of information, growth curves for current best solutions, and takeover
times.

A recurring theme was the possible speedup that can be achieved with parallel EAs. We have elaborated
on the reasons why superlinear speedups are possible in practice. Rigorous runtime analysis has given
examples where parallel EAs excel over sequential algorithms, with regard to the number of generations or
the number of function evaluations until a global optimum is found. The final section has covered a method
for estimating the expected parallel optimization time of island models. The method is easy to apply as we
can automatically transfer existing analyses for sequential EAs to a parallel version thereof. Examples have
been given for pseudo-Boolean optimization and combinatorial optimization. The results have also led to
the discovery of a simple yet surprisingly powerful adaptive scheme for choosing the number of islands.

There are many possible avenues for future work. In the light of the development in computer archi-
tecture, it is important to develop parallel EAs that can run effectively on many cores. It also remains a

33

crucial issue to increase our understanding of how design choices and parameters affect the performance
of parallel EAs. Rigorous runtime analysis has emerged recently as a new line of research that can give
novel insights in this respect and opens new roads. The present results should be extended towards further
algorithms, further problems, and more detailed cost models that reflect the costs for communication in
parallel architectures. Present results mostly concern island models with subpopulation size 1. In this light
studies of larger subpopulations or cellular EAs are desirable. It would also be interesting to derive further
rigorous results on takeover times in settings where propagation through migration is probabilistic. Finally,
it is important to bring theory and practice together in order to create synergetic effects between the two
areas.

Acknowledgments

Part of this work was done while the author was a member of CERCIA, University of Birmingham, sup-
ported by EPSRC grant EP/D052785/1.

34

Bibliography

[1] Pietro S. Oliveto, Jun He, Xin Yao: Time Complexity of Evolutionary Algorithms for Combinatorial
Optimization: A Decade of Results, International Journal of Automation and Computing 4(3), 281 –
293 (2007)

[2] Frank Neumann, Carsten Witt: Bioinspired Computation in Combinatorial Optimization – Algorithms
and Their Computational Complexity (Springer, 2010)

[3] Jörg Lässig, Dirk Sudholt: The Benefit of Migration in Parallel Evolutionary Algorithms, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2010) (ACM Press 2010) 1105 –
1112

[4] Jörg Lässig, Dirk Sudholt: General Scheme for Analyzing Running Times of Parallel Evolutionary
Algorithms, 11th International Conference on Parallel Problem Solving from Nature (PPSN 2010)
(Springer 2010) 234 – 243

[5] Jörg Lässig, Dirk Sudholt: Adaptive Population Models for Offspring Populations and Parallel Evo-
lutionary Algorithms, Proceedings of the 11th Workshop on Foundations of Genetic Algorithms
(FOGA 2011) (ACM Press 2011) 181 – 192

[6] Jörg Lässig, Dirk Sudholt: Analysis of Speedups in Parallel Evolutionary Algorithms for Combinatorial
Optimization, 22nd International Symposium on Algorithms and Computation (ISAAC ’11) (Springer
2011) 405 – 414

[7] Frank Neumann, Pietro S. Oliveto, Günter Rudolph, Dirk Sudholt: On the Effectiveness of Crossover
for Migration in Parallel Evolutionary Algorithms, Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2011) (ACM Press 2011) 1587 – 1594

[8] E. Cantú Paz: A survey of parallel genetic algorithms, Technical report, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, (1997)

[9] Enrique Alba, José M. Troya: A survey of parallel distributed genetic algorithms, Complexity 4, 31 – 52
(1999)

[10] Enrique Alba, Marco Tomassini: Parallelism and evolutionary algorithms, IEEE Transactions on Evo-
lutionary Computation 6, 443 – 462 (2002)

[11] Marco Tomassini: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and
Time (Springer, 2005)

[12] Nadia Nedjah, Luiza de Macedo Mourelle, Enrique Alba: Parallel Evolutionary Computations
(Springer, 2006)

[13] Enrique Alba: Parallel Metaheuristics: A New Class of Algorithms (Wiley-Interscience, 2005)

[14] Gabriel Luque, Enrique Alba: Parallel Genetic Algorithms–Theory and Real World Applications, Stud-
ies in Computational Intelligence, Vol. 367 (Springer, 2011)

35

[15] Matteo De Felice, Sandro Meloni, Stefano Panzieri: Effect of topology on diversity of spatially-
structured evolutionary algorithms, Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’11) (ACM 2011) 1579 – 1586

[16] Mario Giacobini, Marco Tomassini, Andrea Tettamanzi: Takeover time curves in random and small-
world structured populations, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’05) (ACM Press 2005) 1333 – 1340

[17] Zbigniew Skolicki: An Analysis of Island Models in Evolutionary Computation Ph.D. Thesis , George
Mason University, Fairfax, VA 2000)

[18] Enrique Alba, Mario Giacobini, Marco Tomassini, Sergio Romero: Comparing Synchronous and Asyn-
chronous Cellular Genetic Algorithms, Parallel Problem Solving from Nature VII (Springer 2002)
601 – 610

[19] Michael Mitzenmacher, Eli Upfal: Probability and Computing (Cambridge University Press, 2005)

[20] Joachim Sprave: A unified model of non-panmictic population structures in evolutionary algorithms,
Proceedings of the 1999 Congress on Evolutionary Computation (IEEE Press 1999) 1384 – 1391

[21] Enrique Alba: Parallel evolutionary algorithms can achieve super-linear performance, Information
Processing Letters 82(1), 7 – 13 (2002)

[22] Richard S. Barr, Betty L. Hickman: Reporting Computational Experiments with Parallel Algorithms:
Issues, Measures, and Experts’ Opinion, ORSA Journal on Computing 5(1), 2 – 18 (1993)

[23] David E. Goldberg, Kalyanmoy Deb: A comparatative analysis of selection schemes used in genetic
algorithms, Foundations of Genetic Algorithms (Morgan Kaufmann 1991) 69 – 93

[24] Jayshree Sarma, Kenneth De Jong: An Analysis of Local Selection Algorithms in a Spatially Struc-
tured Evolutionary Algorithm, Proceedings of the 7th International Conference on Genetic Algorithms
(Morgan Kaufmann 1997) 181 – 186

[25] Enrique Alba, Gabriel Luque: Growth Curves and Takeover Time in Distributed Evolutionary Algo-
rithms, Proceedings of the Genetic and Evolutionary Computation Conference (Springer 2004) 864 –
876

[26] Zbigniew Skolicki, Kenneth A. De Jong: The influence of migration sizes and intervals on island
models, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’05) (ACM
2005) 1295 – 1302

[27] Mario Giacobini, Enrique Alba, Marco Tomassini: Selection intensity in asynchronous cellular
evolutionary algorithms, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’03) (Springer 2003) 955 – 966

[28] Günter Rudolph: Takeover times and probabilities of non-generational selection rules, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO ’00) (Morgan Kaufmann 2000)
903 – 910

[29] Günter Rudolph: Takeover times of noisy non-generational selection rules that undo extinction, Pro-
ceedings of the 5th International Conference on Artificial Neural Nets and Genetic Algorithms (ICAN-
NGA 2001) (Springer 2001) 268 – 271

[30] Günter Rudolph: On Takeover Times in Spatially Structured Populations: Array and Ring, Pro-
ceedings of the 2nd Asia-Pacific Conference on Genetic Algorithms and Applications (Global-Link
Publishing Company 2000) 144 – 151

36

[31] Günter Rudolph: Takeover Time in Parallel Populations with Migration, Proceedings of the Second
International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2006),
ed. by B. Filipic, J. Silc 2006) 63 – 72

[32] Mario Giacobini, Marco Tomassini, Andrea Tettamanzi: Modelling selection intensity for linear cellular
evolutionary algorithms, Proceedings of the Sixth International Conference on Artificial Evolution,
Evolution Artificielle (Springer 2003) 345 – 356

[33] Mario Giacobini, Enrique Alba, Andrea Tettamanzi, Marco Tomassini: Selection intensity in cellular
evolutionary algorithms for regular lattices, IEEE Transactions on Evolutionary Computation 9, 489 –
505 (2005)

[34] Carsten Witt: Runtime Analysis of the (µ+1) EA on Simple Pseudo-Boolean Functions, Evolutionary
Computation 14(1), 65 – 86 (2006)

[35] Dirk Sudholt: The Impact of Parametrization in Memetic Evolutionary Algorithms, Theoretical Com-
puter Science 410(26), 2511 – 2528 (2009)

[36] Mario Giacobini, Enrique Alba, Andrea Tettamanzi, Marco Tomassini: Modeling selection intensity for
toroidal cellular evolutionary algorithms, Proceedings of the Genetic and Evolutionary Computation
conference (GECCO ’04) (Springer 2004) 1138 – 1149

[37] Jonathan Rowe, Boris Mitavskiy, Chris Cannings: Propagation Time in Stochastic Communication
Networks, Second IEEE International Conference on Digital Ecosystems and Technologies 2008) 426 –
431

[38] J. Scharnow, K. Tinnefeld, Ingo Wegener: The Analysis of Evolutionary Algorithms on Sorting and
Shortest Paths Problems, Journal of Mathematical Modelling and Algorithms 3(4), 349 – 366 (2004)

[39] Benjamin Doerr, Edda Happ, Christian Klein: Crossover can provably be useful in evolutionary com-
putation, Theoretical Computer Science 425(0), 17 – 33 (2012)

[40] B. Doerr, E. Happ, C. Klein: A tight analysis of the (1+1)-EA for the single source shortest path
problem, Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’07) (IEEE Press
2007) 1890 – 1895

[41] Dirk Sudholt, Christian Thyssen: Running time analysis of Ant Colony Optimization for shortest path
problems, Journal of Discrete Algorithms 10, 165 – 180 (2012)

[42] Dirk Sudholt, Christian Thyssen: A Simple Ant Colony Optimizer for Stochastic Shortest Path Prob-
lems, Algorithmica (to appear)

[43] Teodor Gabrial Crainic, Nourredine Hail: Parallel Metaheuristics Applications. In: Parallel Meta-
heuristics: A New Class of Algorithms (Wiley-Interscience 2005)

[44] Stefan Droste, Thomas Jansen, Ingo Wegener: On the analysis of the (1+1) evolutionary algorithm,
Theoretical Computer Science 276, 51 – 81 (2002)

[45] Tobias Friedrich, Pietro S. Oliveto, Dirk Sudholt, Carsten Witt: Analysis of Diversity-Preserving
Mechanisms for Global Exploration, Evolutionary Computation 17(4), 455 – 476 (2009)

[46] Carsten Witt: Worst-Case and Average-Case Approximations by Simple Randomized Search Heuris-
tics, Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science (STACS ’05)
(Springer 2005) 44 – 56

[47] Thomas Jansen, Kenneth A. De Jong, Ingo Wegener: On the Choice of the Offspring Population Size
in Evolutionary Algorithms, Evolutionary Computation 13, 413 – 440 (2005)

37

[48] Christian Igel, Marc Toussaint: A No-Free-Lunch Theorem for Non-Uniform Distributions of Target
Functions, Journal of Mathematical Modelling and Algorithms 3(4), 313 – 322 (2004)

[49] Jörg Lässig, Dirk Sudholt: Experimental Supplements to the Theoretical Analysis of Migration in the
Island Model, 11th International Conference on Parallel Problem Solving from Nature (PPSN 2010)
(Springer 2010) 224 – 233

[50] Frank Neumann: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem, Com-
puters & Operations Research 35(9), 2750 – 2759 (2008)

[51] Benjamin Doerr, Nils Hebbinghaus, Frank Neumann: Speeding up Evolutionary Algorithms Through
Asymmetric Mutation Operators, Evolutionary Computation 15, 401 – 410 (2007)

[52] Benjamin Doerr, Daniel Johannsen: Adjacency List Matchings—An Ideal Genotype for Cycle Covers,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’07) (ACM Press
2007) 1203 – 1210

[53] Benjamin Doerr, Christian Klein, Tobias Storch: Faster evolutionary algorithms by superior graph
representation, First IEEE Symposium on Foundations of Computational Intelligence (FOCI ’07)
(IEEE 2007) 245 – 250

[54] Richard A. Watson, Thomas Jansen: A building-block royal road where crossover is provably essential,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’07) (ACM Press
2007) 1452 – 1459

[55] Thomas Jansen, Ingo Wegener: On the Analysis of Evolutionary Algorithms—A Proof That Crossover
Really Can Help, Algorithmica 34(1), 47 – 66 (2002)

[56] Thomas Jansen, Ingo Wegener: Real royal road functions—where crossover provably is essential,
Discrete Applied Mathematics 149, 111 – 125 (2005)

[57] Tobias Storch, Ingo Wegener: Real royal road functions for constant population size, Theoretical
Computer Science 320, 123 – 134 (2004)

[58] Simon Fischer, Ingo Wegener: The One-dimensional Ising Model: Mutation versus Recombination,
Theoretical Computer Science 344(2–3), 208 – 225 (2005)

[59] Dirk Sudholt: Crossover is Provably Essential for the Ising Model on Trees, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’05) (ACM Press 2005) 1161 – 1167

[60] Pietro S. Oliveto, Jun He, Xin Yao: Analysis of the (1+1)-EA for Finding Approximate Solutions to
Vertex Cover Problems, IEEE Transactions on Evolutionary Computation 13(5), 1006 – 1029 (2009)

[61] Thomas Jansen, Pietro S. Oliveto, Christine Zarges: On the Analysis of the Immune-Inspired B-Cell
Algorithm for the Vertex Cover Problem, Proceedings of the 10th International Conference on Artificial
Immune Systems (ICARIS 2011) (Springer 2011) 117 – 131

[62] Ingo Wegener: Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In:
Evolutionary Optimization, ed. by R. Sarker, X. Yao, M. Mohammadian (Kluwer 2002) pp. 349 – 369

[63] Frank Neumann, Ingo Wegener: Randomized Local Search, Evolutionary Algorithms, and the Mini-
mum Spanning Tree Problem, Theoretical Computer Science 378(1), 32 – 40 (2007)

[64] Dirk Sudholt, Christine Zarges: Analysis of an Iterated Local Search Algorithm for Vertex Coloring,
21st International Symposium on Algorithms and Computation (ISAAC 2010) (Springer 2010) 340 –
352

38

[65] Dirk Sudholt: General Lower Bounds for the Running Time of Evolutionary Algorithms, 11th Inter-
national Conference on Parallel Problem Solving from Nature (PPSN 2010) (Springer 2010) 124 – 133

[66] Per Kristian Lehre: Fitness-levels for non-elitist populations, Proceedings of the 13th Annual Genetic
and Evolutionary Computation Conference (GECCO ’11) (ACM Press 2011) 2075 – 2082

[67] Benjamin Doerr, Daniel Johannsen, Carola Winzen: Drift Analysis and Linear Functions Revisited,
IEEE Congress on Evolutionary Computation (CEC ’10) 2010) 1967 – 1974

39

Index

(1+1) EA, 19

asynchronous cellular EA, 9

cell, 8
cellular EA, 8

synchronous cellular EA, 9
coarse-grained model, 5

diameter, 7, 15
diffusion model, 8
distributed EAs, 5

elitist, 27

fine-grained model, 8
fitness-level method, 27

growth curves, 14

heterogeneous island model, 7
homogeneous island model, 7

inter-island evolution, 8
intra-island evolution, 8
island model, 5

master-slave model, 5
method of f -based partitions, 27
migration, 6
migration frequency, 7
migration interval, 7
migration probability, 7
migration size, 7
migration topology, 6
Moore neighborhood, 10
multi-deme model, 5

neighborhood model, 8

optimization time, 19

pollination, 7
propagation, 17

single-receiver model, 25

speedup, 11
absolute speedup, 11
efficiency, 12
incremental efficiency, 12
linear speedup, 12
orthodox weak speedup, 11
relative speedup, 11
single machine/panmixia, 11
strong speedup, 11
sublinear speedup, 12
superlinear speedup, 12
weak speedup, 11

stepping stone model, 7
subpopulation, 5

takeover time, 4, 14

von Neumann neighborhood, 10

40

