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ABSTRACT

Parallel discrete event simulation (PDES) techniques ha
not yet made a substantial impact on the network simulati
community because of the need to recast the simulati
models using a new set of tools. To address this proble
we present a case study in transparently parallelizing
widely used network simulator, calledns. The use of this
parallel ns does not require the modeler to learn any ne
tools or complex PDES techniques. The paper describ
our approach and design choices to build the parallelnsand
presents preliminary performance results, which are ve
encouraging.

1 INTRODUCTION

The simulation models for many current generation com
puter and telecommunication networks are large and co
plex. As use of networks is proliferating, common example
being the Internet and mobile/wireless networks, the sca
of models to be studied also increases and more deta
are incorporated in the models. Also, in many cases
complete protocol stack needs to be simulated to und
stand the performance impact of the protocols at vario
layers. This makes network simulators unbearably slo
Parallel discrete event simulation (PDES) (Fujimoto 199
technqiues can provide a solution by breaking the lar
simulation model into submodels and executing them
parallel. However, the synchronization problem in PDES
however well-studied, is a hard problem to solve for a no
expert. Several tools (Bagrodia et al. 1998; Perumalla et
1998) have been developed recently targeting the netwo
simulation community. However, they require learning
new set of tools instead of using the more traditional s
quential simulators the networking community is familia
with. Recasting legacy simulation code in the new PDE
tools is also a big burden. Thus, these PDES tools ha
not seen widespread use in the networking community
spite of their potential for speedup.
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In this paper we address this problem by parallelizin
an existing, widely used network simulator, calledns (Mc-
Canne and Floyd 1997).ns is considered to be ade facto
standard simulator for internetworking protocol researc
A large number of legacy simulation models exists usin
this simulator. The networking community is not inclined
to rewrite them in another platform. Thus, a transpare
parallel execution ofnsusing established PDES technique
will fill an important gap in simulation research. A paralle
version ofns is likely to see wide use even if the speedu
is less than optimal as such speedup will be obtained wit
out any programming effort on the part of the simulatio
modeler.

The rest of this paper is organized as follows. In the ne
section, we introduce basic concepts of parallel simulatio
In Section 3, we briefly discuss some existing work o
parallel execution of network simulators. In Section 4, w
describe the implementation of our parallel version ofns.
We present the performance benchmarking results in Sect
5 and conclusions in Section 6.

2 PARALLEL SIMULATION CONCEPTS

In the description that follows, we assume a general f
miliarity on the part of the reader about PDES (Fujimot
1990).

A sequential discrete event simulation stores the even
to be executed in timestamp order. The timestamp of a
event is the simulated time at which it is to be execute
The main event loop of the simulator is quite simple:

while (there are events to execute)
Retrieve the next event (with

earliest timestamp) from the
event set;

Execute the event, possibly
scheduling other events to occur
in future;
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Parallel discrete event simulations use more than o
processor to run a simulation, utilizing either a multipro
cessor machine or a network of workstations. The event s
is distributed across the processors. If each processor i
parallel simulation simply used the sequential event loo
it is possible that events could be executed out of orde
since the “next event” seen by each processor is differe
and only one of them is thereal next event in the global
sense. The distribution of the event set makes necessar
synchronization mechanism that guarantees the events w
be executed in an appropriate order.

2.1 Synchronization Mechanisms

There are two main types of synchronization mechanism
conservative and optimistic. Conservative mechanism
such as the null message protocol (Chandy and Misra 197
Bryant 1977), preserve proper event execution order by
lowing an event to be executed only when it is safe to d
so. Safety means the processor knows it will not receiv
an event from another processor with a timestamp smal
than that of the event in question. A processor with no sa
events must block until an event becomes safe to proce
Conditions may arise in a naive implementation of a para
lel discrete event simulation such that all processors bloc
resulting in deadlock.

Each pair of communicating processors is connecte
by a directed link from sender to receiver over which mes
sages can be sent. The terms “message” and “event”
used synonymously, as an event is scheduled on a rem
processor by sending a message to that processor. In or
for the null messages protocol to work, messages must
sent over the link in non-decreasing timestamp order. It
assumed that messages arrive in the order sent and tha
messages are lost in transit, so that messages are rece
in non-decreasing timestamp order. Messages are stored
a first-in, first-out (FIFO) queue until they can be processe
by the receiver. Each link has alink clock that holds
the timestamp value of the last message sent over that li
The link clock increases monotonically and provides a lowe
bound on the timestamp of any future message sent ov
that link.

A conservative protocol, being based on blocking, i
prone to deadlocks. Null messages are used to avoid de
locks. These messages do not correspond to real events in
system being simulated, but provide an updated lower bou
on the timestamp of the next message using alookahead
value, which is the smallest amount of simulation time tha
must elapse between an event occurrence in one proces
and its effect on another processor. The value of lookahe
depends on the particular model being simulated and
usually derived from the model descriptions.
41
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The following pseudocode describes the null messa
protocol for deadlock avoidance as presented in Fujimo
(2000):

while (simulation is not over)
wait until each FIFO contains at

least one event message;
remove smallest time stamped event

M from its FIFO;
clock := time stamp of M;
process M;
send null message to each neighboring

process with time stamp
= clock plus lookahead;

Optimistic synchronization prototols, such as Time
Warp (Jefferson 1985), aren’t concerned with safety o
event execution, with the advantage that processors ne
block, but with the possibility that events are executed out
order. Such out-of-order execution is corrected by rollbac
when it occurs. The rollback mechanism requires period
state-saving of the simulator. Time Warp is not general
suitable for parallelizing existing simulators as state-savin
of unknown, arbitrary and possibly dynamically allocate
data structures is complex. State saving overheads thus
be high to erode performance potentials.

3 RELATED WORK

In the past, a couple of university research projects develop
large scale parallel network simulators. In UCLA aC-based
parallel simulation language, calledParsec (Bagrodia et al.
1998) has been developed that supports sequential and m
tiple parallel simulation protocols (conservative, optimisti
and adaptive). A library of network simulators (particularly
wireless networks) have been developed in theGloMoSim
(Global Mobile Information Systems Simulation) (Bagro-
dia, Zeng and Gerla 1998) project that usesParsec . In
Georgia Tech, the Telecommunications Description Lan
guage (TeD) (Perumalla et al. 1998) has been develope
TeD is an object-oriented language for parallel simulatio
of telecommunications networks. Simulators usingTeD run
on top of the Georgia Tech Time Warp (GTW) (Das et al.
1994) for parallel execution. BothGloMoSim/Parsec
andTeD/GTWsystems require the user simulation modele
to learn new languages or language extensions to descr
their network models. Thus either of these efforts has n
been widely used outside the research community that d
veloped them, except in cases where users just wanted to
or modify already developed models inTeD or GloMoSim
rather than building their own. In contrast to these effort
our work attempts to parallelize a very widely used networ
simulator transparently to the simulation modeler.
9
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In an effort similar to our own, a distributed version
of ns has been developed in Georgia Tech to run on
network of workstations (Riley et al. 1999). The main
difference in implementation is that they used the Geo
gia Tech RTI-Kit library (Fujimoto and Hoare 1998)
for synchronization, whereas we used a variation of th
null message protocol for deadlock avoidance as describ
before.RTI-Kit is a set of libraries supporting implemen-
tation of the Run-Time Infrastructure component of the U.S
Department of Defense’s High-Level Architecture (HLA)
(Dahmann et al. 1997) for distributed simulation system
As for performance, much of the improvement came from
parallelization of the setup of the simulation, not in th
actual execution. Each processor has less work to do
the setup since each is only simulating a part of the enti
network. Our results, on the other hand, involve only actu
simulation execution since we ignore the setup times in o
analysis.

4 IMPLEMENTATION OF PARALLEL NS

ns, which stands for network simulator, is widely used in
the network simulation community. It is an object-oriente
discrete event simulator used for network research. It
written in C++, andOTcl is used as a command interface
and for describing the network models. The user can defi
network nodes, physical connections (links) between node
and logical connections between agents for traffic in th
network. Parallelizingns allows a federation of separate
ns processes to execute a simulation in parallel. In th
section, we describe the steps undertaken in parallelizatio

4.1 Parallelizing the ns Main Event Loop

The main event loop in sequentialns consists simply of
retrieving the next event from the event set and executin
it. This is repeated as long as the simulation is not finishe
We augmented this loop to implement the null messag
protocol for deadlock avoidance discussed previously.

Each iteration of the parallel version of thens main
loop consists of: (i) removing the next event from the even
set; (ii) sending necessary null messages to neighbors; (
receiving a message on each incoming link whose lin
clock is less than the timestamp of the next event, eith
scheduling it on the event set or saving it as the new ne
event depending on its timestamp; (iv) setting the clock; an
(v) processing the next event. Following is the pseudoco
of our parallelns main event loop.

while (simulation is not over)
//deque
remove smallest timestamped event M
from event set;
nk
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//send null messages
for each neighboring process j
(which receives messages from
this process)

nullmsg_time := lower bound on
timestamp of all future messages
sent to j;
if nullmsg_time > last_nullmsg_time
from i to j

send null message to j with
timestamp = nullmsg_time;
last_nullmsg_time from i to j :=
nullmsg_time;

//get smallest timestamped message
for each incoming link i (from a
neighboring sender)

if timestamp o f M > link clock of i
// link clock is the most recent
// timestamped message passing
// through a link

wait for next message, N, to
arrive on the link;
set link clock of i to timestamp
of N;
// swap events if new minimum is
// received
if timestamp of M <= timestamp

of N schedule event N on
event set;

else
reschedule event M on event

set;
//(since an earlier event, N,
// was received)
M := N;

clock := time stamp of M;
process M;

In anns-based simulator all traffic connections may no
become active at the beginning of the simulation (time 0
They may start at different times. This presents a proble
as a series of null messages need to be transmitted to br
the link clock to the start time of the corresponding traffi
connection. This problem is explained below with the hel
of an example (see Figure 1).

Initially, all link clock values are 0.0, indicating that no
messages have yet been sent between processes. Sup
node A is to start sending messages to node B at time 1
and node B should start sending to A at 2.0. Assume there
no other traffic in the network. Processor 0 has a local eve
with timestamp equal to 1.0, corresponding to the start
node A’s communication with node B. Likewise, processo
1 has an event with timestamp equal to 2.0. Since each li
0
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Processor 1Processor 0

Event Set: Event Set:
2.01.0

Node A Node B

Link clock = 0

Link clock = 0

Figure 1: A Simulation at Startup

clock has the value 0.0, neither processor can proceed
process its first event, since neither knows it will not receiv
a message between 0.0 and the timestamp of its first ev
(1.0 for processor 0 and 2.0 for processor 1), so the syst
is deadlocked unless we start with sending null messag

The question is what should be a good value of th
timestamp of the initial null message. It could be just tim
0 plus the value of the lookahead. Lookahead in paral
ns is the fastest amount of time a message can take pass
from one processor to the next, and is a function of pack
sizes, link bandwidths, and link delays. Specifically, th
lookahead from processori toj is the minimum transmission
time plus link delay over all links fromi to j . Notice that
the lookahead value may be small (e.g., typically tens
milliseconds or less) compared to possible communicati
start times (for example, communication may start after a fe
hours of simulated time). This would mean a large numb
of null messages are required to bump up the simulati
clock to the communication start time.

We tried to cut down on the number of null messag
transmissions as much as possible in order to make para
execution efficient. The first null message value sent fro
processor 0 to processor 1 in Figure 1 is equal to the start
time of communication plus lookahead, in order to avo
unnecessary null message exchanges. With the same g
other optimizations, such as avoiding sending of duplica
null messages, are also used. Duplicate null messages m
be generated when an iteration of the main loop genera
a null message with a timestamp the same as that in
previous iteration.

The timestamp of a null message is equal to the low
bound on the timestamp of any future message to be s
from the sender to the receiving processor. In order
compute this lower bound on messages from processoi

to processorj , processori must compute the minimum
timestamp of the next packet that will be sent over a
logical connections that flow from processori to processor
j . The source of the packets may reside on processori or it
may be on a different processor further upstream. Likewis
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the final destination of the packets may be on processoj

or further downstream. In any case, processori keeps track
of each logical connection spanning the processor bound
between processorsi andj , for each downstream neighbor
j , so that it can compute the minimum timestamp of the ne
packet. Assuming static routing, processori can compute
when it will send a packet out on its next hop to process
j as soon as it receives the packet, whether it receiv
the packet from an agent residing on the same process
or from an upstream processor, simply by summing th
transmission and delay times for each link in the path th
packet will travel inside processori, along with the final
transmission time and delay of thei-to-j hop.

4.2 Communication Across Processors

Eachnsnode has an object called anaddress classifierthat
looks at each incoming packet to determine if it is destined
the node or if it should be forwarded downstream to anoth
node. When a classifier receives a packet, it checks to
if the node that owns the classifier resides on the curre
processor. If so, execution proceeds as normal, with t
classifier delivering the packet downstream to the next no
or to a port classifier, depending on the destination of th
packet. If, however, the node does not reside on the curr
processor, the classifier knows the packet has just traver
a cross-processor link. It acts as a proxy by packaging t
packet inside an MPI (Message Passing Interface) mess
and sending it, via a call toMPI_Send (a communication
primitive in MPI), to the corresponding classifier on the
destination processor. Execution then proceeds as usua

We needed to make some extensions to thens input
syntax to facilitate parallel execution. We tried to mak
the changes as transparent as possible so that some
who is already familiar withns could learn to use our
parallel version with minimal effort. The syntax change
are related to partitioning and mapping of the network fo
parallel simulation, which must be specified manually b
the user.

4.3 Limitations

We currently support parallel execution ofns programs
consisting of point-to-point links with static routing and UDP
traffic. We hope to extend the functionality to include suppo
for TCP connections, dynamic routing, and shared mediu
networks. Another major drawback is that the whole netwo
still resides on each processor, even though each proces
only simulates the activities of its own part of the network
This was done initially to facilitate message passing betwe
processors by having correspondingclassifier objects be
identified with the same number (they are assigned identifie
as they are created byns). Since each processor has th
definition for the whole network and the network objects a
21
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created in the same order, each object has the same identi
across all processors. We will be able to save memor
thereby allowing us to simulate even larger networks, onc
we are able to specify partitions of the network to the
corresponding processors.

5 PERFORMANCE ANALYSIS

Here we describe the benchmark model used for our e
periments and an analysis of the performance results.

5.1 Benchmark Model

It is important to use fairly large, realistic networks as
a benchmark for our case study. Since it is somewha
tedious to manually generate large networks inns, we
chose to use theGeorgia Tech Internetwork Topology Models
(gt-itm ) topology generator to generate our benchmar
network (Zegura 1996). One type of networkgt-itm
generates is called a transit-stub network, which consists
a collection of inter-connected transit domains. Each nod
in a transit domain is connected to a sub-network called
stub domain, consisting of some number of nodes.

The output ofgt-itm is in Stanford GraphBase (SGB)
format (Knuth 1994). We used a tool calledsgb2ns avail-
able withns, which translates graphs from SGB format to
a Tcl file that is readable byns. We further modified this
program to generate separateTcl files for each processor
for the parallel executions, and the corresponding file for th
sequential execution needed as a baseline for speedup co
putations. Our modification also generates a user-specifi
number of local and cross-processor connections for th
traffic.

For the performance results that follow, a transit-stub
network is used with eight transit domains, four nodes pe
transit domain, and five nodes per stub domain. This mak
a total of 192 nodes as shown in Figure 2.

It is natural to partition a transit-stub network by the
transit domains. We ran experiments using four proces
sors, each simulating two transit domains of our benchma
model. Local traffic, traffic in which packets stay entirely
within the sub-network simulated by a single processor, i
obtained by defining sources and sinks within each stu
domain. Cross-processor traffic flows from a source stu
node in one transit domain to a destination stub node
another transit domain modeled by a different processor, an
may travel through any number of intermediate processor
Some effort was made to balance the load evenly acro
processors by balancing the number of hops taken in ea
logical connection. Each local connection consists of fou
hops. Each cross-processor connection contains three lo
hops on the source processor, one cross-processor hop
the neighboring destination processor, and three local ho
on the destination processor to the final destination node
422
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A Sun multiprocessor with four UltraSPARC-II pro-
cessors and 1.5 GB of main memory was used for th
experimental study. The MPICH implementation (Gropp
et al. 1996) of the Message Passing Interface (MPI) wa
used for communication between processors. Because o
general-purpose MPI-based implementation, the parallelns
can be run on any platform supporting MPI. In particular i
can execute on a network of workstations without any mod
ification by simply linking with platform-specific libraries.
However, here we present results only for a multiprocess
because of a much lower message passing overhead. As
example, sending an MPI message between processors
the Sun multiprocessor takes around 2 microseconds, whe
the same message takes around 40 microseconds when u
on a network of workstations connected by an ATM switch

5.2 Experimental Results

The speedup results shown in Table 1 come from dividin
the execution time of the unmodified, sequential versio
of ns by the execution time of our parallel version of
ns simulating the transit-stub network model as describe
a previous subsection. Setup time is ignored; the time
presented in the table are from actual event execution.

Most of the simulations were run to an endtime of 900
seconds, generating between 15 and 70 million events, b
some of the smaller simulations (with 0 or 2 local connec
tions) were run up to ten times longer to be sure that th
simulations stabilized. As expected, speedup increases
the number of local connections increases, since the proc
sors are more heavily loaded, thus finding more work to d
within the lookahead interval and between message com
munications. The fraction of time spent blocking, waiting
for messages to arrive on incoming queues, decreases as
local load increases. We found that this fraction decreas
from above 60% for 0 local connections to about 20% fo
8 local connections. Speedup is also generally higher f
larger lookahead for the same reason: a processor fin
more safe events to process in a larger time interval than
smaller one, all else being equal.

6 CONCLUSIONS

We presented a case study in parallelizing an existing, wide
used network simulatorns using well-known PDES tech-
niques. A conservative synchronization technique is adapt
to suit thensplatform. MPI is used for inter-processor mes-
sage communication. Existing network models can be ru
in parallel with minor modifications to the input script. This
is in contrast with many existing PDES systems, where th
users have to reprogram their model on an entirely ne
platform.

Experimental results demonstrate a speedup of up
2.83 on 4 processors. As expected, the speedup is dep
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Figure 2: Transit-stub Network with 8 Transit Domains and 192 Node

Table 1: Execution Times and Speedups for Various Lookahead Values
Numbers of Local Connections on a 4-processor Sun UltraSparc

Lookahead No. of local Sequential run Parallel run Speedup
(ms) connections time (sec.) time (sec.)

per processor
3.75 0 246 (2.5×) 268 (2.5×) 0.918

2 507 (2.5×) 379 (2.5×) 1.34
4 305 159 1.92
6 410 196 2.09
8 529 236 2.24

7.50 0 243 (5×) 287 (5×) 0.847
2 760 (5×) 475 (5×) 1.60
4 258 114 2.26
6 364 154 2.36
8 463 188 2.46

17.86 0 203 (10×) 237 (10×) 0.857
2 1199 (10×) 546 (10×) 2.20
4 234 84.7 2.76
6 331 120 2.76
8 438 155 2.83
so
he
th

f-
k
g
e
k
of
ay,
dent on the relative numbers of local and cross-proces
connections, and the value of the lookahead. We find t
speedup numbers to be reasonable considering the fact
parallelization effort on the part of the user is minimal.

Currently, the work is at a proof-of-concept and proo
of-performance stage. Only a restricted class of networ
can be simulated. Our ongoing work includes extendin
the design to include TCP agents, dynamic routing, shar
medium networks, and actually partitioning the networ
model so that each processor keeps track only of its part
the network. We can expect even better speedup this w
423
r
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as thens setup computation would then be parallelized,
since each processor works only on its partition.
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