Parallel Execution of Prolog Programs:
A Survey

GOPAL GUPTA

University of Texas at Dallas

ENRICO PONTELLI

New Mexico State University

KHAYRI A.M. ALl and MATS CARLSSON
Swedish Institute of Computer Science
and

MANUEL V. HERMENEGILDO

Technical University of Madrid (UPM)

Since the early days of logic programming, researchers in the field realized the potential for ex-
ploitation of parallelism present in the execution of logic programs. Their high-level nature, the
presence of nondeterminism, and their referential transparency, among other characteristics, make
logic programs interesting candidates for obtaining speedups through parallel execution. At the
same time, the fact that the typical applications of logic programming frequently involve irregu-
lar computations, make heavy use of dynamic data structures with logical variables, and involve
search and speculation, makes the techniques used in the corresponding parallelizing compilers
and run-time systems potentially interesting even outside the field. The objective of this article is to
provide a comprehensive survey of the issues arising in parallel execution of logic programming lan-
guages along with the most relevant approaches explored to date in the field. Focus is mostly given
to the challenges emerging from the parallel execution of Prolog programs. The article describes
the major techniques used for shared memory implementation of Or-parallelism, And-parallelism,
and combinations of the two. We also explore some related issues, such as memory management,
compile-time analysis, and execution visualization.

The work of G. Gupta and E. Pontelli is partially supported by NSF Grants CCR 98-75279, CCR
98-20852, CCR 99-00320, CDA 97-29848, EIA 98-10732, CCR 96-25358, and HRD 99-06130.

M. Hermenegildo is partially funded by Spanish Ministry of Science and Technology Grant TIC99-
1151 “EDIPIA” and EU RTD 25562 “Radio Web.”

G. Gupta, E. Pontelli, and M. Hermenegildo are all partially funded by the US—Spain Research
Commission McyT/Fulbright grant 98059 ECCOSIC.

Authors’ addresses: G. Gupta, Department of Computer Science, University of Texas at Dallas, Box
830688/EC31, Richardson, TX 75083-0688, e-mail: guptautdallas.edu; E. Pontelli, Department
of Computer Science, New Mexico State University, Box 30001/CS, Las Cruces, NM 88003, e-mail:
epontell@cs.nmsu.edu; K. A. M. Ali and M. Carlsson, Swedish Institute of Computer Science, Box
1263, SE-164 29, Kista, Sweden, e-mail: {khayri, matsc}@sics.se; M. V. Hermenegildo, Facultad
de Informatica, Univsersidad Politécnica de Madrid, 28660-Boadilla del Monte, Madrid, Spain;
e-mail: herme@fi.upm.es.

Permission to make digital/hard copy of all or part of this material without fee for personal or class-
room use provided that the copies are not made or distributed for profit or commercial advantage,
the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© 2001 ACM 0164-0925/01/0700-0472 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001, Pages 472-602.

Parallel Execution of Prolog Programs . 473

Categories and Subject Descriptors: A.1 [Introductory and Survey]; D.3.4 [Programming Lan-
guages]: Processors; D.3.2 [Programming Languages]: Language Classification—constraint
and logic languages

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Automatic parallelization, constraint programming, logic pro-
gramming, parallelism, prolog

Dedicated to the memory of
Andrzej Ciepielewski

1. INTRODUCTION

The technology for sequential implementation of logic programming languages
has evolved considerably in the last two decades. In recent years, it has reached
a notable state of maturity and efficiency. Today, a wide variety of commercial
logic programming systems and excellent public-domain implementations are
available that are being used to develop large real-life applications. An excellent
survey of the sequential implementation technology that has been developed
for Prolog is presented by Van Roy [1994].

For years logic programming has been considered well suited for execution
on multiprocessor architectures. Indeed research in parallel logic programming
is vast and dates back to the inception of logic programming itself—one of the
earliest published being Pollard’s [1981] Ph.D. dissertation. Kowalski [1979]
already mentions the possibility of executing logic programs in parallel in his
seminal book Logic for Problem Solving. There has been a healthy interest
in parallel logic programming ever since, as is obvious from the number of
papers that have been published in proceedings and journals devoted to logic
programming and parallel processing, and the number of advanced tutorials
and workshops organized on this topic in various conferences.

This interest in parallel execution of logic programs arises from these
perspectives:

(1) Continuous research in simple, efficient, and practical ways to make paral-
lel and distributed architectures easily programmable drew the attention to
logic programming, since, at least in principle, parallelism can be exploited
implicitly from logic programs (i.e., parallelism can be extracted from logic
programs automatically without any user intervention). Logic languages
allow the programmer to express the desired algorithm in a way that re-
flects the structure of the problem more directly (i.e., staying closer to the
specifications). This makes the parallelism available in the problem more
accessible to the compiler and run-time system. The relatively clean se-
mantics of these languages also makes it comparatively easy to use formal
methods and prove the transformations performed by the parallelizing com-
piler or run-time system both correct (in terms of computed outputs) and
efficient (in terms of computational cost).! At the same time, parallelizing

IFunctional programming is another paradigm that also facilitates exploitation of parallelism.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

474 . G. Gupta et al.

logic programs implies having to deal with challenges such as highly irreg-
ular computations and dynamic control flow (due to the symbolic nature
of many of their applications), the presence of dynamically allocated, com-
plex data structures containing logical variables, and having to deal with
speculation, all of which lead to nontrivial notions of independence and
interesting scheduling and memory management solutions. However, the
high-level nature of the paradigm also implies that the study of paralleliza-
tion issues happens in a better-behaved environment. For example, logical
variables are in fact a very “well-behaved” version of pointers.

(2) There is an everlasting myth that logic programming languages have low
execution efficiency. While it is now clear that modern compilers for logic
programs produce executables with very competitive time and memory per-
formance, this early belief also prompted researchers to use parallelism as
an alternative way of achieving speed. As we show, some of the results ob-
tained fortunately combine well with sequential compilation techniques re-
sulting in real speedups over even the most competitive sequential systems.

As mentioned, the literature on parallel execution of logic programs is vast
and varied. There are two major (and nonindependent) schools of thought. The
first approach, which is the main focus of this survey, relies on implicit exploita-
tion of parallelism from logic programs. This means that the parallelization of
the execution can (potentially) occur without any input from the programmer.
Note that these models do not prevent programmer intervention, but usually
they either make it optional or they keep it at a very high level.

In contrast, a number of approaches have been developed that target
the extraction of parallelism through the use of explicit constructs introduced
in the source language. This can be done by extending a logic programming lan-
guage with explicit constructs for concurrency or by modifying the semantics
of the logic programming language in a suitable way.

Finally, a hybrid solution is used in some “implicit” systems, which arguably
offers the advantages of both approaches: a user-accessible concurrent language
exists (which is typically an extension of Prolog) and allows quite detailed man-
ual parallelization. This language is also used by the parallelizing compiler in
order to present to the programmer the transformations it performs on the pro-
gram during automatic parallelization. This hybrid approach is exemplified by
the &-Prolog system’s [Hermenegildo and Greene 1991] “CGE” language and
other systems that extend &-Prolog, such as ACE [Pontelli et al. 1995, 1996],
DASWAM [Shen 1992a], and so on.

Approaches that require explicit specification of parallelism from logic pro-
grams can be largely classified into these categories:

(1) Those that add explicit message passing primitives to Prolog, for example,
Delta Prolog [Pereira et al. 1986] and CS-Prolog [Futé 1993]. Multiple
Prolog processes are run in parallel and they communicate with each other
via explicit message passing or other rendezvous mechanisms.

(2) Those that add blackboard primitives to Prolog, for example, Shared Prolog
[Ciancarini 1990]. These primitives are used by multiple Prolog processes

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 475

running in parallel to communicate with each other via the common

blackboard.

Some notable recent proposals in this category include:

(a) The Jinni system developed by Tarau [1998], a Java-based logic
programming system including multithreading and blackboard-based
communication; this work is a continuation of the previous work by
De Bosschere and Tarau [1996].

(b) The Ciao system [Hermenegildo et al. 1999a; Bueno et al. 1997] supports
multithreading and novel Prolog database operations which allows the
programmer to use the database as a (synchronizing) blackboard [Carro
and Hermenegildo 1999].

Blackboard primitives are currently supported by a number of other Prolog

systems, including SICStus [Carlsson et al. 1995] and YAP [Santos Costa

et al. 1999].

(3) Those based on guards, committed choice, and dataflow synchronization,
for example, Parlog, GHC, KL1 (and its portable C-based implementation
KLIC [Chikayama et al. 1994]), and Concurrent Prolog [Clark and Gregory
1986; Ueda 1986; Shapiro 1987, 1989].

This class includes the class of concurrent constraint languages (e.g.,
LIFE [Ait-Kaci 1993] and cc(fd) [Van Hentenryck et al. 1998]) and
the class of distributed constraint languages such as Oz/Mozart [Haridi
et al. 1998; Smolka 1996] and AKL [Haridi and Janson 1990], as well
as some extensions of more traditional logic programming systems for
distributed execution (e.g., the &-Prolog/Ciao system [Hermenegildo 1994;
Cabeza and Hermenegildo 1996; Hermenegildo et al. 1999a] and ACE
[Gupta and Pontelli 1999a]).

Each of the above approaches has been explored and there is extensive research
literature that can be found. They all involve complex issues of language exten-
sion and design, as well as of implementation. However, in order to keep this
survey focused, we consider these approaches only marginally or in those cases
where they introduce execution mechanisms that are applicable also in the case
of implicit exploitation of parallelism (e.g., committed choice languages).

In the rest of this work we focus primarily on the parallel execution of
Prolog programs, although occasional generalizations to logic languages with
a different operational semantics are considered (e.g., we briefly discuss paral-
lelization in constraint logic programming languages). This choice is dictated
by the wider use of Prolog with respect to other logic languages, and a conse-
quent wider applicability of the accomplished results. Observe also that par-
allelization of Prolog raises issues that are absent from the parallelization
of other logic languages (e.g., due to the presence of extralogical predicates).
Throughout this work we often use the terms “logic programs” and “Prolog
programs” interchangeably, thus assuming sequential Prolog semantics as the
target operational behavior (a discussion of the differences between general
logic programming and Prolog is presented in Section 2). Parallel execution of
other logic-based languages, such as committed choice languages, raises issues

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

476 . G. Gupta et al.

similar to those discussed in this article, although, interestingly, in some cases
of a “dual” nature [Hermenegildo and CLIP Group 1994].

The objective of this article is to provide a uniform view of the research in
parallel logic programming. Due to the extensive body of research in this field,
we are not able to cover every single aspect and model that has been presented
in the literature. Thus, our focus lies on highlighting the fundamental problems
and the key solutions that have been proposed. This survey expands the work
done by other researchers in the past in proposing an organized overview of
parallel logic programming. In particular, this work expands the earlier sur-
vey on parallel logic programming systems by Chassin de Kergommeaux and
Codognet [1994], by covering the research performed in the last eight years
and by providing a more indepth analysis of various areas. Other surveys have
also appeared in the literature, mostly covering more limited areas of parallel
logic programming or providing a different focus [Santos Costa 2000; Gupta and
Jayaraman 1993a; Kacsuk 1990; Takeuchi 1992; Delgado-Rannauro 1992a,b;
Hermenegildo 2000].

The article is organized as follows. The next section provides a brief intro-
duction to logic programming and parallel logic programming, focusing on the
distinction between the different forms of parallelism exploited in logic pro-
gramming. Section 3 illustrates the issues involved in or-parallel execution
of Prolog programs. Section 4 describes independent and-parallelism and dis-
cusses the solutions adopted in the literature to handle this form of parallelism.
Section 5 introduces the notion of dependent and-parallelism and describes dif-
ferent techniques adopted to support it in different systems. The issues arising
from the concurrent exploitation of and- and or-parallelism are presented in
Section 6, along with the most relevant proposals to tackle such issues. Section 7
describes the techniques adopted in the literature to exploit data parallelism
from logic programs. Section 8 presents a brief overview of parallel constraint
logic programming. Section 9 covers a variety of issues related to implemen-
tation and efficiency of parallel logic programming (e.g., optimizations, static
analysis, support tools). Section 10 gives a brief overview of the types of ap-
plications to which parallel logic programming has been successfully applied.
Finally, Section 11 draws some conclusions and gives some insights on current
and future research directions in the field.

In the rest of this survey we assume the reader to be familiar with the basic
terminology of logic programming and Prolog [Lloyd 1987; Sterling and Shapiro
1994].

2. LOGIC PROGRAMMING AND PARALLELISM

In this section, we present a brief introduction to logic programming and
Prolog. A more detailed presentation of these topics can be found in the papers
mentioned above.

2.1 Logic Programs and Prolog

A logic program is composed of a set of Horn clauses. Using Prolog’s notation,
each clause is a formula of the form:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 477

Head : —B4, Bs, ..., B,.

where Head, By, ..., B, are atomic formulae (atoms) and n > 0.2 Each clause
represents a logical implication of the form:

Vl}i(Bl VANEIRRIVAN Bn — Head),

where v; are all the variables that appear in the clause. A separate type of
clause is where Head is the atom false, which is simply written as

Z—Bl,...,Bn.

These types of clauses are called goals (or queries). Each atom in a goal is called
a subgoal.

Each atomic formula is composed of a predicate applied to a number of argu-
ments (terms), and this is denoted p(¢y, . .., t,)—where p is the predicate name,
and ¢y, ...,t, are the terms used as arguments. Each term can be either a con-
stant (c), a variable (X), or a complex term (f(sy, ..., sy), where sy, ..., s, are
themselves terms and f is the functor of the term).

Execution in logic programming typically involves a logic program P and
a goal : -G, ..., G,, and the objective is to verify whether there exists an
assignment o of terms to the variables in the goal such that (G1 A --- A G))o
is a logical consequence of P.2 o is called a substitution: a substitution is an
assignment of terms to a set of variables (the domain of the substitution). If a
variable X is assigned a term ¢ by a substitution, then X is said to be bound and
t is the (run-time) binding for the variable X . The process of assigning values
to the variables in ¢ according to a substitution o is called binding application.

Prolog, as well as many other logic programming systems, makes use of SLD-
resolution to carry out the execution of a program. The theoretical view of the
execution of a program P with respect to a goal G is a series of transformations
of a resolvent using a sequence of resolution steps.* Each resolvent represents
a conjunction of subgoals. The initial resolvent corresponds to the goal G. Each
resolution step proceeds as follows.

—Let us assume that : —A;4, ..., A; is the current resolvent. An element A; of
the resolvent is selected (selected subgoal) according to a predefined compu-
tation rule. In the case of Prolog, the computation rule selects the leftmost
element of the resolvent.

—If A; is the selected subgoal, then the program is searched for a renamed
clause (i.e., with “fresh variables”)

Head : —B, ..., By

whose head successfully unifies with A;. Unification is the process that de-
termines the existence of a substitution o such that Heado = A;o. If there

2If n =0, then the formula is simply written as Head and called a fact.

3Following standard practice, the notation eo denotes the application of the substitution o to the
expression e—that is, each variable X in e is replaced by o(X).

4In fact, the actual execution, as we show later, is very similar to that of standard procedu-
ral languages, involving a sequence of procedure calls, returns, etc., and stack-based memory
management.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

478 . G. Gupta et al.

are rules satisfying this property then one is selected (according to a selection
rule) and a new resolvent is computed by replacing A; with the body of the
rule and properly instantiating the variables in the resolvent:

. —(Al, AN ,Ai—l, Bl, ey Bh,Ai+1; ey Ak)o.

In the case of Prolog, the clause selected is the first one in the program whose
head unifies with the selected subgoal.

—If no clause satisfies the above property, then a failure occurs. Failures cause
backtracking. Backtracking explores alternative execution paths by reducing
one of the preceding resolvents with a different clause.

—The computation stops either when a solution is determined—that is, the
resolvent contains zero subgoals—or when all alternatives have been explored
without any success.

An intuitive procedural description of this process is represented in
Figure 2. The operational semantics of a logic-based language is determined
by the choice of computation rule (selection of the subgoal in the resolvent,
called selectijtera in Figure 2) and the choice of selection rule (selection of the
clause to compute the new resolvent, called select iause). In the case of Prolog,
the computation rule selects the leftmost subgoal in the resolvent, while the
selection rule selects the first clause in the program that successfully unifies
with the selected subgoal.

Many logic languages (e.g., Prolog) introduce a number of extralogical pred-
icates, used to perform tasks such as

(1) perform input/output (e.g., read and write files);

(2) add a limited form of control to the execution (e.g., the cut (!) operator, used
to remove some unexplored alternatives from the computation);

(8) perform metaprogramming operations; these are used to modify the struc-
ture of the program (e.g., assert and retract, add or remove clauses from
the program), or query the status of the execution (e.g., var and nonvar,
used to test the binding status of a variable).

An important aspect of many of these extralogical predicates is that their be-
havior is order-sensitive, meaning that they can produce a different outcome
depending on when they are executed. In particular, this means that they can
potentially produce a different result if a different selection rule or a different
computation rule is adopted.

In the rest of this work we focus on execution of Prolog programs (unless
explicitly stated otherwise); this means that we assume that programs are
executed according to the computation and selection rule of Prolog. We also
frequently use the term observable semantics to indicate the overall observable
behavior of an execution, that is, the order in which all visible activities of a pro-
gram execution take place (order of input/output, order in which solutions are
obtained, etc.). If a computation respects the observable Prolog semantics, then
this means that the user does not see any difference between such computation
and a sequential Prolog execution of the same program.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 479

TRAIL
| Machine
HEAP B T S Topof Trail
we===r= Inatruction Pointer
° Return Address
---¢ Heap Top at Prev. CP i
Top of Heap
Current Env,
Retum Address Local Stack
1
Y1 = - oo I
B SR enviromment i
Local D S
Variables | g l
| Yn
Al
call f A2
Arguments |
| Am
Arity Choice Point Stack
Next Allernative
.
e S,
aga

Fig. 1. Organization of the WAM.

2.2 The Warren Abstract Machine

The Warren Abstract Machine (WAM) [Warren 1983; Ait-Kaci 1991] has become
a de facto standard for sequential implementations of Prolog and logic program-
ming languages. The WAM defines an abstract architecture whose instruction
set is designed to

(1) allow an easy mapping from Prolog source code to WAM instructions; and

(2) be sufficiently lowlevel to allow an efficient emulation and/or translation to
native machine code.

Most (sequential and parallel) implementations of Prolog currently rely either
directly on the WAM, or on a sufficiently similar architecture.

The WAM is a stack-based architecture, sharing some similarities with im-
perative language implementation schemes (e.g., use of call/return instruc-
tions, use of frames for maintaining a procedure’s local environment), but ex-
tended in order to support the features peculiar to logic programming, namely,
unification and backtracking (and some other variations, such as the need to
support dynamic type checking). At any instance, the state of the machine is
defined by the content of its memory areas (illustrated in Figure 1). The state
can be subdivided into internal and external state.

(1) Internal State: It is described by the content of the machine registers. The
purpose of most of the registers is described in Figure 1.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

480 . G. Gupta et al.

(2) External State: It is described by the content of the logical data areas of the
machine:

(a) Heap: Data areas in which complex data structures (lists and Prolog’s
compound terms) are allocated.

(b) Local Stack: (also known as Control Stack). Serves the same purpose
as the control stack in the implementation of imperative languages;
it contains control frames, called environments (akin to the activation
records used in the implementation of imperative languages), which
are created upon entering a new clause (i.e., a new “procedure”) and are
used to store the local variables of the clause and the control information
required for “returning” from the clause.

(¢) Choice Point Stack: Choice points encapsulate the execution state for
backtracking purposes. A choice point is created whenever a call having
multiple possible solution paths (i.e., more than one clause successfully
matches the call) is encountered. Each choice point should contain suf-
ficient information to restore the status of the execution at the time
of creation of the choice point, and should keep track of the remaining
unexplored alternatives.

(d) Trail Stack: During an execution variables can be instantiated (they
can receive bindings). Nevertheless, during backtracking these bind-
ings need to be undone, to restore the previous state of execution. In
order to make this possible, bindings that can be affected by this op-
eration are registered in the trail stack. Each choice point records the
point of the trail where the undoing activity needs to stop.

Prologis a dynamically typed language; hence it requires type information to
be associated with each data object. In the WAM, Prolog terms are represented
as tagged words; each word contains:

(1) a tag describing the type of the term (atom, number, list, compound struc-
ture, unbound variable); and

(2) a value whose interpretation depends on the tag of the word; for example,
if the tag indicates that the word represents a list, then the value field will
be a pointer to the first node of the list.?

Prolog programs are compiled in the WAM into a series of abstract instruc-
tions operating on the previously described memory areas. In a typical execu-
tion, whenever a new subgoal is selected (i.e., a new “procedure call” is per-
formed), the following steps are taken.

—The arguments of the call are prepared and loaded into the temporary reg-
isters X1, ..., X ,; the instruction set contains a family of instructions, the
“put” instructions, for this purpose.

—The clauses matching the subgoal are detected and, if more than one is avail-
able, a choice point is allocated (using the “try” instructions);

5Lists in Prolog, as in Lisp, are composed of nodes, where each node contains a pointer to an element
of the list (the head) and a pointer to the rest of the list (the zail).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 481

—The first clause is started: after creating (if needed) the environment for the
clause (“allocate”), the execution requires head unification (i.e., unification
between the head of the clause and the subgoal to be solved) to be performed
(using “get/unify” instructions). If head unification is successful (and as-
suming that the rule contains some user-defined subgoals), then the body of
the clause is executed, otherwise backtracking to the last choice point created
takes place.

—Backtracking involves extracting a new alternative from the topmost choice
point (“retry” will extract the next alternative, assuming this is not the last
one, while “trust” will extract the last alternative and remove the exhausted
choice point), restoring the state of execution associated with such choice
point (in particular, the content of the topmost part of the trail stack is used
to remove bindings performed after the creation of the choice point), and
restarting the execution with the new alternative.

The WAM has been designed in order to optimize the use of resources during
execution, improving speed and memory consumption. Optimizations that are
worth mentioning are:

—Last Call Optimization Warren 1980]: Represents an instance of the well-
known tail-recursion optimization commonly used in the implementation of
many programming languages. Last call optimization allows reuse of the en-
vironment of a clause for the execution of the last subgoal of the clause itself;

—Environment Trimming Warren 1983; Ait-Kaci 1991]: Allows a progressive
reduction of the size of the environment of a clause during the execution of
the clause itself, by removing the local variables that are not needed in the
rest of the computation.

—Shallow Backtracking [Carrisson 1989]: The principle of procrastination
[Gupta and Pontelli 1997]—postponing work until it is strictly required by
the computation—is applied to the allocation of choice points in the WAM:
the allocation of a choice point is delayed until a successful head unification
has been detected. On many occasions this allows avoiding the allocation of
the choice point if head unification fails, or if the successful one is the last
clause defining such predicate.

—Indexing: This technique is used to guide the analysis of the possible clauses
that can be used to solve the current subgoal. The values of the arguments
can be used to prune the search space at run-time. The original WAM
supplies some instructions (“switch” instructions) to analyze the functor of
the first argument and select different clusters of clauses depending on its
value. Since many programs cannot profit from first-argument selection,
more powerful indexing techniques have been proposed, taking into account
more arguments and generating more complex decision trees [Hickey and
Mudambi 1989; Van Roy and Despain 1992; Taylor 1991; Ramesh et al. 1990].

2.3 Logic Programming and Parallelism

Parallelization of logic programs can be seen as a direct consequence of
Kowalski’s principle [Kowalski 1979]:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

482 . G. Gupta et al.

Programs = Logic + Control.

This principle separates the control component from the logical specification of
the problem, thus making the control of execution an orthogonal feature, in-
dependent of the specification of the problem. The lack of knowledge about
control in the program implied by the theoretical view of logic programs
allows the run-time systems to adopt different execution strategies without
affecting the declarative meaning of the program (i.e., the set of logical
consequences of the program). Not only does this allow cleaner (declarative)
semantics for logic programs, and hence a better understanding of them by
their users, it also permits an evaluator of logic programs to employ different
control strategies for evaluation. That is, at least in theory, different operations
in a logic program can be executed in any order without affecting the meaning
of the program. In particular, these operations can theoretically be performed
by the evaluator in parallel.

Apart from the separation between logic and control, from a programming
languages perspective, logic programming offers three key features which make
exploitation of parallelism more practical than in traditional imperative lan-
guages (see Hermenegildo [2000] for some comparisons of the techniques used
in parallelizing compilers for logic programs and more traditional programming
paradigms):

(1) From an operational perspective, and similar to functional languages, logic
programming languages are single assignhment languages: variables are
mathematical entities that can be assigned a value at most once during
each derivation. This relieves a parallel system from having to keep track
of certain types of flow dependencies, and offers a situation similar to having
applied already the “single assignment transformation” often used in the
parallelization of traditional programming languages [Zima and Chapman
1991].

(2) In addition, and also similarly to functional languages, logic languages al-
low coding in a way that expresses the desired algorithm reflecting more
directly the structure of the problem (i.e., staying closer to the specifica-
tions) and less the control aspects. This makes the parallelism available in
the problem more easily accessible to the compiler.

(3) Finally, the operational semantics of logic programming, in contrast to
imperative and functional languages, includes a certain degree of non-
determinism, which can be easily converted into parallelism without
radical modifications of the overall operational semantics. This leads
to the possibility of extracting parallelism directly from the execu-
tion model without any modification to the source program (implicit
parallelization).

The typical strategy adopted in the development of parallel logic program-
ming systems has been based on the translation of one (or more) of the non-
deterministic choices present in the operational semantics (see Figure 2) into
parallel computations. This leads to the three “classical” forms of parallelism
[Conery and Kibler 1981]:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 483

,,,,,, - And-Parallelism

| select,,q B from Query; Or-P:

until {(unify(H, B) dr (no clauses left);
""""""" LI <wm s o< - Unification Parallelism
if (no clauses left) then
FAIL;

else
begin
¢ = MostGeneralUnifier(H, B);
Query = (Query\{ B} {Body})o
end
end.

Fig. 2. Operational semantics and nondeterminism.

—And-Parallelism, which originates from parallelizing the selection of the next
literal to be solved, thus allowing multiple literals to be solved concurrently;

—Or-Parallelism, which originates from parallelizing the selection of the clause
to be used in the computation of the resolvent, thus allowing multiple clauses
to be tried in parallel; and

—Unification Parallelism, which arises from the parallelization of the unifica-
tion process.

The next three sections elaborate on these three forms of parallelism.

2.3.1 Unification Parallelism. Unification parallelism arises during the
unification of the arguments of a goal with the arguments of a clause head
with the same name and arity. The different argument terms can be unified in
parallel as can the different subterms in a term [Barklund 1990]. This can be
easily illustrated as follows: a standard unification (& la Robinson) is approxi-
mately structured as

unify(Argl, Arg2):

if (Argl is a complex term f(t1,...,tn) and
Arg2 is a complex term g(sl,...,sm)) then
if (f is equal to g and n is equal to m) then

unify(tl,s1), unify(t2,s2),..., unify(tn,sn)
else
fail
else

Thus, unification of two complex terms is broken down in pairwise unification
of the different arguments. For example, the process of unifying two terms

person(birth(day(12) ,month(1) ,year(99)),
address(street (hills) ,number(2),city(cruces)))
person(birth(day(X) ,month(1),Y), address(Z,W,city(cruces)))

requires the separate unification between the arguments

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

484 . G. Gupta et al.

birth(day(12) ,month(1),year(99)) =birth(day(X) ,month(1),Y)
address(street (hills) ,number(2),city(cruces)) =address(Z,W,city(cruces))

Unification parallelism takes advantage of the sequence of unifications between
the arguments of complex structures, by performing them concurrently:

doall
rl = unify(tl,sl);

rn = unify(tn,sn);
endall
return (rl1 and ... and rn);

where doall indicates the parallel execution of all the statements between
doall and endall.

Unification parallelism is typically very fine-grained, which has prompted
the design of specialized CPUs with multiple unification units [Singhal and
Patt 1989]. Parallel unification also needs to deal with complex dependency
issues [Singhal and Patt 1989; Barklund 1990], which have been shown to
be very similar to those used in the and-parallelism [Hermenegildo and Carro
1996; Pontelli and Gupta 1995a; Debray and Jain 1994] (and indeed unification
parallelism can be seen as a form of and-parallelism). Unification parallelism
has not been the major focus of research in parallel logic programming.

2.3.2 Or-Parallelism. Or-parallelism originates from the parallelization of
the select ciause phase in Figure 2. Thus, or-parallelism arises when more than
one rule defines a relation and a subgoal unifies with more than one rule head:
the corresponding rule bodies can then be executed in parallel with each other,
giving rise to or-parallelism. Or-parallelism is thus a way of searching for so-
lutions to the query faster, by exploring in parallel the search space generated
by the presence of multiple clauses applicable at each resolution step. Observe
that each parallel computation is potentially computing an alternative solution
to the original goal.

Note that or-parallelism encompasses not only the actual concurrent execu-
tion of different alternatives, but also the concurrent search for the different
alternatives which are applicable to the selected subgoal. Some researchers
have proposed techniques to explicitly parallelize this search process, lead-
ing to the so-called search parallelism [Bansal and Potter 1992; Kasif et al.
1983].

Or-parallelism frequently arises in applications that explore a large search
space via backtracking. This is the typical case in application areas such as
expert systems, optimization and relaxation problems, certain types of parsing,
natural language processing, and scheduling. Or-parallelism also arises in the
context of parallel execution of deductive database systems [Ganguly et al.
1990; Wolfson and Silberschatz 1988].

2.3.3 And-Parallelism. And-parallelism arises from the parallelization of
the selectiiterar phase in Figure 2. Thus, and-parallelism arises when more

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 485

than one subgoal is present in the resolvent, and (some of) these goals are
executed in parallel. And-parallelism thus permits exploitation of parallelism
within the computation of a single solution to the original goal.

And-parallelism arises in most applications, but is particularly relevant
in divide-and-conquer applications, list-processing applications, various con-
straint solving problems, and system applications.

In the literature it is common to distinguish two forms of and-parallelism
(the descriptions of these types of parallelism are clarified later in the
article).

—Independent and-parallelism (IAP) arises when, given two or more subgoals,
the run-time bindings for the variables in these goals prior to their execution
are such that each goal has no influence on the outcome of the other goals.
Such goals are said to be independent and their parallel execution gives rise
to independent and-parallelism. The typical example of independent goals
is represented by goals that, at run-time, do not share any unbound vari-
able; that is, the intersection of the sets of variables accessible by each goal
is empty. More refined notions of independence, for example, nonstrict in-
dependence, have also been proposed [Hermenegildo and Rossi 1995] where
the goals may share a variable but “cooperate” in creating the binding for the
common variable.

—Dependent and-parallelism arises when, at run-time, two or more goals in
the body of a clause have a common variable and are executed in paral-
lel, “competing” in the creation of bindings for the common variable (or
“cooperating,” if the goals share the task of creating the binding for the
common variable). Dependent and-parallelism can be exploited in varying
degrees, ranging from models that faithfully reproduce Prolog’s observable
semantics to models that use specialized forms of dependent and-parallelism
(e.g., stream parallelism) to support coroutining and other alternative se-
mantics, as in the various committed choice languages [Shapiro 1987; Tick
1995].

It has been noted that independent and dependent and-parallelism are sim-
ply the application of the same principle, independence, at different levels of
granularity in the computation model. In fact, parallelism is always obtained
by executing two (or more) operations in parallel if those two operations do not
influence each other in any way (i.e., they are independent); otherwise, parallel
execution would not be able to guarantee correctness and/or efficiency. For inde-
pendent and-parallelism, entire subgoals have to be independent of each other
to be executed in parallel. On the other hand, in dependent and-parallelism
the steps inside execution of each goal are examined, and steps in each goal
that do not interfere with each other are executed in parallel. Thus, indepen-
dent and-parallelism could be considered as macro level and-parallelism, while
dependent and-parallelism could be considered as micro level and-parallelism.
Dependent and-parallelism is typically harder to exploit for Prolog, unless ad-
equate changes to the operational semantics are introduced, as in the case of
committed choice languages [Shapiro 1987].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

486 . G. Gupta et al.

2.4 Discussion

Or-parallelism and and-parallelism identify opportunities for transforming cer-
tain sequential components of the operational semantics of logic programming
into concurrent operations. In the case of or-parallelism, the exploration of the
different alternatives in a choice point is parallelized, while in the case of and-
parallelism the resolution of distinct subgoals is parallelized. In both cases, we
expect the system to provide a number of computing resources that are capable
of carrying out the execution of the different instances of parallel work (i.e.,
clauses from a choice point or subgoals from a resolvent). These computing
resources can be seen as different Prolog engines that are cooperating in the
parallel execution of the program. We often refer to these computing entities
as workers [Lusk et al. 1990] or agents [Hermenegildo and Greene 1991]. The
term, process, has also been frequently used in the literature to indicate these
computing resources, as workers are typically implemented as separate pro-
cesses. The complexity and capabilities of each agent vary across the different
models proposed. Certain models view agents as processes that are created for
the specific execution of an instance of parallel work (e.g., an agent is created
to specifically execute a particular subgoal), while other models view agents as
representing individual processors, which have to be repeatedly scheduled to ex-
ecute different instances of parallel work during the execution of the program.
We return to this distinction in Section 9.1.

Intuitively, or- and and-parallelism are largely orthogonal to each other, as
they parallelize independent points of nondeterminism in the operational se-
mantics of the language. Thus, one would expect that the exploitation of one
form of parallelism does not affect the exploitation of the other, and it should
be feasible to exploit both of them simultaneously. However, practical experi-
ence has demonstrated that this orthogonality does not easily translate at the
implementation level. For various reasons (e.g., conflicting memory manage-
ment requirements) combined and/or-parallel systems have turned out to be
extremely complicated, and so far no efficient parallel system has been built
that achieves this ideal goal. At the implementation level, there is consider-
able interaction between and- and or-parallelism and most proposed systems
have been forced into restrictions on both forms of parallelism (these issues are
discussed at length in Section 6).

On the other hand, one of the ultimate aims of researchers in parallel logic
programming has been to extract the best execution performance from a given
logic program. Reaching this goal of maximum performance entails exploiting
multiple forms of parallelism to achieve best performance on arbitrary appli-
cations. Indeed, various experimental studies (e.g., Shen and Hermenegildo
[1991, 1996b] and Pontelli et al. [1998]) seem to suggest that there are large
classes of applications that are rich in either one of the two forms of parallelism,
while others offer modest quantities of both. In these situations, the ability to
concurrently exploit multiple forms of parallelism in a general-purpose system
becomes essential.

It is important to underline that the overall goal of research in parallel logic
programming is the achievement of higher performance through parallelism.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 487

Accomplishing good speed-ups may not necessarily translate to an actual im-
provement in performance with respect to state of the art sequential systems;
for example, the cost of managing the exploitation of parallelism can make the
performance of the system on a single processor considerably slower than a
standard sequential system. While many early parallel logic programming sys-
tems proposed achieved speedups, only a few (e.g., &-Prolog, Aurora, MUSE,
ACE, DASWAM) have been shown capable of achieving consistently faster ex-
ecutions than state of the art sequential systems.

In the rest of the article we discuss or-parallelism, independent and-
parallelism, and dependent and-parallelism in greater detail, describing the
problems that arise in exploiting them. We describe the various solutions that
have been proposed for overcoming these problems, followed by descriptions of
actual parallel logic programming systems that have been built. We discuss the
efficiency issues in parallel logic programming, and current and future research
in this area. We assume that the reader is familiar with the foundations of par-
allel processing; an excellent exposition of the needed concepts can be found in
Almasi and Gottlieb [1994] and Zima and Chapman [1991].

The largest part of the body of research in the field of parallel logic program-
ming focused on the development of systems on shared memory architectures,
and indeed many of the techniques presented are specifically designed to take
advantage of a single shared storage. Research on execution of logic programs
on distributed memory architectures (e.g., Benjumea and Troya [1993] and
Kacsuk and Wise [1992]) has been more sparse and perhaps less incisive.
Currently, there is renewed interest in distributed memory architectures
[Silva and Watson 2000; Araujo and Ruz 1998; Castro et al. 1999; Gupta and
Pontelli 1999c; Hermenegildo 1994; Cabeza and Hermenegildo 1996], thanks
to their increased availability at affordable prices and their scalability. Never-
theless, the focus of this survey is on describing execution models for shared
memory architectures.

3. OR-PARALLELISM

Or-parallelism arises when a subgoal can unify with the heads of more than one
clause. In such a case the bodies of these clauses can be executed in parallel with
each other, giving rise to or-parallelism. For example, consider the following
simple logic program

f :- t(X, three), p(Y), q(¥).
pL) :- s, M, tM, L).
pX) :- r(K).

q(one) .

q(two) .

r(one) .

r(three).

s(two, three).

s(four, five).

t(three, three).

t(three, two).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

488 . G. Gupta et al.

?-£.
f:- t(X,three),p(Y),q(Y). sS(two,three).
(L) :-s(L,M),t(M,L). s(four, five).
p(K):-r(K). t (three, three).
glone) . t(three, two). £ (X, three) ,p(¥), a(¥)
gl{two) . r(one) .
r(three) . [X<-three] v:
?-f. X+
p(Y),q(¥)
S(L,M), 0L, L), q(¥) / \ T, aly)
Y:EK
Y:&L -
<= ¥l | K < ¥l
t{three, two),q(two)/:(five,fou{).q(four) Xq(one) &(three)
- [L <- four
[ML; tﬁ‘gze] M <- Fivel] [K <- one] [K <- three]
fail success fail
q(two)

Note: Each node contains
space for variables that
appear in its corresponding
clause. Each node also
contains the goal list, success
or list of pending subgoals.

&X denotes pointer to var. X.

Fig. 3. An Or-parallel tree.

and the query 7- f£. The calls to t, p, and q are nondeterministic and lead to
the creation of choice points. In turn, the execution of p leads to the call to
the subgoal s(L,M), which leads to the creation of another choice point. The
multiple alternatives in these choice points can be executed in parallel.

A convenient way to visualize or-parallelism is through the or-parallel search
tree. Informally, an or-parallel search tree (or simply an or-parallel tree or a
search tree) for a query @ and logic program LP is a tree of nodes, each with
an associated goal-list, such that:

(1) the root node of the tree has @ as its associated goal-list;

(2) each nonroot node n is created as a result of successful unification of the
first goal in (the goal-list of) n’s parent node with the head of a clause in
LP,

HZ—Bl,Bg,...,Bn.

The goal-list of node n is (B, Bs, ..., By, Lo, ..., L,;)0, if the goal-list of the
parent of nis Ly, Lo, ..., L,, and 0 =mgu(H, L,).

Figure 3 shows the or-parallel tree for the simple program presented above.
Note that, since we are considering execution of Prolog programs, the construc-
tion of the or-parallel tree follows the operational semantics of Prolog: at each
node we consider clauses applicable to the first subgoal, and the children of
a node are considered ordered from left to right according to the order of the
corresponding clauses in the program. That is, during sequential execution the
or-parallel tree of Figure 3 is searched in a depth-first manner. However, if mul-
tiple agents are available, then multiple branches of the tree can be searched
simultaneously.

Or-parallelism manifests itself in a number of applications [Kluzniak 1990;
Shen 1992b; Shen and Hermenegildo 1996b]. It arises while exercising rules of

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 489

an expert system where multiple rules can be fired simultaneously to achieve
a goal. It also arises in some applications that involve natural language sen-
tence parsing. In such applications the various grammar rules can be applied
in or-parallel to arrive at a parse tree for a sentence. If the sentence is ambigu-
ous then the multiple parses would be found in parallel. Or-parallelism also
frequently arises in database applications, where there are large numbers of
clauses, and in applications of generate-and-test nature: the various alterna-
tives can be generated and tested in or-parallel. This can be seen, for example,
in the following simple program to solve the 8-queen problem.

queens(Qs) :- queens(Qs, [1, [1,2,3,4,5,6,7,8]).

queens([],_,[1).

queens ([X|Xs], Placed, Values):-
delete(X, Values, New_values),
noattack(X, Placed),
queens (Xs, [X|Placed] ,New_values) .

delete(X, [X|Xs], Xs).
delete(X, [Y|Ys], [Y|Zs]) :- delete(X, Ys, Zs).

noattack(X, Xs) :- noattack(X, Xs, 1).
noattack(_, [1, _).
noattack(X, [Y|Ys], Nb) :-
X =\= Y-Nb,
X =\= Y+Nb,
Nbi is Nb + 1,
noattack(X,Ys,Nbl).

The call to delete/3 in the second clause of queens/3 acts as a generator of
bindings for the variable X and creates a number of choice points. The predicate
delete/3 will be called again in the recursive invocations of queens/3, creating
yet more choice points and yet more untried alternatives that can be picked up
by agents for or-parallel processing.

From the theoretical point of view, or-parallelism poses few problems since
the various branches of the or-parallel tree are independent of each other, thus
requiring little communication between agents. This has been shown in the
literature in a number of related theoretical results which state that, for given
sets of conditions (the simplest example being pure programs for which all
solutions are requested and no run-time parallelism-related overheads), or-
parallel execution of a logic program meets the “no-slowdown” condition: that
is, parallel execution will run no slower (and, logically, often much faster) than
its sequential counterpart [Hermenegildo and Rossi 1995].

3.1 Challenges in the Implementation of Or-Parallelism

Despite the theoretical simplicity and results, in practice implementation of
or-parallelism is difficult because keeping the run-time parallelism-related

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

490 . G. Gupta et al.

overheads small (and, therefore, preserving the “no-slowdown” results) is non-
trivial due to the practical complications that emerge from the sharing of nodes
in the or-parallel tree. That is, given two nodes in two different branches of
the or-tree, all nodes above (and including) the least common ancestor node of
these two nodes are shared between the two branches. A variable created in
one of these ancestor nodes might be bound differently in the two branches. The
environments of the two branches have to be organized in such a fashion that,
in spite of the ancestor nodes being shared, the correct bindings applicable to
each of the two branches are easily discernible.

To understand this problem, consider Figure 3 where each node of the or-
parallel tree contains the variables found in its corresponding clause; that is,
it holds that clause’s environment. If the different branches are searched in or-
parallel, then the variable Y receives different bindings in different branches of
the tree all of which will be active at the same time. Storing and later access-
ing these bindings efficiently is a problem. In sequential execution, the binding
of a variable is stored in the memory location allotted to that variable. Since
branches are explored one at a time, and bindings are untrailed during back-
tracking, no problems arise. In parallel execution, multiple bindings exist at the
same time, hence they cannot be stored in a single memory location allotted to
the variable. This problem, known as the multiple environment representation
problem, is a major problem in implementing or-parallelism.

More generally, consider a variable V in node n;, whose binding b has been
created in node ny. If there are no branch points between n; and ng, then the
variable V will have the binding b in every branch that is created below ns.
Such a binding can be stored in-place in V; that is, it can be directly stored in
the memory location allocated to V in n;. However, if there are branch points
between n; and ng, then the binding b cannot be stored in-place, since other
branches created between nodes n; and ng may impart different bindings to
V. The binding b is applicable to only those nodes that are below ny. Such a
binding is known as a conditional binding and such a variable as a condi-
tional variable. For example, variable Y in Figure 3 is a conditional variable.
A binding that is not conditional, that is, one that has no intervening branch
points (or choice points) between the node where this binding was generated and
the node containing the corresponding variable, is termed unconditional. The
corresponding variable is called an unconditional variable (e.g., variable X in
Figure 3).

The main problem in implementing or-parallelism is the efficient representa-
tion of the multiple environments that coexist simultaneously in the or-parallel
tree corresponding to a program’s execution. Note that the main problem in
management of multiple environments is that of efficiently representing and
accessing the conditional bindings; the unconditional bindings can be trea-
ted as in normal sequential execution of logic programs (i.e., they can be stored
in-place). The problem of multiple environment management has to be solved
by devising a mechanism where each branch has some private area where
it stores conditional bindings applicable to itself. There are many ways of
accomplishing this effect [Warren 1987b; Gupta and Jayaraman 1993a], for
example:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 491

—storing the conditional binding created by a branch in an array or a hash
table private to that branch, from where the binding is accessed whenever it
is needed;

—keeping a separate copy of the environment for each branch of the tree, so
that every time branching occurs at a node the environment of the old branch
is copied or recreated in each new branch; and

—recording conditional bindings in a global data structure and attaching a
unique identifier to each binding that identifies the branch to which the
binding belongs.

Each approach has its associated cost. This cost is nonconstant time and
is incurred at the time of variable access, at the time of node creation, or at
the time a worker begins execution of a new branch. In Gupta and Jayaraman
[1993a] several criteria were derived for an ideal or-parallel system, namely,

(1) the cost of environment creation should be constant-time;
(2) the cost of variable access and binding should be constant-time; and
(3) the cost of task switching® should be constant-time.

It has been shown that it is impossible to satisfy these three criteria simulta-
neously [Gupta and Jayaraman 1993a; Ranjan et al. 1999]. In other words, the
nonconstant time costs in managing multiple or-parallel environments cannot
be avoided. Although this nonconstant cost cannot be avoided in supporting
or-parallelism, it can be significantly reduced by a careful design of the sched-
uler, whose function is to assign work to workers (where work in an or-parallel
setting means an unexplored branch of the or-parallel tree represented as an
untried alternative in a choice point). The design of the scheduler is very im-
portant in an or-parallel system, in order to avoid excessive (expensive) task
switches and to properly handle speculative computations. This is discussed in
the context of the various execution models proposed (Section 3.5).

3.2 Or-Parallel Execution Models

A number of execution models have been proposed in the literature for ex-
ploiting or-parallelism (a listing of about 20 of them can be found in Gupta and
Jayaraman [1993a]). These models differ in the techniques they employ for solv-
ing the problem of environment representation. The three criteria mentioned
in the previous section allow us to draw a clean classification of the different
models proposed: the models are classified depending on which criteria they
meet. This is illustrated in Figure 4; the different models are associated with
one of the leaves of the tree, depending on which criteria they meet and which
criteria they violate. Observe that the rightmost leaf in the tree is necessarily
empty, since no model can meet all three criteria (this is discussed more for-
mally in Section 3.4). The classification of the models presented in this section
is summarized in the table in Figure 4.

8That is, the cost associated with updating the state of a worker when it switches from one node of
the tree to another.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

492 . G. Gupta et al.

Task Creation Time

nt
non-const? SOnStany

Task Switching Time Task Switching Time

Variable Access Variable Access
Time Time Time Time
& & X
& %, & \& &
&z B, 9 C: Y
§ % § % §
>
& & & X <&
N, $ g
? e.g., Variable Import e.g., Directory Tree e.g., Time Stamping
c.g., Hashing Windows No Methods
Constant-time Constant-time Constant-time
MODEL Task Task Variable
Creation Switching Access
Directory Tree X X
Hashing Windows X X
Favored Bindings X X
Shared Tree - -
Time Stamping X
Environment Closing X X
Binding Arrays X X
L | Version Vectors X X
N sh d Kabu-Wake X X
n- r
0 are MUSE X X
Tree -
Delphi X X

Fig. 4. Classification of Or-parallel models.

For instance, the following models employ an environment representation
technique that satisfies criteria 1 and 2 above (constant-time task creation
and variable access): Versions Vectors Scheme [Hausman et al. 1987], Binding
Arrays Scheme [Warren 1984, 1987c], Argonne—SRI Model [Warren 1987b],
Manchester—Argonne Model [Warren 1987b], Delphi Model [Clocksin and
Alshawi 1988], Randomized Method [Janakiram et al. 1988], BC-Machine
[Ali 1988], MUSE [Ali and Karlsson 1990b] (and its variations, such as stack
splitting [Gupta and Pontelli 1999c]), SBA [Correia et al. 1997], PBA [Gupta
et al. 1993; Gupta et al. 1994], Virtual Memory Binding Arrays model [Véron
et al. 1993], and Kabu Wake Model [Masuzawa et al. 1986]; while the following
models employ an environment representation technique that satisfies crite-
ria 2 and 3 above (constant-time variable access and task switch): Directory
Tree Method [Ciepielewski and Haridi 1983] and Environment Closing Method
[Conery 1987a]; and the following models employ an environment representa-
tion technique that satisfies criteria 1 and 3 above (constant-time task-creation
and task-switch): Hashing Windows Method [Borgwardt 1984], Favored-
Bindings Model [Disz et al. 1987], and Virtual Memory Hashing Windows model
[Véron et al. 1993]. Likewise, an example of a model that satisfies only crite-
rion 1 (constant time task-creation) is the Time Stamping Model [Tinker 1988],
while the example of a model that satisfies only criterion 3 (constant-time

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 493

task switching) is the Variable Import Scheme [Lindstrom 1984]. We describe
some of these execution models for or-parallelism in greater detail below. A
detailed study and derivation of some of the or-parallel models has also been
done by Warren [1987b]. Some alternative models for or-parallelism, such as
Sparse Binding Array and Paged Binding Arrays, are described separately in
Section 6.3, since their design is mostly motivated by the desire to integrate
exploitation of or-and and-parallelism.

As noted in Figure 4, we are also imposing an additional classification level,
which separates the proposed models into classes. The first class contains all
those models in which the different workers explore a unique representation of
the computation tree, which is shared between workers. The second class con-
tains those models in which every worker maintains a separate data structure
representing (part of) the computation tree.

3.2.1 Shared Representation of the Computation Tree

3.2.1.1 Directory Tree Method. In the directory tree method [Ciepielewski
and Haridi 1983], developed in the early 1980s for the or-parallel Token
Machine [Ciepielewski and Hausman 1986], each branch of the or-tree has
an associated process. A process is created each time a new node in the tree
is created, and the process expires once the creation of the children processes
is completed. The binding environment of a process consists of contexts. A new
context is created for each clause invoked. Each process has a separate binding
environment but allows sharing of some of the contexts in its environment by
processes of other branches. The complete binding environment of a process
is described by a directory; thus, a directory is essentially a “summary” of a
branch up to the node representing the process. A directory of a process is an
array of references to contexts. The environment of the process consists of con-
texts pointed to by its directory. The ith location in the directory contains a
pointer to the ith context for that process.

When branching occurs, a new directory is created for each child process. For
every context in the parent process that has at least one unbound variable, a
new copy is created, and a pointer to it is placed at the same offset in the child
directory as in the parent directory. Contexts containing no unbound variable
(called committed context) can be shared and a pointer is simply placed in the
corresponding offset of the child’s directory pointing to the committed context.

A conditional variable is denoted by the triple (directory address, context
offset, variable offset) where the directory address is the address of the base of
the directory, context offset is the offset in the directory array, and variable off-
set is the offset within the context. Notice that in this method all variables are
accessed in constant time, and process switching (i.e., associating one of the
processes with an actual processor) does not involve any state change.

A prototypical implementation of this scheme was developed and some
results concerning memory performance are reported in Ciepielewski and
Hausman [1986]. The cost of directory creation is potentially very high and
the method leads to large memory consumption and poor locality [Crammond
1985].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

494 . G. Gupta et al.

3.2.1.2 Hashing Windows Method. The hashing windows scheme, pro-
posed by Borgwardt [1984], maintains separate environments by using hashing
windows. The hashing window is essentially a hash table. Each node in the or-
tree has its own hashing window, where the conditional bindings of that node
are stored. The hash function is applied to the address of the variable to com-
pute the address of the bucket in which the conditional binding would be stored
in the hash window. Unconditional bindings are not placed in the hash window;
rather they are stored in-place in the nodes. Thus, the hash window of a node
records the conditional bindings generated by that node. During variable ac-
cess the hash function is applied to the address of the variable whose binding
is needed and the resulting bucket number is checked in the hash-window of
the current node. If no value is found in this bucket, the hash-window of the
parent node is recursively searched until either a binding is found, or the node
where the variable was created is reached. If the creator node of the variable is
reached, then the variable is unbound. Hash windows need not be duplicated
on branching since they are shared.

The hashing windows scheme has found implementation in the Argonne
National Laboratory’s Parallel Prolog [Butler et al. 1986] and in the PEPSys
system [Westphal et al. 1987; Chassin de Kergommeaux and Robert 1990]. The
goal of the PEPSys (Parallel ECRC Prolog System) project was to develop tech-
nology for the concurrent exploitation of and-parallelism and or-parallelism
(details on how and-parallelism and or-parallelism are combined are discussed
in Section 6.3.1). The implementation of hashing windows in PEPSys is opti-
mized for efficient variable binding lookup. Bindings are separated into two
classes [Chassin de Kergommeaux and Robert 19901]:

—Shallow Bindings: These are bindings that are performed by the same pro-
cess which created the variables; such bindings are stored in-place (in the
environment). A stamp (called Or-Branch-Level (OBL)) is also stored with
the binding. The OBL keeps track of the number of choice points present in
the stack at each point in time.

—Deep Bindings: These are bindings performed on variables that lie outside
the local computation. Access to such bindings is performed using hashing
windows.

Variable lookup makes use of the OBL to determine whether the in-place bind-
ing is valid, by comparing the OBL of the binding with the OBL existing at the
choice point that originated the current process. Details of these mechanisms
are presented in Westphal et al. [1987]. A detailed study of the performance of
PEPSys has been provided by Chassin de Kergommeaux [1989].

3.2.1.3 Favored-Bindings Method. The favored bindings method [Disz
et al. 1987] proposed by researchers at Argonne National Laboratory is very
similar to the hash-window method. In this method the or-parallel tree is di-
vided into favored, private, and shared sections. Bindings imparted to condi-
tional variables by favored sections are stored in-place in the node. Bindings
imparted by other sections are stored in a hash table containing a constant
number of buckets (32 in the Argonne implementation). Each bucket contains

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 495

a pointer to the linked list of bindings that map to that bucket. When a new
binding is inserted, a new entry is created and inserted at the beginning of the
linked list of that bucket as follows: (i) The next pointer field of the new entry
records the old value of the pointer in the bucket. (ii) The bucket now points
to this new entry. At a branch point each new node is given a new copy of the
buckets (but not a new copy of the lists pointed to by the buckets).

When a favored branch has to look up the value of a conditional variable
it can find it in-place in the value-cell. However, when a nonfavored branch
accesses a variable value it computes the hash value using the address of the
variable and locates the proper bucket in the hash table. It then traverses the
linked list until it finds the correct value. Notice how separate environments
are maintained by sharing the linked list of bindings in the hash tables.

3.2.1.4 Timestamping Method. The timestamping method, developed by
Tinker [1988], uses timestamps to distinguish the correct bindings for an en-
vironment. All bindings for a variable are visible to all the workers (which are
distinct processes created when needed). All bindings are stamped with the
time at which they were created. The bindings also record the process-id of
the process that created them. The branch points are also stamped with the
time at which they were created. An ancestor stack, which stores the ancestor-
process/binding-time pairs to disambiguate variables, is also kept with each
process. The ancestor stack records the binding spans during which different
processes worked on a branch. The ancestor stack is copied when a new process
is created for an untried alternative.

To access the value of a variable, a process has to examine all its bindings
until the correct one is found, or none qualify, in which case the variable is
unbound for that process. To check if a particular binding is valid, the id of the
process, say P, that created it and the timestamp are examined. The timestamp
is then checked to see if it falls in the timespan of process P in any of its entries
in the ancestor stack. If such a P/binding-span entry is found then the binding
is valid, else the next binding is examined until there are none left in which
case the variable is unbound.

This scheme was provided as part of the design of the BOPLOG system, an or-
parallel Prolog system for BBN’s Butterfly architectures (a distributed memory
machine with global addressing capabilities). The method has a potential for
lack of locality of reference, as the global address space is extensively searched
in accessing bindings.

3.2.1.5 Environment Closing Method. The environment closing method
was proposed by Conery [1987a] and is primarily designed for distributed mem-
ory systems. The idea behind closing an environment is to make sure that all
accesses are only to variables owned by search tree nodes that reside locally.
A node in the search tree (Conery refers to nodes as frames) A is closed with
respect to another node B by eliminating all pointers from the environment of
node A to the environment of node B (changing them from node B to node A
instead). The process involves traversing all the structures in node B that can
be reached through the environment of node A. For each unbound variable V

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

496 . G. Gupta et al.

in such a structure a new variable V' is introduced in A. The unbound variable
is made to point to this new variable. The structure is copied into A, with the
variable V in that structure being replaced by the new variable V'. Note that
multiple environments for each clause matching a goal are represented in this
method through explicit copying of all unbound variables that are accessible
from the terms in the goal.

During execution, each new node introduced is closed with respect to its
parent node after the unification is done. After the body of the clause corre-
sponding to the node is solved the parent node is closed with respect to its child
node so that the child’s sibling can be tried. If the child node corresponds to a
unit clause the parent node is immediately closed with respect to its child after
unification. Closing the child node ensures that no variables in ancestor nodes
would be accessed. Closing the parent node ensures that the variable bindings
produced by the execution of its children are imported back into the parent
node’s environment.

This method trades synchronization time required to exchange variable bind-
ings during parallel computations, with the extra time required to close the
environment. The foundation of this method can be traced back to the variable
import method [Lindstrom 1984], where forward unification is used to close
the environment of a new clause and backward unification is used to commu-
nicate the results at the end of a clause. The scheme presented by Conery has
also been adopted in the ROPM system [Kalé et al. 1988al.

3.2.1.6 Binding Arrays Method. In the binding arrays method [Warren
1984, 1987c] each worker has an auxiliary data structure called the binding
array.” Each conditional variable along a branch is numbered sequentially
outward from the root.

To perform this numbering, each branch maintains a counter; when branch-
ing occurs each branch gets a copy of the counter. When a conditional variable
is created it is marked as one (by setting a tag), and the value of the counter
recorded in it; this value is known as the offset value of the variable.® The
counter is then incremented. When a conditional variable gets bound, the bind-
ing is stored in the binding array of the worker at the offset location given by
the offset value of that conditional variable. In addition, the conditional binding
together with the address of the conditional variable is stored in the trail. Thus,
the trail is extended to include bindings as well. If the binding of this variable
is needed later, then the offset value of the variable is used to index into the
binding array to obtain the binding. Note that bindings of all variables, whether
conditional or unconditional, are accessible in constant time. This is illustrated
in Figure 5. Worker P1 is exploring the leftmost branch (with terminal success
node labeled n1). The conditional variables X and M have been allocated offsets
0 and 1, respectively. Thus, the bindings for X and M are stored in the locations

"Note that the description that follows is largely based on Warren [1987c] rather than on
Warren [1984]. The binding arrays technique in Warren [1984] is not primarily concerned with
or-parallelism but rather with (primarily sequential) non-depth-first search.

8Most systems, for example, Aurora, initially treat all the variables as conditional, thus placing
them in the binding array.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 497

counter=0

counter=0 *

X: 0

“
.Q
counter=1 ’,'
L: &X
L <- X M: 1
) / \\
0 ",
‘ -
0 A

, S
counter=2 ¢ s, counter=2

[X <- four

[X <= two M <- five)

M <- three]

counter=2 / . s,
counter=2

o,
..
.

n2

A

counter=2 success

nl

success

four @
o five
three

B W R o

B WP o

Y Y

" binding array

y

binding array

Fig. 5. The Binding Arrays Method.

0 and 1 of the binding array. The entries stored in the trail in nodes are shown
in square brackets in the figure. Suppose the value of variables M is needed in
node n1; M’s offset stored in the memory location allocated to it is then obtained.
This offset is 1, and is used by worker P1 to index into the binding array, and
obtain M’s binding. Observe that the variable L is unconditionally aliased to X,
and for this reason L is made to point to X. The unconditional nature of the
binding does not require allocation of an entry in the binding array for L.°

To ensure consistency, when a worker switches from one branch (say b;) of
the or-tree to another (say b;), it has to update its binding array by deinstalling
bindings from the trail of the nodes that are in b; and installing the correct
bindings from the trail of the nodes in b;. For example, suppose worker P1
finishes work along the current branch and decides to migrate to node n2 to
finish work that remains there. To be able to do so, it will have to update
its binding array so that the state which exists along the branch from the
root node to node n2 is reflected in its environment. This is accomplished by

9 Aurora allocates an entry in the array for each variable, but stores unconditional bindings directly
in the stacks.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

498 . G. Gupta et al.

making P1 travel up along the branch from node n1 towards the least common
ancestor node of n1 and n2, and removing those conditional bindings from its
binding array that it made on the way down. The variables whose bindings
need to be removed are found in the trail entries of intervening nodes. Once
the least common ancestor node is reached, P1 will move towards node n2, this
time installing conditional bindings found in the trail entries of nodes passed
along the way. This can be seen in Figure 5. In the example, while moving up,
worker P1 untrails the bindings for X and V, since the trail contains references
to these two variables. When moving down to node n2, worker P1 will retrieve
the new bindings for X and M from the trail and install them in the binding
array.

The binding arrays method has been used in the Aurora or-parallel sys-
tem, which is described in more detail in Section 3.5. Other systems have also
adopted the binding arrays method (e.g., the Andorra-I system [Santos Costa
et al. 1991a]). Furthermore, a number of variations on the idea of binding arrays
have been proposed—for example, Paged Binding Arrays and Sparse Binding
Arrays—mostly aimed at providing better support for combined exploitation of
and-parallelism and or-parallelism. These are discussed in Sections 6.3.6 and
6.3.7.

3.2.1.7 Versions Vectors Method. The versions vectors method [Hausman
et al. 1987] is very similar to the binding arrays method except that instead
of a conditional variable being allocated space in the binding array each one is
associated with a versions vector. A versions vector stores the vector of bindings
for that variable such that the binding imparted by a worker with processor-id i
(processor ids are numbered from 1 to n, where n is the total number of workers)
is stored at offset i in the vector. The binding is also recorded in the trail, as in
the binding arrays method. Also as in the binding arrays method, on switching
to another branch a worker with pid j has to update the jth slots of versions
vectors of all conditional variables that lie in the intervening nodes to reflect
the correct bindings corresponding to the new site.

To our knowledge the method has never been integrated in an actual proto-
type. Nevertheless, the model has the potential to provide good performance,
including the ability to support the orthogonality principle required by com-
bined exploitation of and-parallelism and or-parallelism (see Section 6.3.7).

3.2.2 Nonshared Representation of the Computation Tree

3.2.2.1 Stack-Copying Method. In the stack-copying method [Ali and
Karlsson 1990a; 1990b], a separate environment is maintained by each worker
in which it can write without causing any binding conflicts. In stack-copying,
even unconditional bindings are not shared, as they are in the other methods
described above. When an idle worker P2 picks an untried alternative from a
choice point created by another worker P1, it copies all the stacks of P1. As a
result of copying, each worker can carry out execution exactly as in a sequential
system, requiring very little synchronization with other workers.

In order to avoid duplication of work, part of each choice point (e.g., the
pointer to the first unexplored alternative) is moved to a frame created in an

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 499

LOCAL SPACE OF P1 LOCAL SPACE OF P2
CP Env Heap Trail CP Env Heap Trail
Root
Shared q FI
Part
a Cl 1
b
-

P1
Processor P2 picks an untried alternative from choice-
point b created by P1. To begin execution along this h4 Root
alternative, P2 first transfers the choice-points between O
the root node and b (inclusive) in a shared global area,
and then copies P1’s local stacks from root node up

a
to node b. It untrails the appropriate variables to restore SHARED
the computation state that existed when b was first created b SPACE

and begins the execution of the alternative that was picked.

Fig. 6. Stack copying and choice points.

area easily accessible by each worker. This allows the system to maintain a sin-
gle list of unexplored alternatives for each choice point, which is accessed in mu-
tual exclusion by the different workers. A frame is created for each shared choice
point and is used to maintain various scheduling information (e.g., bitmaps
keeping track of workers working below each choice point). This is illustrated
in Figure 6. Each choice point shared by multiple workers has a correspond-
ing frame in the separate shared space. Access to the unexplored alternatives
(which are now located in these frames) will be performed in mutual exclusion,
thus guaranteeing that each alternative is executed by exactly one worker.

The copying of stacks can be made more efficient through the technique of
incremental copying. The idea of incremental copying is based on the fact that
the idle worker could have already traversed a part of the path from the root
node of the or-parallel tree to the least common ancestor node, thus it does not
need to copy this part of stacks. This is illustrated in an example in Figure 7.
In Figure 7(i) we have two workers immediately after a sharing operation that
has transferred three choice points from worker P1 to P2. In Figure 7(ii), worker
P1 has generated two new (private) choice points while P2 has failed in its
alternative. Figure 7(iii), shows the resulting situation after another sharing
between the two workers; incremental copying has been applied, leading to the
copy of only the two new choice points.

Incremental copying has been proved to have some drawbacks with respect
to management of combined and-parallelism and or-parallelism as well as
management of special types of variables (e.g., attributed variables). Recent
schemes, such as the COWL models (described in Section 6.3.5) overcome many
of these problems.

This model is an evolution of the work on the BC-machine by Ali [1988],
a model where different workers concurrently start the computation of the
query and automatically select different alternatives when choice points are
created. The idea was already present in the Kabu Wake model [Masuzawa

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

500 . G. Gupta et al.

p1 P2

a Pl
Or-eeeeev S B S
o]
0]
Oreaemeees P ld @
5
o
(D --mmmmeee & [I S
.a it
—1
al a2 &
U]
o
-
o
<
6]
ko]
d]
-
o}
. o o
(1) (11)

Fig. 7. Incremental stack copying.

et al. 1986]. In this method, idle workers request work from busy ones, and work
is transmitted by copying environments between workers. The main difference
with respect to the previously described approach is that the source worker
(i.e., the busy worker from where work is taken) is required to “temporarily”
backtrack to the choice point to be split in order to undo bindings before copying
takes place.

Stack copying has found efficient implementation in a variety of sys-
tems, such as MUSE [Ali and Karlsson 1990b] (discussed in more detail in
Section 3.5.2), ECLiPSe [Wallace et al. 1997], and YAP [Rocha et al. 1999b].
Stack copying has also been adopted in a number of distributed memory imple-
mentations of Prolog, such as OPERA [Briat et al. 1992] and PALS [Villaverde
et al. 2000].

3.2.2.2 Stack Splitting. In the stack-copying technique, each choice point
has to be “shared” (i.e., transferred to a common shared area accessible by
all the workers) to make sure that the selection of its untried alternatives by
various concurrent workers is serialized, so that no two workers can pick the
same alternative. The shared choice point is locked while the alternative is
selected to achieve this effect. As discussed in Gupta and Pontelli [1999c], this
method allows the use of very efficient scheduling mechanisms such as the
scheduling on the bottom-most choice point used by Aurora and MUSE, but
may cause excessive lock contention, or excessive network traffic if realized on
a distributed memory system. However, there are other simple ways of ensuring
that no alternative is simultaneously selected by multiple workers: the untried
alternatives of a choice point can be split between the two copies of the choice
point stack. This operation is called choice point stack-splitting, or simply stack-
splitting. This will ensure that no two workers pick the same alternative.

Different schemes for splitting the set of alternatives between the two (or
more) choice points can be envisioned (e.g., each choice point receives half of
the alternatives, or the partitioning can be guided by additional information

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 501

LEGEND:
® choicepoint
€ copied split choicepoint

{ untried alternative

cl
. processor
Fig (i): Processor P1 is busy and P2 idle Fig (ii): P1’s Tree after Stack Splitting Fig (iii): P2’s Tree after Stack Splitting

Fig. 8. Stack-splitting based or-parallelism.

regarding the unexplored computation, such as granularity and likelihood of
failure). In addition, the need for a shared frame, as a critical section to pro-
tect the alternatives from multiple executions, has disappeared, as each stack
copy has a choice point, although their contents differ in terms of which unex-
plored alternatives they contain. All the choice points can be evenly split in this
way during the copying operation. The choice point stack-splitting operation is
illustrated in Figure 8.

The major advantage of stack-splitting is that scheduling on bottommost can
still be used without incurring huge communication overheads. Essentially,
after splitting the different or-parallel threads become fairly independent of
each other, and hence communication is minimized during execution. This
makes the stack-splitting technique highly suitable for distributed memory
machines. The possibility of parameterizing the splitting of the alternatives
based on additional semantic information (granularity, nonfailure, user
annotations) can further reduce the likelihood of additional communications
due to scheduling.

In Gupta and Pontelli [1999c¢], results have been reported indicating that for
various benchmarks, stack-splitting obtains better speedups than MUSE on
shared memory architectures thanks to a better locality of computation and re-
duced interaction between workers. Preliminary work on implementing stack-
splitting on distributed memory machines has also provided positive results in
terms of speedups and efficiency [Villaverde et al. 2000].

3.2.2.3 Recomputation-Based Models. In the stack-copying schemes, idle
workers acquire work by copying the data structures associated with a given
segment of computation, in order to recreate the state of the computation from
where the new alternative will start. An alternative approach is to have idle
workers recreate such data structures by repeating the computation from the
root of the or-tree all the way to the choice point from where an alternative
will be taken. Thus, the content of the stacks of the abstract machine is recon-
structed, rather than copied. This approach is at the base of the Delphi sys-
tem [Clocksin and Alshawi 1998] and of the Randomized Parallel Backtracking
method [Janakiram et al. 1998].

These recomputation-based methods have the clear advantage of reducing
the interactions between workers during the sharing operations. In Delphi, the

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

502 . G. Gupta et al.

exchange of work between workers boils down to the transfer of an oracle from
the busy worker to the idle one. An oracle contains identifiers which describe
the path in the or-tree that the worker needs to follow to reach the unexplored
alternative. A centralized controller is in charge of allocating oracles to idle
agents. The method has attracted considerable attention, but has provided
relatively modest parallel performances on arbitrary Prolog programs. Vari-
ations of this method have been effectively used to parallelize specialized types
of logic programming computations (e.g., in the parallelization of stable logic
programming computations [Pontelli and EL-Kathib 2001]). The recomputa-
tion method has also found applications in the parallelization of constraint
logic programming [Mudambi and Schimpf 1994].

3.3 Support for Full Prolog in Or-Parallelism

Most of the or-parallel models described above consider only pure logic pro-
grams (pure Prolog) for parallel execution. However, to make logic program-
ming practical many extralogical, metalogical, and input/output predicates
have been incorporated in Prolog. Some researchers have taken the view that
an or-parallel logic programming system should transparently execute Prolog
programs in parallel [Lusk et al. 1990; Hausman et al. 1988].1° That is, the
same effect should be seen by a user during parallel execution of a Prolog pro-
gram, as far as input/output and the like are concerned (including printing of
the final solutions), as in its sequential execution with Prolog computation and
selection rules. Such a system is said to support (observable) sequential Prolog
semantics. The advantage of such an approach is that existing Prolog programs
can be taken and executed in parallel without any modifications. Two promi-
nent or-parallel systems that have been built, namely, MUSE and Aurora, do
support sequential Prolog semantics by executing an extralogical predicate only
when the branch containing it becomes the leftmost in the search tree. Differ-
ent techniques have been proposed to detect when a branch of the or-parallel
tree becomes the leftmost active branch in the tree [Ali and Karlsson 1990a;
Kalé et al. 1988b; Sindaha 1993]. Arguably, the techniques used in Aurora have
been the most well researched and successful [Hausman et al. 1988; Hausman
1989]. In this approach, the system maintains for each node n in the search
tree a pointer to one of its ancestor nodes m, called the subroot node, which
represents the highest ancestor (i.e., closer to the root) such that n lies in the
leftmost branch of the tree rooted at m. If m is equal to the root of the tree, then
the node n is the leftmost branch of the search tree.

In addition to this, various or-parallel Prolog systems (e.g., Aurora and
MUSE) provide variants of the different order-sensitive predicates that can
be executed without requiring any form of synchronization; these are typically
called cavalier predicates. The use of cavalier extralogical predicates leads to an
operational behavior different from that of Prolog: for example, a cavalier write
operation is going to be executed immediately irrespectively of the execution of
the other extralogical predicates in the search tree.

10This view has also been taken in and-parallel systems, as we show later [Muthukumar and
Hermenegildo 1989; DeGroot 1987b; Chang and Chiang 1989].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 503

An issue that arises in the presence of pruning operators such as cuts and
commits during or-parallel execution is that of speculative work [Hausman
1989, 1990; Ali and Karlsson 1992b; Beaumont and Warren 1993; Sindaha
1992]. Consider the following program,

p(xy Y) T q(x), !, r(Y)-
p&X, V) - gX), n().

and the goal,
7- p(4, B).

Executing both branches in parallel, corresponding to the two clauses that
match this goal, may result in unnecessary work, because sequential Prolog
semantics entail that if q(X) succeeds then the second clause for p shall never
be tried. Thus, in or-parallel execution, execution of the second clause is specu-
lative, in the sense that its usefulness depends on the success/failure outcome
of goal q.

It is a good idea for a scheduler designed for an or-parallel system that
supports sequential Prolog semantics to take speculative work into account.
Essentially, such a scheduler should bias all the workers to pick work that is
within the scope of a cut from branches to the left in the corresponding subtree
rather than from branches to the right [Ali and Karlsson 1992b; Beaumont
1991; Beaumont and Warren 1993; Sindaha 1992].

A detailed survey on scheduling and handling of speculative work for
or-parallelism is beyond the scope of this article, and can be found in
Ciepielewski [1992]. One must note that the efficiency and the design of the
scheduler has the biggest bearing on the overall efficiency of an or-parallel sys-
tem (or any parallel system for that matter). We describe two such systems in
Section 3.5, where a significant amount of effort has been invested in designing
and fine-tuning the or-parallel system and its schedulers.

3.4 Problem Abstraction and Complexity

3.4.1 Abstraction of the Problems. In this section we provide a brief
overview of the theoretical abstraction of the problems arising in or-parallel
execution of Prolog programs. Complete details regarding this study can be
found elsewhere [Ranjan et al. 1999]. Execution of a program can be abstracted
as building a (rooted, labeled) tree. For the sake of simplicity, we assume that
the trees are binary; this assumption does not lead to any loss of generality
because, for a given program, the number of branches at any given node is
bounded by some constant. The process of building the tree can be abstracted
through the operations:

(1) create_tree(v) which creates a tree containing only the root, with label ~;

(2) expand(u, v1, v2) which, given one leaf u and two labels 47 and ~32, creates
two new nodes (one for each label) and adds them as children of u (v as
left child and ~9 as right child); and

(3) remove(u) which, given a leaf u of the tree, removes it from the tree.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

504 . G. Gupta et al.

These three operations are assumed to be the only ones available to modify the
“physical structure” of this abstract tree.

The abstraction of an or-parallel execution should account for the various
issues present in or-parallelism (e.g., management of variables and of their
bindings, creation of tasks, etc.). Variables that arise during execution, whose
multiple bindings have to be correctly maintained, can be modeled as attributes
of the nodes in the tree. I denotes a set of M variables. If the computation tree
has size N, then it is possible to assume M = O(N). At each node u, three
operations are possible:

* assign a variable X to a node u;

e dereference a variable X at node u; that is, identify the ancestor v of u
(if any) that has been assigned X ; and

e alias two variables X; and X at node u; this means that for every node v
ancestor of u, every reference to X ; in v will produce the same result as X,
and vice versa.

The previous abstraction assumed the presence of one variable binding per
node. This restriction can be made without loss of generality; it is always pos-
sible to assume that the number of bindings in the node is bound by a program
dependent constant. The problem of supporting these dynamic tree operations
has been referred to as the OP problem [Ranjan et al. 1999].

3.4.2 Complexity on Pointer Machines. In this section we summarize
the complexity results that have been developed for the abstraction of
or-parallelism described in the previous section. The complexity of the problem
has been studied on pointer machines [Ben-Amram 1995]. A pointer machine
is a formal model for describing algorithms, which relies on an elementary ma-
chine whose memory is composed only of records connected via pointers. The
interesting aspect of this model is that it allows a more refined characterization
of complexity than the more traditional RAM model.

Lower Bound for OP. As mentioned earlier, the only previous work that deals
with the complexity of the mechanisms for or-parallelism is Gupta [1994] and
Gupta and Jayaraman [1993a]. This previous work provides an informal argu-
ment to show that a generic OP problem with N variables and M operations
has a lower bound that is strictly worse than Q(N + M). Intuitively, this means
that no matter how good an implementation model for or-parallelism is, it will
incur some costs during the execution that are dependent on the size of the com-
putation (e.g., the number of choice points created). This intuitive result has
been formally proved to hold by Ranjan et al. [1999], showing that on pointer
machines, the worst-case time complexity of OP is Q(lg N) per operation even
without aliasing.

The basic idea of the proof is that since there is no direct addressing in
the pointer machines starting from a particular node only a “small” number of
nodes can be accessed in a small number of steps. Thus, if we need to relate
variables and choice points in a very large tree, we need to incur a cost that is
dependent on the size of the tree. Thus, at least one of the operations involved in

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 505

the OP problem will take in the worst case an amount of time which is at least
as large as Ig N (where N is the number of choice points in the computation
tree).

It is also interesting to point out that the result does not depend on the
presence of the alias operation; this means that the presence of aliasing between
unbound conditional variables during an or-parallel execution does not create
any serious concern (note that this is not the case for other forms of parallelism,
where aliasing is a major source of complexity).

The result essentially states that, no matter how smart the implementation
scheme selected is, there will be cases that will lead to a nonconstant time cost.
This proof confirms the result put forward in Gupta and Jayaraman [1993a].
This nonconstant time nature is also evident in all the implementation schemes
presented in the literature, for example, the creation of the shared frames and
the copying of the choice points in MUSE [Ali and Karlsson 1990b], the instal-
lation of the bindings in Aurora [Lusk et al. 1990], and the management of
timestamps in various other models [Gupta 1994].

Upper Bound for OP. The relevant research on complexity of the OP problem
has been limited to showing that a constant time cost per operation cannot
be achieved in any implementation scheme. Limited effort has been placed to
supply a tight upper bound to this problem. Most of the implementation schemes
proposed in the literature can be shown to have a worst-case complexity of O(N)
per operation. Currently, the best result achieved is that the OP problem with
no aliasing can be solved on a pointer machine with a single operation worst-
case time complexity of O(/N (g N)*) for a small &.

The lower bound produced, O(lg N) per operation, is a confirmation and
refinement of the results proposed by Gupta and Jayaraman [1993al, and a
further proof that an ideal or-parallel system (where all the basic operations
are realized with constant-time overhead) cannot be realized. The upper bound,
O(JN),'! even if far from the lower bound, is of great importance, as it in-
dicates that (at least theoretically) there are implementation schemes which
have a worst-case time complexity better than that of the existing models.
Table I compares the worst-case time complexity of performing a sequence of
K operations, on an N node tree, for some of the most well-known schemes for
or-parallelism [Gupta 1994]. The proof of the upper bound result indeed pro-
vides one such model, although it is still an open issue whether the theoretical
superiority of such model can be translated into a practical implementation
scheme.

3.5 Experimental Systems

In this section, we illustrate in more detail two of the most efficient or-parallel
systems implemented.

3.5.1 The Aurora Or-Parallel Prolog System. Aurora is a prototype or-
parallel implementation of the full Prolog language developed for UMA

HThe notation O(¥/N) indicates that the complexity is within lgk N from &N, for some small
value of &.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

506 . G. Gupta et al.

Table I. Worst Case Complexity of Some Or-Parallel Schemes (K Operations)

| Method ” Complexity |
Known Upper Bound O(K x N1/3)
Stack Copying [Ali and Karlsson 1990a] OK xN)
Directory Tree Method [Ciepielewski and Haridi 1983] O xNIgN)
Binding Arrays [Lusk et al. 1990] O(K x N)
Environment Closing [Conery 1987a] OK xN)

(uniform memory access) shared-memory multiprocessors such as the Sequent
Symmetry and subsequently ported [Mudambi 1991] to NUMA (nonuniform
memory access) architectures such as the BBN TC-2000 (a scalable architec-
ture with Motorola 88000 processors'?). Recall that UMA architectures are
characterized by the fact that each processor in the system guarantees the
same average access time to any memory location, while NUMA architectures
(e.g., clusters of shared memory machines) may lead to different access time
depending on the memory location considered.

Aurora was developed as part of an informal research collaboration known
as the “Gigalips Project” with research groups at Argonne National Laboratory,
the University of Bristol (initially at the University of Manchester), the Swedish
Institute of Computer Science, and IQSOFT SZKI Intelligent Software Co. Ltd.,
Budapest as the main implementors.

Aurora is based on the SRI model, as originally described in Warren [1987c]
and refined in Lusk et al. [1990]. The SRI-model employs binding arrays for
representing multiple environments. In the SRI model, a group of processing
agents called workers cooperates to explore a Prolog search tree, starting at
the root (the topmost point). A worker has two conceptual components: an en-
gine, which is responsible for the actual execution of the Prolog code, and a
scheduler, which provides the engine component with work. These components
are in fact independent of each other, and a clean interface between them has
been designed [Szeredi et al. 1991; Carlsson 1990] allowing different schedulers
and engines to be plugged in. To date, Aurora has been run with five different
schedulers, and the same interface has been used to connect one of the
schedulers with the Andorra-I engine [Santos Costa et al. 1991a] to support both
and- and or-parallelism. The Aurora engine and compiler [Carlsson 1990] were
constructed by adapting SICStus Prolog 0.6 [Carlsson et al. 1995]. Garbage
collection for Aurora has been investigated by Weemeeuw and Demoen [1990].

In the SRI model, the search tree, defined implicitly by the program, is explic-
itly represented by a cactus stack generalizing the stacks of sequential Prolog
execution. Workers that have gone down the same branch share the data on

12The porting, however, did not involve modifications of the system structure to take full advantage
of the architecture’s structure.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 507

that branch. Bindings of shared variables must of course be kept private, and
are recorded in the worker’s private binding array. The basic Prolog operations
of binding, unbinding, and dereferencing are performed with an overhead of
about 25% relative to sequential execution (and remain fast constant-time op-
erations). However, during task switching the worker has to update its binding
array by deinstalling bindings as it moves up the tree and installing bindings
as it moves down another branch. This incurred overhead, called migration
cost (or task-switching cost), is proportional to the number of bindings that
are deinstalled and installed. Aurora divides the or-parallel search tree into a
public region and a private region. The public region consists of those nodes
from which other workers can pick up untried alternatives. The private region
consists of nodes private to a worker that cannot be accessed by other workers.
Execution within the private region is exactly like sequential Prolog execution.
Nodes are transferred from the private region of a worker P to the public region
by the scheduler, which does so when another idle worker @ requests work from
worker P.

One of the principal goals of Aurora has been the support of the full
Prolog language. Preserving the semantics of built-in predicates with side
effects is achieved by synchronization: whenever a nonleftmost branch of ex-
ecution reaches an order-sensitive predicate, the given branch is suspended
until it becomes leftmost [Hausman 1990]. This technique ensures that the
order-sensitive predicates are executed in the same left-to-right order as in
a sequential implementation, thus preserving compatibility with these imple-
mentations.

It is often the case that this strict form of synchronization is unnecessary,
and slows down parallel execution. Aurora therefore provides nonsynchronized
variants for most order-sensitive predicates that come in two flavors: the asyn-
chronous form respecting the cut pruning operator, and the completely relaxed
cavalier form. Notably, nonsynchronized variants are available for the dynamic
database update predicates (assert, retract, etc.) [Szeredi 1991].

A systematic treatment of pruning operators (cut and commit) and of spec-
ulative work has proved to be of tremendous importance in or-parallel imple-
mentations. Algorithms for these aspects have been investigated by Hausman
[1989, 1990] and incorporated into the interface and schedulers.

Graphical tracing packages have turned out to be essential for understanding
the behavior of schedulers and parallel programs and finding performance bugs
in them [Disz and Lusk 1987; Herrarte and Lusk 1991; Carro et al. 1993].

Several or-parallel applications for Aurora were studied in KluzZniak [1990]
and Lusk et al. [1993]. The nonsynchronized dynamic database features have
been exploited in the implementation of a general algorithm for solving opti-
mization problems [Szeredi 1991, 1992].

Three schedulers are currently operational. Two older schedulers were writ-
ten [Butler et al. 1998; Brand 1998], but have not been updated to comply with
the scheduler—engine interface:

(1) The Manchester Scheduler. The Manchester scheduler [Calderwood and
Szeredi 1989] tries to match workers to available work as well as possible.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

508 . G. Gupta et al.

The matching algorithm relies on global arrays, indexed by worker number.
One array indicates the work each worker has available for sharing and its
migration cost, and the other indicates the status of each worker and its
migration cost if it is idle. The Manchester scheduler was not designed for
handling speculative work properly. A detailed performance analysis of the
Manchester scheduler was done by Szeredi [1989].

(2) The Bristol Scheduler. The Bristol scheduler tries to minimize scheduler
overhead by extending the public region eagerly: sequences of nodes are
made public instead of single nodes, and work is taken from the bottom-
most live node of a branch. This idea was originally explored in the context
of the MUSE system, and successively integrated in a preliminary version
of the Bristol Scheduler [Beaumont et al. 1991]. The present version of the
scheduler [Beaumont and Warren 1993] addresses the problem of efficiently
scheduling speculative work. It actively seeks the least speculative, select-
ing a leftmost branch if the work is speculative and a “richest” branch (i.e.,
branch with most work) if the work is nonspeculative.

(8) The Dharma Scheduler. The Dharma scheduler [Sindaha 1993, 1992] is
also designed for efficiently scheduling speculative work. It addresses the
problem of quickly finding the leftmost, thus least speculative, available
work, by directly linking the tips of each branch.

The speedups obtained by all schedulers of Aurora for a diverse set of bench-
mark programs have been very encouraging. Some of the benchmark programs
contain a significant amount of speculative work, in which speedups are mea-
sured for finding the first (leftmost) solution. The degree of speedup obtained
for such benchmark programs depends on where in the Prolog search tree the
first solution is, and on the frequency of workers moving from right to left to-
wards less speculative work. There are other benchmark programs that have
little or no speculative work because they produce all solutions. The degree of
speedup for such benchmark programs depends on the amount of parallelism
present and on the granularity of parallelism.

More on the Aurora system, and a detailed discussion of its performance re-
sults, can be found in Calderwood and Szeredi [1989], Szeredi [1989], Beaumont
et al. [1991], Beaumont and Warren [1993], and Sindaha [1992]. The binding
array model has also been adapted for distributed shared memory architectures
and implemented in the Dorpp system [Silva and Watson 2000].

3.5.2 The MUSE Or-Parallel Prolog System. The MUSE or-parallel Prolog
system has been designed and implemented on a number of UMA and NUMA
computers (Sequent Symmetry, Sun Galaxy, BBN Butterfly II, etc.) [Ali and
Karlsson 1990b, 1992a,b; Ali et al. 1992; Karlsson 1992]. It supports the full
Prolog language and programs run on it with almost no user annotations. It is
based on a simple extension of the state of the art sequential Prolog implemen-
tation (SICStus WAM [Carlsson et al. 1995]).

The MUSE model assumes a number of extended WAMs (called workers, as in
Aurora), each with its own local address space, and some global space shared by
all workers. The model requires copying parts of the WAM stacks when a worker

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 509

Memory
Worker 1 Worker 2
Memory Map Memory Map
00009 Partition for 00000
_-="| Worker1 [~ ..
Partition for |.—~ N Partition for
Worker 1 N -~|" Worker 2
\\» /’r/
LN
O Partition for | .-~ N
o .-~ Worker 2 N
Partition for | .-~ | Partition for
Worker 2 © Worker 1
Oz Partition for Oy
- .~ Worker3 [Tl L.
Partition for | -~ ~--~._|, Partition for
Worker 3 © . Worker 3
1
)

Oxwwe T Oxwwww T
1 1
1 1

Fig. 9. Memory organization in MUSE.

runs out of work or suspends its current branch. The copying operation is made
efficient by utilizing the stack organization of the WAM. To allow copying of
memory between workers without the need of any pointer relocation operation,
MUSE makes use of a sophisticated memory mapping scheme. The memory
is partitioned among the different workers; each worker is implemented as a
separate process, and each process maps its own local partition to the same
range of memory addresses, which allows for copying without pointer reloca-
tions. The partitions belonging to other processes are instead locally mapped to
different address ranges. This is illustrated in Figure 9. The partition of worker
1is mapped at different address ranges in different workers; the local partition
resides at the same address range in each worker.

Workers make a number of choice points sharable, and they get work from
those shared choice points (nodes) by the normal backtracking of Prolog. As
in Aurora, the Muse system has two components: the engine and the sched-
uler. The engine performs the actual Prolog work while the schedulers, work-
ing together, schedule the work between engines and support the sequential
semantics of Prolog.

The first MUSE engine has been produced by extending the SICStus Prolog
version 0.6 [Carlsson et al. 1995]. Extensions are carefully added to preserve the
high efficiency of SICStus leading to a negligible overhead which is significantly
lower than in other or-parallel models.

The MUSE scheduler supports efficient scheduling of speculative and
nonspeculative work [Ali and Karlsson 1992b]. For purposes of scheduling, the
Prolog tree is divided into two sections: the right section contains voluntar-
ily suspended work and the left section contains active work. Voluntarily sus-
pended work refers to the work that was suspended because the worker doing
it found other work to the left of the current branch that was less speculative.
Active work is work that is nonspeculative and is actively pursued by work-
ers. The available workers concentrate on the available nonspeculative work
in the left section. When the amount of work in the left section is not enough

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

510 . G. Gupta et al.

for the workers, some of the leftmost part of the voluntarily suspended section
(i.e., speculative work) will be resumed. A worker doing speculative work will
always suspend its current work and migrate to another node to its left if that
node has less speculative work.

The scheduling strategy for nonspeculative work, in general, is based on
the principle that when a worker is idle, its next piece of work will be taken
from the bottommost (i.e., youngest) node in the richest branch (i.e., the branch
with maximum or-parallel work) of a set of active nonspeculative branches.
When the work at the youngest node is exhausted, that worker will find more
work by backtracking to the next youngest node. If the idle worker cannot
find nonspeculative work in the system, it will resume the leftmost part of the
voluntarily suspended section of the tree.

The MUSE system controls the granularity of jobs at run-time by avoiding
sharing very small tasks. The idea is that when a busy worker reaches a situa-
tion in which it has only one private parallel node, it will make its private load
visible to the other workers only when that node is still alive after a certain
number of Prolog procedure calls. Without such a mechanism, the gains due to
parallel execution can be lost as the number of workers is increased.

A clean interface between the MUSE engine and the MUSE scheduler has
been designed and implemented. It has improved the modularity of the system
and preserved its high efficiency.

Tools for debugging and evaluating the MUSE system have been developed.
The evaluation of the system on Sequent Symmetry and on BBN Butterfly
machines I and II shows very promising results in absolute speed and also in
comparison with results of the other similar systems. The speedups obtained
are near linear for programs with large amounts of or-parallelism. For programs
that do not have enough or-parallelism to keep all available workers busy the
speedups are (near) linear up to the point where all parallelism is exploited.
The speed up does not increase or decrease thereafter with increase in num-
ber of workers. For programs with no or very low or-parallelism, the speedups
obtained are close to 1 due to very low parallel overheads. More details of the
MUSE system and a discussion of its performance results can be found in ref-
erences cited earlier [Ali and Karlsson 1992a, 1992b; Ali et al. 1992; Karlsson
1992].

MUSE can be considered one of the first commercial parallel logic pro-
gramming systems ever to be developed; MUSE was included for a number
of years as part of the standard distribution of SICStus Prolog [Carlsson et al.
1995].13

4. INDEPENDENT AND-PARALLELISM

Independent and-parallelism refers to the parallel execution of goals that have
no “data dependencies” and thus do not affect each other. To take a simple
example, consider the naive Fibonacci program shown below.

BHowever, MUSE is no longer supported by SICS.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 511

M1 is 2-1, fib(M1,N1)] , M2 is 2-2, fib(M2,N2] ‘

£ib(1,N1)

£ib(0,N2)

Fig. 10. An and-tree for and-parallelism.

£ib(0, 1).

fib(1, 1).

fib(M, N) :- [M1 is M - 1, fib(M1, N1) 1,
[M2 is M - 2, fib(M2, N2) 1,
N is N1 + N2.

Assuming the execution of this program by supplying the first argument as
input, the two lists of goals, each enclosed within square brackets above, have no
data dependencies among themselves and hence can be executed independently
in parallel with each other. But the last subgoal N is N1+N2 depends on the
outcomes of the two and-parallel subgoals, and should start execution only after
N1 and N2 get bound.

Similarly to the case of or-parallelism, development of an and-parallel com-
putation can be depicted using a tree structure (and-tree). In this case, each
node in the tree is labeled by a conjunction of subgoals and it contains as many
children as subgoals in the conjunction. Figure 10 illustrates a simple and-tree
for the execution of £ib(2,X) with respect to the above program. The dashed
line in Figure 10 is used to denote the fact that it is irrelevant whether the
subgoal X is N1+N2 is a child of either of the two nodes above.

Independent and-parallelism manifests itself in a number of applications,
those in which a given problem can be divided into a number of independent
subproblems. For example, it appears in divide-and-conquer algorithms, where
the independent recursive calls can be executed in parallel (e.g., matrix multi-
plication, quicksort).

4.1 Problems in Implementing Independent And-Parallelism

In this section, we examine the problems associated with implementing in-
dependent and-parallelism. We discuss the various phases of an independent
and-parallel system and examine the problems encountered in each. An inde-
pendent and-parallel execution can be divided into three phases [Conery and
Kibler 1983]:

(1) Ordering Phase: Deals with detection of dependencies among goals;

(2) Forward Execution Phase: Deals with the steps needed to select the next
subgoal for execution and initiate its execution; and

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

512 . G. Gupta et al.
(8) Backward Execution Phase: Deals with steps to be taken when a goal fails,
that is, the operation of backtracking.

4.1.1 Ordering Phase: Notions of Independence. The ordering phase in an
independent and-parallel system is concerned with detecting data dependencies
between subgoals. Once it is determined that two (or more) subgoals do not have
any data dependencies, they can be executed in parallel. An interesting issue
that has received much attention in the literature is determining precisely
when a data dependency exists. The issues involved in answering this question
are, as we show, rather interesting and unique in the case of logic programming
[Hermenegildo 2000].

The objective of the process is to uncover as much as possible of the avail-
able parallelism, while guaranteeing that the correct results are computed
(correctness) and that other observable characteristics of the program, such
as execution time, are improved (speedup) or, at the minimum, preserved
(no-slowdown)—efficiency. A central issue is, then, under which conditions
two goals (“statements”) in a logic program can be correctly and efficiently
parallelized.

For comparison, consider the following segments of programs in (a) a tra-
ditional imperative language, (b) a (strict) functional language, and (d) a logic
language (we consider case (c) later). We assume that the values of W and Z are
initialized to some value before execution of these statements:

s1 Y := W+2; (+ (+ W 2) Y = W+2,
So X 1= Y+Z; Z) X = Y+Z,
(a) (v) (c)
(d) main:- p(X) :- X=a.
S1 P(X) B
S9 q(X), q(X) :- X=b, large computation.
q(X) :- X=a.

For simplicity, we reason about the correctness and efficiency of parallelism
using the instrumental technique of considering reorderings (interleavings).
Statements s; and sg in (a) are generally considered to be dependent because
reversing their order would yield an incorrect result; that is, it violates the cor-
rectness condition above (this is an example of a flow-dependency).'* A slightly
different, but closely related situation occurs in (b): reversing the order of func-
tion application would result in a run-time error (one of the arguments to a
function would be missing).

Interestingly, reversing the order of statements s; and sy in (d) does yield
the correct result (X=a). In fact, this is an instance of a more general rule: if
no side effects are involved, reordering statements does not affect correctness

14T complete the discussion above, note that output-dependencies do not appear in functional or
logic and constraint programs because single assignment is generally used; we consider this a minor
point of difference since one of the standard techniques for parallelizing imperative programs is to
perform a transformation to a single assignment program before performing the parallelization.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 513

in a logic program. The fact that (at least in pure segments of programs) the
order of statements in logic programming does not affect the result'® led in
early models to the proposal of execution strategies where parallelism was ex-
ploited “fully” (i.e., all statements were eligible for parallelization). However,
the problem is that such parallelization often violates the principle of efficiency:
for a finite number of processors, the parallelized program can be arbitrarily
slower than the sequential program, even under ideal assumptions regarding
run-time overheads. For instance, in the last example, reversing the order of the
calls to p and q in the body of main implies that the call q(X) (X at this point is
free, i.e., a pointer to an empty cell) will first enter its first alternative, perform-
ing the large computation. Upon return of q (with X pointing to the constant b)
the call to p will fail and the system will backtrack to the second alternative
of q, after which p will succeed with X=a. On the other hand, the sequential
execution would terminate in two or three steps, without performing the large
computation. The fundamental observation is that, in the sequential execution,
p affects q, in the sense that it prunes (limits) its choices. Executing q before
executing p results in performing speculative choices with respect to the sequen-
tial execution. Note that this is in fact very related to executing conditionals
in parallel (or ahead of time) in traditional languages (note that q above could
also be (loosely) written as “q(X) :- if X=b then large computation else if
X=a then true else fail.”).

Something very similar occurs in case (c) above, which corresponds to a
constraint logic program: while execution of the two constraints in the original
order involves two additions and two assignments (the same set of operations
as those of the imperative or functional programs), executing them in reversed
order involves first adding an equation to the system, corresponding to state-
ment sy, and then solving it against s;, which is more expensive. The obvious
conclusion is that, in general, even for pure programs, arbitrary paralleliza-
tion does not guarantee that the two conditions (correctness and efficiency) are
met.'® We return to the very interesting issue of what notions of parallelism
are appropriate for constraint logic programming in Section 8.

Contrary to early beliefs held in the field, most work in the last decade has
considered that violating the efficiency condition is as much a “sign of depen-
dence” among goals as violating the correctness condition. As a result, interest-
ing notions of independence have been developed that capture these two issues
of correctness and efficiency at the same time: independent goals as those whose
run-time behavior, if parallelized, produces the same results as their sequential
execution and an increase (or, at least, no decrease) in performance. To sepa-
rate issues better, we discuss the issue under the assumption of ideal run-time
conditions, that is, no task creation and scheduling overheads (we deal with

15Note that in practical languages, however, termination characteristics may change, but termina-
tion can actually also be seen as an extreme effect of the other problem to be discussed: efficiency.
16In fact, this is similar to the phenomenon that occurs in or-parallelism where arbitrarily par-
allelizing branches of the search does not produce incorrect results, but, if looking for only one
solution to a problem (or, more generally, in the presence of pruning operators) results in specula-
tive computations that can have a negative effect of efficiency.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

514 . G. Gupta et al.

overheads later). Note that, even under these ideal conditions, the goals in (c)
and (d) are clearly dependent using the definition.

A fundamental question then is how to guarantee independence (without
having to actually run the goals, as suggested by the definition given above).
A fundamental result in this context is the fact that, if only the Herbrand con-
straint system is used (as in the Prolog language), a goal or procedure call, g,
cannot be affected by another, p, if it does not share logical variables with it at
the point in time just before execution (i.e., in the substitution represented by
s1). that is, in those cases correctness and efficiency hold and no-slowdown is
guaranteed. In practice, the condition implies that there are no shared free vari-
ables (pointers to empty structure fields) between the run-time data structures
passed to q and the data structures passed to p. This condition is called strict
independence [DeGroot 1984; Hermenegildo and Rossi 1995].17 For example, in
the following program:

main :- X=f(X,g(K)),

Z=g(L),
W=h(b,L), &0
pX,Y),

q(Y,2),
r(W).

p and q are strictly independent, because, at the point in execution just before
calling p (the situation depicted in the right part of the figure), X and Z point to
data structures that do not point to each other, and, even though Y is a pointer
which is shared between p and g, Y points to a fixed value, which p cannot
change (note again that we are dealing with single assignment languages). As
a result, the execution of p cannot affect q in any way and q can be safely run
ahead of time in parallel with p (and, again assuming no run-time overheads,
no-slowdown is guaranteed). Furthermore, no locking or copying of the inter-
vening data structures is required (which helps bring the implementation closer
to the ideal situation). Similarly, q and r are not strictly independent, because
there is a pointer in common (L) among the data structures they have access to
and thus the execution of q could affect that of r.

Unfortunately, it is not always easy to determine independence by simply
looking at one procedure, as above. For example, in the program below,

main :- t(X,Y),
pX),
q(¥).

it is possible to determine that p and q are not (strictly) independent of t, since,
upon entering the body of the procedure, X and Y are free variables that are

17T be completely precise, in order to avoid creating speculative parallelism, some nonfailure
conditions are also required of the goals executed in parallel, but we knowingly overlook this issue
at this point to simplify the discussion.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 515

shared with t. On the other hand, after execution of t the situation is unknown
since perhaps the structures created by t (and pointed to by X and Y) do not share
variables. Unfortunately, in order to determine this for sure a global (inter-
procedural) analysis of the program (in this case, to determine the behavior of t)
must be performed. Alternatively, a run-time test can be performed just after
the execution of t to detect independence of p and q. This has the undesirable
side-effect that then the no-slowdown property does not automatically hold,
because of the overhead involved in the test, but it is still potentially useful.

A number of approaches have been proposed for addressing the data depen-
dency detection issues discussed above. They range from purely compile-time
techniques to purely run-time ones. There is obviously a trade-off between the
amount of and-parallelism exploited and data dependency analysis overhead
incurred at run-time: purely compile-time techniques may miss many instances
of independent and-parallelism but incur very little run-time overhead, while
purely run-time techniques may capture maximal independent and-parallelism
at the expense of costly overhead which prevents the system from achieving
the theoretical efficiency results. However, data dependencies cannot always
be detected entirely at compile time, although compile-time analysis tools can
uncover a significant portion of such dependencies. The various approaches are
briefly described below.

(1) Input/Output Modes: One way to overcome the data dependency problem
is to require the user to specify the “mode” of the variables, that is, whether
an argument of a predicate is an input or output variable. Input variables
of a subgoal are known to become bound before the subgoal starts and
output variables are variables that will be bound by the subgoal during its
execution.

Modes have also been introduced in the committed choice languages [Tick
1995; Shapiro 1987] to actually control the and-parallel execution (but lead-
ing to an operational semantics different from that of Prolog).

(2) Static Data Dependency Analysis: In this technique the goal and the pro-
gram clauses are globally analyzed at compile time, assuming a worst case
for subgoal dependencies. No checks are done at run-time. This approach
was first attempted in Chang et al. [1985]. However, the relatively simple
compile-time analysis techniques used, combined with no run-time check-
ing means that a lot of parallelism may be lost. The advantage is, of course,
that no overhead is incurred at run-time.

(38) Run-Time Dependency Graphs: Another approach is to generate the de-
pendency graph at run-time. This involves examining bindings of relevant
variables every time a subgoal finishes executing. This approach has been
adopted, for example, by Conery in his and/or model [Conery and Kibler
1981, 1983; Conery 1987b]. The approach has prohibitive run-time cost,
since variables may be bound to large structures with embedded variables.
The advantage of this scheme is that maximal independent and-parallelism
could be potentially exploited (but after paying a significant cost at run-
time). A simplified version of this idea has also been used in the APEX
system [Lin and Kumar 1988]. In this model, a token-passing scheme is

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

516 . G. Gupta et al.

adopted: a token exists for each variable and is made available to the left-
most subgoal accessing the variable. A subgoal is executable as soon as it
owns the tokens for each variable in its binding environment.

(4) A fourth approach, which is midway between (2) and (3), encapsulates
the dependency information in the code generated by the compiler along
with the addition of some extra conditions (tests) on the variables. In
this way simple run-time checks can be done to check for dependency.
This technique, called Restricted (or Fork/Join) And-Parallelism (RAP),
was first proposed by DeGroot [1984]. Hermenegildo [1986a] defined a
source-level language (Conditional Graph Expressions—CGEs) in which
the conditions and parallel expressions can be expressed either by the
user or by the compiler. The advantage of this approach is that it makes
it possible for the compiler to express the parallelization process in a
user-readable form and for the user to participate in the process. This
effectively eliminates the dichotomy between manual and automatic paral-
lelization. Hermenegildo, Nasr, Rossi, and Garcia de la Banda formalized
and enhanced the Restricted And-Parallelism model further by providing
backtracking semantics, a formal model, and correctness and efficiency
results, showing the conditions under which the “no-slowdown” property
(i.e., that parallel execution is no slower than sequential execution) holds
[Hermenegildo 1986a, 1987; Hermenegildo and Nasr 1986; Hermenegildo
and Rossi 1995; Garcia de la Banda et al. 2000]. A typical CGE has the form:

(conditions => goaly & ... & goaly)
equivalent to (using Prolog’s if-then-else):
(conditions -> goal; & ... & goal, ; goaly, ..., goal,)

where “&” indicates a parallel conjunction, that is, subgoals that can be
solved concurrently (while “)” is maintained to represent sequential con-
junction, i.e., to indicate that the subgoals should be solved sequentially).
The Restricted And-Parallelism model is discussed in more detail in Sec-
tion 4.3. Although Restricted And-Parallelism may not capture all the in-
stances of independent and-parallelism present in the program, in practice

it can exploit a substantial part of it.

Approach (1) differs from the rest in that the programmer has to explicitly
specify the dependencies, using annotations. Approach (4) is a nice compromise
between (2), where extensive compile-time analysis is done to get suboptimal
parallelism, and (3), where a costly run-time analysis is needed to get maximal
parallelism. The annotations of (4) can be generated by the compiler [DeGroot
1987a] and the technique has been shown to be successful when powerful global
analysis (generally based on the technique of abstract interpretation [Cousot
and Cousot 1977, 1992]) is used [Hermenegildo and Warren 1987; Winsborough
and Waern 1988; Muthukumar and Hermenegildo 1990, 1992a; Giannotti and
Hermenegildo 1991; Hermenegildo et al. 1992, 2000; Jacobs and Langen 1992;
Bueno et al. 1994, 1999; Muthukumar et al. 1999; Puebla and Hermenegildo
1999, 1996].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 517

4.1.2 Forward Execution Phase. The forward execution phase follows the
ordering phase. It selects independent goals that can be executed in indepen-
dent and-parallel, and initiates their execution. The execution continues as nor-
mal sequential Prolog execution until either failure occurs, in which case the
backward execution phase is entered, or a solution is found. It is also possible
that the ordering phase might be entered again during forward execution, for
example, in the case of Conery’s scheme when a nonground term is generated.
Implementation of the forward execution phase is relatively straightforward;
the only major problem is the efficient determination of the goals that are ready
for independent and-parallel execution. Different models have adopted differ-
ent approaches to tackle this issue, and they are described in the successive
subsections.

Various works have pointed out the importance of good scheduling strate-
gies. Hermenegildo [1987] showed the relationship between scheduling and
memory management, and provided ideas on using more sophisticated schedul-
ing techniques for guaranteeing a better match between the logical organiza-
tion of the computation and its physical distribution on the stacks, with the
aim of simplifying backtracking and memory performance. This issue has been
studied further in Shen and Hermenegildo [1994, 1996a], where flexible re-
lated scheduling and memory management approaches are studied. Related
research on scheduling for independent and-parallel systems has also been
proposed by Dutra [1994]. In Pontelli and Gupta [1995b] a methodology is de-
scribed which adapts scheduling mechanisms developed for or-parallel systems
to the case of independent and-parallel systems. In the same way in which an
or-parallel system tries to schedule first work that is more likely to succeed,
and-parallel systems will gain from scheduling first work that is more likely
to fail. The advantage of doing this comes from the fact that most IAP sys-
tems support intelligent forms of backtracking over and-parallel calls, which
allow us to quickly propagate failure of a subgoal to the whole parallel call.
Thus, if a parallel call does not have solutions, the sooner we find a failing sub-
goal, the sooner backtracking can be started. Some experimental results have
been provided in Pontelli and Gupta [1995b] to support this perspective. This
notion is also close to the first-fail principle widely used in constraint program-
ming [Haralick and Elliot 1980]. The importance of determining goals that will
not fail and/or are deterministic was studied also in Hermenegildo [1986a],
Pontelli et al. [1996], Hermenegildo and Rossi [1995], and Garcia de la Banda
et al. [2000], and techniques have been devised for detecting deterministic and
nonfailing computations at compile-time [Debray and Warren 1989; Debray
et al. 1997].

4.1.3 Backward Execution Phase. The need for a backward execution
phase arises from the nondeterministic nature of logic programming: a pro-
gram’s execution involves choosing at each resolution step one of multiple can-
didate clauses, and this choice may potentially lead to distinct solutions. The
backward execution phase ensues when failure occurs, or more solutions to the
top-level query are sought after one is reported. The subgoal to which execution

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

518 . G. Gupta et al.

?-{a&bé&c). Processor 1 Processor 2
a:-(d&e).
a & b & ¢ c
d e
d & e a b

Fig. 11. Lack of correspondence between physical and logical computation.

should backtrack is determined, the machine state is restored, and forward ex-
ecution of the selected subgoal is initiated.

As mentioned before, Hermenegildo [1986a] showed that, in the presence of
TAP, backtracking becomes considerably more complex, especially if the system
strives to explore the search space in the same order as in a sequential Prolog
execution. In particular:

—IAP leads to the loss of correspondence between logical organization of the
computation and its physical layout; this means that logically contiguous
subgoals (i.e., subgoals that are one after the other in the resolvent) may be
physically located in noncontiguous parts of the stack, or in stacks of different
workers. In addition, the order of subgoals in the stacks may not correspond
to their backtracking order.

This is illustrated in the example in Figure 11. Worker 1 starts with the
first parallel call, making b and ¢ available for remote execution and locally
starting the execution of a. Worker 2 immediately starts and completes the
execution of b. In the meantime, Worker 1 opens a new parallel call, locally
executing d and making e available to other workers. At this point, Worker 2
may choose to execute e, and then c. The final placement of subgoals in the
stacks of the two workers is illustrated on the right of Figure 11. As we can
see, the physical order of the subgoals in the stack of Worker 2 does not match
the logical order. This will clearly create a hazard during backtracking, since
Prolog semantics require first exploring the alternatives of b before those of
e, while the computation of b is trapped on the stack below that of e;

—backtracking may need to continue to the (logically) preceding subgoal, which
may still be executing at the time backtracking takes place.

These problems are complicated by the fact that independent and-parallel
subgoals may have nested independent and-parallel subgoals currently execut-
ing which have to be terminated or backtracked over.

Considerably different approaches have been adopted in the literature to
handle the backward execution phase. The simplest approach, as adopted in
models such as Epilog, ROPM, AO-WAM [Wise 1986; Ramkumar and Kalé
19891, is based on removing the need for actual backtracking over and-parallel
goals through the use of parallelism and solution reuse. For example, as shown
in Figure 12, two threads of execution are assigned to the distinct subgoals, and
they will be used to generate (via local standard backtracking) all solutions to
a and b. The backward execution phase is then replaced by a relatively simpler

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 519

aX,Y)
aX,Y) b(Y,Z)
b(Z,W)
Sequential Execution Parallel Execution

Fig. 12. Solution reuse.

cross-product operation. Although intuitively simple, this approach suffers from
major drawbacks, including the extreme complexity of recreating Prolog seman-
tics, that is, the correct order of execution of order-sensitive predicates as well as
the correct repetition of side-effect predicates as imposed in the recomputation-
oriented Prolog semantics. In this context, by recomputation-oriented seman-
tics we indicate the fact that a subgoal is completely recomputed for each al-
ternative of the subgoals on its left; for example, in a goal such as ?7- p,q, the
goal q is completely recomputed for each solution of p.

In the context of independent and-parallel systems based on recomputation
(such as those proposed in Hermenegildo [1986b], Lin and Kumar [1988], and
Pontelli et al. [1996]), a number of different backtracking algorithms have been
proposed. In the past, backtracking algorithms have been proposed that later
turned out to be incomplete [Woo and Choe 1986].

The earliest and most widely used correct backtracking algorithm for IAP
has been presented by Hermenegildo and Nasr [1986] and efficiently developed
in &-Prolog [Hermenegildo and Greene 1991] and &ACE/ACE [Pontelli and
Gupta 1998]. A relatively similar algorithm has also been used in APEX
[Lin and Kumar 1988], and the algorithm has been extended to handle
dependent and-parallelism as well [Shen 1992a]. Let us consider the following
query,

?- b1, bg, (a1 & 92 & q3), a1, ap

and let us consider the possible cases that can arise whenever one of the sub-
goals in the query fails.

(1) Ifeither ag or bg fails, then standard backtracking is used and backtracking
is continued, respectively, in a; or b; (see Case 1 in Figure 13).

(2) Ifa; fails (outside backtracking), then backtracking should continue inside
the parallel call, in the subgoal q; (see Case 2 in Figure 13). The fact that a;
was executing implies that the whole parallel call (and in particular q3)
was completed. In this case, the major concern is to identify the location
of the computation g5, which may lie in a different part of the stack (not
necessarily immediately below a;) or in the stack of a different worker. If g4
does not offer alternative solutions, then, as in standard Prolog, backtrack-
ing should propagate to g, and eventually to q;. Each one of these subgoals
may lie in a different part of the stack or in the stack of a different worker. If
none of the subgoals returns any alternative solution, then ultimately back-
tracking should be continued in the sequential part of the computation that

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

520 . G. Gupta et al.

Case 1:

backtrack backirack
?- b . (gl & g2 & g3) , a
Case 2: backtrack backtrack backtrack
- bl , b2 , (gl & g2 & g3) , 6 , a2
Case 3: backtrack

Kkill kill
>~ bl , b2, (al &«(@ & @3) , al , a2

Fig. 13. Backtracking on And-parallel Calls.

precedes the parallel call (bg). If q; succeeds and produces a new solution,
then some parallelism can be recovered by allowing parallel recomputation
of the subgoals q; for j > i.

(3) If q; G € {1, 2, 3}) fails (inside backtracking) during its execution, then

(a) the subgoals q; (j > i) should be removed,;
(b) as soon as the computation of q;_; is completed, backtracking should
move to it and search for new alternatives.

This is illustrated in Case 3 of Figure 13. In practice all these steps can be
avoided by relying on the fact that the parallel subgoals are independent:
thus failure of one of the subgoals cannot be cured by backtracking on
any of the other parallel subgoals. Hermenegildo suggested a form of semi-
intelligent backtracking, in which the failure of either one of the q; causes
the failure of the whole parallel conjunction and backtracking tobs.

To see why independent and-parallel systems should support this form of semi-
intelligent backtracking consider the goal:

?- a, b, c, d.

Suppose b and c are independent subgoals and can be executed in indepen-
dent and-parallel. Suppose that both b and ¢ are nondeterminate and have a
number of solutions. Consider what happens if c fails. In normal sequential
execution we would backtrack to b and try another solution for it. However,
since b and c do not have any data dependencies, retrying b is not going to
bind any variables that would help c to succeed. So if ¢ fails, we should back-
track and retry a. This kind of backtracking, based on the knowledge of data
dependence, is called intelligent backtracking [Cox 1984]. As should be obvious,
knowledge about data dependencies is needed for both intelligent backtracking
as well as independent and-parallel execution. Thus, if an independent and-
parallel system performs data dependency analysis for parallel execution, it
should take further advantage of it for intelligent backtracking as well. Note
that the intelligent backtracking achieved may be limited, since, in the example
above, a may not be able to cure failure of c. Execution models for independent

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 521

and-parallelism that exploit limited intelligent backtracking [Hermenegildo
and Nasr 1986; Pontelli and Gupta 1998] as well as those that employ fully in-
telligent backtracking [Lin 1988; Codognet and Codognet 1990; Winsborough
1987] have been proposed and implemented. In particular, the work by
Codognet and Codognet [1990] shows how to use a Dynamic Conflict Graph
(a unification graph recording for each binding the literal responsible for it),
designed to support sequential intelligent backtracking [Codognet et al. 1988]
to support both forward and backward and-parallel execution.

A further distinction has been made in the literature [Pontelli et al. 1996;
Shen and Hermenegildo 1994, 1996a] regarding how outside backtracking is
carried out:

—private backtracking: Each worker is allowed to backtrack only on the compu-
tations lying in their own stacks. Thus, if backtracking has to be propagated
to a subgoal lying in the stack of another worker P, then a specific mes-
sage has been sent to P, and P will (typically asynchronously) carry out the
backtracking activity;

—public backtracking: Each worker is allowed to backtrack on any computa-
tion, independently of where it resides; it can also backtrack on computations
lying on the stack of a different worker.

Private backtracking has been adopted in various systems [Hermenegildo
and Greene 1991; Shen 1992a]. It has the advantage of allowing each worker
to have complete control of the parts of the computation that have been locally
executed; in particular, it facilitates the task of performing garbage collection
as well as local optimizations. On the other hand, backtracking becomes an
asynchronous activity, since a worker may not be ready to immediately serve
a backtracking request coming from another worker. A proper management of
these message-passing activities (e.g., to avoid the risk of deadlocks) makes
the implementation very complex [Shen 1992b; Pontelli et al. 1996]. Further-
more, experiments performed in the &ACE system [Pontelli and Gupta 1998]
demonstrated that public backtracking is considerably more efficient than pri-
vate backtracking, by allowing synchronous backtracking, without delays in
the propagation of failures. At the implementation level, public backtracking is
also simpler: just requiring mutual exclusion in the access of certain memory
areas. The disadvantage of public backtracking is the occasional inability of im-
mediately recovering memory during backtracking, since in general we cannot
allow one worker to recover memory belonging to a different worker.

4.2 Support for Full Prolog in And-Parallelism

Asin the case of or-parallel systems, some researchers have favored supporting
Prolog’s sequential semantics in independent and-parallel systems [DeGroot
1987b; Muthukumar and Hermenegildo 1989; Chang and Chiang 1989]. This
imposes some constraints on how backtracking as well as forward execution
takes place. Essentially, the approach that has been taken is that if two inde-
pendent goals are being executed in parallel, both of which lead to an order-
sensitive predicate, then the order-sensitive predicate in the right goal can only

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

522 . G. Gupta et al.

be performed after the last order-sensitive predicate in the goal to the left has
been executed. Given that this property is undecidable in general, it is typically
approximated by suspending the side-effect until the branch in which it appears
is the leftmost in the computation tree (i.e., all the branches on the left have
completed). It also means that intelligent backtracking has to be sacrificed,
because considering again the previous example, if ¢ fails and we backtrack
directly into a, without backtracking into b first, then we may miss executing
one or more extralogical predicates (e.g., input/output operations) that would
be executed had we backtracked into b. A form of intelligent backtracking can
be maintained and applied to the subgoals lying on the right of the failing one.
In the same way as or-parallel systems, these systems also include useful “con-
current” versions of order-sensitive predicates, whose semantics do not require
sequencing. In addition, supporting full Prolog also introduces challenges in
other parts of and-parallel systems, such as, for example, in parallelizing com-
pilers that perform global analysis [Bueno et al. 1996].

The issue of speculative computation also arises in independent and-parallel
systems [Tebra 1987; Hermenegildo and Rossi 1995; Garcfa de la Banda et al.
2000]. Given two independent goals a(X), b(Y) that are being executed in and-
parallel, if a eventually fails, then work put in for solving b will be wasted (in
sequential Prolog the goal b will never be executed). Therefore, not too many
resources (workers) should be invested in goals to the right. Once again, it
should be stressed that the design of the work-scheduler is very important for a
parallel logic programming system. Also, and as pointed out before, issues such
as nonfailure and determinism analysis can provide important performance
gains.

4.3 Independent And-Parallel Execution Models

In this section, we briefly describe some of the methods that have been proposed
for realizing an independent and-parallel system. These are:

(1) Conery’s abstract parallel implementation [Conery and Kibler 1981, 1983];
(2) The And-Parallel Execution (APEX) model of Lin and Kumar [1988]; and,

(3) The Restricted And-Parallel (RAP) Model, introduced in DeGroot [1984],
and extended in Hermenegildo and Nasr [1986b], Hermenegildo [1986b],
and in Pontelli et al. [1995].

4.3.1 Conery’s Model. Inthis method [Conery and Kibler 1983], a dataflow
graph is constructed during the ordering phase making the producer—consumer
relationships between subgoals explicit. If a set of subgoals has an uninstanti-
ated variable V in common, one of the subgoals is designated as the producer
of the value of V and is solved first. Its solution is expected to instantiate V.
When the producer has been solved, the other subgoals, the consumers, may be
scheduled for evaluation. The execution order of the subgoals is expressed as a
dataflow graph, in which an arc is drawn from the producer of a variable to all
its consumers.

Once the dataflow graph is determined, the forward execution phase ensues.
In this phase, independent and-parallel execution of subgoals that do not have

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 523

any arcs incident on them in the dataflow graph is initiated. When a subgoal
is resolved away from the body of a clause (i.e., it is successfully solved), the
corresponding node and all of the arcs emanating from it are removed from
the dataflow graph. If a producer creates a nonground term during execution,
the ordering algorithm must be invoked again to incrementally redraw the
dataflow graph.

When execution fails, some previously solved subgoal must be solved again to
yield a different solution. The backward execution phase picks the last parent
(as defined by a linear ordering of subgoals, obtained by a depth-first traversal
of the dataflow graph) for the purpose of re-solving.

Note that in this method data dependency analysis for constructing the
dataflow graph has to be carried out every time a nonground term is gener-
ated, making its cost prohibitive.

4.3.2 APEX Model. The APEX (And-Parallel EXecution) model has been
devised by Lin and Kumar [1988]. In this method forward execution is im-
plemented via a token-passing mechanism. A token is created for every new
variable that appears during execution of a clause. A subgoal P is a producer
of a variable V if it holds the token for V. A newly created token for a vari-
able V is given to the leftmost subgoal P in the clause which contains that
variable. A subgoal becomes executable when it receives tokens for all the
uninstantiated variables in its current binding environment. Parallelism is
exploited automatically when there is more than one executable subgoal in a
clause.

The backward execution algorithm performs intelligent backtracking at the
clause level. Each subgoal P; dynamically maintains a list of subgoals (denoted
as B-list(P;)) consisting of those subgoals in the clause that may be able to
cure the failure of P;, if it fails, by producing new solutions. When a subgoal P;
starts execution, B-list(P;) consists of those subgoals that have contributed to
the bindings of the variables in the arguments of P;. When P; fails, P; = head(B-
list(P;)) is selected as the subgoal to which to backtrack. The tail of B-list(P;) is
also passed to P; and merged into B-list(P;) so that if P; is unable to cure the
failure of P;, backtracking may take place to other subgoals in B-list(P;).

This method also has significant run-time costs since the B-lists are created,
merged, and manipulated at run-time. APEX has been implemented on shared
memory multiprocessors for pure logic programs [Lin and Kumar 1988].

4.3.3 RAP Model. As mentioned before, in the standard version of this
model program clauses are compiled into conditional graph expressions (CGEs)
of the form:

(condition => goal; & goaly & --- & goaly,),

meaning that, if condition is true, goals goal;--- goal, should be evaluated
in parallel, otherwise they should be evaluated sequentially. The condition is
a conjunction of tests of two types: ground([vy, ..., v,]) checks whether all of
the variables vy, ..., v, are bound to ground terms. independent(vy, vs) checks
whether the set of variables reachable from v; is disjoint from the set of vari-
ables reachable from ve. The condition can also be the constant true, which

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

524 . G. Gupta et al.

means the goals can be unconditionally executed in parallel. The groundness
and independence conditions are in principle evaluated at run-time. A simple
technique that keeps track of groundness and independence properties of vari-
ables through tags associated with the heap locations is presented in DeGroot
[1984]. The method is conservative in that it may type a term as nonground
even when it is ground, one reason why this method is regarded as “restricted.”
Another way in which CGEs are restrictive is that they cannot capture all the
instances of independent and-parallelism present in a program, because of their
parenthetical nature (the same reason why parbegin-parend expressions are
less powerful than fork-join expressions in exploiting concurrency [Peterson
and Silberschatz 1986]). Enhanced parallelism operators and CGE expressions
that eliminate this restriction while preserving backtracking semantics have
been proposed in Cabeza and Hermenegildo [1996].

Experimental evidence has demonstrated that among all the models the RAP
model comes closest to realizing the criteria mentioned in the previous section.
This model has been formalized and extended by Hermenegildo and Nasr, and
has been efficiently implemented using WAM-like instructions [Hermenegildo
1986b; Pontelli et al. 1995] as the &-Prolog/Ciao system [Hermenegildo and
Greene 1991], as the &ACE/ACE system [Pontelli et al. 1995, 1996], and as
part of the dependent and-parallel DASWAM system [Shen 1992b,a].

A considerable body of work exists on the task of automatically paralleliz-
ing programs at compile time and generating CGEs. Global program analy-
sis (generally based on the technique of abstract interpretation [Cousot and
Cousot 1977, 1992]) has been shown useful at guiding the parallelization pro-
cess and reducing the conditions in the CGEs, generating simpler run-time tests
or even unconditional parallelism [Winsborough and Waern 1988; Muthukumar
and Hermenegildo 1992, 1991, 1990; Giannotti and Hermenegildo 1991;
Hermenegildo et al. 1992; Jacobs and Langen 1992; Bueno et al. 1994, 1999;
Muthukumar et al. 1999; Puebla and Hermenegildo 1999]. A detailed overview
of this automatic parallelization work is beyond the scope of this article. See
Hermenegildo [2000] for a tutorial introduction and pointers to literature.

4.4 Experimental Systems

4.4.1 The &-Prolog AND-Parallel Prolog System. &-Prolog [Hermenegildo
1986a, 1986b; Hermenegildo and Greene 1991] is a prototype Prolog imple-
mentation, built as an extension of SICStus Prolog 0.5 (and, later, 0.6-0.7) and
capable of exploiting independent and-parallelism automatically by means of a
parallelizing compiler. Explicit parallelization of programs by the user is also
supported through the &-Prolog language extensions, and more complex forms
of and-parallelism (i.e., not just independent and-parallelism) can also be ex-
pressed and exploited. The same language is used to make the result of the auto-
matic parallelization visible to the user if so desired. The parallelizing compiler
has been integrated into the Prolog run-time environment in the standard way
so that a familiar user interface with online interpreter and compiler is pro-
vided. Normally, users are unaware (except for the increase in performance) of
any difference with respect to a conventional Prolog system. Compiler switches

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 525

T] PARALLELIZING COMPILER

Ql]ug L'()dt:s Abstract Intery i

- (Sharing, Sharing+Freeness,
[Aeqs, Def, Lsign, ...)

Annotators (local 4
dependency analysis)
MEL/CDG/UDG/URLPY... w
] side-effect analysi
T L} E ysis I

~

& - Prolog)
— granularity analysis

1

&-Prolog system
Parallel

Fig. 14. &-Prolog parallelizer structure.

icond(1-3)

-. icond(2-3)
~

//L(ml!(]lubal analysis
and simplification

(test(1-3)->(gl, 22) & g3
e ——— soel(g2&gd))
Annotation

Alternative: gl, (g2 & g3)

Fig. 15. Parallelization process in &-Prolog (forp :- g1, g2, g3.).

(implemented as “Prolog flags”) determine whether user code will be paral-
lelized and through which type of analysis. If the user chooses to parallelize
some of the code, the compiler still helps by checking the supplied annotations
for correctness, and providing the results of global analysis to aid in the depen-
dency analysis task.

&-Prolog was originally designed for global addressing space systems and it
has been implemented on a number of shared memory multiprocessors, includ-
ing Sequent Balance, Sequent Symmetry, and Sun Galaxy systems (and it has
been implemented on distributed systems as well [Hermenegildo 1994; Cabeza
and Hermenegildo 1996]). The &-Prolog system comprises a parallelizing com-
piler aimed at uncovering the parallelism in the program and an execution
model/run-time system aimed at exploiting such parallelism. There is also an
online visualization system (based on the X-windows standard) which provides
a graphical representation of the parallel execution and which has proven itself
quite useful in debugging and performance tuning [Carro et al. 1993]. The first
version of the &-Prolog system was developed collaboratively between The Uni-
versity of Texas and MCC. Newer versions have been developed at the Technical
University of Madrid (UPM).

&-Prolog Parallelizing Compiler. Input code is processed by several com-
piler modules as follows [Hermenegildo and Warren 1987] (Figures 14 and 15):
The Annotator, or “parallelizer,” performs a (local) dependency analysis on the

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

526 . G. Gupta et al.

input code, using a conditional graph-based approach. This is illustrated in
Figure 15 representing the parallelization of “g1 (---), ga(---), g3(---)”. The
bodies of procedures are explored looking for statements and procedure calls
that are candidates for parallelization. A dependency graph is first built which
in principle reflects the total ordering of statements and calls given by the se-
quential semantics. Each edge in the graph is then labeled with the run-time
data conditions (the run-time check) that would guarantee independence of the
statements joined by the edge. If the appropriate option is selected, the anno-
tator obtains information about the possible run-time substitutions (“variable
bindings”) at all points in the program as well as other types of information
from the Global Analyzer (described below). This information is used to prove
the conditions in the graph statically true or false (Figure 15). If a condition
is proved to be true, then the corresponding edge in the dependency graph is
eliminated. If proved false, then an unconditional edge (i.e., a static dependency)
is left. Still, in other edges conditions may remain, but possibly simplified.

The annotator also receives information from the Side-Effect Analyzer on
whether each nonbuilt-in predicate and clause of the given program is pure, or
contains a side-effect. This information adds dependencies to correctly sequence
such side-effects [Muthukumar and Hermenegildo 1989].

The annotator then encodes the resulting graph using the & operator produc-
ing an “annotated” (parallelized) &-Prolog program. The techniques proposed
for performing this process depend on many factors including whether arbi-
trary parallelism or only fork-join structures are allowed and also whether
run-time independence tests are allowed. As an example, Figure 15 presents
two possible encodings in &-Prolog of the (schematic) dependency graph ob-
tained after analysis. The parallel expressions generated in this case use only
fork-join structures, one with run-time checks and the other without them. The
parallelizer also receives information from the granularity analyzer regarding
the size of the computation associated with a given goal [Debray et al. 1990,
1997, 1994, Lopez-Garcia et al. 1996]. This information is used in an additional
pass aimed at introducing granularity control, implemented using dynamic
term size computation techniques [Hermenegildo and Lépez-Garcia 1995]. The
information from global analysis is also used to eliminate loop invariants and
repetitive checks, using the technique described in Giannotti and Hermenegildo
[1991], and Puebla and Hermenegildo [1999]. A final pass (an extension of the
SICStus compiler) produces code for a specialized WAM engine (called PWAM
and described below) from an already parallelized &-Prolog program.

Some of the techniques and heuristics used in the annotator, including
techniques for compilation of conditional nonplanar dependency graphs into
fork-join structures, and other, non graph-based techniques, are described
in Muthukumar and Hermenegildo [1990], Codish et al. [1995], Bueno et al.
[1994], Muthukumar et al. [1999], and Cabeza and Hermenegildo [1994].
The global analysis mentioned above is performed by using the technique
of “abstract interpretation” [Cousot and Cousot 1977, 1992] to compute safe
approximations of the possible run-time substitutions at all points in the
program. Two generations of analyzers have been implemented, namely,
the “MA3” and “PLAI” analyzers. MA? [Hermenegildo et al. 1992] uses the

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 527

technique of “abstract compilation” and a domain which is currently known
as “depth-K” abstraction. Its successor, PLAI, is a generic framework based on
that of Bruynooghe [1991] and the specialized fixpoint algorithms described in
Muthukumar and Hermenegildo [1992a], Bueno et al. [1996], Hermenegildo
et al.[2000], and Puebla and Hermenegildo [1996]. PLAI also includes a series of
abstract domains and unification algorithms specifically designed for tracking
variable dependence information. Other concepts and algorithms used in the
global analyzer, the rest of the &-Prolog compiler, and the MA? and PLAI sys-
tems are described in Muthukumar and Hermenegildo [1991], Hermenegildo
et al.[1992], Codish et al. [1995], and Bueno et al. [1999]. Finally, Hermenegildo
et al. provide an overview of CiaoPP, the Ciao system preprocessor, which shows
other applications of the types of analyses performed by the PLAI system.

&-Prolog Run-Time System. The &-Prolog run-time system is based on the
Parallel WAM (PWAM) model [Hermenegildo and Greene 1991], an evolution
of RAP-WAM [Hermenegildo 1986a, 1986b; Tick 1991], itself an extension of
the Warren Abstract Machine [Warren 1983]. The actual implementation has
been performed by extending the SICStus Prolog abstract machine.

The philosophy behind the PWAM design is to achieve similar efficiency to a
standard WAM for sequential code while minimizing the overhead of running
parallel code. Each PWAM is similar to a standard WAM. The instruction set
includes all WAM instructions (the behavior of some WAM instructions has to be
modified to meet the needs of the PWAM, e.g., the instructions associated with
the management of choice points) and several additional instructions related to
parallel execution. The storage model includes a complete set of WAM registers
and data areas, called a stack set, with the addition of a goal stack and two
new types of stack frames: parcall frames and markers. While the PWAM uses
conventional environment sharing for sequential goals (i.e., an environment is
created for each clause executed, which maintains the data local to the clause)
it uses a combination of goal stacking and environment sharing for parallel
goals: for each parallel goal, a goal descriptor is created and stored in the goal
stack, but their associated storage is in shared environments in the stack. The
goal descriptor contains a pointer to the environment for the goal, a pointer
to the code of the subgoal, and additional control information. Goals that are
ready to be executed in parallel are pushed onto the goal stack. The goals are
then available to be executed on any PWAM (including the PWAM that pushed
them).

Parcall frames are used for coordinating and synchronizing the parallel ex-
ecution of the goals inside a parallel call, both during forward execution and
during backtracking. A parcall frame is created as soon as a parallel conjunc-
tion is encountered (e.g., in a CGE with a satisfiable condition part). The parcall
frame contains, among other entries, a slot for each subgoal present in the par-
allel call. These slots will be used to keep track of the status of the execution of
the corresponding parallel subgoal.

Markers are used to delimit stack sections (horizontal cuts through the stack
set of a given abstract machine, corresponding to the execution of different
parallel goals) and they implement the storage recovery mechanisms during

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

528 . G. Gupta et al.

?- p, (pl & p2 & p3), pd
Processor 1 Processor2 Processor 3

prl & p2 & p3

Stack

2
pl P

Goal Stack

Processor 1 Processor2 Processor 3 Processor 1 Processor2 Processor 3

P4

" end
pevan FENN > marker
marker \

end
p1 { | marker

u
r
T \ 2
I} input B
marker !
Stack Stack stack

Goal Stack Goal Stack

mmmmmm

Stack Stack

Fig. 16. Organization of computation in PWAM.

backtracking of parallel goals in a similar manner to choice points for sequen-
tial goals [Hermenegildo 1986b; Shen and Hermenegildo 1994, 1996a]. As illus-
trated in Figure 16, whenever a PWAM selects a parallel subgoal for execution,
it creates an input marker in its control stack. The marker denotes the begin-
ning of a new subgoal. Similarly, as soon as the execution of a parallel subgoal
is completed, an end marker is created on the stack. As shown in the figure,
the input marker of a subgoal contains a pointer to the end marker of the sub-
goal on its left; this is needed to allow backtracking to propagate from parallel
subgoal to parallel subgoal in the correct (Prolog) order.

Figure 16 illustrates the different phases in the forward execution of a CGE.
As soon as the CGE is encountered, a parcall frame is created by Worker 1.
Since the parallel call contains three subgoals, Worker 1 will keep one for local
execution (p1) while the others will be made available to the other workers. This
is accomplished by creating two new entries (one for p2 and one for p3) in the
goal stack. Idle workers will detect the presence of new work and will extract
subgoals from remote goal stacks. In the example, Worker 2 takes p2 while
Worker 3 takes p3. Each idle worker will start the new execution by creating
an input marker to denote the beginning of a new subgoal. Upon completion of
each subgoal, the workers will create end markers. The last worker completing
a subgoal (in the figure Worker 2 is the last one to complete) will create the
appropriate links between markers and proceed with the (sequential) execution
of the continuation (p4).

In practice, the stack is divided into a separate control stack (for choice point
and markers) and a separate local stack (for environments, including parcall
frames), for reasons of locality and locking. A goal stack is maintained by each
worker and contains the subgoals that are available for remote execution.

The &-Prolog run-time system architecture comprises a ring of stack sets,
a collection of agents, and a shared code area (Figure 17). The agents (Unix

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 529

i

Fig. 17. The ring of PWAMs.

processes) run programs from the code area on the stack sets. All agents are
identical (there is no “master” agent). In general, the system starts allocating
only one stack set. Other stack sets are created dynamically as needed upon ap-
pearance of parallel goals. Also, agents are started and put to “sleep” as needed
in order not to overload the system when no parallel work is available. Several
scheduling and memory management strategies have been studied for the &-
Prolog system [Hermenegildo 1987; Hermenegildo and Greene 1991; Shen and
Hermenegildo 1994].

Performance Results. Experimental results for the &-Prolog system are avail-
able in the literature illustrating the performance of both the parallelizing
compiler and the run-time system. The cost and influence of global analysis
in terms of reduction in the number of run-time tests using the MA? analyzer
was reported in Hermenegildo et al. [1992]. The number of CGEs generated,
the compiler overhead incurred due to the global analysis, and the result both
in terms of number of unconditional CGEs and of reduction of the number of
checks per CGE were studied for some benchmark programs. These results
suggested that, even for this first generation system, the overhead incurred in
performing global analysis is fairly reasonable and the figures obtained close
to what is possible manually.

Experimental results regarding the performance of the second generation
parallelizing compiler in terms of attainable program speedups were reported
in Codish et al. [1995] and Bueno et al. [1994, 1999] both without global anal-
ysis and also with sharing and sharing + freeness analysis running in the
PLAI framework [Muthukumar and Hermenegildo 1992; Muthukumar et al.
1999]. Speedups were obtained from the run-time system itself and also using
the IDRA system [Fernandez et al. 1996], which collects traces from sequen-
tial executions and uses them to simulate an ideal parallel execution of the
same program.'® A much more extensive study covering numerous domains
and situations, a much larger class of programs, and the effects of the three

18Note that simulations are better than actual executions for evaluating the amount of ideal par-
allelism generated by a given annotation, since the effects of the limited numbers of processors in
actual machines can be factored out.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

530 . G. Gupta et al.

annotation algorithms described in Muthukumar and Hermenegildo [1990]
(UDG/MEL/CDG), can be found in Bueno et al. [1999] and Garcia de la Banda
et al. [1996b]. Although work still remains to be done, especially in the area of
detecting nonstrict independence,® results compared encouragingly well with
those obtained from studies of theoretical ideal speedups for optimal paral-
lelizations, such as those given in Shen and Hermenegildo [1991, 1996b].

Early experimental results regarding the run-time system can be found in
Hermenegildo and Green [1991]. Actual speedups obtained on the Sequent Bal-
ance and Symmetry systems were reported for the parallelized programs for
different numbers of workers. Various benchmarks have been tested, ranging
from simple problems (e.g., matrix multiplication) to (for the time) compara-
tively large applications (e.g., parts of the abstract interpreter). Results were
also compared to the performance of the sequential programs under &-Prolog,
SICStus Prolog, and Quintus Prolog. Attained performance was substantially
higher than that of SICStus for a significant number of programs, even if run-
ning on only two workers. For programs showing no speedups, the sequential
speed was preserved to within 10%. Furthermore, substantial speedups could
even be obtained with respect to commercial systems such as Quintus, despite
the sequential speed handicap of &-Prolog due to the use of a C-based bytecode
interpreter.2

The &-Prolog system (or, more precisely, the abstract machine underlying
the system [Hermenegildo 1986a,b; Hermenegildo and Greene 1991]) is ar-
guably the earliest proposed parallel execution system for logic programs which
was shown consistently to produce speedups over state of the art sequential
systems.

The &-Prolog system has been extended to support full concurrency in the
language [Cabeza and Hermenegildo 1996; Carro and Hermenegildo 1999],
other types of parallelism (such as nonstrict [Cabeza and Hermenegildo 1994]
and dependent AND-parallelism [Hermenegildo et al. 1995]), AND-parallelism
in constraint logic programs, and distributed execution [Hermenegildo 1994;
Cabeza and Hermenegildo 1996]. These extensions are mentioned in the ap-
propriate sections later in the article. The development of the &-Prolog sys-
tem continues at present in Ciao, a next-generation logic programming system
[Hermenegildo et al. 1999a; Bueno et al. 1997].

4.4.2 The &ACE System. The &ACE [Pontelli et al. 1995, 1996] system
is an independent and-parallel Prolog system developed at New Mexico State
University as part of the ACE project. &ACE has been designed as a next-
generation independent and-parallel system and is an evolution of the PWAM
design (used in &-Prolog). As does &-Prolog, &ACE relies on the execution of
Prolog programs annotated with Conditional Graph Expressions.

The forward execution phase is articulated in the following steps. As soon
as a parallel conjunction is reached, a parcall frame is allocated in a separate

19The notion of nonstrict independence is described in Section 5.3.3.
20Performance of such systems ranges from about the same as SICStus to about twice the speed,
depending on the program.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 531

PF

| Physical Top

Trail Section

Continuation Pointer
GS’

Status

PIP

of slots Goal Frame

of gouls to wait on

of goals still to schedule

“...[List of Slots —]
Parcall Frame Z

Control | ™.
Latuy tatu;
Environment Enviromment
Code Pointer Code Pointer

Stack
Next — Next —

.. [Physical Top
"] Trail End Choice Point

Fig. 18. Parcall frames and goals in &ACE.

stack, differently from &-Prolog, which allocates parcall frames on the envi-
ronment stack; this allows for easier memory management?! (e.g., facilitates
the use of last-call optimization) and for application of various determinacy-
driven optimizations [Pontelli et al. 1996] and alternative scheduling mecha-
nisms [Pontelli et al. 1996]. Slots describing the parallel subgoals are allocated
in the heap and organized in a (dynamic) linked list, thus allowing their dy-
namic manipulation at run-time. Subgoals in the goal stack (as in the PWAM
model) are replaced by a simple frame placed in the goal stack and pointing to
the parcall frame; this has been demonstrated [Pontelli et al. 1995, 1996] to be
more effective and flexible than actual goal stacking. These data structures are
described in Figure 18.

The use of markers to identify segments of the computation has been re-
moved in &ACE and replaced by a novel technique called stack linearization
which allows linking choice points lying in different stacks in the correct logical
order; this allows limiting to the minimum the changes to the backtracking al-
gorithm, thus making backtracking over and-parallel goals very efficient. The
only marker needed is the one that indicates the beginning of the continua-
tion of the parallel call. Novel uses of the trail stack (by trailing status flags in
the subgoal slots) allows the integratation of outside backtracking without any
explicit change in the backtracking procedure.

Backward execution represents another novelty in &ACE. Although it re-
lies on the same general backtracking scheme developed in PWAM (the point
backtracking scheme described in Section 4.1.3), it introduces the additional
concept of backtracking independence which allows us to take full advantage
of the semi-intelligent backtracking phase during inside backtracking. Given a
subgoal of the form

?-b,(81&82),a

21&ACE is built on top of the SICStus WAM, that performs on-the-fly computation of the top of the
stack register. The presence of parcall frames on the same stack creates enormous complications
in the correct management of such a register.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

532 . G. Gupta et al.

backtracking independence requires that the bindings to the variables present
in g1, g9 are posted either before the beginning of the parallel call or at its
end. This allows the killing of subgoals and backtracking without having to
worry about untrailing external variables. Backtracking independence is re-
alized through compile-time analysis and through the use of special run-time
representation of global variables in parallel calls [Pontelli and Gupta 1998].
The use of backtracking independence allows the system to recover the full
power of intelligent backtracking; in Pontelli and Gupta [1998] results are pre-
sented that show improvements of up to 400% in execution time over traditional
point-backtracking.

&ACE has been developed by modifying the SICStus WAM and currently
runs on Sparc- and Pentium-based multiprocessors. The use of the new mem-
ory management scheme, combined with a plethora of optimizations [Gupta
and Pontelli 1997; Pontelli et al. 1996], allows &ACE to be very effective in ex-
ploiting parallelism, even from rather fine-grained applications [Pontelli et al.
1995; Gupta and Pontelli 1997]. The performance of the system is on average
within 5% of the performance of the original sequential engine, thus denoting
a very limited amount of overhead. The presence of an effective management
of backtracking has also led to various cases of superlinear speedups [Pontelli
and Gupta 1998].

5. DEPENDENT AND-PARALLELISM

Dependent And-Parallelism (DAP) generalizes independent and-parallelism by
allowing the concurrent execution of subgoals accessing intersecting sets of
variables. The “classical” example of DAP is represented by a goal of the form
7- p(X) & q(X)?2 where the two subgoals may potentially compete (or cooper-
ate) in the creation of a binding for the unbound variable X.

Unrestricted parallel execution of the above query (in Prolog) is likely to pro-
duce nondeterministic behavior: the outcome will depend on the order in which
the two subgoals access X. Thus, the first aim of any system exploiting depen-
dent and-parallelism is to ensure that the operational behavior of dependent
and-parallel execution is consistent with the intended semantics, (sequential)
observable Prolog semantics in this case. This amounts to

—making sure that all the parallel subgoals agree on the values given to the
shared variables; and

—guaranteeing that the order in which the bindings are performed does not
lead to any violation of the observable behavior of the program (Prolog
semantics).

It is possible to show that the problem of determining the correct moment in
time when a binding can be performed without violating Prolog semantics is
in general undecidable. The different models designed to support DAP differ
in the approach taken to solve this problem; that is, they differ in how they
conservatively approximate such an undecidable property.

«»

22 As for independent and-parallelism, we use “&” to denote parallel conjunction, while “” is kept
to indicate sequential conjunctions.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 533

The question then arises whether dependent and-parallelism is fruitful at
all. Typically in a query such as the above, p will produce a binding for X while
q will process (or consume) it. If this order between production of the binding
and its consumption is to be preserved, q will be suspended until execution of
p is over. However, this is not always the case, and execution of p and q can be
overlapped in certain situations:

(1) q may first perform a significant amount of computation before it needs the
binding of X; this computation can be overlapped with computation of p,
because it does not depend on X;

(2) p may first partially instantiate X. In such a case q can start working with
the partially instantiated value, while p is busy computing the rest of the
binding for X.

In the rest of this section, we use the following terminology. Unbound vari-
ables that are accessible by different parallel subgoals are called shared (or
dependent) variables. The SLD computation tree generated by Prolog enforces
an ordering between the subgoals that appear in the tree. We say that a subgoal
A is on the left of B if the subgoal A appears on the left of B in the SLD tree
generated by Prolog.

The scope for exploitation of dependent and-parallelism strongly depends on
the semantics of the logic language considered. For example, DAP execution of
pure Prolog—where no order-sensitive predicates appear—makes implementa-
tion simple and creates the potential for high speedups. Similarly, the semantics
of languages such as Parlog and other committed choice languages is designed
to provide a relatively convenient management of specialized forms of DAP
(stream parallelism), simplifying the detection of dependencies. In the context
of this article we focus on the DAP execution of Prolog programs, thus, the ulti-
mate goal of the DAP execution models, as far as this article is concerned, is to
speed up execution of the programs through parallelism reproducing the same
observable behavior as in a sequential Prolog execution.

5.1 Issues

Supporting DAP requires tackling a number of issues. These include:

(1) detection of parallelism: Determination of which subgoals should be consid-
ered for DAP execution;

(2) management of DAP goals: Activation and management of parallel
subgoals;

(3) management of shared variables: Validation and control of shared variables
to guarantee Prolog semantics; and

(4) backtracking: Management of nondeterminism in the presence of DAP
executions.

In the rest of this section, we deal with all these issues except for issue 2:
management of subgoals does not present any new challenge with respect to the
management of parallel subgoals in the context of independent and-parallelism.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

534 . G. Gupta et al.

5.2 Detection of Parallelism

Annotating a program for fruitful DAP execution resembles in some aspects au-
tomatic parallelization for IAP (as described in Section 4.1.1). This should come
as no surprise: it was already mentioned that DAP is nothing more than a finer
grain instance of the general principle of independence, applied to the level of
variable bindings. Relatively little work is present in the literature for detecting
and analyzing fruitful DAP. The first work on this specific problem is that by
Giacobazzi and Ricci [1990], which attempts a bottom-up abstract interpre-
tation to identify pipelined computations. Some similarities are also shared
with the various studies on partitioning techniques for declarative concurrent
languages [Traub 1989] that aim to identify partitioning of the program com-
ponents into sequential threads, and the work on management of parallel tasks
in committed choice languages [Ueda and Morita 1993]. Techniques have also
been proposed for detecting nonstrict independent and-parallelism at compile-
time [Cabeza and Hermenegildo 1994]. This includes new annotation algo-
rithms that use sharing and freeness information before and after each literal
and new, specialized run-time tests. These techniques have been implemented
in a practical parallelizer for the &-Prolog and &ACE systems by extending the
original &-Prolog/&ACE PLAI parallelizer.

Automatic and semiautomatic detection of potential valid sources of unre-
stricted DAP in logic programs has been proposed and implemented in Pontelli
et al. [1997], the implementation also being an extension of the &-Prolog/&ACE
PLAI parallelizer. This proposal generates code annotations that are extensions
of the CGE format (similar to those originally introduced by Shen [1992a] and
used also in Hermenegildo et al. [1995]): they additionally identify and make
explicit the variables that are shared between the goals in the parallel conjunc-
tion. Given the goals ... G4, ..., G, ..., in which the subgoals G4, ..., G, are to
be executed in DAP, the general structure of an extended CGE is the following,

L $mark((Xq, ..., X)),

((Cond) = $and_goal (91, Gil) & ...& $and_goal (9,“ Gf{')), .
where

—X1,..., X, are the shared variables for subgoals G4, ..., G,, that s, all those
variables for which different subgoals may attempt conflicting bindings;

—ifX7{,..., X ,ﬁj C {X4,..., X} are the shared variables present in the subgoal
G, then 6; is a renaming substitution for the variables X/ (1 <i < k), that
is, a substitution that replaces each X; with a brand new variable. This
allows each subgoal in the conjunction to have fresh and independent access
to each shared variable.
In this framework the mapping is described as a sequence of pairs
[X/, XY where X" is the new variable introduced to replace variable
X

—Cond is a condition, which will be evaluated at run-time (e.g., for checking
groundness, independence, or comparing dynamically computed grain-sizes
to thresholds).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 535

A DAP-annotated version of the recursive clause in the program for naive
reverse will look like

nrev([X|Xs], Y) :- $mark([Z]),
($and_goal([[Z,Z1]] ,nrev(Xs, Z1)) &
$and_goal ([[Z,Z2]] ,append(Z2, [X], Y))).

The $mark/1 is a simple directive to the compiler to identify shared vari-
ables. The shared variables are given different names in each of the parallel
goals. The shared variable Z is accessed through the variable Z1 in nrev and
through the variable Z2 in the append subgoal. The use of new names for the
shared variables allows the creation of separate access paths to the shared vari-
ables, which in turn facilitates more advanced run-time schemes to guarantee
the correct semantics (such as the Filtered Binding Model presented later in
this section).

The process of annotating a program for exploitation of dependent and-
parallelism described in Pontelli et al. [1997a] operates through successive
refinements:

(1) identification of clauses having a structure compatible with the exploitation
of DAP: that is, they contain at least one group of consecutive nonbuilt-
in predicates. Each maximal group of contiguous and nonbuilt-in goals is
called a partition;

(2) use of sharing and freeness [Cabeza and Hermenegildo 1994; Muthukumar
et al. 1999] information (determined via abstract interpretation) to identify
the set of shared variables for each partition;

(3) refinement of the partition to improve DAP behavior through the following
transformations,

—collapsing of consecutive subgoals,
—splitting of partitions in subpartitions, and
—removal of subgoals lying at the beginning or end of a partition.

The transformations are driven by the following principles,

—parallel subgoals should display a sufficiently large grain size to overcome
the parallelization overhead; and

—dependent subgoals within a partition should demonstrate a good degree
of overlapping in their executions.

The first aspect can be dealt with through the use of cost analysis
[Debray et al. 1997; Lépez-Garcia et al. 1996; Tick and Zhong 1993], while
the second one is dealt with in Pontelli et al. [1997a] through the use of in-
stantiation analysis, based on the estimation of the size of the computation
that precedes the binding of shared variables.

Further improvements have been devised in Pontelli et al. [1997a] through
the use of sharing and freeness to detect at compile-time subgoals that will
definitely bind dependent variables, that is, automatic detection of definite
producers.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

536 . G. Gupta et al.

5.3 Management of Variables

5.3.1 Introduction. The management of shared variables in a dependent
and-parallel execution requires solving certain key issues. The first issue is
related to the need of guaranteeing mutual exclusion during the creation of a
binding for a shared variable. The second, and more important, issue is con-
cerned with the process of binding validation, that is, guaranteeing that the
outcome of the computation respects sequential observable Prolog semantics.
These two issues are discussed in the next two subsections.

5.3.2 Mutual Exclusion. The majority of the schemes proposed to han-
dle DAP rely on a single representation of each shared variable; that is, all
the threads of computation access the same memory area that represents the
shared variable. Considering that we are working in a Prolog-like model, at any
time at most one of these threads will be allowed to actually bind the variable.
Nevertheless, the construction of a binding for a variable is not an atomic oper-
ation, unless the value assigned to the variable is atomic. Furthermore, in the
usual WAM, the assignment of a value can be realized through the use of get
instructions, which are characterized by the fact that they proceed top-down
in the construction of the term. This means that first the unbound variable
is assigned a template of the term to be constructed—for example, through a
get_structure instruction—and successively the subterms of the binding are
constructed. This makes the binding of the variable a nonatomic operation, for
example, if the two subgoals executing in parallel are p(X) and q(X), which are
respectively defined by the following clauses,

pX) :- X =f£f(b,c),
qX) = X = £(Y,2), (var(Y) -> ... ; ...

The WAM code for the clause for p will contain a sequence of instructions of the
type

get_structure f, Al
unify_constant b
unify_constant c¢

An arbitrary interleaving between the computations (at the level of WAM
instructions) can lead q to access the binding for X immediately after the
get_structure but before the successive unify_constant, leading q to wrong-
fully succeed in the var (Y) test. Clearly, as long as we allow consumers to have
continuous access to the bindings produced by the producer, we need to intro-
duce some mechanisms capable of guaranteeing atomicity of any binding to
shared variables.

The problem has been discussed in various works. In the context of the JAM
implementation of Parlog [Crammond 1992], the idea is to have the compiler
generate a different order of instructions during the construction of complex
terms: the pointer to a structure is not written until the whole structure has
been completely constructed. This approach requires a radical change in the
compiler. Furthermore, the use of this approach requires a special action at

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 537

the end of the unification in order to make the structure “public,” and this
overhead will be encountered in general for every structure built, independently
of whether this will be assigned to a dependent variable.

Another solution has been proposed in Andorra-I [Santos Costa et al. 1996];
in this system, terms that need to be matched with a compound term (i.e., using
the get_structure instruction in the WAM) are locked (i.e., a mutual exclusion
mechanism is associated with it) and a special instruction (1ast) is added by the
compiler at the end of the term construction to release the lock (i.e., terminate
the critical section).

Another approach, adopted in the DASWAM system [Shen 1992b],
consists of modifying the unify and get instructions in such a way that they
always overwrite the successive location on the heap with a special value.
Every access to term will inspect such successive location to verify whether
the binding has been completed. No explicit locks or other mutual exclusion
mechanisms are required. On the other hand:

—while reading the binding for a dependent variable, every location accessed
needs to be checked for validity;

—an additional operation (pushing an invalid status on the successive free
location) is performed during each operation involved in the construction of
a dependent binding; and

—a check needs to be performed during each operation that constructs a term,
in order to understand whether the term has been assigned to a dependent
variable, or, alternatively, the operation of pushing the invalid status is per-
formed indiscriminately during the construction of any term, even if it will
not be assigned to a dependent variable.

Another solution [Pontelli 1997], which does not suffer from most of the
drawbacks previously described, is to have the compiler generate a different
sequence of instructions to face this kind of situation. The get_structure and
get_list instructions are modified, by adding a third argument:

get_structure (functor) (register) (jump label),

where the (jump label) is simply an address in the program code. Whenever the
dereferencing of the (register) leads to an unbound shared variable, instead
of entering write mode (as in standard WAM behavior), the abstract machine
performs a jump to the indicated address ({(jump label)). The address contains
a sequence of instructions that performs the construction of the binding in a
bottom-up fashion, which allows for the correct atomic execution.

5.3.83 Binding Validation. A large number of schemes have been proposed
to handle bindings to dependent variables in such a way that Prolog seman-
tics is respected. We can classify the different approaches according to certain
orthogonal criteria [Pontelli 1997; Pontelli and Gupta 1997a, 1997b]:

(1) validation time: the existing proposals either
(a) remove inconsistencies on binding shared variables only once a conflict
appears and threatens Prolog semantics (curative schemes); or

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

538 . G. Gupta et al.

Time

Fig. 19. Goal level curative approach.

piX) q(x) Time

Fig. 20. Binding level curative approach.

(b) prevent inconsistencies by appropriately delaying and ordering shared
variable bindings (preventive schemes);

(2) validation resolution: the existing proposals either
(a) perform the validation activity at the level of the parallel subgoals
(goal-level validation); or
(b) perform the validation activity at the level of the individual shared
variable (binding-level validation).

Curative Approaches. Curative approaches rely on validation of the bindings to
shared variables after they are performed.

Performed at the goal level (see Figure 19), this implies that each and-parallel
subgoal develops its computation on local copies of the environments, introduc-
ing an additional “merging” step at the end of the parallel call to verify con-
sistency of the values produced by the different computations for the shared
variables. This approach, adopted mainly in some of the older process-based
models, such as Epilog [Wise 1986] and ROPM [Ramkumar and Kalé 1992],
has the advantage of being extremely simple, but it suffers some serious draw-
backs:

(1) it produces highly speculative computations (due to the lack of communi-
cation between parallel subgoals);

(2) it may produce parallel computations that terminate in a time longer than
the corresponding sequential ones; and

(3) it makes it extremely difficult to enforce Prolog semantics.

Performed at the binding level (see Figure 20), validation does not preempt
bindings from taking place (i.e., any goal can bind a shared variable), but spe-
cial rollback actions are needed whenever a violation of program semantics is

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 539

detected. The two most significant proposals where this strategy is adopted are
those made by Tebra [1987] and by Drakos [1989]. They both can be identified
as instances of a general scheme, named optimistic parallelism. In optimistic
parallelism, validation of bindings is performed not at binding time (i.e., the
time when the shared variable is bound to a value), but only when a conflict
occurs (i.e., when a producer attempts to bind a shared variable that had al-
ready been bound earlier by a consumer goal). In case of a conflict, the lower
priority binding (made by the consumer) has to be undone, and the consumer
goal rolled back to the point where it first accessed the shared variable. These
models have various drawbacks, ranging from their highly speculative nature
to the limitations of some of the mechanisms adopted (e.g., labeling schemes to
record binding priorities), and to the high costs of rolling back computations.

Preventive Approaches. Preventive approaches are characterized by the fact
that bindings to shared variables are prevented unless they are guaranteed to
not threaten Prolog semantics.

Performed at the goal level, preventive schemes delay the execution of the
whole subgoal until its execution will not affect Prolog semantics. Various mod-
els have embraced this solution:

(1) NonStrict Independent And-Parallelism (NSI) and Other Extended Notions
of Independence: The idea of these extensions of the notion of independence
is to greatly extend the scope of independent and-parallelism while still
ensuring correctness and efficiency/“no-slowdown” of the paralleliza-
tion [Hermenegildo and Rossi 1995; Cabeza and Hermenegildo 1994]. The
simplest concept of nonstrict independence allows execution of subgoals
that have variables in common, provided at most one subgoal can bind
each shared variable.?® This kind of independence cannot be determined
in general a priori (i.e., by inspecting the state of the computation prior
to executing the goals to be parallelized) and thus necessarily requires a
global analysis of the program. However, it is very interesting because it
appears often in programs that manipulate “open” data structures, such as
difference lists, dictionaries, and the like. An example of this is the following
flatten example, which eliminates nestings in lists ([X|Xs] represents the
list whose head is X and whose tail is Xs and [] represents the empty list):

flatten(Xs,Y¥s) :-
flatten(Xs,Ys,[1).

flatten([], Xs, Xs).

flatten([X|Xs],Ys,Zs) :-
flatten(X,Ys,Ys1),
flatten(Xs,Ys1,Zs).

flatten(X, [XI|Xs], Xs) :-
atomic(X), X = [].

23The condition used in the case of impure goals is that the bindings of a goal will not affect the
computation of the remaining subgoals to its right.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

540 . G. Gupta et al.

This program unnests a list without copying by creating open-ended lists
and passing a pointer to the end of the list (Ys1) to the recursive call. Since
this pointer is not bound by the first call to flatten/3 in the body of the
recursive clause, the calls to flatten(X,Ys,Ys1) and flatten(Xs,Ys1,Zs)
are (nonstrictly) independent and all the recursions can be run in parallel.
In fact, it is possible to detect this automatically [Cabeza and Hermenegildo
1994]. A number of (also correct and efficient) further generalizations of the
concept of nonstrict independence have been proposed, based on notions
of equivalence of search spaces [Hermenegildo and Rossi 1995; Garcfa de
la Banda et al. 2000; Garcia de la Banda 1994]. These ehancements al-
low goals to share variables and bind them, provided the bindings made
by these goals are either deterministic (in a similar way to the “Andorra”
models reviewed below) or consistent (in the constraint logic programming
sense). These enhancements have allowed extending independence to logic
programs with delays [Garcia de la Banda et al. 1996b, 2000] and constraint
logic programs [Garcia de la Banda et al. 2000], as shown in Section 8.

(2) The basic Andorra model [Haridi 1990; Warren 1987a; Santos Costa et al.
1991a], Parallel NU-Prolog [Naish 1988], Pandora [Bahgat 1993], and
P-Prolog [Yang 1987] are all characterized by the fact that parallel exe-
cution is allowed between dependent subgoals only if there is a guarantee
that there exists at most one single matching clause. In the basic Andorra
model, subgoals can be executed ahead of their turn (“turn” in the sense
of Prolog’s depth-first search) in parallel if they are determinate, that is,
if at most one clause matches the subgoal (the determinate phase). These
determinate goals can be dependent on each other. If no determinate goal
can be found for execution, a choice point is created for the leftmost goal in
the goal list (the nondeterminate phase) and parallel execution of determi-
nate goals along each alternative of the choice point continues. Dependent
and-parallelism is obtained by having determinate goals execute in par-
allel. The different alternatives to a goal may be executed in or-parallel.
Executing determinate goals (on which other goals may be dependent) ea-
gerly also provides a coroutining effect that leads to the narrowing of the
search space of logic programs. A similar approach has been adopted in
Pandora [Bahgat 1993], which represents a combination of the Basic An-
dorra Model and the Parlog committed choice approach to execution [Clark
and Gregory 1986]; Pandora introduces nondeterminism to an otherwise
committed choice language. In Pandora, clauses are classified as either
“don’t-care” or “don’t-know”. As with the basic Andorra model, execution
alternates between the and-parallel phase and the deadlock phase. In the
and-parallel phase, all goals in a parallel conjunction are reduced concur-
rently. A goal for a “don’t-care” clause may suspend on input matching if its
arguments are insufficiently instantiated, as in normal Parlog execution. A
goal for a “don’t-know” clause is reduced if it is determinate, as in the Basic
Andorra Model. When none of the “don’t-care” goals can proceed further and
there are no determinate “don’t-know” goals, the deadlock phase is activated
(Parlog would have aborted the execution in such a case) that chooses one

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 541

of the alternatives for a “don’t-know” goal and proceeds. If this alternative
were to fail, backtracking would take place and another alternative would
be tried (potentially, the multiple alternatives could be tried in or-parallel).

Performed at the binding level, preventive schemes allow a greater degree of
parallelism to be exploited. The large majority of such schemes rely on enforcing
a stronger notion of semantics (strong Prolog semantics): bindings to shared
variables are performed in the same order as in a sequential Prolog execution.
The most relevant schemes are:

(1) Committed Choice Languages: We only deal briefly with the notion of com-
mitted choice languages in this article, since they implement a semantics
that is radically different from Prolog. Committed choice languages [Tick
1995] disallow (to a large extent) nondeterminism by requiring the com-
putation to commit to the clause selected for resolution. Committed choice
languages support dependent and-parallel execution and handle shared
variables via a preventive scheme based on the notion of producer and
consumers. Producer and consumers are either explicitly identified at the
source level (e.g., via mode declarations) or implicitly through strict rules
on binding of variables that are external to a clause [Shapiro 1987].

(2) Binding-level nonstrict independence: The application of the gen-
eralized (consistency- and determinacy-based) notions of indepen-
dence [Hermenegildo and Rossi 1995; Garcfa de 1a Banda et al. 2000; Garcfa
de la Banda 1994] at the finest granularity level—the level of individual
bindings and even the individual steps of the constraint solver—has been
studied formally in Bueno et al. [1994, 1998]. This work arguably repre-
sents the finest grained and “most parallel” model for logic and constraint
logic programming capable of preserving correctness and theoretical
efficiency proposed to date. While this model has not been implemented
directly it serves as a theoretical basis for a number of other schemes.

(8) DDAS-based schemes: These schemes offer a direct implementation of
strong Prolog semantics through the notion of producer and consumer of
shared variables. At each point of the execution only one subgoal is allowed
to bind each shared variable (producer), and this corresponds to the leftmost
active subgoal that has access to such a variable. All remaining subgoals
are restricted to read-only accesses to the shared variable (consumers);
each attempt by a consumer to bind an unbound shared variable will lead to
the suspension of the subgoal. Each suspended consumer will be resumed
as soon as the shared variable is instantiated. Consumers may also become
producers if they become the leftmost active computations. This can
happen if the designated producer terminates without binding the shared
variable [Shen 1992b].

Detecting producer and consumer status is a complex task. Different
techniques have been described in the literature to handle this process.
Two major implementation models have been proposed to handle pro-
ducer/consumer detection, DASWAM [Shen 1992b, 1996b] and the filtered-
binding model [Pontelli and Gupta 1997a, 1997b] which are described at

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

542 . G. Gupta et al.

the end of this section. An alternative implementation model based on ai-
tributed variables [Le Huitouze 1990] has been proposed in Hermenegildo
et al. [1995]: each dependent variable X is split into multiple instances, one
for each subgoal belonging to the parallel call. Explicit procedures are intro-
duced to handle unification and transfer bindings to the different instances
of each shared variable. The idea behind this model is attractive because
it allows a distributed implementation and it shares some commonalities
with the filtered binding model presented in Section 5.5.3. Type-based
optimizations of the approach have been proposed in Lamma et al. [1997].

Classification. As done for or-parallelism in Section 3.4, it is possible to pro-
pose a classification of the different models for DAP based on the complexity of
the basic operations. The basic operations required to handle forward execution
in DAP are:

—task creation: creation of a parallel conjunction,
—task switching: scheduling and execution of a new subgoal, and
—uvariable access [binding: access and/or binding of a variable.

It is possible to prove, by properly abstracting these operations as operations
on dynamic tree structures, that at least one of them requires a time com-
plexity which is strictly worse than Q(1) [Pontelli et al. 1997b; Ranjan et al.
2000a]. Interestingly enough, this result ceases to hold if we disallow alias-
ing of shared variables during the parallel computation; intuitively, aliasing of
shared unbound variables may create long chains of shared variables bound
to each other, and the chain has to be maintained and traversed to determine
whether a binding for the variable is allowed. A similar restriction is actually
present in the DASWAM system, to simplify the implementation of the vari-
ables management scheme. Nevertheless, the filtered-binding model is the only
model proposed that succeeds in achieving constant time complexity in the all
the operations in the absence of shared variables aliasing.

The classification of the different models according to the complexity of the
three key operations is illustrated in Figure 21. Unrestricted DAP means DAP
with possible aliasing of unbound shared variables.

5.4 Backtracking

Maintaining Prolog semantics during parallel execution also means support-
ing nondeterministic computations, that is, computations that can potentially
produce multiple solutions. In many approaches DAP has been restricted to
only those cases where p and g are deterministic [Bevemyr et al. 1993; Shapiro
1987; Santos Costa et al. 1991a]. This is largely due to the complexity of dealing
with distributed backtracking. Nevertheless, it has been shown [Shen 1992b,
1996b] that imposing this kind of restriction on DAP execution may severely
limit the amount of parallelism exploited. The goal is to exploit DAP even in
nondeterministic goals.

Backtracking in the context of DAP is more complex than in the case of in-
dependent and-parallelism. While outside backtracking remains unchanged,

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 543

Unrestricted DAP

C S

AN A

CVA

Af / \ A / \

Binding Llnked

no method Model Flltered
{theorem) odel (1) Binding Model
Model (2)
Epilog/ Attrib-
P1..09 Drakos uted var.
ROPM Model Model

CTC = Constant Time Task Creation
f = false

CTS = Constant Time Task Switching
t = true

CVA = Constant Time Varlable Access/Binding

Fig. 21. Classification of DAP models.

inside backtracking (i.e., backtracking within subgoals which are part of a par-
allel call) loses its “independent” nature, which guaranteed the semi-intelligent
backtracking described earlier (Section 4.1.3). Two major issues emerge. First
of all, failure of a subgoal within a parallel conjunction does not lead to the
failure of the whole conjunction, but requires killing the subgoals on the right
and backtracking to be propagated to the subgoal immediately to the left, an
asynchronous activity, since the subgoal on the left may be still running.

In addition, backtracking within a parallel subgoal may also affect the exe-
cution of other parallel subgoals. In a parallel conjunction such asp(X) & q(X),
backtracking within p(X) which leads to a modification of the value of X will re-
quire rolling back the execution of q(X) as well, since q(X) may have consumed
the value of X that has just been untrailed.

Implementations of this scheme have been proposed in Shen [1992b,a] and
Pontelli and Gupta [1997a]; optimizations of this scheme have also been de-
scribed in Shen [1994].

5.5 Experimental Systems

In this section we present some representative systems that support depen-
dent and-parallelism. Some other systems that use dependent and-parallelism
in conjunction with other forms of parallelism (e.g., ROPM) are described in
Section 6. In this section we do not discuss committed choice languages: their
sequential and parallel execution models have been described in detail in other
surveys (e.g., Tick [1995] and Shapiro [1987]).

5.5.1 Andorra-I. The Andorra-I system is an implementation of the ba-
sic Andorra model. Andorra-I exploits determinate dependent and-parallelism
together with or-parallelism. Implementation of or-parallelism is very similar

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

544 . G. Gupta et al.

to that in Aurora and is based on binding arrays [Warren 1984, 1987c]. Due to
its similarity to Aurora as far as or-parallelism is concerned, Andorra-I is able
to use the schedulers built for Aurora. The current version of Andorra-I is com-
piled [Yang et al. 1993] and is a descendant of the earlier interpreted version
[Santos Costa et al. 1991a].

As a result of exploitation of determinate dependent and-parallelism and the
accompanying coroutining, not only can Andorra-I exploit parallelism from logic
programs, but it can also reduce the number of inferences performed to compute
a solution. As mentioned earlier, this is because execution in the basic Andorra
model is divided into two phases—determinate and nondeterminate—and exe-
cution of the nondeterminate phase is begun only after all “forced choices” (i.e.,
choices for which only one alternative is left) have been made in the determinate
phase, that is, after all determinate goals in the current goal list, irrespective of
their order in this list, have been solved. Any goal that is nondeterminate (i.e.,
has more than one potentially matching clause) will be suspended in the de-
terminate phase. Solving determinate goals early constrains the search space
much more than using the standard sequential Prolog execution order (e.g., for
the 8-queen’s program the search space is reduced by 44%, for the zebra puzzle
by 70%, etc.). Note that execution of a determinate goal to the right may bind
variables which in turn may make nondeterminate goals to their left deter-
minate. The Andorra-I compiler performs an elaborate determinacy analysis
of the program and generates code so that the determinate status of a goal is
determined as early as possible at run-time [Santos Costa et al. 1996, 1991c].

The Andorra-I system supports full Prolog, in that execution can be per-
formed in such a way that sequential Prolog semantics is preserved [Santos
Costa et al. 1996, 1991c]. This is achieved by analyzing the program at compile-
time and preventing early (i.e., out of turn) execution of those determinate goals
that may contain extralogical predicates. These goals will be executed only after
all goals to the left of them have been completely solved.?

The Andorra-I system speedsup execution in two ways: by reducing the num-
ber of inferences performed at run-time, and, by exploiting dependent and-
parallelism and or-parallelism from the program. Very good speed-ups have
been obtained by Andorra-I for a variety of benchmark programs. The Andorra-I
engine [Santos Costa et al. 1991b; Yang et al. 1993] combines the implementa-
tion techniques used in implementing Parlog, namely, the JAM system [Cram-
mond 1992], and the Aurora system [Lusk et al. 1990]. The Andorra-I system
had to overcome many problems before an efficient implementation of its en-
gine could be realized. Chief among them was a backtrackable representation
of the goal list. Since goals are solved out of order, they should be inserted back
in the goal list if backtracking is to take place; recall that there is no backtrack-
ing in Parlog so this was not a problem in JAM. The Andorra-I system was
the first to employ the notion of teams of workers, where available workers are
divided into teams, and each team shares all the data structures (except the
queue of ready-to-run goals). Or-parallelism is exploited at the level of teams

241n spite of this, there are cases where Andorra-I and Prolog lead to different behavior; in partic-
ular, there are nonterminating Prolog programs that will terminate in Andorra-I and vice versa.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 545

(i.e., each team behaves as a single Aurora worker). Determinate dependent
and-parallelism is exploited by workers within a team; that is, workers within
a team will cooperatively solve a goal along the or-branch picked up by the team.
There are separate schedulers for or-parallel work and dependent and-parallel
work, and overall work balancing is achieved by a top-scheduler (reconfigurer)
[Dutra 1994, 1996]. The notion of teams of workers was also adopted by the ACE
[Gupta et al. 1993, 1994b] and the PBA models that combine or-parallelism with
independent and-parallelism while preserving sequential Prolog semantics. A
parallel system incorporating the basic Andorra model has also been imple-
mented by Palmer and Naish [1991]. An extension of Andorra-I incorporating
independent and-parallelism, called IDIOM, has also been proposed [Gupta
et al. 1991]. Compile-time techniques have been used to allow automatic explo-
itation of nondeterminate independent and-parallelism in a system implement-
ing the basic Andorra model [Olmedilla et al. 1993]. Work has also been done on
implementing (the inference step reduction part of) the basic Andorra model by
compilation into a standard Prolog system supporting delay declarations, with
promising results [Bueno et al. 1995; Hermenegildo and CLIP Group 1994].

5.5.2 DASWAM. DASWAM [Shen 1992a, 1992b, 1996b]is an implementa-
tion model for the DDAS execution scheme described in Section 5.3.3. DASWAM
has been designed as an extension of the PWAM model used for independent
and-parallelism. Memory management is analogous to PWAM, and relies on
the use of parcall frames to represent parallel conjunctions, and on the use of
markers to delimit segments of stacks associated with the execution of a given
subgoal [Shen and Hermenegildo 1994].

Shared variables are represented as a new type of tagged cell and each shared
variable is uniquely represented; thus all workers access the same represen-
tation of the shared variable. Producer and consumer status is determined via
a search operation, performed at the time of variable binding. Each dependent
variable identifies the parcall frame that introduced the variable (home par-
call); a traversal of the chain of nested parallel calls is needed to determine
whether the binding attempt lies in the leftmost active subgoal. The knowl-
edge of the subgoal is also needed to create the necessary suspension record,
where information regarding a suspended consumer is recorded. The process is
illustrated in Figure 22. Each dependent cell maintains pointers to the parcall
frame that introduced that dependent variable. In addition, the parcall frames
are linked to each other to recreate the nesting relation of the parallel conjunc-
tions. This arrangement implies a complexity which is linear in the size of the
computation tree in order to determine producer/consumer status and subgoals
on which to suspend [Shen 1992a; 1992b].

Efficient implementations of DASWAM on Sequent Symmetry, Sun Enter-
prise, and KSR-1 platforms have been developed [Shen 1996a; 1996b] the per-
formance of the system has been validated on a large variety of benchmarks.
Detailed performance analysis has been proposed in Shen [1992b].

5.5.3 ACE. The ACE system supports dependent and-parallelism using
a method called the Filtered Binding Model. The Filtered Binding Model is

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

546 . G. Gupta et al.

! Creation Siot
Creation Parcall Frame
Previous Parcall
Dependent Cell
Previous Stot

Current Parcall Frame

Fig. 22. DASWAM implementation.

r’ﬂ
TL

92-

%1 ropresents P & QX))
p’s view of X,
X2 represents
a’s.

filter
filter

HEAP

X1: -

Parallel call
Descriptor Area

Proc 2
Processor 2
executes q

Proc 1
Processor 1
executes p

g's info.

p’s info.

p & g descriptor

Fig. 23. The filtered binding model.

an instance of the class of models that use preventive binding-level validation.
The specific approach assumes a program statically annotated to identify the
promising sources of parallelism. Each subgoal maintains an independent ac-
cess path to the shared variable. The idea of the Filtered Binding Model is to
directly encode in the access path itself the information (the filter or view) that
allows a subgoal to discriminate between producer and consumer accesses. The
different access paths are created via specialized WAM instructions, which are
introduced via the $mark predicate introduced by the parallelizing compiler (see
Section 5.2).

Figure 23 presents an intuitive schema of this idea. Each subgoal has a local
path to access the shared object (in this case, a heap location allocated to hold
the value of the shared variable) and the path contains a filter. In the figure,
the filter is linked to information stored in the subgoal descriptor; this common
information will be used to verify when the subgoal is a viable producer (i.e., it
is the leftmost active subgoal in the parallel call).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 547

Every access to a shared variable by a subgoal will go through the filter
corresponding to that subgoal, which will allow it to determine the “type” of the
access (producer or consumer).

By properly organizing the unification process, as long as there is a guar-
antee that no aliasing between shared variables occurs (unless they are both
producer accesses), it can be proved that at any time a variable access will re-
quire traversal of at most one filter, which means constant-time validation of
any access. The setup of a parallel call and the detection of the continuation
also do not require any nonconstant-time operation (the cost is always bounded
by the number of dependent variables detected by the compiler in that paral-
lel call?®). An additional step is required when a subgoal terminates: if it is a
producer goal, then on termination it should transfer the producer status to
the next active subgoal in the parallel call by changing its filter. This is also a
constant-time operation, as the next goal to the right can be found by looking
at the descriptor of the parallel call.

Thus, the filtered binding model is a model that exploits restricted DAP and
performs all operations in constant-time. The restriction is that unbound shared
variables are not allowed to be bound to each other (unless the goal doing the
aliasing is a producer for both). If this restriction is relaxed then a nonconstant
overhead will be produced in the variable access operation; in such a case a
nonconstant-time overhead is unavoidable. The current implementation, real-
ized in the ACE system [Gupta et al. 1994a; Pontelli et al. 1995], represents
filters as a word in the subgoal descriptor, and paths as a pair of words, one
pointing to the actual variable and one pointing to the filter. Local paths re-
lated to shared variables introduced in the same parallel call share the same
filter. Consumer accesses suspend in the presence of unbound variables. Vari-
able suspensions have been implemented using the traditional suspension lists
[Crammond 1992].

The implementation of the Filtered Binding Model in the ACE system
[Pontelli and Gupta 1997a, 1997b] supports both busy-waiting and goal suspen-
sion (e.g., release of suspended computation). The two methods are alternated
during execution depending on the granularity of the computation and on the
amount of time the goal has been suspended.

6. COMBINING OR-PARALLELISM AND AND-PARALLELISM

6.1 Issues

As one can gather, parallel systems that exploit only one form of parallelism
from logic programs have been efficiently implemented and have reached a ma-
ture stage. A number of prototypes have been implemented and successfully ap-
plied to the development and parallelization of very large real-life applications

25We are also working under the assumption that the compiler marks goals for DAP execution
conservatively; that is, during execution if a shared variable X is bound to a structure containing
an unbound variable Y before the parallel conjunction corresponding to X is reached then both X
and Y are marked as shared. Otherwise, for correctness, the structure X is bound to will have to be
traversed to find all unbound variables occurring in it and mark them as shared.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

548 . G. Gupta et al.

(see also Section 10). Public domain parallel logic programming systems are
available (e.g., YapOr [Rocha et al. 1999], KLIC [Chikayama et al. 1994], Ciao
[Bueno et al. 1997], which includes &-Prolog, DASWAM [Shen 1996b]). For
some time, a number of commercial parallel Prolog systems have also appeared
on the market, such as SICStus Prolog, which includes the or-parallel MUSE
system, and ECLiPSe, which includes an or-parallel version of ElipSys. In spite
of the fact that these commercial Prolog systems have progressively dropped
their support for parallelism (this is mostly due to commercial reasons: the
high cost of maintaining the parallel execution mechanisms), these systems
demonstrate that we possess the technology for developing effective and effi-
cient Prolog systems exploiting a single form of parallelism.

Although very general models for parallel execution of logic programs (ex-
ploiting multiple forms of parallelism) have been proposed, such as the Ex-
tended Andorra Model (EAM) (described later in this section), they have not yet
been efficiently realized. A compromise approach that many researchers have
been pursuing, long before the EAM was conceived, is that of combining tech-
niques that have been effective in single-parallelism systems to obtain efficient
systems that exploit more than one source of parallelism in logic programs.26
The implementation of the basic Andorra model [Haridi 1990; Warren 1987a],
namely, Andorra-I [Santos Costa et al. 1991b] can be viewed in that way since it
combines (determinate) dependent and-parallelism, implemented using tech-
niques from JAM [Crammond 1992], with or-parallelism, implemented us-
ing the binding arrays technique [Lusk et al. 1990; Warren 1987c]. Likewise,
the PEPSys model [Westphal et al. 1987; Baron et al. 1988], the AO-WAM
[Gupta and Jayaraman 1993b], ROPM [Kalé 1985; Ramkumar and Kalé 1989,
1992], ACE [Gupta et al. 1994b, 1993], the PBA models [Gupta et al. 1994b,
1993], SBA [Correia et al. 1997], FIRE [Shen 1997], and the COWL models
[Santos Costa 1999] have attempted to combine independent and-parallelism
with or-parallelism; these models differ from one another in the environment
representation technique they use for supporting or-parallelism, and in the
flavor of and-parallelism they support. One should also note that, in fact, Con-
ery’s model described earlier is an and-or parallel model [Conery 1987b] since
solutions to goals may be found in or-parallel. Models combining independent
and-parallelism, or-parallelism, and (determinate) dependent and-parallelism
have also been proposed [Gupta et al. 1991]. The abstract execution models that
these systems employ (including those that only exploit a single source of par-
allelism) can be viewed as subsets of the EAM with some restrictions imposed,
although this is not how they were conceived. In subsequent subsections, we
review these various systems that have been proposed for combining more than
one source of parallelism.

The problems faced in implementing a combined and- and or-parallel sys-
tem are unfortunately not only the sum of problems faced in implementing
and-parallelism and or-parallelism individually. In the combined system the
problems faced in one may worsen those faced in the other, especially those

26Simulations have shown that indeed better speedups will be achieved if more than one source of
parallelism is exploited [Shen 1992b; Shen and Hermenegildo 1991, 1996b].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 549

regarding control of execution, representation of environment, and memory
management. This should come as no surprise. The issues which are involved in
handling and-parallelism and or-parallelism impose antithetical requirements.
For example, or-parallelism focuses on improving the separation between the
parallel computations, by assigning separate environments to the individual
computing agents; and-parallelism relies on the ability of different computing
agents to cooperate and share environments to construct a single solution to the
problem.

An issue that combined systems also have to face is whether they should
support sequential Prolog semantics. The alternatives to supporting Prolog
semantics are:

(1) consider only pure Prolog programs for parallel execution; this was the
approach taken by many early proposals, for example, AO-WAM [Gupta
and Jayaraman 1993b] and ROPM [Kalé 1985]; or

(2) devise a new language that will allow extralogical features but in a con-
trolled way, for example, PEPSys [Ratcliffe and Syre 1987; Westphal et al.
1987; Chassin de Kergommeaux and Robert 1990].

The disadvantage of both these approaches is that existing Prolog programs
cannot be immediately parallelized. Various approaches have been proposed
that allow support for Prolog’s sequential semantics even during parallel exe-
cution [Santos Costa 1999; Correia et al. 1997; Castro et al. 1999; Ranjan et al.
2000a; Gupta et al. 1994a, 1994b; Santos Costa et al. 1991c].

Another issue that arises in systems that exploit independent and-
parallelism is whether to recompute solutions of independent goals, or to reuse
them. For example, consider the following program for finding “cousins at the
same generation” taken from Ullman [1988],

sg(X, X) :- person(X).
sg(X, Y) :- parent(X, Xp), parent(Y, Yp), sg(Xp, Yp).

In executing a query such as ?- sg(fred, john) under a (typical) purely
or-parallel, a purely independent and-parallel, or a sequential implementa-
tion, the goal parent(john, Yp) will be recomputed for every solution to
parent (fred, Xp).?” This is clearly redundant since the two parent goals are
independent of each other. Theoretically, it would be better to compute their
solutions separately, take a cross-product (join) of these solutions, and then
try the goal sg(Xp, Yp) for each of the combinations. In general, for two in-
dependent goals G1 and Gg with m and n solutions, respectively, the cost of
the computation can be brought down from m * n to m + n by computing the
solutions separately and combining them through a cross-product, assuming
the cost of computing the cross-product is negligible.2® However, for indepen-
dent goals with very small granularity, the gain from solution sharing may be

27Respecting Prolog semantics, a purely independent and-parallel system can avoid recomputation
of independent goals but most existing ones do not.
28This, as practice suggests, will not always be the case.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

550 . G. Gupta et al.

overshadowed by the cost of computing the cross-product, and so on, therefore,
such goals should either be executed serially, or they should be recomputed
instead of being shared [Gupta et al. 1993]. Independent goals that contain
side-effects and extralogical predicates should also be treated similarly [Gupta
et al. 1993; Gupta and Santos Costa 1996]. This is because the number of times,
and the order in which, these side-effects will be executed in the solution shar-
ing approach will be different from that in sequential Prolog execution, altering
the meaning of the logic program. Thus, if we were to support Prolog’s sequen-
tial semantics in such parallel systems, independent goals would have to be
recomputed. This is indeed the approach adopted by systems such as ACE
[Gupta et al. 1994a] and the PBA model [Gupta et al. 1993], which are based on
an abstraction called composition-tree that represents Prolog’s search tree in
a way that or-parallelism and independent and-parallelism become explicitly
apparent in the structure of the tree itself [Gupta et al. 1994b, 1993].

6.2 Scheduling in And/Or-Parallel Systems

The combination of and- and or-parallelism offers additional challenges. Dur-
ing and-parallel execution, the scheduler is in charge of assigning subgoals to
the workers. In the presence of or-parallelism, the scheduler is in charge of
assigning alternatives to the different workers. When allowing both kinds of
parallelism to be exploited at the same time, the system needs to deal with
an additional level of scheduling, that is, determining whether an idle worker
should perform or-parallel work or and-parallel work. The problem has been
studied in depth by Dutra [1994, 1996]. The solution, which has been inte-
grated in the Andorra-I system [Santos Costa et al. 1991a], relies on orga-
nizing workers into teams, where each team exploits or-parallelism while each
worker within a team exploits and-parallelism. The top-level scheduler dynam-
ically manages the structure of the teams, allowing migration of workers from
one team to the other—used to perform load-balancing at the level of and-
parallelism—as well as allowing the dynamic creation of new teams—used to
load-balance or-parallelism. Different strategies have been compared to decide
how to reconfigure the teams. For example, in Dutra [1994] two strategies are
compared:

—uwork-based strategy: In which task sizes are estimated at run-time and used
to decide workers’ allocation;

—efficiency-based strategy: In which allocation of workers is based on their
current efficiency, that is, the percentage of time they spend doing useful
computation.

The two strategies have been compared in Andorra-I and the results have
been reported in Dutra [1994, 1996]. The comparison suggests that work-based
strategies work well when the estimate of the task size is sufficiently precise;
furthermore, if the grain size is small the reconfigurer tends to be called too
frequently and/or the scheduler causes excessive task switches. The efficiency-
based strategies seem to scale up better with increasing number of workers,
reducing idle time and number of reconfigurations.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 551

6.3 Models for And/Or-Parallelism

We now briefly describe the systems that combine more than one source of
parallelism in logic programming.

6.3.1 The PEPSys Model. The PEPSys model [Westphal et al. 1987; Baron
et al. 1988; Chassin de Kergommeaux and Robert 1990] combines and- and
or-parallelism using a combination of techniques of timestamping and hashing
windows for maintaining multiple environments. In PEPSys (as already dis-
cussed in Section 3.2), each node in the execution tree has a process associated
with it. Each process has its own hash window. All the bindings of conditional
variables generated by a process are timestamped and stored in that process’
hash window. Any PEPSys process can access the stacks and hash windows of
its ancestor processes. The timestamp associated with each binding permits it
to distinguish the relevant binding from the others in the ancestor processes’
stacks and hash windows.

Independent and-parallel goals have to be explicitly annotated by the pro-
grammer. The model can handle only two and-parallel subgoals at a time. If
more than two subgoals are to be executed in and-parallel, the subgoals are
nested in a right associative fashion. If or-parallelism is nested within and-
parallelism, then and-parallel branches can generate multiple solutions. In
this case, the cross-product (join) of the left-hand and right-hand solution sets
must be formed. A process is created for each combination of solutions in the
cross-product set. Each such process can communicate with its two ancestor
processes (one corresponding to the left and-branch and other corresponding
to the right and-branch) that created the corresponding solution. Access to the
bindings of these ancestor processes is handled by join cells. A join cell con-
tains a pointer to the hash window of the left and-branch process and to the
hash window of the right and-branch process. It also contains a pointer to the
hash window that was current at the time of the and-parallel split (Figure 24).
Looking up a variable binding from a goal after the and-parallel join works as
follows: the linear chain of hash windows is followed in the usual way until
a join cell is reached. Now a branch becomes necessary. First, the right-hand
process is searched by following the join cell’s right-hand side hashed window
chain. When the least common hash window is encountered control bounces
back to the join cell and the left branch is searched.

The basic scheme for forming the cross-product, gathering the left-hand so-
lutions and the right-hand solutions in solution lists and eagerly pairing them,
relies on the fact that all solutions to each side are computed incrementally and
coexist at the same time in memory to be paired with newly arriving solutions
to the other side. However, if all solutions to the and-parallel goal on the right
have been found and backtracked over, and there are still more solutions for the
and-parallel goal to the left remaining to be discovered, then the execution of
the right goal will be restarted after discovery of more solutions of the goal to the
left (hence, PEPSys uses a combination of goal-reuse and goal-recomputation).

The PEPSys model uses timestamping and hash windows for environ-
ment representation. This doesn’t permit constant-time access to conditional
variables. Therefore, access to conditional variables is expensive. However,

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

552 . G. Gupta et al.

rl r2 sl s2

Clause p consists of the AND-parallel goals r and s with
two solutions each. The join cells are marked by double
horizontal bars and their least-common-hash-window.

Fig. 24. Join cells.

environment creation is a constant-time operation. Also a worker does not
need to update any state when it switches from one node to another since
all the information is recorded with the or-tree. In PEPSys sharing of and-
parallel solutions is not complete because the right-hand and-parallel subgoal
may have to be recomputed again and again. Although recomputing leads to
economy of space, its combination with cross-product computation via join cells
makes the control algorithm very complex. Due to this complexity, the actual
implementation of PEPSys limited the exploitation of and-parallelism to the
case of deterministic goals [Chassin de Kergommeaux 1989]. PEPSys was later
modified and evolved into the ElipSys System [Véron et al. 1993]: the hashed
windows have been replaced with Binding Arrays and it has also been ex-
tended to handle constraints. In turn, ElipSys evolved into the parallel support
for the ECLiPSe constraint logic programming system, where or-parallelism
only is exploited, using a combination of copying and recomputation [Herold
1995].

6.3.2 The ROPM Model. ROPM (Reduce-Or Parallel Model) [Kalé 1991]
was devised by Kalé in his Ph.D. dissertation [Kalé 1985]. The model is based
on a modification of the and-or tree, called the Reduce-Or Tree. There are two
types of nodes in the reduce-or tree, the reduce nodes and the or nodes. The
reduce nodes are labeled with a query (i.e., a set of goals) and the or nodes
are labeled with a single literal. To prevent global checking of variable binding
conflicts every node in the tree has a partial solution set (PSS) associated with
it. The PSS consists of a set of substitutions for variables that make the subgoal
represented by the node true. Every node in the tree contains the bindings of
all variables that are either present in the node or are reachable through this
node. The reduce-or tree is defined recursively as follows [Kalé 1991].

(1) A reduce node labeled with the top level query and with an empty PSS is a
reduce-or tree.

(2) A tree obtained by extending a reduce-or tree using one of the rules below
is a reduce-or tree:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 553

quicksort (L, Sorted) :- partition(L, L1, L2),
quicksort(Ll, Sortedl), quicksort{L2, Sorted2),
append(Sortedl, Sorted2, Sorted).

quicksort (L1, ...)

partition(...) append(....)
0 ™ 1 2 3

quicksort (L2, ...}

Fig. 25. An example data join graph.

(a) Let Qbethe setofliteralsin the label of a Reduce node R. Corresponding
to any literal L in Q, one may add an arc from R to a new or node O
labeled with an instance of L. The literal must be instantiated with a
consistent composition of the substitutions from the PSS of subgoals
preceding L in Q.

(b) To any or node, labeled with a goal G, one may add an arc to a new reduce
node corresponding to some clause of the program, say C, whose head
unifies with G. The body of C with appropriate substitutions resulting
from the head unification becomes the label of the new Reduce node (say)
R. If the query is empty (i.e., the clause is a “fact”) the PSS associated
with R becomes a singleton set. The substitution that unifies the goal
with the fact becomes the only member of the set.

(¢) Any entry from the PSS of the reduce node can be added to the PSS of its
parent or node. A substitution can be added to the PSS of a reduce node
R representing a composite goal Q if it is a consistent composition of the
substitutions, one for each literal of Q, from the PSSs of the children (or
nodes) of R.

ROPM associates a Reduce Process with every Reduce node and an or process
with every or node. The program clauses in ROPM are represented as Data Join
Graphs (DJGs), in which each arc of the graph denotes a literal in the body of
the clause (Figure 25).

DJGs are a means of expressing and-parallelism and are similar in spirit
to Conery’s dataflow graph. A set of variable binding tuples, called a relation
(PSS), is associated with each arc and each node of the DJG. The head of a
clause is matched with a subgoal by an or process. A reduce process is spawned
to execute the body of the clause. In the reduce process, whenever a binding
tuple is available in the relation of a node %, subgoals corresponding to each
of the arcs emanating from %k will be started, which leads to the creation of
new Or processes. When a solution for any subgoal arrives, it is inserted in the
corresponding arc relation. The node relation associated with a node n is a join
of the arc relations of all its incoming arcs. So when a solution tuple is inserted
in an arc relation, it is joined with all the solution tuples in the arc relations
of its parallel arcs that originated from the same tuple in the lowest common

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

554 . G. Gupta et al.

ancestor node of the parallel arcs [Ramkumar and Kalé 1990]. A solution to the
top level query is found, when the PSS of the root node becomes nonempty.

In ROPM, multiple environments are represented by replicating them at the
time of process creation. Thus, each reduce or or process has its own copy of
variable bindings (the Partial Solution Set above) which is given to it at the
time of spawning. Thus process creation is an expensive operation. ROPM is a
process-based model rather than a stack-based one. As a result, there is no back-
tracking, and hence no memory reclamation that is normally associated with
backtracking. Computing the join is an expensive operation since the actual
bindings of variables have to be cross-produced to generate the tuple relations
of the node (as opposed to using symbolic addresses to represent solutions, as
done in PEPSys [Westphal et al. 1987] and AO-WAM [Gupta and Jayaraman
1993b]), and also since the sets being cross-produced have many redundant
elements. Much effort has been invested in eliminating unnecessary elements
from the constituent sets during join computation [Ramkumar and Kalé 1990].
However, efficiency of the computation of the join has been made more efficient
by using structure sharing. One advantage of the ROPM model is that if a pro-
cess switches from one part of the reduce-or tree to another, it doesn’t need to
update its state at all since the entire state information is stored in the tree.

The ROPM model has been implemented in the ROLOG system on a variety
of platforms. ROLOG is a complete implementation, which includes support
for side-effects [Kalé et al. 1988b]. However, although ROLOG yields very good
speedups, its absolute performance does not compare very well with other par-
allel logic programming systems, chiefly because it is a process-based model
and uses the expensive mechanism of environment closing [Ramkumar and
Kalé 1989; Conery 1987a] for multiple environment representation.

ROLOG is probably the most advanced process-based model proposed to
handle concurrent exploitation of and-parallelism and or-parallelism. Other
systems based on similar models have also been proposed in the literature, for
example, OPAL [Conery 1992], where execution is governed by a set of and and
or processes: such and processes solve the set of goals in the body of a rule, and
or processes coordinate the solution of a single goal with multiple matching
clauses. And and or processes communicate solely via messages.

6.3.3 The AO-WAM Model. This model [Gupta and Jayaraman 1993b;
Gupta 1994] combines or-parallelism and independent and-parallelism.
Independent and-parallelism is exploited in the same way as in &-Prolog and
&ACE, and solutions to independent goals are reused (and not recomputed).
To represent multiple or-parallel environments in the presence of independent
and-parallelism, the AO-WAM extends the binding arrays technique [Warren
1984, 1987c].

The model works by constructing an Extended And-Or tree. Execution con-
tinues like a standard or-parallel system until a CGE is encountered, at which
point a cross-product node that keeps track of the control information for the
and-parallel goals in the CGE is added to the or-parallel tree. New or-parallel
subtrees are started for each independent and-parallel goal in the CGE. As so-
lutions to goals are found, they are combined with solutions of other goals to

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 555

produce their cross-product. For every tuple in the cross-product set, the con-
tinuation goal of the CGE is executed (i.e., its tree is constructed and placed as
a descendant of the cross-product node).

As far as maintenance of multiple environments is concerned, each worker
hasits own binding array. In addition, each worker has a base array. Conditional
variables are bound to a pair of numbers consisting of an offset in the base
array and a relative offset in the binding array. Given a variable bound to
the pair <i, v>, the location binding array[base_array[i] + v] will contain
the binding for that variable. For each and-parallel goal in a CGE, a different
base array index is used. Thus the binding array contains a number of smaller
binding arrays, one for each and-parallel goal, that are accessible through the
base array. When a worker produces a solution for an and-parallel goal and
computes its corresponding cross-product tuples, then before it can continue
execution with the continuation goal of the CGE, it has toload all the conditional
bindings made by other goals in the CGE that are present in the selected tuple
(See Figure 26). Also, on switching nodes, a worker must update its binding
array and base array with the help of the trail, as in Aurora.

6.3.4 The ACE Model. ACE (And/Or-parallel Copying-based Execution of
logic programs) [Gupta et al. 1994a, Pontelli and Gupta 1997b] is another model
that has been proposed for exploiting or- and independent and-parallelism si-
multaneously. ACE?® employs stack copying developed for MUSE to represent
multiple environments. And-parallelism is exploited via CGEs. ACE employs
goal recomputation and thus can support sequential Prolog semantics. ACE
can be considered as subsuming &-Prolog/&ACE and MUSE. The implemen-
tation can be envisaged as multiple copies of &ACE [Pontelli et al. 1995] run-
ning in parallel with each other, where each copy corresponds to a different
solution to the top level query (analogous to the view of MUSE as multiple se-
quential Prologs running in or-parallel). When there is only and-parallelism or
or-parallelism, ACE behaves exactly like &ACE and MUSE, respectively. When
or-parallelism and independent and-parallelism are present together, both are
simultaneously exploited.

Multiple environments are maintained by stack copying as in MUSE. In
ACE, available workers are divided into teams as in Andorra-I, where different
teams execute in or-parallel with each other while different workers within a
team execute in independent and-parallel with each other. A team executes
the top level query in and-parallel as in &ACE until a choice point is created,
at which point other teams may steal the untried alternatives from this choice
point. Before doing so, the stealing team has to copy the appropriate stacks from
the team from which the alternative was picked. When the choice point from
which the alternative is picked is not in the scope of any CGE, all the operations
are very similar to those in MUSE. However, the situation is slightly more
complex when an alternative from a choice point in the scope of a CGE is stolen
by a team. To illustrate this, consider the case where a team selects an untried

29Note that the ACE platform has been used to experiment with both combined and/or-parallelism
as well as dependent and-parallelism, as illustrated in Section 5.5.3.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

556 . G. Gupta et al.

Key:

- Crossproduct node

D and-node
I:I choice point

or-node
(environment)

I:I solution-node
ith processor

(b1)

0 20 [x 0 wb | % 0 20 b4
e Y R 1 [nio w0 | ¥ 1 —— 1
2| wIL 15 A 2 20 P 2 ~ 15 A
3| i 30 | B 3] wIiL 5 o 3| L 30 fB
unb < unb R unb <
unp | M wb | unb [¥
base array b base array 80 P
ase array
/ s o]
next-free-loc next-free-loc / i
unb s
next-free-loc —|
Bdg array Bdg array
Fig (i): Binding array and Base Array Fig (ii): Binding array and Base array of processor
of processor P1 after generating the left P2 after generating the right and-branch, and the Bdg array
and-branch. Binding array and Base array of processor P1 after

loading the bindings from the right and-branch. P1 is
now ready to proceed with the sequential goal after
the CGE that gave rise to the cross-product node.

Fig. 26. Execution in the AO-WAM.

alternative from a choice point created during execution of a goal g; inside the
CGE (true = g1&---&g,). This team will copy all the stack segments in the
branch from the root to the CGE including the parcall frame.? It will also have
to copy the stack segments corresponding to the goals g;--- g;_1 (i.e., goals to
the left). The stack segments up to the CGE need to be copied because each
different alternative within g; might produce a different binding for a variable,
X, defined in an ancestor goal of the CGE. The stack segments corresponding to
goals g1 through g;_1 have to be copied because execution of the goals following

30As mentioned earlier, the parcall frame [Hermenegildo 1986b] records the control information
for the CGE and its independent and-parallel goals.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 557

Pl P2 P3 P4

P5

[a &] ‘(a s b o & B

‘®
a1 al
bl bl
b2

{1 (ii) a2 (iii) {iv)

branch executed locally copied
P embryonic branch choice point
{untried alternative) (branch point)

Fig. 27. Execution in ACE.

the CGE might bind a variable defined in one of the goals g1 - - - g;,_1 differently.
The stack segments of the goal g; from the CGE up to the choice point from
where the alternative was taken also need to be copied (note that because of
this, an alternative can be picked up for or-parallel processing from a choice
point that is in the scope of the CGE only if goals to the left, ie., g1---g;_1,
have finished). The execution of the alternative in g; is begun, and when it
finishes, the goals g;.1... g, are started again so that their solutions can be
recomputed. Because of recomputation of independent goals ACE can support
sequential Prolog semantics [Gupta et al. 1993, 1994a; Gupta and Santos Costa
1996].

This is also illustrated in Figure 27. The four frames represent four teams
working on the computation. The second team recomputes the goal b, while the
third and fourth teams take the second alternative of b, respectively, from the
first and second team.

6.3.5 The COWL Models. The actual development of an or-parallel system
based on stack copying requires a very careful design of the memory manage-
ment mechanisms. As mentioned in Section 3.5.2 whenever a copy operation
takes place, we would like to transfer data structures between agents without
the need to perform any pointer-relocation operation. In systems such as MUSE
and ACE, this has been achieved by using memory mapping techniques that
allow the different workers to map their stacks at the same virtual addresses.
This technique works well for purely or-parallel systems, but tends to break
down when or-parallelism is paired with concurrent exploitation of indepen-
dent and-parallelism. Stack copying takes advantage of the fact that the data
to be transferred are occupying contiguous memory locations. In a team-based
system organization, we need to transfer data structures that have been created
by different team members; such data structures are likely to be not contiguous
in memory, thus requiring a complex search process to determine the relevant
areas to be copied. Furthermore, possible conflicts may arise during copying if
parts of the address space of a team have been used for different purposes in
different teams.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

558 . G. Gupta et al.

Paged
Binding
Array
0
=1
&
s 2
=¥
3
0
1 An and-parallel computation (delimited by
g’o a rectangular box) is performed by a team
=) 2 of three processors which share a common
i paged binding array and page table. The
3 branches that are part of and-parallel
computation are shown in dark in the fig.

Fig. 28. The Paged Binding Array.

A simple solution to these issues has been recently proposed by V. Santos
Costa [1999] in the copy-on-write for logic programs (COWL) methods. In
COWL, each team occupies a different segment of the overall address space
(thus avoiding conflicts between members of different teams during copying)
called team workspace. Whenever copying is required, one team simply copies
the other team’s space into its own. Copying is performed using operating sys-
tem support for copy-on-write: two workers share the same data until one of
them tries to write on them; at that point a copy of the data is made and the
two workers go their separate ways with private copies of such data. Copying
only at “write” time makes copies of data areas (particularly read-only copies)
very inexpensive. Thus, in COWL, when copying is required, the destination
team releases its own memory mapping and maps (as copy-on-write) the source
team’s space. Thus, actual data are not copied immediately, but they are au-
tomatically transferred by the operating system whenever they are needed.
The basic COWL scheme (also known as «COWL) has also been extended to
optimize the copying by avoiding wasted computation locally performed in the
team and reusable after the copying operation (i.e., avoiding one team’s copy-
ing data structures from its own workspace), leading to a second model, called
BCOWL.

6.3.6 Paged Binding Array-Based Model. ACE can be seen as combining
&-Prolog/&ACE with MUSE, while preserving Prolog semantics. In a similar
vein, one can combine &-Prolog/&ACE with Aurora while preserving Prolog
semantics. However, as in the case of AO-WAM, the binding array technique
has to be extended to accommodate independent and-parallelism. The Paged
Binding Array-(PBA) based model does this by dividing the binding array into
pages and maintaining a Page Table with a binding array (see Figure 28). Like
ACE, available workers are divided into teams, where different teams work
in or-parallel with each other, while different workers within a team work in
independent and-parallel. Different and-parallel computations within an or-
parallel computation share the same binding array (thus the paged binding
array and the page table are common to all workers on a team), however, each
one of them will use a different page, requesting a new page when it runs out of

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 559

space in the current one. Like AO-WAM, conditional variables are bound to a
pair of numbers where the first element of the pair indicates the page number
in the binding array, and the second element indicates the offset within this
page.

The PBA-based model also employs recomputation of independent goals, and
therefore can support Prolog semantics [Gupta et al. 1993; Gupta and Santos
Costa 1996]. Thus, when a team steals an alternative from a goal inside a CGE,
then it updates its binding array and page table so that the computation state
that exists at the corresponding choice point is reflected in the stealing team.
The team then restarts the execution of that alternative, and of all the goals
to the right of the goal in the CGE that led to that alternative. In cases where
the alternative stolen is from a choice point outside the scope of any CGE, the
operations involved are very similar to those in Aurora.

The Paged Binding Array is a very versatile data structure and can also be
used for implementing other forms of and-or parallelism [Gupat et al. 1994b].

So far we have only considered models that combine or- and independent
and-parallelism. There are models that combine independent and-parallelism
and dependent and-parallelism such as DDAS [Shen 1992a], described earlier,
as well as models that combine or-parallelism and dependent and-parallelism
such as Andorra-I [Santos Costa et al. 1991a]. Other combined independent
and- and or- parallel models have also been proposed [Biswas et al. 1988; Gupta
et al. 1991].

6.3.7 The Principle of Orthogonality. One ofthe overall goals that has been
largely ignored in the design of and-or parallel logic programming systems is
the principle of orthogonality [Correia et al. 1997]. In an orthogonal design,
or-parallel execution should be unaware of and-parallel execution and vice
versa. Thus, orthogonality allows the separate design of the data structures
and execution mechanisms for or-parallelism and and-parallelism. Achieving
this goal is very ambitious. Orthogonality implies that:

(1) each worker should be able to backtrack to a shared choice point and be
aware only of or-parallelism;

(2) whenever a worker enters the public part of the or-tree, the other work-
ers on the team should be able to continue unaffected their and-parallel
computations.

Most existing proposals for combined and/or-parallelism do not meet the prin-
ciple of orthogonality. Let us consider, for example, the PBA model and let us
consider the computation as shown in Figure 29.

Let us assume the following configuration.

(1) Workers W1,1 and W1,2 compose the first team, which is operating on the
parallel call on the left; worker W1,1 makes use of pages 1 and 3: page 1
is used before choice point C1 while page 3 is used after that choice point,
and worker W1,2 makes use of page 2.

(2) Worker W2,1 and W2,2 compose team number 2, which is working on the
copy of the parallel call (on the right). The computation originates from

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

560 . G. Gupta et al.

a&b a&b

Fig. 29. Lack of orthogonality in PBA.

stealing one alternative from choice point CI. In this case, worker W2,2
makes use of both pages 2 and 3.

If worker W2,1 backtracks and asks for a new alternative from the first team
(one of the alternatives of C2), then it will need to use page 3 for installing the
bindings created by team 1 after the choice point C1. But for team 2, page 3
is not available (being used by W2,2). Thus, worker W2,2 will be “affected” by
backtracking of W2,1 on a shared choice point.

Various solutions are currently under exploration to support orthogonality.
Some of the schemes proposed are

—the shared paged binding array (SPBA) [Gupta et al. 1994b] which extends
the PBA scheme by requiring the use of a global and shared paged binding
array;

—the sparse binding array [Correia et al. 1997] in which each conditional vari-
able is guaranteed to have a binding array index that is unique in the whole
computation tree and relies on operating system techniques to maintain the
large address space that each worker needs to create (each worker needs
virtual access to the address space of each worker in the system);

—the COWL methods presented in Section 6.3.5.

A comparison of these three schemes has been presented in Santos Costa et al.
[2000].

6.3.8 The Extended Andorra Model. The extended Andorra model (EAM)
[Warren 1987a; Haridi and Janson 1990; Gupta and Warren 1992] and the
Andorra Kernel Language (AKL) (later renamed Agent Kernel Language)
[Haridi and Janson 1990] combine exploitation of or-parallelism and depen-
dent and-parallelism. Intuitively, both models rely on the creation of copies of
the consumer goal for every alternative of the producer and vice-versa (akin to
computing a join) and letting the computation proceed in each such combina-
tion. Note that the EAM and the Andorra Kernel Language are very similar in
spirit to each other, the major difference being that while the EAM strives to
keep the control as implicit as possible, AKL gives the programmer complete
control over parallel execution through wait guards. In the description below,

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 561

we use the term Extended Andorra Model in a generic sense, to include models
such as AKL as well.

The Extended Andorra Model is an extension of the Basic Andorra Model.
The Extended Andorra Model goes a step further and removes the constraint
that goals become determinate before they can execute ahead of their turn.
However, goals that do start computing ahead of their turn must compute only
as far as the (multiple) bindings they produce for the uninstantiated variables
in their arguments are consistent with those produced by the “outside envi-
ronment.” If such goals attempt to bind a variable in the outside environment,
they suspend. Once a state is reached where execution cannot proceed, then
each suspended goal that is a producer of bindings for one (or more) of its argu-
ment variables “publishes” these bindings to the outside environment. For each
binding published, a copy of the consumer goal is made and its execution con-
tinued. (This operation of “publication” and creation of copies of the consumer
is known as a “nondeterminate promotion” step.) The producer of bindings of a
variable is typically the goal where that variable occurs first. However, if a goal
produces only a single binding (i.e., it is determinate), then it doesn’t need to
suspend; it can publish its binding immediately, thus automatically becoming
the producer for that goal irrespective of whether it contains the leftmost oc-
currence of that variable (as in the Basic Andorra Model). An alternative way
of looking at the EAM is to view it as an extension of the basic Andorra model
where nondeterminate goals are allowed to execute locally so far as they do not
influence the computation going on outside them. This amounts to including in
the Basic Andorra Model the ability to execute independent goals in parallel.

There have been different interpretations of the Extended Andorra Model,
but the essential ideas are summarized below. Consider the following very sim-
ple program,

pX, Y) :- X=2, m(Y).
p&X, Y) :- X=3, n(YV).
qQX, Y) :- X=3, t(Y).
qX, Y) :- X=3, s(Y).
r(Y) :- Y=5.

7- pX, V), 9X, V), r(¥).

When the top level goal begins execution, all three goals will be started con-
currently. Note that variables X and Y in the top level query are considered
to be in the environment “outside” goals p, q, and r (this is depicted by ex-
istential quantification of X and Y in Figure 30). Any attempt to bind these
variables from inside these goals will lead to the suspension of these goals.
Thus, as soon as these three goals begin execution, they immediately suspend
since they try to constrain either X or Y. Of these, r is allowed to proceed and
constrain Y to value 5, because it binds Y determinately. Since p will be reck-
oned the producer goal for the binding of X, it will continue as well and publish
its binding. The goal q will, however, suspend since it is neither determinate
nor the producer of bindings of either X or Y. To resolve the suspension of q
and make it active again, the nondeterminate promotion step will have to be
performed. The nondeterminate promotion step will match all alternatives of p

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

562 . G. Gupta et al.

Step 1. | IX Y pX.Y), ¢X,Y), r(Y)|
/

Binding of Y in r
is determinately
promoted.

Y=5
X=2, m(Y)l | X=3.n(Y)|| X=3,1Y) | | X=3,s(Y)|
suspend suspend suspend suspend
Y=5 I3 3
Step 2. tep 3.
ps IX X5, 9%, 5) Execution
Non—detl'_erml..nate continues
promotion is along the
performed. 2 branches
X=3, Y=5 A X=3,Y=5
x=2m0)| [x=20 |[X=30 | [x=3:0) | [19.065 | [0]

Fig. 30. Execution in EAM.

with those for q, resulting in only two combinations remaining active (the rest
having failed because of nonmatching bindings of X). These steps are shown in
Figure 30.

The above is a very coarse description of the EAM; a full description of the
model is beyond the scope of this article. More details can be found elsewhere
[Warren 1987a; Haridi and Janson 1990; Gupta and Warren 1992]. The EAM is
a very general model, more powerful than the Basic Model, since it can narrow
down the search even further by local searching. It also exploits more paral-
lelism since it exploits all major forms of parallelism present in logic programs:
or-, independent and-, and dependent and-parallelism, including both determi-
nate and nondeterminate dependent and-parallelism. A point to note is that
the EAM does not distinguish between independence and dependence of con-
junctive goals: it tries to execute them in parallel whenever possible. Also note
that the EAM subsumes both the committed choice logic programming (with
nonflat as well as flat guards) and nondeterministic logic programming, that
is, general Prolog.

The generality and the power of the Extended Andorra Model make its ef-
ficient implementation quite difficult. A sequential implementation of one in-
stance of the EAM (namely, the Andorra Kernel Language or AKL) has been im-
plemented at the Swedish Institute of Computer Science [Janson and Montelius
1991]. A parallel implementation has also been undertaken by Moolenaar and
Demoen [1993]. A very efficient parallel implementation of AKL has been pro-
posed by Montelius in the Penny system [Montelius 1997; Montelius and Ali
1996]. This implementation combines techniques from or-parallelism and com-
mitted choice languages. Although AKL includes nondeterminism, it differs
from Prolog both in syntax and semantics. However, automatic translators that
transform Prolog programs into AKL programs have been constructed [Bueno
and Hermenegildo 1992]. The development of AKL has been discontinued, al-
though many of the ideas explored in the AKL project have been reused in

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 563

the development of the concurrent constraint language Oz [Haridi et al. 1998;
Popov 1997].

More faithful models to support the execution of the EAM have been recently
described and are currently under implementation, for example, the BEAM
model [Lopes and Santos Costa 1999]. The literature also contains proposals
of extensions of Prolog that try to more naturally integrate an EAM style of
computation. One example is represented by the Extended Dynamic Dependent
scheme [Gupta and Pontelli 1999a]. This model has been developed as an exten-
sion of the filtered-binding model used in the ACE system to support dependent
and-parallelism. The model extends Prolog-like dependent and-parallelism by
allowing the deterministic promotion step of EAM. This typically allows im-
proved termination properties, reduced number of suspensions during paral-
lel execution, and simple forms of coroutining. These results can be achieved
reusing most of the existing (and efficient) technology developed for pure de-
pendent and-parallelism, thus avoiding dramatic changes in the language se-
mantics and novel and complex implementation mechanisms.

7. DATA PARALLELISM VERSUS CONTROL PARALLELISM

Most of the research has focused on exploiting parallelism only on MIMD ar-
chitectures, viewing or-parallelism and and-parallelism as forms of control-
parallelism. Intuitively, this means that parallelism is exploited by creating
multiple threads of control, which are concurrently performing different oper-
ations. An alternative view has been to treat specialized forms of or- and and-
parallelism as data parallelism. Data parallelism relies on the idea of main-
taining a single thread of control, which concurrently operates on multiple data
instances. Similarly, to what we have considered so far, we can talk about data
or-parallelism and data and-parallelism.

In both cases, the focus is on the parallelization of repetitive operations that
are simultaneously applied to a large set of data. This pattern of execution
occurs often in logic programs, as exemplified by frequently used predicates
such as the following (simplified) map predicate,

map([1,[1).

map ([X]Y], [X11Y1]) :-
process (X,X1),
map(Y,Y1).

where the computation indicated by process is repeated for each element of
the input list. In this context, data parallelism implies that exploitation of par-
allelism is driven by the computation dataflow, in contrast with standard and-
and or-parallelism, which relies on the parallelization of the control structure
of the computation (i.e., the construction of the derivation tree).

Exploitation of data parallelism has been shown to lead to good performance
on both SIMD and MIMD architectures; the relatively regular format of the par-
allelism exploited allows simpler and more efficient mechanisms, thus leading
to reduced overhead and improved efficiency even on MIMD architectures.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

564 . G. Gupta et al.

7.1 Data Or-Parallelism

In a data or-parallel system, exemplified by the MultiLog system [Smith 1996],
or-parallelism of a highly regular nature is exploited on a SIMD architecture.
There is one control thread but multiple environments. Data or-parallelism
as exploited in MultiLog is useful in applications of generate-and-test nature,
where the generator binds a variable to different values taken from a set. Con-
sider the following program,

member (X, [XIT]).
member (X, [YI|T]) :- member(X, T).

?7- member(Z, [1,2,..,100]), process(Z).

In a standard Prolog execution, the solutions to member/2 are enumerated one
by one via backtracking, and each solution is separately processed by process.
The member goal will be identified as the generator in the MultiLog system.
For such a goal, a subcomputation is begun, and all solutions are collected and
turned into a disjunction of substitutions for variable Z. The process goal is
then executed in data parallel for each binding received by Z. Note that the
executions of the various process goals differ only in the value of the variable
Z. Therefore, only one control thread is needed which operates on data that
is different on different workers, with unification being the only data parallel
operation. It is also important to observe that process/1is executed once, rather
than once per solution of the member/2 predicate.

Multilog provides a single syntactic extension with respect to Prolog: the
disj annotation allows the compiler to identify the generator predicate. Thus,
for a goal of the form ?- disj generate(X) Multilog will produce a complete
description of the set of solutions (as a disjunction of bindings for X) before
proceeding with the rest of the execution.

For a (restricted) set of applications (e.g., generate-and-test programs) a
data or-parallel system such as MultiLog has been shown to produce good
speedups.

Techniques, such as the last alternative optimization [Gupta and Pontelli
1999b], have been developed to allow traditional or-parallel systems to perform
more efficiently in the presence of certain instances of data or-parallelism.

7.2 Data And-Parallelism

The idea of data parallel execution can also be naturally applied to and-parallel
goals: clauses that contain recursive calls can be unfolded and the resulting
goals executed in data parallel. This approach, also known as recursion paral-
lelism, has been successfully exploited through the notion of reform compilation
[Millroth 1990]. Consider the following program,

map([],[1).
map ([X|Y], [X1]Y1]) :- proc(X,X1), map(Y,Y1).
?- map([1, 2, 3], 2).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 565

Unfolding this goal we obtain:

Z = [X1,X2,X3]Y], proc(1,X1), proc(2,X2), proc(3,X3),map([],Y).

Note that the three proc goals are identical except for the data values and can
be executed in data parallel, that is, with a single thread of control and multiple
data values. Thus, the answer to the above query can be executed in two data
parallel steps.

In more general terms, given a recursively defined predicate p,

pX):— A
pX) : = &, p(X'), .

if a goal p(@) is determined to perform at least n recursive calls to p, then the
second clause can be unfolded as

pX):—®q,..., D, pd),V,,..., ¥,
(1) 2) 3)

where ®; and ¥; are the instances of goals ® and ¥ obtained at the ith level of
recursion. This clause can be executed by first running, in parallel, the goals
@y, ..., D,, then executing p(b) (typically the base case of the recursion), and
finally running the goals ¥,,, ..., ¥ in parallel as well. In practice, the unfolded
clause is not actually constructed; instead the head unification for the n lev-
els of recursion is performed at the same time as the size of the recursion is
determined, and the body of the unfolded clause is compiled into parallel code.

Reform Prolog [Bevemyr et al. 1993] is an implementation of a restricted
version of the reform compilation approach. In particular only predicates per-
forming integer recursion or list recursion and for which the size of the recursion
is known at the time of the first call are considered for parallel execution.

To achieve efficient execution, Reform Prolog requires the generation of de-
terministic bindings to the external variables, thus relieving the system of the
need to perform complex backtracking on parallel calls. Compile-time analysis
tools have been proposed to guarantee the conditions necessary for the parallel
execution and to optimize execution [Lindgren 1993]. Reform Prolog has been
ported on different MIMD architectures, such as Sequent [Bevemyr et al. 1993]
and KSR-1 [Lindgren et al. 1995].

Exploitation of data and-parallelism explicitly through bounded quantifica-
tion has also been proposed [Barklund and Millroth 1992]. In this case, the
language is extended with constructs used to express bounded forms of uni-
versal quantification (e.g., V(X € S)g). Parallelism is exploited by concurrently
executing the body of the quantified formula (e.g., ¢) for the different values in
the domain of the quantifiers (e.g., the different values in the set S).

Both traditional and-parallelism and data-parallelism offer advantages and
disadvantages. Traditional and-parallel models offer generality, being able to
exploit parallelism in a large class of programs (including the parallelism ex-
ploited by data parallelism techniques). Data and-parallelism techniques on
the other hand offer increased performance for a restricted class of programs.
As a result, various authors have worked on integrating data and-parallelism

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

566 . G. Gupta et al.

into more traditional and-parallelism schemes [Debray and Jain 1994; Pontelli
and Gupta 1995a; Hermenegildo and Carro 1996]. The basic idea is to iden-
tify instances of data and-parallelism in generic and-parallel programs, and to
use specialized and more efficient execution mechanisms to handle these cases
within the more general and-parallel systems. These techniques have been
shown to allow obtaining the advantages of both types of parallelism within
the same system.

8. PARALLEL CONSTRAINT LOGIC PROGRAMMING

Although the main focus of this survey is parallel execution of Prolog programs,
we briefly overview in this section the most relevant efforts that have been made
towards parallel execution of Constraint Logic Programming (CLP). This is of
interest since many of the techniques adopted for parallel execution of CLP are
directly derived from those used in the parallelization of Prolog computations
and, on the other hand, the study of parallelism in CLP has led to important
generalizations in the concepts and techniques developed for traditional logic
programming.

8.1 Or-Parallel Constraint Logic Programming

A parallel implementation of Chip [Van Hentenryck 1989] has been realized
using the PEPSys or-parallel system. In this implementation, parallelism is
exploited from the choice points generated by the labeling phase introduced
during resolution of finite domain constraints (which is in effect a form of
data or-parallelism). The results reported in Van Hentenryck [1989] are en-
couraging, and prove that or-parallel techniques are also quite suitable in the
context of CLP execution. Experiments in the parallelization of ECLiPSe us-
ing a recomputation-based approach have also been presented [Mudambi and
Schimpf 1994]. In Gregory and Yang [1992] finite domain constraint solving
operations are mapped to the parallel execution mechanisms of Andorra-I.

Firebird [Tong and Leung 1993] is a data parallel extension of flat GHC (a
committed choice language) with finite domain constraints, relying on the data
or-parallel execution obtained from the parallelization of the labeling phase
of CLP. Execution includes nondeterministic steps, leading to the creation of
parallel choice points, and indeterministic steps, based on the usual committed
choice execution behavior. Arguments of the predicates executed during an in-
deterministic step can possibly be vectors of values—representing the possible
values of a variable—and are explored in data parallel. The overall design of
Firebird resembles the model described earlier for Multilog. The implementa-
tion of Firebird has been developed on a DECmpp SIMD parallel architecture,
and has shown considerable speedups for selected benchmarks (e.g., about two
orders of magnitude of speedup for the n-queens benchmark using 8,192 pro-
cessors) [Tong and Leung 1995].

Other recent work studies the direct parallelization of the sources of non-
determinism inherent in the operational semantics of CLP solvers. The work
in Pontelli and El-Kathib [2001] presents a methodology for exploring in par-
allel the alternative elements of a constraint domain, while Ruiz-Andino et al.
[1999] revisit the techniques used to parallelize arc-consistency algorithms (e.g.,

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 567

parallel AC3 [Samal and Henderson 1987] and AC4 [Nguyen and Deville 1998])
and apply them to the specific case of indexical constraints in CLP over finite
domains. Similar work exploring interactions between search strategies in con-
straint logic programming and parallelism has also been presented [Schulte
2000; Perron 1999].

8.2 And-Parallel Constraint Logic Programming

An interesting issue that appears in the context of and-parallel constraint logic
programming is that the traditional notions of independence do not hold. Con-
sider, for example, the parallelization of two procedure calls p(X),q(Z) in the
following situations,

(@)main :- X >Y, Z>Y, pX) & q(2),
(b)main :- X > Y, Y > Z, p(X) & q(2),

In case (a), the store contains (X>Y,Z>Y) before calling P and g, whereas, in
case (b), the store contains (X>Y,Y>Z). The simple pointer aliasing reasoning
implied by the definition of strict independence does not apply directly. However,
p cannot in any way affect q in case (a), while this could be possible in case
(b), that is, the two calls are clearly independent in case (a) while they are
(potentially) dependent in case (b).

Notions of independence that apply to general constraint programming (and
can thus deal with the situation above) have been proposed by Garcia de la
Banda et al. [2000] and Garcia de la Banda [1994]. For example, two goals p
and q are independent if all constraints posed during the execution of q are
consistent with the output constraints of p.3! The following is a sufficient con-
dition for the previous definition but which only needs to look at the state of the
store prior to the execution of the calls to be parallelized (e.g., using run-time
tests that explore the store (c)), in the same spirit as the strict-independence
condition for the Herbrand case. Assuming the calls are p(x) and g(¥) then the
condition is:

(32' N 5’ - def(c)) and (E_Q'CC A 3_5,C — a_yuxc),

where % is the set of arguments of p, def(c) is the set of variables constrained
to a unique value in ¢, and 3_; represents the projection of the store on the
variables X (the notion of projection is predefined for each constraint sys-
tem). The first condition states that the variables which are shared between
the goals in the program text must be bound at run-time to unique values. The
second condition is perhaps best illustrated through an example. In the two
cases above, for (a) c = {X > Y,Z > Y} we have 3_xjc = I_z¢ = I_x z¢ = true
and therefore p and q are independent. For (b) ¢ = {X > Y,Y > Z} we have
d_c = I_z¢ = true while Jxzc = X > Z and therefore p and q are not
independent. While checking these conditions accurately and directly can be

31As mentioned earlier, this actually implies a better result even for Prolog programs since its
projection on the Herbrand domain is a strict generalization of previous notions of nonstrict inde-
pendence. For example, the sequence p(X), q(X) can be parallelized if p is defined, for example,
as p(a) and q is defined as q(a).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

568 . G. Gupta et al.

inefficient in practice, the process can be approximated at compile-time via
analysis or at run-time via simplified checks on the store. A first and-parallel
CLP system, based on an extension of the &-Prolog/Ciao system, and using
the notions of independence presented has been reported in Garcia de la Banda
et al.[1996a, 2000], showing promising performance results. Also, as mentioned
earlier, applying the notions of constraint independence at the finest granular-
ity level-the level of individual bindings and even the individual steps of the
constraint solver—has been studied formally in Bueno et al. [1994b, 1998], lead-
ing to what is believed to be the “most parallel” model for logic and constraint
logic programming proposed to date that preserves correctness and theoretical
efficiency.

Another reported proposal is GDCC [Terasaki et al. 1992], an extension of
KL1 (running on the PSI architecture) with constraint solving capabilities, con-
structed following the cc model proposed by Saraswat [1989]. GDCC provides
two levels in the exploitation of parallelism: the gdcc language is an extension
of the concurrent KL1 language, which includes ask and tell of constraints;
this language can be executed in parallel using the parallel support provided
by KL1; and gdcc has been interfaced to a number of constraint solvers (e.g.,
algebraic solvers for nonlinear equations), which are themselves capable of
solving constraint in parallel.

9. IMPLEMENTATION AND EFfiCIENCY ISSUES

Engineering an efficient, practical parallel logic programming system is by no
means an easy task.?? There are numerous issues one has to consider; some
general ones are discussed below.

9.1 Process-Based Versus Processor-Based

Broadly speaking there are two approaches that have been taken in implement-
ing parallel logic programming systems which we loosely call the process-based
approach and the processor-based approach, respectively.

In the process-based approaches, prominent examples of which are Conery’s
[1987b] And-Or Process Model and the Reduce-Or Process Model [Kalé 1985], a
process is created for every goal encountered during execution. These processes
communicate bindings and control information to each other to finally produce
a solution to the top level query. Process-based approaches have also been used
for implementing committed choice languages [Shapiro 1987]. Process-based
approaches are somewhat more suited for implementation on nonshared mem-
ory MIMD processors,? at least from a conceptual point of view, since different
processes can be mapped to different processors at run-time quite easily.

In processor-based (or “multisequential”) approaches, multiple threads are
created ahead of time that run in parallel to produce answers to the top level

32For instance, many person-years of effort have been spent in building some of the existing systems,
such as &-Prolog, Aurora, MUSE, ACE, and Andorra-I.

33Some more process-based proposals for distributed execution of logic programs can be found in
Kacsuk [1990].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 569

query by being assigned parts of the computation, and, typically, each thread
is a WAM-like processor. Examples of processor-based systems are &-Prolog,
Aurora, MUSE, Andorra-I, PEPSys, AO-WAM, DDAS, ACE, PBA, and so on.
Processor-based systems are more suited for shared memory machines, al-
though techniques such as stack copying and stack splitting show a high degree
of locality in memory reference behavior and hence are suited for nonshared
memory machines as well [Ali 1988; Ali et al. 1992; Gupta and Pontelli 1999c].
As has been shown by the ACE model, MUSE’s stack copying technique can be
applied to and-or parallel systems as well, so one can envisage implementing
a processor-based system on a nonshared memory machine using stack copy-
ing [Villaverde et al. 2001; Gupta et al. 1992]. Alternatively, one could employ
scalable virtual shared memory architectures that have been proposed [Warren
and Haridi 1988] and built (e.g., KSR, SGI Origin, IBM NUMA-Q).

Ideally, a parallel logic programming system is expected to satisfy the follow-
ing two requirements [Hermenegildo 1986b; Gupta and Pontelli 1997; Pontelli
1997].

—On a single processor, the performance of the parallel system should be com-
parable to sequential logic programming implementations (i.e., there should
be limited slowdown compared to a sequential system). To this end, the par-
allel system should be able to take advantage of the sequential compilation
technology [Warren 1983; Ait-Kaci 1991; Van Roy 1990] that has advanced
rapidly in the last two decades, and thus the basic implementation should be
WAM-based.

—Parallel task creation and management should introduce a small overhead
(which implies using a limited number of processes and efficient scheduling
algorithms).

Systems such as &-Prolog, Aurora, MUSE, and ACE indeed get very close
to achieving these goals. Experience has shown that process-based systems
lose out on both the above counts. Similar accounts have been reported also in
the context of committed choice languages (where the notion of process-based
matches well with the view of each subgoal as an individual process that is
enforced by the concurrent semantics of the language); indeed the fastest par-
allel implementations of committed choice languages (e.g., Crammond [1992]
and Rokusawa et al. [1996]) rely on a processor-based implementation. In the
context of Prolog, the presence of backtracking makes the process model too
complex for nondeterministic parallel logic programming. Furthermore, the
process-based approaches typically exploit parallelism at a level that is too fine-
grained, resulting in high parallel overhead and unpromising absolute perfor-
mances (but good speedups because the large parallel overhead gets evenly dis-
tributed!). Current processor-based systems are not only highly efficient, they
can easily assimilate any future advances that will be made in the sequen-
tial compilation technology. However, it must be pointed out that increasing
the granularity of processes to achieve better absolute performance has been
attempted for process-based models with good results [Ramkumar and Kalé
1992].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

570 . G. Gupta et al.

9.2 Memory Management

Memory management, or managing the memory space occupied by run-time
data structures such as stacks, heaps, and the like, is an issue that needs to be
tackled in any parallel system. In parallel logic programming systems memory
management is further complicated due to the presence of backtracking that
may occur on failure of goals.

In sequential Prolog implementations, memory is efficiently utilized because
the search tree is constructed in a depth-first order, so that at any given moment
a single branch of the tree resides in the stack. The following rules always hold
in a traditional sequential system.

(1) If a node n; in the search tree is in a branch to the right of another branch
containing node ng, then the data structures corresponding to node ng would
be reclaimed before those of n; are allocated.

(2) If a node n; is the ancestor of another node ny in the search tree, then the
data structures corresponding to ng would be reclaimed before those of n;.

As a result of these two rules, space is always reclaimed from the top of
the stacks during backtracking in logic programming systems which perform a
depth-first search of the computation tree, as Prolog does.

However, as shown in Lusk et al. [1990], Ali and Karlsson [1990b] and
Hermenegildo [1987], in parallel logic programming systems things are more
complicated. First, these rules may not hold: two branches may be simultane-
ously active due to or-parallelism (making rule 1 difficult to enforce), or two
conjunctive goals may be simultaneously active due to and-parallelism (mak-
ing rule 2 difficult to enforce). Of course, in a parallel logic system, usually
each worker has its own set of stacks (the multiple stacks are referred to as a
cactus stack since each stack corresponds to a part of the branch of the search
tree), so it is possible to enforce the two rules in each stack to ensure that space
is reclaimed only from the top of individual stacks. If this restriction is im-
posed, then while memory management becomes easier, some parallelism may
be lost since an idle worker may not be able to pick available work in a node
because doing so will violate this restriction. If this restriction is not imposed,
then it becomes necessary to deal with the “garbage slot” problem, namely, a
data structure that has been backtracked over is trapped in the stack below
a goal that is still in use, and the “trapped goal” problem, namely, an active
goal is trapped below another, and there is no space contiguous to this active
goal to expand it further, which results in the LIFO nature of stacks being
destroyed.

There are many possible solutions to these problems [Hermenegildo 1986b;
Pontelli et al. 1995; Shen and Hermenegildo 1994, 1996a]. The approach taken
by many parallel systems (e.g., the ACE and DASWAM and-parallel systems
and the Aurora or-parallel system) is to allow trapped goals and garbage slots
in the stacks. Space needed to expand a trapped goal further is allocated at the
top of the stack (resulting in “stack-frames”—such as choice points and goal
descriptors—corresponding to a given goal becoming noncontiguous). Garbage
slots created are marked as such, and are reclaimed when everything above

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 571

them has also turned into garbage. This technique is also employed in the
Aurora, &-Prolog, and Andorra-I systems. In Aurora the garbage slot is referred
to as a ghost node. If garbage slots are allowed, then the system will use up
more memory, but work scheduling becomes simpler and processing resources
are utilized more efficiently.

While considerable effort has been invested in the design of garbage collection
schemes for sequential Prolog implementations (e.g., Pittomvils et al. [1985],
Appleby et al. [1988], Older and Rummell [1992], and Bekkers et al. [1992]),
considerably more limited effort has been placed on adapting these mechanisms
to the case of parallel logic programming systems. Garbage collection is indeed
a serious concern, since parallel logic programming systems tend to consume
more memory than sequential ones (e.g., use of additional data structures, such
as parcall frames, to manage parallel executions). For example, results reported
for the Reform Prolog system indicate that on average 15% of the execution time
is spent in garbage collection. Some early work on parallelization of the garbage
collection process (applied mostly to basic copying garbage collection methods)
can be found in the context of parallel execution of functional languages (e.g.,
Halstead [1984]). In the context of parallel logic programming, two relevant
efforts are:

—the proposal by Ali [1995], which provides a parallel version of a copying
garbage collector, refined to guarantee avoidance of unnecessary copying
(e.g., copy the same data twice) and load-balancing between workers dur-
ing garbage collection;

—the proposal by Bevemyr [1995], which extends the work by Ali into a gener-
ational copying garbage collector (objects are divided into generations, where
newer generations contain objects more recently created; the new generation
is garbage collected more often than the old one).

Generational garbage collection algorithms have also been proposed in the con-
text of parallel implementation of committed choice languages (on PIM archi-
tectures) [Ozawa et al. 1990; Xu et al. 1989].

9.3 Optimizations

A system that builds an and-or tree to solve a problem with nondeterminism
may look trivial to implement at first, but experience shows that it is quite
a difficult task. A naive parallel implementation may lead to a slowdown or
may incur a severe overhead compared to a corresponding sequential system.
The parallelism present in these frameworks is typically very irregular and
unpredictable; for this reason, parallel implementations of nondeterministic
languages typically rely on dynamic scheduling. Thus, most of the work for
partitioning and managing parallel tasks is performed during run-time. These
duties are absent from a sequential execution and represent parallel overhead.
Excessive parallel overhead may cause a naive parallel system to run many
times slower on one processor compared to a similar sequential system.

A large number of optimizations have been proposed in the literature to
improve the performance of individual parallel logic programming systems

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

572 . G. Gupta et al.

(e.g., Ramkumar and Kalé [1989], Shen [1994], and Pontelli et al. [1996]).
Nevertheless, limited effort has been placed in determining overall principles
that can be used to design over-the-border optimization schemes for entire
classes of systems. A proposal in this direction has been put forward by Gupta
and Pontelli [1997]. The proposal presents a number of general optimization
principles that can be employed by implementors of parallel nondeterministic
systems to keep the overhead incurred for exploiting parallelism low. These
principles have been used to design a number of optimization schemes such as
the Last Parallel Call Optimization [Pontelli et al. 1996] (used for independent
and-parallel systems and the Last Alternative Optimization [Gupta and
Pontelli 1999b] (used for or-parallel systems).

Parallel execution of a logic programming system can be viewed as the paral-
lel traversal/construction of an and-or tree. Given the and-or tree for a program,
its sequential execution amounts to traversing the and-or tree in a predeter-
mined order. Parallel execution is realized by having different workers concur-
rently traversing different parts of the and-or tree in a way consistent with
the operational semantics of the programming language. By operational se-
mantics we mean that dataflow (e.g., variable bindings) and control-flow (e.g.,
input/output operations) dependencies are respected during parallel execution
(similar to loop parallelization of FORTRAN programs, where flow dependencies
have to be preserved). Parallelism allows overlapping of exploration of different
parts of the and-or tree. Nevertheless, as mentioned earlier, this does not always
translate to an improvement in performance. This happens mainly because of
the following reasons:

—The tree structure developed during the parallel computation needs to be
explicitly maintained, in order to allow for proper management of nondeter-
minism and backtracking; this requires the use of additional data structures
not needed in sequential execution. Allocation and management of these data
structures represent overhead during parallel computation with respect to
sequential execution.

—The tree structure of the computation needs to be repeatedly traversed in or-
der to search for multiple alternatives and/or cure eventual failure of goals,
and such traversal often requires synchronization between the workers. The
tree structure may be traversed more than once because of backtracking,
and because idle workers may have to find nodes that have work after a fail-
ure takes place or a solution is reported (dynamic scheduling). This traver-
sal is much simpler in a sequential computation, where the management of
nondeterminism is reduced to a linear and fast scan of the branches in a
predetermined order.

Based on this it is possible to identify ways of reducing these overheads.

Traversal of Tree Structure: There are various ways in which the process of
traversing the complex structure of a parallel computation can be made more
efficient:

(1) simplification of the computation’s structure: by reducing the complexity of
the structure to be traversed it should be possible to achieve improvement in

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 573

performance. This principle has been reified in the already mentioned Last
Parallel Call Optimization and the Last Alternative Optimization, used to
flatten the computation tree by collapsing contiguous nodes lying on the
same branch if some simple conditions hold;

(2) use of the knowledge about the computation (e.g., determinacy) in order
to guide the traversal of the computation tree: information collected from
the computation may suggest the possibility of avoiding traversing certain
parts of the computation tree. This has been reified in various optimizations,
including the Determinate Processor Optimization [Pontelli et al. 1996].

Data Structure Management: Since allocating data structures is generally an
expensive operation, the aim should be to reduce the number of new data struc-
tures created. This can be achieved by:

(1) reusing existing data structures whenever possible (as long as this pre-
serves the desired execution behavior). This principle has been imple-
mented, for example, in the Backiracking Families Optimization [Pontelli
et al. 1996];

(2) avoiding allocation of unnecessary structures: most of the new data struc-
tures introduced in a parallel computation serve two purposes: to support
the management of the parallel parts of the computation, and to support
the management of nondeterminism. This principle has been implemented
in various optimizations, including the Shallow Backtracking Optimization
[Carlsson 1989] and the Shallow Parallelism Optimization [Pontelli et al.
1996].

This suggests possible conditions under which one can avoid creation of addi-
tional data structures: (i) no additional data structures are required for parts
of the computation tree that are potentially parallel but are actually explored
by the same computing agent (i.e., potentially parallel but practically sequen-
tial); (ii) no additional data structures are required for parts of the computation
that will not contribute to the nondeterministic nature of the computation (e.g.,
deterministic parts of the computation).

9.4 Work Scheduling

The work scheduler, or the software that matches available work with work-
ers, is a very important component of a parallel system. Parallel logic pro-
gramming systems are no exceptions. If a parallel logic system is to obey
Prolog semantics—including supporting execution of pruning and other order-
sensitive operations—then scheduling becomes even more important, because
in such a case, for or-parallelism, the scheduler should prefer goals in the left
branches of the search tree to those in the branches to the right, while for
and-parallelism prefer goals to the left over those to right. In parallel systems
that support cuts, work that is not in the scope of any cut should be preferred
over work that is in the scope of a cut, because it is likely that the cut may
be executed causing a large part of the work in its scope to go wasted [Ali and
Karlsson 1992b; Beaumont and Warren 1993; Sindaha 1992; Beaumont 1991].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

574 . G. Gupta et al.

The scheduler is also influenced by how the system manages its memory. For
instance, if the restriction of only reclaiming space from the top of a stack is
imposed and garbage slots/trapped goals are disallowed, then the scheduler has
to take this into account and at any moment schedule only those goals meeting
these criteria.

Schedulers in systems that combine more than one form of parallelism have
to figure out how much of the resources should be committed to exploiting a
particular kind of parallelism. For example, in Andorra-I and ACE systems,
that divide available workers into teams, the scheduler has to determine the
sizes of the teams, and decide when to migrate a worker from a team that
has no work left to another that does have work, and so on [Dutra 1994,
1995].

The fact that Aurora, quite a successful or-parallel system, has about five
schedulers built for it [Calderwood and Szeredi 1989; Beaumont et al. 1991;
Sindaha 1992; Butler et al. 1988], is a testimony to the importance of work-
scheduling for parallel logic programming systems. Design of efficient and flex-
ible schedulers is still a topic of research [Dutra 1994, 1996; Ueda and Montelius
1996].

9.5 Granularity

The implementation techniques mentioned before for both or- and and-
parallelism have proven sufficient for keeping the overheads of communication,
scheduling, and memory management low and obtaining significant speedups
in a wide variety of applications on shared memory multiprocessors (starting
from the early paradigmatic examples: the Sequent Balance and Symmetry se-
ries). However, current trends point towards larger multiprocessors but with
less uniform shared memory access times. Controlling in some way the gran-
ularity (execution time and space) of the tasks to be executed in parallel can
be a useful optimization in such machines, and is in any case a necessity when
parallelizing for machines with slower interconnections. The latter include, for
example, networks of workstations or distribution of work over the Internet. It
is desirable to have a large granularity of computation, so that the scheduling
overhead is a small fraction of the total work done by a worker. The general
idea is that if the gain obtained by executing a task in parallel is less than the
overheads required to support the parallel execution, then the task is better
executed sequentially.

The idea of granularity control is to replace parallel execution with sequen-
tial execution or vice versa based on knowledge (actual data, bounds, or esti-
mations) of task size and overheads. The problem is challenging because, while
the basic communication overhead parameters of a system can be determined
experimentally, the computational cost of the tasks (e.g., procedure calls) being
parallelized, as well as the amount of data that needs to be transferred before
and after a parallel call, usually depend on dynamic characteristics of the input
data. In the following example, we consider for parallel execution q (which, as-
suming it is called with X bound to a list of numbers, adds one to each element
of the list);

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 575
., r(X) & qX,Y),

q(Cll, 1.
q([IIIs],[I110s8]):- I1 is I+1, q(Is,0s).

The computational cost of a call to q (and also the communication overheads)
are obviously proportional to the number of elements in the list. The charac-
terization of input data required has made the problem difficult to solve (well)
completely at compile-time.

The Aurora and MUSE or-parallel systems keep track of granularity by
tracking the richness of nodes, that is, the amount of work—measured in terms
of number of untried alternatives in choice points—that is available in the sub-
tree rooted at a node. Workers will tend to pick work from nodes that have high
richness. The Aurora and MUSE systems also make a distinction between the
private and public parts of the tree to keep granularity high. Essentially, work
created by another worker can only be picked up from the public region. In the
private region, the worker that owns that region is responsible for all the work
generated, thereby keeping the granularity high. In the private region execu-
tion is very close to sequential execution, resulting in high efficiency. Only when
the public region runs out of work is a part of the private region of some worker
made public. In these systems, granularity control is completely performed at
run-time.

Modern systems [Lopez-Garcfa et al. 1996; Shen et al. 1998; Tick and Zhong
1993] implement granularity control using the two-phase process proposed in
Debray et al. [1990] and Lépez-Gercia et al. [1996]:

(1) at compile-time a global analysis tool performs an activity typically called
cost estimation. Cost estimates are parametric formulae expressing lower
or upper bounds to the time complexity of the different (potentially) parallel
tasks, as a function of certain measures of input data;

(2) at run-time the cost estimates are instantiated, before execution of the task
and compared with predetermined thresholds; parallel execution of the task
is allowed only if the cost estimate is above the threshold.

Programs are then transformed at compile-time into semantically equivalent
counterparts but which automatically control granularity at run-time based on
such functions, following the scheme,

(cost_estimate (ny,...,np) > 1 = goaly & --- & goaly,)

where the m subgoals will be allowed in a parallel execution only if the result
of the cost_estimate is above the threshold r. The parameters of cost_estimate
are those goal input arguments that directly determine the time-complexity of
the parallel subgoals, as identified by the global analysis phase. In the example
above, these tools derive cost functions such as, for example, 2 * length(X) + 1
for q (i.e., the unit of cost is in this case a procedure call, where the addition
is counted for simplicity as one procedure call). If we assume that we should
parallelize when the total computation cost is larger than “100,” then we can
transform the parallel call to p and g above into:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

576 . G. Gupta et al.

., Cost=2*xlength(X)+1, (Cost>100 -> r(X) & q(X,Y)
5 r(X) 5 q(X,Y))s

(using an if-then-else). Clearly, many issues arise. For example, the cost of per-
forming granularity control can be factored into the decisions. The cost functions
can be simplified and related back to data structure sizes, list length in the case
above; that is, the call will only be parallelized if the length of the list is larger
than a statically precomputed value:

., (length_greater_than(X,50) -> r(X) & q(X,Y)
;o r(X) , qX, 7)),

This in turn has inspired the development of algorithms for keeping track of
data sizes at run-time [Hermenegildo and Lépez-Garcia 1995]. As another ex-

ample, a modified annotation for the recursive clause of Fibonacci may look
like:

fib(N,Res) :-
N1 is N-1, N2 is N-2,
(N>5->fib(N1,R1) & fib(N2,R2) ;
fib(N1,R1), fib(N2,R2)
),
R is R1 + R2.

(under the simplistic assumption that for values of N larger than 5 it is deemed
worthwhile to exploit parallelism).

Also, the same techniques used for cost bounding allow deriving upper and
lower bounds on the sizes of the structures being passed as arguments [Lépez-
Garcia et al. 1996]. This information can be factored into parallelization de-
cisions (it affects the threshold). For example, in the example above, the ar-
gument size analysis (assuming that C is the cost of sending one element of
a list, and a distributed setting where data are sent and returned eagerly)
will infer that the communication cost is 2 * length(X) * C. Interestingly, the
Computation > QOverhead condition (2 * length(X)+ 1 > 2 % length(X) x C)
can be determined statically to be always true (and parallelize unconditionally)
or false (and never parallelize) depending only on the value of C, which in turn
can perhaps be determined experimentally in a simple way. Performance im-
provements have been shown to result from the incorporation of this type of
grain size control, especially for systems with medium to large parallel execu-
tion overheads [Lépez-Garcfa et al. 1996].

Clearly, there are many interesting issues involved: techniques for derivation
of data measures, data size functions, and task cost functions, program transfor-
mations, program optimizations, and so on. Typically, the techniques are proved
correct, again typically using the notions of approximation and bounding, for-
malized as abstract interpretations. The key problem is clearly the automatic
derivation of the functions that bound the time-complexity of the given tasks.
The first proposals in this regard are those made by Debray et al. [1990] and
Tick and Zhong [1993]. Both schemes are capable of deriving cost estimations
that represent upper bounds for the time-complexity of the selected tasks.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 577

The use of upper bounds is suboptimal in the context of granularity con-
trol: the fact that the upper bound is above a threshold does not guarantee
that the actual time-complexity of the task is going to be above the thresh-
old [Debray et al. 1994]. For this reason more recent efforts have focused on
the derivation of lower-bound estimates [Debray et al. 1997; King et al. 1997].
A very effective implementation of some of these techniques, both for and- and
or-parallelism, have been realized in the GraCos system [Debray et al. 1990;
Lépez-Garcia et al. 1996]. This system adds mode and type analysis to the
“upper-bounds” CASLOG system [Debray and Lin 1993] (and modifies it to com-
pute lower bounds following Debray et al. [1997b]) and has been integrated in
the Ciao logic programming system [Hermenegildo et al. [1999a]. Lower-bound
analysis is considerably more complex than upper-bound analysis. First of all,
it requires the ability to determine properties of tasks with respect to failure
[Debray et al. 1997]. If we focus on the computation of a single solution, then
for aclause C : H : —By, ..., B, one can make use of the relation

Costc(n) > Z Costp,(¢;(n)) + h(n),

i=1
where

—n is the representation of the size of the input arguments to the clause C,
—¢;(n) is the (lower bound) of the relative size of the input arguments to B;,
— B, is the rightmost literal in C that is guaranteed to not fail, and

—h(n) is the lower bound of the cost of head unification and tests for the clause
C.

The lower bound Cost,, for a predicate p is obtained by taking the minimum of
the lower bounds for the clauses defining p.

For the more general case of estimation of the lower bound for the computa-
tion of all the solutions, it becomes necessary to estimate the lower bound to the
number of solutions that each literal in the clause will return. In Debray et al.
[1997] the problem is reduced to the computation of the chromatic polynomial
of a graph.

In King et al. [1997] bottom-up abstract interpretation techniques are used
to evaluate lower-bound inequalities (i.e., inequalities of the type dmin < tmin(),
where d i, represents the threshold to allow spawning of parallel computations,
while #,in (/) represents the lower bound to the computation time for input of
size [) for large classes of programs.

Metrics different from task complexity have been proposed to support granu-
larity control. A related effort is the one by Shen et al. [1998], which makes use
of the amount of work performed between major sources of overheads—called
distance metric—to measure granularity.

9.6 Parallel Execution Visualization

Visualization of execution has been found to be of tremendous help in debugging
and fine-tuning general parallel programs. Parallel execution of logic programs

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

578 . G. Gupta et al.

is no exception. In fact, in spite of the emphasis on implicit exploitation of par-
allelism, speedups and execution times can be affected by the user through the
use of user annotations (e.g., CGEs) and/or simple program transformations-
such as folding/unfolding of subgoals or modification of the order of subgoals
and clauses.

The goal of a visualization tool is to produce a visual representation of certain
observable characteristics of the parallel execution. Each observable character-
istic is denoted by an event; the parallel execution is thus represented by a
collection of time-annotated events, typically called a trace. Many tools have
already been developed to visualize parallel execution of logic programs. The
large majority of the tools developed so far are postmortem visualization tools:
they work by logging events during parallel execution, and then using this trace
for creating a graphical representation of the execution.

Different design choices have been considered in the development of the
different tools [Carro et al. 1993; Vaupel et al. 1997]. The existing systems can
be distinguished according to the following criteria.

—Static Versus Dynamic: static visualization tools produce a static represen-
tation of the observable characteristics of the parallel computation; on the
other hand, dynamic visualization tools produce an animated representation,
synchronizing the development of the representation with the timestamps of
the trace events.

—Global Versus Local: Global visualization tools provide a single representa-
tion that captures all the different observable characteristics of the parallel
execution; local visualization tools instead allow the user to focus on specific
characteristics.

The first visualization tools for parallel logic programs were developed for the
Argonne Model [Disz and Lusk 1987] and for the ElipSys system [Dorochevsky
and Xu 1991]. The former was subsequently adopted by the Aurora System
under the name Aurora Trace. The MUSE group also developed visualization
tools, called Must, for visualizing or-parallel execution, which is itself based
on the Aurora Trace design. All these visualizers for or-parallel execution are
dynamic and show the dynamically growing or-parallel search tree. Figure 31
shows a snapshot of Must: circles denote choice points and the numbers denote
the position of the workers in the computation tree.

Static representation tools have been developed for both or- and and-
parallelism. Notable efforts are represented by VisAndOr [Carro et al. 1993]
and ParSee [Kusalik and Prestwich 1996]. Both tools are capable of represent-
ing either or- or and-parallelism—although neither of them can visualize the
concurrent exploitation of the two forms of parallelism®*—and they are aimed
at producing a static representation of the distribution of work among the avail-
able workers. Figure 32 shows a snapshot of VisAndOr’s execution. VisAndOr’s
effort is particularly relevant, since it is one of the first tools with such char-
acteristics to be developed, and because it defined a standard in the design of

34VisAndOr, however, can depict Andorra-I executions: that is, or-parallelism and deterministic
dependent and-parallelism.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 579

Fig. 31. Snapshot of Must.

File Zoox CPU Workers Icons Print Quit

e

=

davs] [AND-Parallelism |

Fig. 32. Snapshot of VisAndOr.

the trace format adopted by various other systems [Vaupel et al. 1997; Kusalik
and Prestwich 1996; Fonseca et al. 1998]. Must and VisAndOr have been inte-
grated in the ViMust system; a timeline moves on the VisAndOr representation
synchronized with the development of the computation tree in Must [Carro et al.
1993].

Other visualization tools have also been developed for dependent and-
parallelism in the context of committed choice languages, for example, those
for visualizing KLL1 and GHC execution [Tick 1992; Aikawa et al. 1992].

Tools have also been developed for visualizing combined and/or-parallelism,
as well as to provide a better balance between dynamic and static representa-
tions, for example, VACE [Vaupel et al. 1997], based on the notion of C-trees
[Gupta et al. 1994], and VisAll [Fonseca et al. 1998]. Figure 33 shows a snapshot
of VACE.

A final note is for the VisAll system [Fonseca et al. 1998]. VisAll provides
a universal visualization tool that subsumes the features offered by most of

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

580 . G. Gupta et al.

..
) ":\\-._H
o o o e

L bt 2k X T2 %

© = 1 mmine 1| & mm
] [1]]] [N |
]]

Fig. 33. Snapshot of VACE.

Fig. 34. Snapshot of VisAll.

the existing ones, including the ability to visualize combined and/or-parallel
executions. VisAll receives as input a trace together with the description of
the trace format, thus allowing it to process different trace formats. Figure 34
shows a snapshot of VisAll representing an and-parallel computation.

The importance of visualization tools in the development of a parallel logic
programming system cannot be stressed enough. They help not only the users in
debugging and fine-tuning their programs, but also the system implementors
who need to understand execution behavior for fine-tuning their scheduling
solutions.

9.7 Compile-Time Support

As should be clear at this point, compile-time support is crucial for the efficiency
of parallel logic programming systems. Compile-time analysis tools based on
abstract interpretation techniques [Cousot and Cousot 1992] have been exten-
sively used in many parallel logic programming systems. Without attempting to

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 581

be exhaustive, we point out some examples. For instance, &-Prolog, AO-WAM,
ACE, and PBA all rely on sharing and freeness analysis for automatic gen-
eration of CGEs at compile-time [Muthukumar and Hermenegildo 1992, 1991;
Jacobs and Langen 1992]. ACE makes use of abstract interpretation techniques
to build extended CGEs for dependent and-parallelism [Pontelli et al. 1997a]
The Andorra-I system relies on determinacy analysis done at compile-time for
detecting determinacy of goals at run-time [Santos Costa et al. 1991c; Debray
and Warren 1989]. Compile-time analysis can hence be used for making many
decisions, which would have otherwise been taken at run-time, at compile-time
itself, for example, detection of determinacy, generation of CGEs, and the like.
Compile-time analysis has also been used for transforming Prolog programs
into AKL programs [Bueno and Hermenegildo 1992], and has also been used
for supporting Prolog semantics in parallel systems that contain dependent
and-parallelism, such as Andorra-I [Santos Costa et al. 1991c]. Compile-time
analysis has also been employed to estimate granularity of goals, to help the
scheduler in making better decisions as to which goal to pick [Zhong et al.
1992; Debray et al. 1990], to improve independence in and-parallel computa-
tions [Pontelli and Gupta 1998], and so on.

Compile-time analysis has a number of potential applications in parallel logic
programming, in addition to those already mentioned: for instance, in detect-
ing speculative and nonspeculative regions at compile-time, detecting whether
a side-effect will ever be executed at run-time, detecting producer and consumer
instances of variables, detecting whether a variable is conditional, and so on.
Compiler support will play a crucial role in future parallel logic programming
systems. However, a great deal of research is still needed in building more
powerful compile-time analysis tools that can infer more properties of the pro-
gram at compile-time itself to make parallel execution of logic programs more
efficient.

9.8 Architectural Influence

As for any parallel system, also in the case of parallel logic programming the
characteristics of the underlying architecture have a profound impact on the
performance of the system.

A number of experimental works have been conducted to estimate the influ-
ence of different architectural parameters on individual parallel systems.

(1) Hermenegildo and Tick [1989; Tick 1987] proposed various studies estimat-
ing the performance of and-parallel systems on shared memory machines
taking into account different cache coherence algorithms, cache sizes, bus
widths, and so on. These early studies allowed predicting, for example, that
&-Prolog would later produce speedups over state of the art sequential sys-
tems even on quite fine-grained computations on shared-memory machines
that were not commercially available at the time.

(2) Montelius and Haridi [1997] have proposed detailed performance anal-
ysis of the Penny system, mostly using the SIMICS Sparc processor
simulator;

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

582 . G. Gupta et al.

(3) Gupta and Pontelli [1999c] have used simulation studies (based on the use
of the SIMICS simulator) to validate the claim that stack splitting improves
the locality of an or-parallel computation based on stack copying;

(4) Santos Costa et al. [1997] have also analyzed the performance of paral-
lel logic programming systems (specifically Aurora and Andorra-I) using
processor simulators (specifically a simulator of the MIPS processor). Their
extensive work has been aimed at determining the behavior of parallel logic
programming systems on parallel architectures (with a particular focus on
highly scalable architectures, for example, distributed shared memory ma-
chines). In Santos Costa et al. [1997], the simulation framework adopted is
presented, along with the development of a methodology for understanding
cache performance. The results obtained have been used to provide concrete
improvements to the implementation of the Andorra-I system [Santos Costa
et al. 2000].

(5) The impact of cache coherence protocols on the performance of parallel
Prolog systems has been studied in more detail in Dutra et al. [2000], Silva
et al. [1999], and Calegario and Dutra [1999].

These works tend to agree on the importance of considering architectural pa-
rameters in the design of parallel logic programming systems. For example, the
results achieved by Costa et al. [1997] for the Andorra-I systems indicate that:

—or-parallel Prolog systems provide a very good locality of computation, thus
the system does not seem to require very large cache sizes;

—small cache blocks appear to provide better behavior, especially in presence
of or-parallelism: the experimental work by Dutra et al. [2000] indicates a
high-risk of false-sharing in the presence of blocks larger than 64 bytes;

—Dutra et al. [2000] compare the effect of Write Invalidate versus. Write
Update as cache coherence protocols. The study confirms the early results
of Hermenegildo and Tick [1989] and Tick [1987] and extends them under-
lining the superiority of a particular version of the Write update algorithm
(a hybrid method where each node independently decides upon receiving an
update request whether to update the local copy of data or simply invalidate
it).

Similar results have been reported in Montelius and Haridi [1997], which un-
derlines the vital importance of good cache behavior and avoidance of false
sharing for exploitation of fine-grain parallelism in Penny.

10. APPLICATIONS AND APPLICABILITY

One can conclude from the discussion in the previous sections that a large body
of research has been devoted to the design of parallel execution models for
Prolog programs. Unfortunately, relatively modest emphasis has been placed
on the study of the applicability of these techniques to real-life problems.

A relevant study in this direction has been presented in Shen and
Hermenegildo [1991, 1996b]. This work considered a comparatively large pool
of applications and studied their behavior with respect to the exploitation of

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 583

or-parallelism, independent and-parallelism, and dependent and-parallelism.
The pool of applications considered includes traditional toy benchmark pro-
grams (e.g., n-queens, matrix multiplication) as well as larger Prolog applica-
tions (e.g., Warren’s WARPLAN planner, Boyer—Moore’s Theorem Prover, the
Chat NLP application). The results can be summarized as follows.

—Depending on their structure, there are applications that are very rich in ei-
ther form of parallelism; that is, either they offer considerable or-parallelism
and almost no and-parallelism or vice versa.

—Neither of the two forms of parallelism is predominant over the other.

—Many applications offer moderate quantities of both forms of parallelism.
In particular, the real-life applications considered offered limited amounts
of both forms of parallelism. In these cases, experimental results showed
that concurrent exploitation of both forms of parallelism will benefit over
exploitation of a single form of parallelism.

The various implementations of parallel logic programming systems developed
have been effectively applied to speed up execution of various large real-life
applications. These include:

—independent and dependent and-parallelism have been successfully ex-
tracted from Prolog-to-WAM compilers (e.g., the PLM compiler) [Pontelli et al.
1996];

—and-parallelism has been exploited from static analyzers for Prolog programs
[Hermenegildo and Greene 1991; Pontelli et al. 1996];

—natural language processing applications have been very successfully paral-
lelized extracting both or- and and-parallelism, for example, the Chat sys-
tem [Santos Costa et al. 1991a; Shen 1992b], the automatic translator Ultra
[Pontelli et al. 1998], and the word-disambiguation application Artwork
[Pontelli et al. 1998];

—computational biology applications: for example, Aurora has been used to
parallelize Prolog applications for DNA sequencing [Lusk et al. 1993];

—both Aurora and ACE have been applied to provide parallel and concur-
rent backbones for Internet-related applications [Szeredi et al. 1996; Pontelli
2000];

—Andorra-I has been used in the development of advanced traffic management
systems [Hasenberger 1995] used by British Telecom to control traffic flow on
their telephony network. Andorra-I has also been used in a variety of other
telecommunication applications [Crabtree 1991; Santos Costa et al. 1991b];

—Aurora has been used to develop a number of concrete applications. Particu-
larly important are those developed in the context of the Cubiq project:

(1) the EMRM system, a medical record management system, which sup-
ports collection of medical information following the SOAP medical
knowledge model [Szeredi and Farkas 1996]; and

(2) the CONSULT credit rating system, which makes use of rule-based spec-
ification of credit assessment procedures [1QSoft Inc. 1992].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

584 . G. Gupta et al.

This body of experimental work indicates that the existing technology for
parallel execution of logic programs is effective when applied to large and com-
plex real-life Prolog applications. Further push for application of parallelism
comes from the realm of constraint logic programming. Preliminary work on the
Chip and ECLiPSe systems has demonstrated that the techniques described
in this article can be easily applied to parallelization of the relevant phases
of constraint handling. Considering that most constraint logic programming
applications are extremely computation-intensive, the advantages of parallel
execution are evident.

11. CONCLUSIONS AND FUTURE OF PARALLEL LOGIC PROGRAMMING

In this survey article, we described the different sources of implicit parallelism
present in logic programming languages and the many challenges encountered
in exploiting them in the context of parallel execution of Prolog programs. Dif-
ferent execution models proposed for exploiting these many kinds of parallelism
were surveyed. We also discussed some efficiency issues that arise in parallel
logic programming and presented a series of theoretical results ranging from
formal notions of independence to limits on implementation efficiency. Parallel
logic programming is a challenging area of research and will continue to be
so until the objective of efficiently exploiting all sources of parallelism present
in logic programs in the most cost-effective way is realized. This objective in-
volves challenges at many levels, from run-time systems and execution models
to compile-time technology and support tools.

From the point of view of run-time systems and execution models it can
be argued that, when compared with work done in other fields, particularly
strong progress has been made in the context of logic programming in ab-
stract machines, efficient task representation techniques, dynamic schedul-
ing algorithms, and formal definition of the advanced notions of independence
(and guaranteed no-slowdown conditions) that are needed to deal with the
irregularity and speculation occuring in search-based applications. As a re-
sult, the current state of the art is that there are very efficiently engineered
systems such as &-Prolog and &ACE for independent and-parallelism, Aurora,
MUSE, YAP, and ElipSys for or-parallelism, DASWAM and ACE for depen-
dent and-parallelism (and some efficient implementations of committed choice
languages [Shapiro 1987; Hirata et al. 1992]) which have been proved success-
ful at achieving speedups over the state of the art sequential implementations
available at the time of their development.

The systems mentioned above exploit a single form of parallelism. A few sys-
tems exist that efficiently exploit more than one source of parallelism (e.g.,
Andorra-I) although new promising ones are currently being designed and
built [Gupta et al. 1994b; Correia et al. 1997; Santos Costa 1999]. However,
no system exists that efficiently exploits all sources of parallelism present in
logic programs. Efforts are already under way to remedy this [Montelius 1997;
Santos Costa 1999; Gupta et al. 1994b; Pontelli and Gupta 1997b; Correia et al.
1997; Castro et al. 1999] and we believe that this is one of the areas in which
much of the research in parallel logic programming may lie in the future. One

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 585

approach to achieving this goal, inspired by the duality [Pontelli and Gupta
1995b] and orthogonality [Correia et al. 1997] principles and by views such as
those argued in Hermenegildo and CLIP Group [1994], would be to configure
an ideal parallel logic programming system as a true “plug-and-play” system,
where a basic Prolog kernel engine can be incrementally extended with differ-
ent modules implementing different parallelization and scheduling strategies,
and the like (as well as other functionality not related to parallelism, of course)
depending on the needs of the user. We hope that with enough research effort
this ideal can be achieved.

From the point of view of compile-time technology, the result of the work
outlined in previous sections is that quite robust parallelizing compilers ex-
ist for various generalizations of independent and dependent and-parallelism,
which automatically exploit parallelism in complex applications. The accuracy,
speed, and robustness of these compilers have also been instrumental in demon-
strating that abstract interpretation provides a very adequate framework for
developing provably correct, powerful, and efficient global analyzers and, con-
sequently, parallelizers. It can be argued that, when compared with work done
in other fields, particularly strong progress has been made in the context of
logic programming in developing techniques for interprocedural analysis and
parallelization of programs with dynamic data structures and pointers, in par-
allelization using conditional dependency graphs (combining compile-time op-
timization with run-time independence tests), and in domains for the abstrac-
tion of the advanced notions of independence that are needed in the presence of
speculative computations. More recently, independence notions, analysis tech-
niques, and practical tools have also been developed for the parallelization of
constraint logic programs and logic programs with dynamic execution reorder-
ing (“delays”) [Garcfa de la Banda et al. 2000].

The current evolutionary trend in the design of parallel computer systems
is towards building heterogeneous architectures that consist of a large num-
ber of relatively small-sized shared memory machines connected through fast
interconnection networks. Taking full advantage of the computational power
of such architectures is known to be a very difficult problem [Bader and JadJa
1997]. Parallel logic programming systems can potentially constitute a viable
solution to this problem. However, considerable research in the design and im-
plementation of parallel logic programming systems on distributed memory
multiprocessors is still needed before competitive speedups can be obtained
routinely. Distributed implementation of parallel logic programming systems
is another direction where we feel future research effort should be invested.
There are many challenges in the efficient implementation of distributed uni-
fication and maintaining program-coordinated execution state and data eco-
nomically in a noncentralized way, as well as in the development of adequate
compilation technology (e.g., for granularity control). Fortunately, this is an
area where logic programming has already produced results clearly ahead of
those in other areas. As we have overviewed, interesting techniques have been
proposed for the effective management of computations in a distributed setting,
for intelligent scheduling of different forms of parallelism, as well as for static
inference of task cost functions and their application to static and dynamic

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

586 . G. Gupta et al.

control of the granularity of tasks. Nevertheless, much work still remains to be
done.

Further research is still needed also in other aspects of parallel logic pro-
gramming, for example, in finding out how best to support sequential Prolog
semantics on parallel logic programming systems of the future, building better
and smarter schedulers, finding better memory management strategies, and
building better tools for visualizing parallel execution. It should be noted that
while most of these problems arise in any parallel system, in the case of par-
allel logic programming systems they are tackled in a complex context due to
the nature of the computations, which are typically symbolic (implying high
irregularity, dynamically allocated data structures, etc.) and involving search
(implying speculativeness).

Finally, the techniques developed in the context of parallel execution of Pro-
log have progressively expanded and found application in the parallelization of
other logic-based paradigms and/or in the parallelization of alternative strate-
gies for execution of Prolog programs. This includes:

—combination of parallelism and tabled execution of Prolog programs [Guo
and Gupta 2000; Guo 2000; Freire et al. 19995; Rocha et al. 1999a], which
opens the doors to parallelization of applications in a number of interesting
application areas, such as model checking and database cleaning;

—parallelization of the computation of models of a theory in the context of
nonmonotonic reasoning [Pontelli and El-Kathib 2001; Finkel et al. 2001];

—use of parallelism in the execution of inductive logic programs [Page 2000;
Ohwada et al. 2000].

We also believe there are good opportunities for transference of many of
the techniques developed in the context of parallel execution of Prolog pro-
grams and their automatic parallelization to other programming paradigms
[Hermenegildo 2000].

ACKNOWLEDGMENTS

Thanks are due to Bharat Jayaraman for helping with an earlier article on
which this article is based. Thanks to Manuel Carro and Vitor Santos Costa,
who read drafts of this survey. Our deepest thanks to the anonymous referees
whose comments tremendously improved the article.

REFERENCES

Atrawa, S., Kamiko, M., Kuso, H., Marsuzawa, F., AND CHikAvAMA, T. 1992, Paragraph: A Graphical
Tuning Tool for Multiprocessor Systems. In Proceedings of the Conference on Fifth Generation
Computer Systems, ICOT Staff, Ed. I0S Press, Tokyo, Japan, 286-293.

AirKact, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge,
MA. www.isg.sfu.ca/ hak/documents/wam.html.

AirKaci, H. 1993. An Introduction to LIFE: Programming with Logic, Inheritance, Functions,
and Equations. In International Logic Programming Symposium, D. Miller, Ed. MIT Press,
Cambridge, MA, 52—-68.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 587

Air, K. 1988. Or-Parallel Execution of Prolog on BC-machine. In Proceedings of the International
Conference and Symposium on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press,
Seattle, 1531-1545.

A, K. 1995. A Parallel Copying Garbage Collection Scheme for Shared-Memory
Multiprocessors. In Proceedings of the ICOT/NSF Workshop on Parallel Logic Programming
and Its Programming Environments, E. Tick and T. Chikayama, Eds. Number CSI-TR-94-04.
University of Oregon, Eugene, OR, 93-96.

Arl, K. anD KarLssoN, R. 1990a. Full Prolog and Scheduling Or-Parallelism in Muse. International
Journal of Parallel Programming 19, 6, 445-475.

Arl, K. anp Karnsson, R, 1990b. The MUSE Approach to Or-Parallel Prolog. International Journal
of Parallel Programming 19, 2, 129-162.

Aul, K. aND Karisson, R. 1992a. OR-Parallel Speedups in a Knowledge Based System: On
MUSE and Aurora. In Proceedings of the International Conference on Fifth Generation Computer
Systems, ICOT Staff, Ed. IOS Press, Tokyo, Japan, 739-745.

Arr, K. anp Karisson, R, 1992b. Scheduling Speculative Work in MUSE and Performance Results.
International Journal of Parallel Programming 21, 6.

A1 K., Karisson, R., aAND Mupawmer, S. 1992. Performance of MUSE on Switch-Based Multipro-
cessor Machines. New Generation Computing 11, 1/4, 81-103.

Armast, G. anp GotruieB, A. 1994. Highly Parallel Computing. Benjamin/Cummings, San
Francisco, CA.

ArpLEBY, K., CARLssoN, M., Haripr, S., AND SaHLIN, D. 1988. Garbage Collection for Prolog Based
on WAM. Communications of the ACM 31, 6 (June), 719-741.

ArauJo, L. AND Ruz, J. 1998. A Parallel Prolog System for Distributed Memory. Journal of Logic
Programming 33, 1, 49-79.

Baper, D. anp Jada, J. 1997. SIMPLE: A Methodology for Programming High Performance
Algorithms on Clusters of Symmetric Multiprocessors. Tech. rep., University of Maryland.

Bancat,R. 1993. Pandora: Non-Deterministic Parallel Logic Programming. Ph.D. thesis, Depart-
ment of Computing, Imperial College. Published by World Scientific Publishing.

BansaL, A. AND PoTTER, J. 1992. An Associative Model for Minimizing Matching and Backtracking
Overhead in Logic Programs with Large Knowledge Bases. Engineering Applications of Artificial
Intelligence 5, 3, 247-262.

BarkLUND, J. 1990. Parallel Unification. Ph.D. thesis, Uppsala University. Uppsala Theses in
Computing Science 9.

BarkrunD, J. AND MiLLroTH, H. 1992. Providing Iteration and Concurrency in Logic Pro-
gram Through Bounded Quantifications. In Proceedings of the International Conference
on Fifth Generation Computer Systems, ICOT Staff, Ed. IOS Press, Tokyo, Japan, 817—
824.

Baron, U., CHASSIN DE KERGOMMEAUX, J., HAILPERIN, M., RAaTcLIFFE, M., ROBERT, P., SYRE, J.-C., AND
WeTtpHAL, H. 1988. The Parallel ECRC Prolog System PEPSys: An Overview and Evaluation
Results. In Proceedings of the International Conference on Fifth Generation Computer Systems,
ICOT Staff, Ed. IOS Press, Tokyo, Japan, 841-850.

Braumont, A. 1991. Scheduling Strategies and Speculative Work. In Parallel Execution of Logic
Programs, A. Beaumont and G. Gupta, Eds. Lecture Notes in Computer Science, Vol. 569.
Springer-Verlag, Heidelberg, 120-131.

BrauMont, A. aAND WaRReN, D. H. D. 1993. Scheduling Speculative Work in Or-Parallel Prolog
Systems. In Proceedings of the International Conference on Logic Programming, D. S. Warren,
Ed. MIT Press, Cambridge, MA, 135-149.

BraumonTt, A., MutHU Raman, S., Szerepi, P., anpD WarreN, D. H. D. 1991. Flexible scheduling
or-parallelism in Aurora: The Bristol scheduler. In PARLE 91, Conference on Parallel
Architectures and Languages Europe, E. Aarts, J. van Leeuwen, and M. Rem, Eds. LNCS, Vol. 506.
Springer Verlag, Heidelberg, 421-438.

Bexkkers, Y., Riboux, O., aND Uncaro, L. 1992. Dynamic Memory Management for Sequential
Logic Programming Languages. In Proceedings of the International Workshop on Memory
Management, Y. Bekkers and J. Cohen, Eds. Springer-Verlag, Heidelberg, 82—
102.

BenN-AMRraM, A. 1995. What is a Pointer Machine? Tech. rep., DIKU, University of Copenhagen.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

588 . G. Gupta et al.

BENJUMEA, V. AND TROYA, J. 1993. An OR Parallel Prolog Model for Distributed Memory Systems.
In International Symposium on Programming Languages Implementations and Logic Program-
ming, M. Bruynooghe and J. Penjam, Eds. Springer-Verlag, Heidelberg, 291-301.

BevEMYR, J. 1995. A Generational Parallel Copying Garbage Collection for Shared Memory
Prolog. In Workshop on Parallel Logic Programming Systems. University of Porto, Portland, OR.

BEVEMYR, J., LINDGREN, T., AND MiLLROTH, H. 1993. Reform Prolog: The Language and Its Imple-
mentation. In Proceedings of the International Conference on Logic Programming, D. S. Warren,
Ed. MIT Press, Cambridge, MA, 283-298.

Biswas, P, Su, S., anp Yun, D. 1988. A Scalable Abstract Machine Model to Support Limited-OR
Restricted AND parallelism in Logic Programs. In Proceedings of the International Conference
and Symposium on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, Cambridge,
MA, 1160-1179.

Borawarpt, P. 1984. Parallel Prolog Using Stack Segments on Shared Memory Multiprocessors.
In International Symposium on Logic Programming. Atlantic City, IEEE Computer Society, Silver
Spring, MD, 2-12.

Branp, P. 1988. Wavefront Scheduling. Tech. rep., SICS, Gigalips Project.

Briar, J., Favre, M., GEYER, C., AND CHASSIN DE KERGOMMEAUX, J. 1992. OPERA: Or-Parallel Prolog
System on Supernode. In Implementations of Distributed Prolog, P. Kacsuk and M. Wise, Eds. J.
Wiley & Sons, New York, 45-64.

BruynooGgHE, M. 1991. A Framework for the Abstract Interpretation of Logic Programs. Journal
of Logic Programming 10, 91-124.

Bueno, F. anD HERMENEGILDO, M. 1992. An Automatic Translation Scheme from Prolog to the
Andorra Kernel Language. In Proceedings of the International Conference on Fifth Generation
Computer Systems, ICOT Staff, Ed. IOS Press, Tokyo, Japan, 759-769.

Bueno, F., CaBEZA, D., CaRRO, M., HERMENEGILDO, M., LOPEZ-GARCiA, P., AND PUEBLA, G. 1997. The
Ciao Prolog System. Reference Manual. The Ciao System Documentation Series—TR CLIP3/97.1,
School of Computer Science, Technical University of Madrid (UPM). August. System and on-line
version of the manual available at http://clip.dia.fi.upm.es/Software/Ciao/.

BuEno, F., CaBeza, D., HERMENEGILDO, M., AND PUEBLA, G. 1996. Global Analysis of Standard Prolog
Programs. In European Symposium on Programming. Number 1058 in LNCS. Springer-Verlag,
Sweden, 108-124.

BuENo, F., DEBRAY, S., GARCIA DE LA BANDA, M., AND HERMENEGILDO, M. 1995. Transformation-Based
Implementation and Optimization of Programs Exploiting the Basic Andorra Model. Technical
Report CLIP11/95.0, Facultad de Informatica, UPM. May.

BuEno, F., Garcia DE LA BANDA, M., AND HERMENEGILDO, M. 1994a. A Comparative Study of Methods
for Automatic Compile-Time Parallelization of Logic Programs. In Parallel Symbolic Computa-
tion. World Scientific Publishing Company, 63-73.

BuENo, F., Garcia DE LA BanDA, M., AND HERMENEGILDO, M. 1999. Effectiveness of Abstract Inter-
pretation in Automatic Parallelization: A Case Study in Logic Programming. ACM Transactions
on Programming Languages and Systems 21, 2, 189-239.

Bueno, F., HERMENEGILDO, M., MONTANARI, U., AND Rossi, F. 1994b. From Eventual to Atomic and
Locally Atomic CC Programs: A Concurrent Semantics. In Fourth International Conference on
Algebraic and Logic Programming. Number 850 in LNCS. Springer-Verlag, 114-132.

BueNo, F., HERMENEGILDO, M., MONTANARI, U., AND Ross1, . 1998. Partial Order and Contextual Net
Semantics for Atomic and Locally Atomic CC Programs. Science of Computer Programming 30,
51-82.

Butier, R., Disz, T., Lusk, E., Ouson, R., OvERBEEK, R., aAND StevENs, R. 1988. Scheduling
Or-Parallelism: An Argonne Perspective. In Proceedings of the International Conference and
Symposium on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, Cambridge,
MA, 1565-1577.

BuUTLER, R., Lusk, E., McCuNE, W., AND OVERBEEK, R. 1986. Parallel Logic Programming for Numer-
ical Applications. In Proceedings of the Third International Conference on Logic Programming,
E. Shapiro, Ed. Springer-Verlag, Heidelberg, 357—-388.

CaBeza, D. aND HerMENEGILDO, M. 1994. Extracting Non-Strict Independent And-Parallelism
Using Sharing and Freeness Information. In International Static Analysis Symposium, B. Le
Charlier, Ed. LNCS. Springer-Verlag, Heidelberg, 297-313.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 589

CaBEzA, D. anD HERMENEGILDO, M. 1996. Implementing Distributed Concurrent Constraint Ex-
ecution in the CIAO System. In Proceedings of the AGP’96 Joint conference on Declara-
tive Programming. U. of the Basque Country, San Sebastian, Spain, 67-78. Available from
http://www.clip.dia.fi.upm.es/.

CaLDERWOOD, A. aND SzerReDI, P. 1989. Scheduling Or-Parallelism in Aurora: The Manchester
Scheduler. In Proceedings of the International Conference on Logic Programming, G. Levi and
M. Martelli, Eds. MIT Press, Cambridge, MA, 419-435.

CALEGARIO, V. AND DUTRA, I. C. 1999. Performance Evaluation of Or-Parallel Logic Programming
Systems on Distributed Shared Memory Architectures. In Proceedings of EuroPar, P. Amestoy
et al., Ed. Springer-Verlag, Heidelberg, 1484-1491.

CARLssoN, M., WIDEN, J., AND Branp, P. 1989. On the Efficiency of Optimizing Shallow Backtrack-
ing in Compiled Prolog. In Sixth International Conference on Logic Programming, G. Levi and
M. Martelli, Eds. MIT Press, Cambridge, MA, 3-16.

CarrssoN, M. 1990. Design and Implementation of an OR-Parallel Prolog Engine. Ph.D. thesis,
Royal Institute of Technology, Stockholm.

CarLSsON M., WIDEN, J., AND BranD, P. 1995. SICStus Prolog User’s Manual. Swedish Institute
of Computer Science.

Carro, M. anp HErRMENEGILDO, M. 1999. Concurrency in Prolog Using Threads and a Shared
Database. In International Conference on Logic Programming, D. De Schreye, Ed. MIT Press,
Cambridge, MA, 320-334.

CaRrO, M., G6MEZ, L., AND HERMENEGILDO, M. 1993. Some Event-Driven Paradigms for the Visual-
ization of Logic Programs. In Proceedings of the International Conference on Logic Programming,
D. S. Warren, Ed. MIT Press, Cambridge, MA, 184-200.

CasTRO, L., SANTOS CoSTA, V., GEYER, C., SILvA, F., VARGAS, P., AND CorRrEIA, M. 1999. DAOS: Scalable
And-Or Parallelism. In Proceedings of EuroPar, D. Pritchard and J. Reeve, Eds. Springer-Verlag,
Heidelberg, 899-908.

CHANG, J.-H., DesPAIN, A., AND DEgroot, D. 1985. And-Parallelism of Logic Programs Based on
Static Data Dependency Analysis. In Digest of Papers of Compcon Spring 1985. IEEE Computer
Society, Los Alamitos, CA, 218-225.

CHANG, S.-E. anp CHiang, Y. 1989. Restricted AND-Parallelism Execution Model with
Side-Effects. In Proceedings of the North American Conference on Logic Programming, E. Lusk
and R. Overbeek, Eds. MIT Press, Cambridge, MA, 350-368.

CHassIN DE KErcoMMEAUX, J. 1989. Measures of the PEPSys Implementation on the MX500. Tech.
Rep. CA-44, ECRC.

CHassIN DE KERGOMMEAUX, J. AND ConoGNET, P. 1994. Parallel logic programming systems. ACM
Computing Surveys 26, 3, 295-336.

CHassIN DE KERGOMMEAUX, J. AND ROBERT, P. 1990. An Abstract Machine to Implement Or-And
Parallel Prolog Efficiently. Journal of Logic Programming 8, 3, 249-264.

Cuikavama, T., Fugise, T., anp SexiTa, D. 1994. A Portable and Efficient Implementation of
KL1. In Proceedings of the Symposium on Programming Languages Implementation and Logic
Programming, M. Hermenegildo and J. Penjam, Eds. Springer-Verlag, Heidelberg, 25—
39.

Ciancaring, P. 1990. Blackboard Programming in Shared Prolog. In Languages and Compilers
for Parallel Computing, D. Gelernter, A. Nicolau, and D. Padua, Eds. MIT Press, Cambridge, MA,
170-185.

CiepiELEWSKI, A. 1992. Scheduling in Or-Parallel Prolog Systems: Survey and Open Problems.
International Journal of Parallel Programming 20, 6, 421-451.

CiepiELEWSKI, A. AND Harmi, S. 1983. A Formal Model for OR-parallel Execution of Logic
Programs. In Proceedings of IFIP, P. Mason, Ed. North Holland, Amsterdam, 299-305.

CiepiELEWSKI, A. aNnD Hausman, B. 1986. Performance Evaluation of a Storage Model for
OR-Parallel Execution of Logic Programs. In Proceedings of the Symposium on Logic Program-
ming. IEEE Computer Society, Los Alamitos, CA, 246-257.

Crarg, K. AND GREGORY, S. 1986. Parlog: Parallel Programming in Logic. Transactions on
Programming Languages and Systems 8, 1 (January), 1-49.

CrocksIN, W. aND ArsHawl, H. 1988. A Method for Efficiently Executing Horn Clause Programs
Using Multiple Processors. New Generation Computing 5, 361-376.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

590 . G. Gupta et al.

CobisH, M., MULKERS, A., BRUYNOOGHE, M., GARCfA DE LA BanNDA, M., AND HERMENEGILDO, M. 1995.
Improving Abstract Interpretations by Combining Domains. ACM Transactions on Programming
Languages and Systems 17, 1, 28-44.

CopoGNET, C. AND CopOGNET, P. 1990. Non-Deterministic Stream and-Parallelism Based on In-
telligent Backtracking. In Proceedings of the International Conference on Logic Programming,
G. Levi and M. Martelli, Eds. MIT Press, Cambridge, MA, 63—79.

Copocnert, C., ConocNET, P., AND FiLg, G. 1988. Yet Another Intelligent Backtracking Method. In
Proceedings of the International Conference and Symposium on Logic Programming, R. Kowalski
and K. Bowen, Eds. MIT Press, Cambridge, MA, 447-465.

CoNERy, J. 1987a. Binding Environments for Parallel Logic Programs in Nonshared Memory
Multiprocessors. In International Symposium on Logic Programming. IEEE Computer Society,
Los Alamitos, CA, 457—-467.

ConERy, J. 1987b. Parallel Interpretation of Logic Programs. Kluwer Academic, Norwell, MA.

ConERy, J. 1992. The OPAL Machine. In Implementations of Distributed Prolog, P. Kacsuk and
D. S. Wise, Eds. J. Wiley & Sons, New York, 159-185.

CONERY, J. AND KiBLER, D. 1981. Parallel Interpretation of Logic Programs. In Proceedings of
the ACM Conference on Functional Programming Languages and Computer Architecture (1981).
ACM Press, New York, 163-170.

CoONERY, J. AND KiBLER, D. 1983. And Parallelism in Logic Programs. In Proceedings of the Inter-
national Joint Conference on Al, A. Bundy, Ed. William Kaufmann, Los Altos, CA, 5639-543.

CorrEela, E., Stuva, F., anp Sanros Costa, V. 1997. The SBA: Exploiting Orthogonality in
And-or Parallel System. In Proceedings of the International Symposium on Logic Programming,
J. Matuszynski, Ed. MIT Press, Cambridge, MA, 117-131.

Cousor, P. anp Cousor, R. 1977. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Conference Records
of the ACM Symposium on Principles of Programming Languages. ACM Press, New York,
238-252.

Cousor, P. anp Cousot, R. 1992. Abstract Interpretation and Applications to Logic Programs.
Journal of Logic Programming 13, 2-3, 103-179.

Cox, P. 1984. Finding backtrack points for intelligent backtracking. In Implementations of
Prolog, J. Campbell, Ed. Ellis Horwood, Hemel Hempstead.

CRABTREE, B. 1991. A Clustering System to Network Control. Tech. rep., British Telecom.

CramMMOND, J. 1985. A Comparative Study of Unification Algorithms for Or-Parallel Execution of
Logic Languages. IEEE Transactions on Computers 34, 10, 911-971.

CraMMOND, J. 1992. The Abstract Machine and Implementation of Parallel Parlog. New Genera-
tion Computing 10, 4, 385-422.

DE BosscHERE, K. aND TAray, P. 1996. Blackboard-Based Extensions in Prolog. Software Practice
& Experience 26, 1, 46—69.

DEBRAY, S. AND JAIN, M. 1994. A Simple Program Transformation for Parallelism. In Proceedings
of the 1994 Symposium on Logic Programming. MIT Press.

DEBRraY, S. AND LN, N. 1993. Cost Analysis of Logic Programs. ACM Transactions on Programming
Languages and Systems 15, 5, 826-875.

DEBRAY, S. AND WARREN, D. S. 1989. Functional Computations in Logic Programs. ACM Transac-
tions on Programming Languages and Systems 11, 3, 451-481.

DEBRay, S., LoPEz-GaRcia, P., aND HERMENEGILDO, M. 1997. Non-Failure Analysis for Logic Pro-
grams. In International Conference on Logic Programming, L. Naish, Ed. MIT Press, Cambridge,
MA, 48-62.

DEBRay, S., L6PEz-GARcia, P., HERMENEGILDO, M., AND LN, N.-W. 1994. Estimating the Computa-
tional Cost of Logic Programs. In Static Analysis Symposium, SAS’94. Number 864 in LNCS.
Springer-Verlag, Namur, Belgium, 255-265.

DEBRaY, S., LOPEz-GaRcia, P., HERMENEGILDO, M., AND LiN, N.-W. 1997. Lower Bound Cost Estima-
tion for Logic Programs. In International Logic Programming Symposium, J. Maluszyriski, Ed.
MIT Press, Cambridge, MA, 291-306.

DEBray, S. K., Ly, N.-W., anp HermeEnEciLo, M. 1990. Task Granularity Analysis in Logic
Programs. In Proceedings of the 1990 ACM Conference on Programming Language Design and
Implementation. ACM Press, New York, 174-188.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 591

DEGrooTt, D. 1984. Restricted and-Parallelism. In International Conference on Fifth Generation
Computer Systems, ICOT Staff, Ed. IOS Press, Tokyo, Japan, 471-478.

DEGrooT, D. 1987a. A Technique for Compiling Execution Graph Expressions for Restricted
AND-Parallelism in Logic Programs. In Proceedings of the 1987 International Supercomputing
Conference Springer-Verlag, Athens, 80—89.

DEGrooT, D. 1987b. Restricted and-Parallelism and Side-Effects. In International Symposium
on Logic Programming. San Francisco, IEEE Computer Society, Los Alamitos, CA, 80-89.

DELGADO-RANNAURO, S. 1992a. Or-Parallel Logic Computational Models. In Implementations of
Distributed Prolog, P. Kacsuk and M. Wise, Eds. J. Wiley & Sons, New York, 3—26.

DeLGaDO-RANNAURO, S. 1992b. Restricted And- and And/Or-Parallel Logic Computational Mod-
els. In Implementations of Distributed Prolog, P. Kacsuk and M. Wise, Eds. J. Wiley & Sons,
New York, 121-141.

Disz, T. anp Lusk, E. 1987. A Graphical Tool for Observing the Behaviour of Parallel Logic
Programs. In Proceedings of the Symposium on Logic Programming. IEEE Computer Society,
Los Alamitos, CA, 46-53.

Disz, T., Lusk, E., aND OVERBEEK, R. 1987. Experiments with OR-Parallel Logic Programs. In
Fourth International Conference on Logic Programming, J. Lassez, Ed. University of Melbourne,
MIT Press, Cambridge, MA, 576-600.

DorocHEVskY, M. anD XU, J. 1991. Parallel Execution Tracer. Tech. rep., ECRC.

Drakos, N. 1989. Unrestricted And-Parallel Execution of Logic Programs with Dependency
Directed Backtracking. In Proceedings of the International Joint Conference on Artificial
Intelligence, N. Sridharan, Ed. Morgan Kaufmann, New York, 157-162.

Dutra, I. C. 1994. Strategies for Scheduling And- and Or-Parallel Work in Parallel Logic
Programming Systems. In International Logic Programming Symposium, M. Bruynooghe, Ed.
MIT Press, Cambridge, MA, 289-304.

Dutra, I. C. 1995. Distributing And- and Or-Work in the Andorra-I Parallel Logic Programming
System. Ph.D. thesis, University of Bristol.

Durtra, I. C. 1996. Distributing And-Work and Or-Work in Parallel Logic Programming Systems.
In Proceedings of the 29th Hawaii International Conference on System Sciences. IEEE Computer
Society, Los Alamitos, CA, 645-655.

Durtra, I. C., SanTos Cosrta, V., anD BiancHing, R. 2000. The Impact of Cache Coherence Protocols
on Parallel Logic Programming Systems. In Proceedings of the International Conference on
Computational Logic, J. Lloyd et al., Ed. Springer-Verlag, Heidelberg, 1285-1299.

FERNANDEZ, M., CARrRO, M., aND HERMENEGILDO, M. 1996. IDRA (IDeal Resource Allocation):
Computing Ideal Speedups in Parallel Logic Programming. In Proceedings of EuroPar, L. Bouge
et al., Ed. Springer-Verlag, Heidelberg, 724-733.

FmkeL, R., MaRrex, V., Moogrg, N., aNpD TruszczyNski, M. 2001. Computing Stable Models in
Parallel. In Proceedings of the AAAI Spring Symposium on Answer Set Programming, A. Provetti
and S. Tran, Eds. AAAI/MIT Press, Cambridge, MA, 72-75.

Fonskca, N., SanTos Costa, V., AND DUTRa, I. C. 1998. VisAll: A Universal Tool to Visualize the
Parallel Execution of Logic Programs. In Proceedings of the Joint International Conference and
Symposium on Logic Programming, J. Jaffar, Ed. MIT Press, Cambridge, MA, 100-114.

Freire, J., Hy, R., Swirt, T., AND WaARREN, D. S. 1995. Exploiting Parallelism in Tabled Eval-
uations. In Proceedings of the Symposium on Programming Languages Implementations and
Logic Programming, M. Hermenegildo and S. Swierstra, Eds. Springer-Verlag, Heidelberg,
115-132.

Furo, I. 1993. Prolog with Communicating Processes: From T-Prolog to CSR-Prolog. In Interna-
tional Conference on Logic Programming, D. S. Warren, Ed. MIT Press, Cambridge, MA, 3-17.
GANGULY, S., SILBERSCHATZ, A., AND TSuR, S. 1990. A Framework for the Parallel Processing of
Datalog Queries. In Proceedings of ACM SIGMOD Conference on Management of Data, H. Garcia-

Molina and H. Jagadish, Eds. ACM Press, New York.

GaARciA DE LA Banpa, M. 1994. Independence, Global Analysis, and Parallelism in Dynamically
Scheduled Constraint Logic Programming. Ph.D. thesis, Universidad Politecnica de Madrid.

Garzia DE La Banpa, M., Bueno, F., HErmENEGILDO, M. 1996a. Towards Independent And-
parallelism in CLP. In Proceedings of Programming Languages: Implementation, Logics and
Programs. Springer Verlag, Heidelberg, 77-91.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

592 . G. Gupta et al.

GARcfA DE LA BanDA, M., HERMENEGILDO, M., AND MARRIOTT, K. 1996b. Independence in Dynamically
Scheduled Logic Languages. In Proceedings of the International Conference on Algebraic and
Logic Programming, M. Hanus and M. Rodriguez-Artalejo, Eds. Springer-Verlag, Heidelberg,
47-61.

Garcfa DE LA Banpa, M., HerMENEGILDO, M., AND MarrioTT, K. 2000. Independence in CLP
Languages. ACM Transactions on Programming Languages and Systems 22, 2 (March),
269-339.

GiacoBazzl, R. anND Riccr, L. 1990. Pipeline Optimizations in And-parallelism by Abstract Inter-
pretation. In Proceedings of International Conference on Logic Programming, D. H. D. Warren
and P. Szeredi, Eds. MIT Press, Cambridge, MA, 291-305.

GiannorTi, F. AND HERMENEGILDO, M. 1991. A Technique for Recursive Invariance Detection and
Selective Program Specialization. In Proceedings 3rd International Symposium on Program-
ming Language Implementation and Logic Programming. Number 528 in LNCS. Springer-Verlag,
323-335.

GREGORY, S. AND YanG, R. 1992. Parallel Constraint Solving in Andorra-I. In Proceedings of the
International Conference on Fifth Generation Computer Systems, ICOT Staff, Ed. IOS Press,
Tokyo, Japan, 843-850.

Guo, H.-F. 2000. High Performance Logic Programming. Ph.D. thesis, New Mexico State
University.

Guo, H.-F. anp GupTa, G. 2000. A Simple Scheme for Implementing Tabled LP Systems Based on
Dynamic Reordering of Alternatives. In Proceedings of the Workshop on Tabling in Parsing and
Deduction, D. S. Warren, Ed.

Gupta, G. 1994. Multiprocessor Execution of Logic Programs. Kluwer Academic Press, Dordrecht.

GUPTA, G. AND JAYARAMAN, B. 1993a. Analysis of Or-Parallel Execution Models. ACM Transactions
on Programming Languages and Systems 15, 4, 659-680.

GuUPTA, G. AND JAYARAMAN, B. 1993b. And-Or Parallelism on Shared Memory Multiprocessors.
Journal of Logic Programming 17, 1, 59-89.

Gupta, G. anD PonteELL, E. 1997. Optimization Schemas for Parallel Implementation of
Nondeterministic Languages and Systems. In International Parallel Processing Symposium.
IEEE Computer Society, Los Alamitos, CA.

GUPTA, G. AND PonTELLL, E. 1999a. Extended Dynamic Dependent And-Parallelism in ACE. Jour-
nal of Functional and Logic Programming 99,Special Issue 1.

Guprta, G. AND PonTELLL, E. 1999b. Last Alternative Optimization for Or-Parallel Logic Program-
ming Systems. In Parallelism and Implementation Technology for Constraint Logic Program-
ming, I. Dutra et al., Ed. Nova Science, Commack, NY, 107-132.

Gupta, G. AND PontiLLI, E. 1999c. Stack-Splitting: A Simple Technique for Implementing
Or-Parallelism and And-Parallelism on Distributed Machines. In International Conference on
Logic Programming, D. De Schreye, Ed. MIT Press, Cambridge, MA, 290-304.

GupTA, G. AND SanTOs Costa, V. 1996. Cuts and Side-Effects in And/Or Parallel Prolog. Journal
of Logic Programming 27, 1, 45-71.

Guprta, G., HErRMENEGILDO, M., PonTELLI, E., AND SanTOS Costa, V. 1994. ACE: And/Or-Parallel
Copying-Based Execution of Logic Programs. In Proceedings of the International Conference on
Logic Programming, P. van Hentenryck, Ed. MIT Press, Cambridge, MA, 93-109.

Gupra, G., HErMENEGILDO, M., AND Santos Costa, V. 1992. Generalized Stack Copying for
And-Or Parallel Implementations. In JICSLP’92 Workshop on Parallel Implementations of Logic
Programming Systems.

GuprTa, G., HERMENEGILDO, M., AND SaNnTOS CosTa, V. 1993. And-Or Parallel Prolog: A Recomputa-
tion Based Approach. New Generation Computing 11, 3—4, 297-322.

GupPTA, G. AND WARREN, D. H. D. 1992. An Interpreter for the Extended Andorra Model. Internal
Report 92-CS-24, New Mexico State University, Department of Computer Science.

GUPTA, G., SANTOS CosTa, V., AND PoNTELLI, E. 1994b. Shared Paged Binding Arrays: A Universal
Data-Structure for Parallel Logic Programming. Proceedings of the NSF/ICOT Workshop on
Parallel Logic Programming and its Environments, CIS-94-04, University of Oregon. Mar.

GupTa, G., SanTos Cosra, V., Yang, R., anD HERMENEGILDO, M. 1991. IDIOM: A Model Intergrating
Dependent-, Independent-, and Or-parallelism. In International Logic Programming Symposium,
V. Saraswat and K. Ueda, Eds. MIT Press, Cambridge, MA, 152-166.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 593

Harsteap, R. 1984. Implementation of Multilisp: Lisp on a Multiprocessor. In Proceedings of the
Symposium on LISP and Functional Programming. ACM Press, New York, 9-17.

Haravick, R. anND ErLior, G. 1980. Increasing Tree Search Efficiency for Constraint Satisfaction.
Artificial Intelligence 14, 3, 263-313.

Harmi, S. 1990. A Logic Programming Language Based on the Andorra Model. New Generation
Computing 7, 2/3, 109-125.

Harmi, S. anD Janson, S. 1990. Kernel Andorra Prolog and Its Computation Model. In Proceedings
of the International Conference on Logic Programming, D. H. D. Warren and P. Szeredi, Eds. MIT
Press, Cambridge, MA, 31-46.

Haripi, S., Van Roy, P., Branp, P., AND ScHULTE, C. 1998. Programming Languages for Distributed
Applications. New Generation Computing 16, 3, 223-261.

HASENBERGER, J. 1995. Modelling and Redesign the Advanced Traffic Management System in
Andorra-1. In Proceedings of the Workshop on Parallel Logic Programming Systems, V. Santos
Costa, Ed. University of Porto, Portland, OR.

Hausman, B. 1989. Pruning and scheduling speculative work in or-parallel Prolog. In Conference
on Parallel Architectures and Languages Europe, E. Odijk, M. Rem, and J.-C. Syre, Eds. Springer-
Verlag, Heidelberg, 133-150.

Hausman, B. 1990. Pruning and Speculative Work in OR-Parallel PROLOG. Ph.D. thesis, The
Royal Institute of Technology, Stockholm.

Hausman, B., CIEPIELEWSKI, A., AND CALDERWOOD, A. 1988. Cut and Side-Effects in Or-Parallel
Prolog. In International Conference on Fifth Generation Computer Systems, ICOT Staff, Ed.
Springer-Verlag, Tokyo, Japan, 831-840.

Hausman, B., CiepiELEWSKI, A., AND Harm1, S. 1987. OR-Parallel Prolog Made Efficient on Shared
Memory Multiprocessors. In Symposium on Logic Programming. IEEE Computer Society, Los
Alamitos, CA, 69-79.

HEerRMENEGILDO, M. 1986a. An Abstract Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. Ph.D. thesis, U. of Texas
at Austin.

HerMENEGILDO, M. 1986b. An Abstract Machine for Restricted AND-Parallel Execution of Logic
Programs. In Proceedings of the International Conference on Logic Programming, E. Shapiro, Ed.
Springer-Verlag, Heidelberg, 25—40.

HerMENEGILDO, M. 1987. Relating Goal Scheduling, Precedence, and Memory Management in
And-parallel Execution of Logic Programs. In Proceedings of the Fourth International Conference
on Logic Programming, MIT Press, Cambridge, MA, 556-575.

HerMmENEGILDO, M. 1994. A Simple, Distributed Version of the &-Prolog System. Technical
report, School of Computer Science, Technical University of Madrid (UPM), Facultad
Informatica UPM, 28660-Boadilla del Monte, Madrid, Spain. April. Available from
http://www.clip.dia.fi.upm.es/.

HerMENEGILDO, M. 2000. Parallelizing Irregular and Pointer-Based Computations Automatically:
Perspectives from Logic and Constraint Programming. Parallel Computing 26,13-14,1685-1708.

HerMENEGILDO, M., BUENO, F., CaBEZA, D., CARRO, M., GARCIA DE LA BANDA, M., LOPEZ-GARCIA, P., AND
PueBLA, G. 1999a. The CIAO Multi-Dialect Compiler and System: An Experimentation Work-
bench for Future (C)LP Systems. In Parallelism and Implementation of Logic and Constraint
Logic Programming. Nova Science, Commack, NY, 65-85.

HerMENEGILDO, M., BugNo, F., PueBLA, G., AND LOPEZ-GaRcia, P. 1999b. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 International Confer-
ence on Logic Programming. MIT Press, Cambridge, MA, 52-66.

HerMENEGILDO, M., CABEZA, D., AND CARRO, M. 1995. Using Attributed Variables in the Imple-
mentation of Parallel and Concurrent Logic Programming Systems. In Proceedings of the Inter-
national Conference on Logic Programming, L. Sterling, Ed. MIT Press, Cambridge, MA, 631—
645.

HerMENEGILDO, M. AND CARRO, M. 1996. Relating Data—Parallelism and (And-) Parallelism in
Logic Programs. The Computer Languages Journal 22, 2/3 (July), 143-163.

HerMENEGILDO, M. AND CLIP Groupr, T. 1994. Some Methodological Issues in the Design of CIAO—
A Generic, Parallel, Concurrent Constraint System. In Principles and Practice of Constraint
Programming. Number 874 in LNCS. Springer-Verlag, 123-133.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

594 . G. Gupta et al.

HerMENEGILDO, M. AND GrEENE, K. 1991. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing 9, 3—4, 233-257.

HerMENEGILDO, M. AND L6PEZ-GARcia, P. 1995. Efficient Term Size Computation for Granularity
Control. In Proceedings of the International Conference on Logic Programming, L. Sterling, Ed.
MIT Press, Cambridge, MA, 647-661.

HerMmENEGILDO, M. AND Nasr, R. I. 1986. Efficient Management of Backtracking in AND-
Parallelism. In Third International Conference on Logic Programming, E. Shapiro, Ed. Number
225 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 40-54.

HerMeEnEcILDO, M., PuEBLA, G., MarrIOTT, K., AND STUCKEY, P. 2000. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and Systems 22, 2
(March), 187-223.

HerMmENEGILDO, M. aND Rossi, F. 1995. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic
Programming 22, 1, 1-45.

HerMENEGILDO, M. AND Tick, E. 1989. Memory Performance of AND-Parallel Prolog on Shared-
Memory Architectures. New Generation Computing 7, 1 (October), 37-58.

HerMENEGILDO, M. AND WARREN, R. 1987. Designing a High-Performance Parallel Logic Program-
ming System. Computer Architecture News, Special Issue on Parallel Symbolic Programming 15,1
(March), 43-53.

HERMENEGILDO, M., WARREN, R., AND DEBRAY, S. 1992. Global Flow Analysis as a Practical Compi-
lation Tool. Journal of Logic Programming 13, 4, 349-367.

Herowp, A. 1995. The Handbook of Parallel Constraint Logic Programming Applications. Tech.
Rep., ECRC.

HERRARTE, V. aAND Lusk, E. 1991. Studying Parallel Program Behaviours with Upshot. Tech. Rep.
ANL-91/15, Argonne National Labs.

Hickey, T. aNpD Mupamsi, S. 1989. Global Compilation of Prolog. Journal of Logic Program-
ming 7, 3, 193-230.

Hirata, K., Yamamoro, R., Imal, A., Kawal, H., Hirano, K., Takaci, T., Taxki, K., NAKASE, A., AND
Roxkusawa, K. 1992. Parallel and Distributed Implementation of Logic Programming Language
KL1. In Proceedings of the International Conference on Fifth Generation Computer Systems,ICOT
Staff, Ed. Ohmsha Ltd., Tokyo, Japan, 436—459.

1QSoft Inc. 1992. CUBIQ - Development and Application of Logic Programming Tools for Knowl-
edge Based Systems. 1QSoft Inc. www.igsoft.hu/projects/cubiq/cubiq.html.

JacoBs, D. anD LanGEN, A. 1992. Static Analysis of Logic Programs for Independent
And-Parallelism. Journal of Logic Programming 13, 1-4, 291-314.

JANAKIRAM, V., AGARWAL, D., AND MaLHOTRA, R. 1988. A Randomized Parallel Backtracking
Algorithm. IEEE Transactions on Computers 37, 12, 1665-1676.

JANSON, S. AND MoNTELIUS, J. 1991. A Sequential Implementation of AKL. In Proceedings of
ILPS’91 Workshop on Parallel Execution of Logic Programs.

Kacsuk, P. 1990. Execution Models of Prolog for Parallel Computers. MIT Press, Cambridge, MA.

Kacsuk, P. anp Wise, M. 1992. Implementation of Distributed Prolog. J. Wiley & Sons., New York.

Karg, L. 1985. Parallel Architectures for Problem Solving. Ph.D. thesis, SUNY Stony Brook,
Dept. Computer Science.

Karg, L. 1991. The REDUCE OR Process Model for Parallel Execution of Logic Programming.
Journal of Logic Programming 11,1, 55-84.

Karg, L., RaMkUMAR, B., anp Sru, W. 1988a. A Memory Organization Independent Binding
Environment for AND and OR Parallel Execution of Logic Programs. In Proceedings of the Fifth
International Conference and Symposium on Logic Programs, R. Kowalski and K. Bowen, Eds.
MIT Press, Cambridge, MA, 1223—-1240.

Katg, L. V., Papua, D. A., anD SEHR, D. C. 1988b. Or-Parallel Execution of Prolog with Side Effects.
Journal of Supercomputing 2, 2, 209-223.

Karwsson, R. 1992. A High Performance Or-Parallel Prolog System. Ph.D. thesis, Royal Institute
of Technology, Stockholm.

Kastr, S., Konri, M., aND MINKER, J. 1983. PRISM: A Parallel Inference System for Problem
Solving. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (1983),
A. Bundy, Ed. Morgan Kaufman, San Francisco, CA, 544-546.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 595

King, A., SueEN, K., anD Benoy, F. 1997. Lower-Bound Time-Complexity Analysis of Logic
Programs. In Proceedings of the International Logic Programming Symposium, J. Maluszynski,
Ed. MIT Press, Cambridge, MA, 261-276.

Kruzniak, F. 1990. Developing Applications for Aurora Or-Parallel System. Tech. Rep. TR-90-17,
Dept. of Computer Science, University of Bristol.

KowaLski, R. 1979. Logic for Problem Solving. Elsevier North-Holland, Amsterdam.

KusaLg, A. aND PrestwicH, S. 1996. Visualizing Parallel Logic Program Execution for Perfor-
mance Tuning. In Proceedings of Joint International Conference and Symposium on Logic Pro-
gramming, M. Maher, Ed. MIT Press, Cambridge, MA, 498-512.

Lamwma, E., MELLo, P., STEFANELLI, C., AND HENTENRYCK, P. V. 1997. Improving Distributed Unifica-
tion Through Type Analysis. In Proceedings of Euro-Par 1997. LNCS, Vol. 1300. Springer-Verlag,
1181-1190.

Le Hurrouzg, S. 1990. A new data structure for implementing extensions to Prolog. In Sympo-
stum on Programming Languages Implementation and Logic Programming, P. Deransart and
J. Matuszynski, Eds. Springer-Verlag, Heidelberg, 136-150.

LN, Y. J. 1988. A Parallel Implementation of Logic Programs. Ph.D. thesis, Dept. of Computer
Science, University of Texas at Austin, Austin, TX.

LN, Y. J. anD KuMar, V. 1988. AND-Parallel Execution of Logic Programs on a Shared Mem-
ory Multiprocessor: A Summary of Results. In Fifth International Conference and Symposium
on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, Cambridge, MA, 1123—
1141.

Linngren, T. 1993. The Compilation and Execution of Recursion Parallel Logic Programs for
Shared Memory Multiprocessors. Ph.D. thesis, Uppsala University.

LiNDGREN, T., BEVEMYR, J., AND MirLrROTH, H. 1995. Compiler Optimizations in Reform Prolog:
Eperiments on the KSR-1 Multiprocessor. In Proceedings of EuroPar, S. Haridi and P. Magnusson,
Eds. Springer-Verlag, Heidelberg, 553-564.

LinpsTroM, G. 1984. Or-Parallelism on Applicative Architectures. In International Logic Pro-
gramming Conference, S. Tarnlund, Ed. Uppsala University, Uppsala, 159-170.

Lrovp, J. 1987. Foundations of Logic Programming. Springer-Verlag, Heidelberg.

Lores, R. AND SanTos Costa, V. 1999. The BEAM: Towards a First EAM Implementation. In
Parallelism and Implementation Technology for Constraint Logic Programming, 1. Dutra et al.,
Ed. Nova Science, Commack, NY, 87-106.

Lo6pEz-Garcia, P., HERMENEGILDO, M., AND DEBRAY, S. 1996. A Methodology for Granularity Based
Control of Parallelism in Logic Programs. Journal of Symbolic Computation, Special Issue on
Parallel Symbolic Computation 22, 715-734.

Lusk, E., BUTLER, R., Disz, T., OLsoN, R., STEVENS, R., WARREN, D. H. D., CALDERWOOD, A., SZEREDI,
P, Branp, P, Carusson, M., CiepiELEWSKI, A., HausmaN, B., anD Harini, S. 1990. The Aurora
Or-Parallel Prolog System. New Generation Computing 7, 2/3, 243-271.

Lusk, E., Mupawmsi, S., OVERBEEK, R., AND SzereDI, P. 1993. Applications of the Aurora Parallel
Prolog System to Computational Molecular Biology. In Proceedings of the International Logic
Programming Symposium, D. Miller, Ed. MIT Press, Cambridge, MA, 353-369.

Masuzawa, H., Kumon, K., ItasHiki, A., SatoH, K., AND Soama, Y. 1986. KABU-WAKE: A New
Parallel Inference Method and Its Evaluation. In Proceedings of the Fall Joint Computer Confer-
ence. IEEE Computer Society, Los Alamitos, CA, 955-962.

MiLLroTH, H. 1990. Reforming Compilation of Logic Programs. Ph.D. thesis, Uppsala University.

MonteLius, J. 1997. Exploiting Fine-Grain Parallelism in Concurrent Constraint Languages.
Ph.D. thesis, Uppsala University.

MonTELIUs, J. AND ALL, K. 1996. A Parallel Implementation of AKL. New Generation Comput-
ing 14, 1, 31-52.

MonTtELIUs, J. AND Harm1, S. 1997. An Evaluation of Penny: A System for Fine Grain Implicit
Parallelism. In International Symposium on Parallel Symbolic Computation. ACM Press, New
York, 46-57.

MooLENAAR, R. AND DEMOEN, B. 1993. A Parallel Implementation for AKL. In Proceedings
of the Conference on Programming Languages Implementation and Logic Programming,
M. Bruynooghe and J. Penjam, Eds. Number 714 in LNCS. Springer-Verlag, Heidelberg,
246-261.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

596 . G. Gupta et al.

Mupamsr, S. 1991. Performance of Aurora on NUMA Machines. In Proceedings of the Interna-
tional Logic Programming Symposium, V. Saraswat and K. Ueda, Eds. MIT Press, Cambridge,
MA, 793-806.

Mubawmgi, S. AND ScHIMPF, J. 1994. Parallel CLP on Heterogenous Networks. In Proceedings of the
International Conference on Logic Programming, P. V. Hentenryck, Ed. MIT Press, Cambridge,
MA, 124-141.

MutnukuMAR, K. AND HErRMENEGILDO, M. 1989. Efficient Methods for Supporting Side Effects
in Independent And-Parallelism and Their Backtracking Semantics. In Proceedings of the
International Conference on Logic Programming, G. Levi and M. Martelli, Eds. MIT Press, Cam-
bridge, MA, 80-97.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1990. The CDG, UDG, and MEL Methods for Automatic
Compile-Time Parallelization of Logic Programs for Independent And-Parallelism. In 1990 In-
ternational Conference on Logic Programming, D. H. D. Warren and P. Szeredi, Eds. MIT Press,
Cambridge, MA, 221-237.

MutaukuMAR, K. AND HERMENEGILDO, M. 1991. Combined Determination of Sharing and Free-
ness of Program Variables Through Abstract Interpretation. In Proceedings of the International
Conference on Logic Programming, K. Furukawa, Ed. MIT Press, Cambridge, MA, 49-63.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-Time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July), 315-347.

MutnukuMAR, K., BugNo, F., Garcia DE LA Banpa, M., aNpD HERMENEGILDO, M. 1999. Automatic
Compile-Time Parallelization of Logic Programs for Restricted, Goal-Level, Independent And-
Parallelism. Journal of Logic Programming 38, 2, 165-218.

NarsH, L. 1988. Parallelizing NU-Prolog. In Proceedings of the International Conference and
Symposium on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, Cambridge,
MA, 1546-1564.

Ncuven, T. aND DEVILLE, Y. 1998. A Distributed Arc-Consistency Algorithm. Science of Computer
Programming 30, 1-2, 227-250.

Onwapa, H., Nisarvama, H., anp MizocucHr, F. 2000. Concurrent Execution of Optimal Hypothesis
Search for Inverse Entailment. In Proceedings of the Inductive Logic Programming Conference,
dJ. Cussens and A. Frisch, Eds. Springer-Verlag, Heidelberg, 165-183.

OLDER, W. AND RUMMELL, J. 1992. An Incremental Garbage Collector for WAM-Based Prolog. In
Proceedings of the Joint International Conference and Symposium on Logic Programming, K. Apt,
Ed. MIT Press, Cambridge, MA, 369-383.

OLmEDILLA, M., BugNo, F., anD HEeRMENEGILDO, M. 1993. Automatic Exploitation of Non-
Determinate Independent And-Parallelism in the Basic Andorra Model. In Logic Program Syn-
thesis and Transformation, 1993. Workshops in Computing. Springer-Verlag, 177-195.

Ozawa, T., Hosor, A., aND HatTor1, A. 1990. Generation Type Garbage Collection for Parallel Logic
Languages. In Proceedings of the North American Conference on Logic Programming, S. Debray
and M. Hermenegildo, Eds. MIT Press, Cambridge, MA, 291-305.

Pacg, D. 2000. ILP: Just Do It. In Proceedings of the Inductive Logic Programming Conference,
dJ. Cussens and A. Frisch, Eds. Springer-Verlag, Heidelberg, 21-39.

PaLMER, D. AND NarsH, L. 1991. NUA Prolog: An Extension of the WAM for Parallel Andorra.
In Proceedings of the International Conference on Logic Programming, K. Furukawa, Ed. MIT
Press, Cambridge, MA, 429-442.

PEREIRA, L. M., MonNTEIRO, L., CUNHA, dJ., AND APARiCIO, J. N. 1986. Delta Prolog: A Distributed
Backtracking Extension with Events. In Third International Conference on Logic Program-
ming. Number 225 in Lecture Notes in Computer Science. Imperial College, Springer-Verlag,
Heidelberg, 69-83.

PEerrON, L. 1999. Search Procedures and Parallelism in Constraint Programming. In Proceedings
of the International Conference on Principles and Practice of Constraint Programming, J. Jaffar,
Ed. LNCS, Vol. 1713. Springer-Verlag, Heidelberg, 346-360.

PETERSON, J. AND SILBERSCHATZ, A. 1986. Operating Systems Concepts. Addison-Wesley, Boston,
MA.

Prrromvies, E., BRuynoocHE, M., AND WiLLEMS, Y. 1985. Towards a Real-Time Garbage Collector
for Prolog. In Proceedings of the Symposium on Logic Programming. IEEE Computer Society,
Los Alamitos, CA, 185-198.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 597

Porrarp, G. H. 1981. Parallel Execution of Horn Clause Programs. Ph.D. thesis, Imperial College,
London. Dept. of Computing.

PonteLLI, E. 1997. High-Performance Parallel Logic Programming. Ph.D. thesis, New Mexico
State University.

PonteLLI, E. 2000. Concurrent Web Programming in CLP(WEB). In 23rd Hawaian International
Conference of Computers and Systems Science. IEEE Computer Society, Los Alamitos, CA.

PonteLLI, E. AND Er-Kara, O. 2001. Construction and Optimization of a Parallel Engine for
Answer Set Programming. In Practical Aspects of Declarative Languages, 1. V. Ramakrishnan,
Ed. LNCS, Vol. 1990. Springer-Verlag, Heidelberg, 288-303.

PontELLI, E. AND GUPTA, G. 1995a. Data And-Parallel Logic Programming in &ACE. In Proceed-
ings of the Symposium on Parallel and Distributed Processing. IEEE Computer Society, Los
Alamitos, CA, 424-431.

PonteLLI, E. AND GUPTA, G. 1995b. On the Duality Between And-Parallelism and Or-Parallelism.
In Proceedings of EuroPar, S. Haridi and P. Magnusson, Eds. Springer-Verlag, Heidelberg, 43—54.

PonteLLL, E. AND GUPTA, G. 1997a. Implementation Mechanisms for Dependent And-Parallelism.
In Proceedings of the International Conference on Logic Programming, L. Naish, Ed. MIT Press,
Cambridge, MA, 123-137.

PontEeLLI, E. AND GUPTA, G. 1997b. Parallel Symbolic Computation with ACE. Annals of AI and
Mathematics 21, 2—4, 359-395.

PontELLL, E. AND GUPTA, G. 1998. Efficient Backtracking in And-Parallel Implementations of Non-
Deterministic Languages. In Proceedings of the International Conference on Parallel Processing,
T. Lai, Ed. IEEE Computer Society, Los Alamitos, CA, 338-345.

PonteLLL, E., GupTa, G., AND HERMENEGILDO, M. 1995. &ACE: A High-Performance Parallel Prolog
System. In Proceedings of the International Parallel Processing Symposium. IEEE Computer
Society, Los Alamitos, CA, 564-571.

PonteLLI, E., GUPTA, G., PULVIRENTI, F., AND FERRO, A. 1997a. Automatic Compile-Time Paral-
lelization of Prolog Programs for Dependent And-Parallelism. In International Conference on
Logic Programming, L. Naish, Ed. MIT Press, Cambridge, MA, 108-122.

PonteLLI, E., GupTa, G., TaNG, D., CARRO, M., AND HERMENEGILDO, M. 1996. Improving the Effi-
ciency of Non-Deterministic Independent And-Parallel Systems. Computer Languages 22, 2/3,
115-142.

PonteLLI, E., GUPTA, G., WIEBE, dJ., AND FARWELL, D. 1998. Natural Language Multiprocessing:
A Case Study. In Proceedings of the Fifteenth National Conference on Artifical Intelligence.
AAAT/MIT Press, Cambridge, MA, 76-82.

PonteLLI, E., Rangan, D., anD GupTa, G. 1997b. On the Complexity of Parallel Implementation
of Logic Programs. In Proceedings of the International Conference on Foundations of Software
Technology and Theoretical Computer Science, S. Ramesh and G. Sivakumar, Eds. Springer-
Verlag, Heidelberg, 123—-137.

Porov, K. 1997. A Parallel Abstract Machine for the Thread-Based Concurrent Language Oz. In
Proceedings of the Workshop on Parallelism and Implementation Technology for Constraint Logic
Programming, E. Pontelli and V. Santos Costa, Eds. New Mexico State University.

PueBLA, G. AND HERMENEGILDO, M. 1996. Optimized Algorithms for the Incremental Analysis of
Logic Programs. In International Static Analysis Symposium. Number 1145 in LNCS. Springer-
Verlag, 270-284.

PuEBLA, G. AND HERMENEGILDO, M. 1999. Abstract Multiple Specialization and Its Application to
Program Parallelization. J. of Logic Programming. Special Issue on Synthesis, Transformation
and Analysis of Logic Programs 41, 2&3 (November), 279-316.

RamEesH, R., RAMAKRISHNAN, 1. V., AND WaRreN, D. S. 1990. Automata-Driven Indexing of Prolog
Clauses. In Proceedings of the Symposium on Principles of Programming Languages. ACM Press,
New York, 281-290.

RaMkuUMAR, B. anp Karg, L. 1989. Compiled Execution of the Reduce-OR Process Model on Mul-
tiprocessors. In Proceedings of the North American Conference on Logic Programming, E. Lusk
and R. Overbeek, Eds. MIT Press, Cambridge, MA, 313-331.

RaMKUMAR, B. aAND KaLE, L. 1990. And Parallel Solutions in And/Or Parallel Systems. In Proceed-
ings of the North American Conference on Logic Programming, S. Debray and M. Hermenegildo,
Eds. MIT Press, Cambridge, MA, 624-641.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

598 . G. Gupta et al.

RaMKUMAR, B. anD KaLE, L. 1992. Machine Independent AND and OR Parallel Execution of Logic
Programs. Part i and ii. IEEE Transactions on Parallel and Distributed Systems 2, 5.

RanuaN, D., PontELLL E., AND GUPTA, G. 1999. On the Complexity of Or-Parallelism. New Gener-
ation Computing 17, 3, 285-308.

Rangan, D., PontELLL, E., AND GUPTA, G. 2000a. Data Structures for Order-Sensitive Predicates
in Parallel Nondetermistic Systems. ACTA Informatica 37, 1, 21-43.

Ranuan, D., PonteLLl, E., LoNgPRE, L., AND GupTa, G. 2000b. The Temporal Precedence Problem.
Algorithmica 28, 288-306.

Rarcrirre, M. aND SyRE, J. C. 1987. A Parallel Logic Programming Language for PEPSys. In
Proceedings of IJCAI, J. McDermott, Ed., Morgan-Kaufmann, San Francisco, CA, 48-55.

RocHa, R., Stiva, F., aND SanTos Costa, V. 1999a. Or-Parallelism Within Tabling. In Proceedings
of the Symposium on Practical Aspects of Declarative Languages, G. Gupta, Ed. Springer-Verlag,
Heidelberg, 137-151.

RocHa, R., Sitva, F., AND SanTos Costa, V. 1999b. YapOr: An Or-Parallel Prolog System Based on
Environment Copying. In LNAI 1695, Proceedings of EPPIA’99: The 9th Portuguese Conference
on Artificial Intelligence. Springer-Verlag LNAI Series, 178-192.

Rokusawa, K., NakASE, A., aAND CHIRAYAMA, T. 1996. Distributed Memory Implementation of KLIC.
New Generation Computing 14, 3, 261-280.

Rurz-AnbpiNo, A., Araujo, L., SAENz, F., aND Ruz, J. 1999. Parallel Execution Models for Con-
straint Programming over Finite Domains. In Proceedings of the Conference on Principles
and Practice of Declarative Programming, G. Nadathur, Ed. Springer-Verlag, Heidelberg, 134—
151.

SamaL, A. AND HENDERSON, T. 1987. Parallel Consistent Labeling Algorithms. International Jour-
nal of Parallel Programming 16, 5, 341-364.

Santos Costa, V. 1999. COWL: Copy-On-Write for Logic Programs. In Proceedings of
IPPS/SPDP. IEEE Computer Society, Los Alamitos, CA, 720-727.

Santos Costa, V. 2000. Encyclopedia of Computer Science and Technology. Vol. 42. Marcel Dekker
Inc., New Yourk, Chapter Parallelism and Implementation Technology for Logic Programming
Languages, 197-237.

Santos Cosrta, V., BiancHing, R., AND Dutra, I. C. 1997. Parallel Logic Programming Systems on
Scalable Multiprocessors. In Proceedings of the International Symposium on Parallel Symbolic
Computation. ACM Press, Los Alamitos, CA, 58-67.

Santos Cosrta, V., BiancHiNI, R., AND Dutra, I. C. 2000. Parallel Logic Programming Systems on
Scalable Architectures. Journal of Parallel and Distributed Computing 60, 7, 835—852.

Santos Costa, V., Damas, L., Rers, R., anD Azevepo, R. 1999. YAP User’s Manual. University of
Porto. www.ncc.up.pt/“vsc/Yap.

SanTos Cosrta, V., RocHa, R., AND Siiva, F. 2000. Novel Models for Or-Parallel Logic Programs: A
Performance Analysis. In Proceedings of EuroPar, A. B. et al., Ed. Springer-Verlag, Heidelberg,
744-753.

SanTos CosTa, V., WARREN, D. H. D., AND YANG, R. 1991a. Andorra-I: A Parallel Prolog System That
Transparently Exploits Both And- and Or-Parallelism. In Proceedings of the ACM Symposium
on Principles and Practice of Parallel Programming. ACM Press, New York, 83-93.

SanTos Costa, V., WARREN, D. H. D., AND YANG, R. 1991b. The Andorra-I Engine: A Parallel Imple-
mentation of the Basic Andorra Model. In Proceedings of the International Conference on Logic
Programming, K. Furukawa, Ed. MIT Press, Cambridge, MA, 825-839.

Santos Cosrta, V., WARREN, D. H. D., aAND YanG, R. 1991c. The Andorra-I Preprocessor: Supporting
Full Prolog on the Basic Andorra Model. In Proceedings of the International Conference on Logic
Programming, K. Furukawa, Ed. MIT Press, Cambridge, MA, 443-456.

Santos Costa, V., WARREN, D. H. D., aND YanG, R. 1996. Andorra-I Compilation. New Generation
Computing 14, 1, 3-30.

Saraswat, V. 1989. Concurrent Constraint Programming Languages. Ph.D. thesis, Carnegie
Mellon, Pittsburgh. School of Computer Science.

ScuuLtg, C. 2000. Parallel Search Made Simple. In Proceedings of Techniques for Implementing
Constraint Programming Systems, Post-conference workshop of CP 2000, N. Beldiceanu et al.,
Ed. Number TRA9/00. University of Singapore, 41-57.

Suapiro, E. 1987. Concurrent Prolog: Collected Papers. MIT Press, Cambridge MA.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 599

Suapiro, E. 1989. The Family of Concurrent Logic Programming Languages. ACM Computing
Suveys 21, 3, 413-510.

SueN, K. 1992a. Exploiting Dependent And-Parallelism in Prolog: The Dynamic Dependent And-
Parallel Scheme. In Proceedings of the Joint International Conference and Symposium on Logic
Programming, K. Apt, Ed. MIT Press, Cambridge, MA, 717-731.

SuEN, K. 1992b. Studies in And/Or Parallelism in Prolog. Ph.D. thesis, University of Cambridge.

Suen, K. 1994. Improving the Execution of the Dependent And-Parallel Prolog DDAS. In
Proceedings of Parallel Architectures and Languages Europe, C. Halatsis et al., Ed. Springer-
Verlag, Heidelberg, 438-452.

SuEN, K. 1996a. Initial Results from the Parallel Implementation of DASWAM. In Proceedings
of the Joint International Conference and Symposium on Logic Programming. MIT Press, Cam-
bridge, MA.

SHEN, K. 1996b. Overview of DASWAM: Exploitation of Dependent And-Parallelism. Journal of
Logic Programming 29, 1/3, 245-293.

Suen, K. 1997. A New Implementation Scheme for Combining And/Or Parallelism. In Pro-
ceedings of the Workshop on Parallelism and Implementation Technology for Constraint Logic
Programming, E. Pontelli and V. Santos Costa, Eds. New Mexico State University, Dept. Com-
puter Science.

Suen, K. anp HerMmEneEciLDO, M. 1991. A Simulation Study of Or- and Independent And-
Parallelism. In Proceedings of the International Logic Programming Symposium, V. Saraswat
and K. Ueda, Eds. MIT Press, Cambridge, MA, 135-151.

SHEN, K. AND HErMENEGILDO, M. 1994. Divided We Stand: Parallel Distributed Stack Memory
Management. In Implementations of Logic Programming Systems, E. Tick and G. Succi, Eds.
Kluwer Academic Press, Boston, MA.

SHEN, K. AND HERMENEGILDO, M. 1996a. Flexible Scheduling for Non-Deterministic, And-Parallel
Execution of Logic Programs. In Proceedings of EuroPar’96. Number 1124 in LNCS. Springer-
Verlag, 635-640.

SHEN, K. AND HERMENEGILDO, M. 1996b. High-Level Characteristics of Or- and Independent And-
Parallelism in Prolog. International. Journal of Parallel Programming 24, 5, 433—478.

SHEN, K., SaNTOS CosTa, V., AND KiNGg, A. 1998. Distance: A New Metric for Controlling Granularity
for Parallel Execution. In Proceedings of the Joint International Conference and Symposium on
Logic Programming, J. Jaffar, Ed. MIT Press, Cambridge, MA, 85-99.

Stiva, F. anp Watson, P. 2000. Or-Parallel Prolog on a Distributed Memory Architecture. Journal
of Logic Programming 43, 2, 173-186.

Stiva, M., Dutra, L. C., BiancHINg, R., AND SaNTOS Costa, V. 1999. The Influence of Computer Archi-
tectural Parameters on Parallel Logic Programming Systems. In Proceedings of the Workshop on
Practical Aspects of Declarative Languages, G. Gupta, Ed. Springer-Verlag, Heidelberg, 122—-136.

SinpaHA, R. 1992. The Dharma Scheduler — Definitive Scheduling in Aurora on Multiprocessor
Architecture. In Proceedings of the Symposium on Parallel and Distributed Processing. IEEE
Computer Society, Los Alamitos, CA, 296-303.

SinDaHA, R. 1993. Branch-Level Scheduling in Aurora: The Dharma Scheduler. In Proceedings
of International Logic Programming Symposium, D. Miller, Ed. MIT Press, Cambridge, MA,
403-419.

SINGHAL, A. AND PATT, Y. 1989. Unification Parallelism: How Much Can We Exploit? In Proceedings
of the North American Conference on Logic Programming, E. Lusk and R. Overbeek, Eds. MIT
Press, Cambridge, MA, 1135-1147.

SmitH, D. 1996. MultiLog and Data Or-Parallelism. Journal of Logic Programming 29, 1-3, 195—
244,

SMorka, G. 1996. Constraints in Oz. ACM Computing Surveys 28, 4 (December), 75-76.

STERLING, L. AND SHAPIRO, E. 1994. The Art of Prolog. MIT Press, Cambridge MA.

Szerepi, P. 1989. Performance Analysis of the Aurora Or-Parallel Prolog System. In Proceedings
of the North American Conference on Logic Programming, E. Lusk and R. Overbeek, Eds. MIT
Press, Cambridge, MA, 713-732.

Szerepi, P. 1991. Using Dynamic Predicates in an Or-Parallel Prolog System. In Proceedings of
the International Logic Programming Symposium, V. Saraswat and K. Ueda, Eds. MIT Press,
Cambridge, MA, 355-371.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

600 . G. Gupta et al.

Szerepi, P. 1992. Exploiting Or-Parallelism in Optimization Problems. In Proceedings of the
Joint International Conference and Symposium on Logic Programming, K. Apt, Ed. MIT Press,
Cambridge, MA, 703-716.

SzEREDI, P. AND Farkas, Z. 1996. Handling Large Knowledge Bases in Parallel Prolog. In
Proceedings of the Workshop on High Performance Logic Programming Systems. ESSLLI,
Prague.

SzerEDI, P., CaRLSSON, M., AND YANG, R. 1991. Interfacing Engines and Schedulers in Or-Parallel
Prolog Systems. In Proceedings of the Conference on Parallel Architectures and Languages Eu-
rope, E. Aarts et al., Ed. LNCS, Vol. 506. Springer-Verlag, Heidelberg, 439-453.

Szerep1, P., MOLNAR, K., anD Scort, R. 1996. Serving Multiple HTML Clients from a Prolog
Application. In Workshop on Logic Programming Tools for Internet. Bonn.

TakeucHI, A. 1992. Parallel Logic Programming. Kluwer Academic Press, Boston, MA.

Taray, P. 1998. Inference and Computation Mobility with Jinni. Tech. rep., University of North
Texas.

TavLor, A. 1991. High-Performance Prolog Implementation. Ph.D. thesis, Basser Dept. of COm-
puter Science, University of Sydney.

TEeBRA, H. 1987. Optimistic And-Parallelism in Prolog. In Proceedings of the Conference on Paral-
lel Architectures and Languages Europe, dJ. de Bakker, A. Nijman, and P. Treleaven, Eds. Springer-
Verlag, Heidelberg, 420—431.

TERAsAKI, S., HAWLEY, D., Sawapa, H., SatoH, K., MENJU, S., KawaacisHi, T., Iwavama, N., AND AIBa, A.
1992. Parallel Constraint Logic Programming Language GDCC and its Parallel Constraint
Solvers. In Proceedings of the International Conference on Fifth Generation Computer Systems,
ICOT Staff, Ed. I0S Press, Tokyo, Japan, 330-346.

Tick, E. 1987. Memory Performance of Prolog Architectures. Kluwer Academic Publishers, Nor-
well, MA 02061.

Tick, E. 1991. Parallel Logic Programming. MIT Press, Cambridge, MA.

Tick, E. 1992. Visualizing Parallel Logic Programming with VISTA. In Proceedings of the
International Conference on Fifth Generation Computer Systems, ICOT Staff, Ed. Ohmsha Ltd.,
Tokyo, Japan, 934-942.

Tick, E. 1995. The Deevolution of Concurrent Logic Programming Languages. Journal of Logic
Programming 23, 2, 89-123.

Tick, E. aND ZHONG, X. 1993. A Compile-Time Granularity Analysis Algorithm and Its Perfor-
mance Evaluation. New Generation Computing 11, 3, 271-295.

TiNkER, P. 1988. Performance of an OR-Parallel Logic Programming System. International Jour-
nal of Parallel Programming 17, 1, 59-92.

Tong, B. anDp LEUNG, H. 1993. Concurrent Constraint Logic Programming on Massively Parallel
SIMD Computers. In Proceedings of the International Logic Programming Symposium, D. Miller,
Ed. MIT Press, Cambridge, MA, 388-402.

Tong, B. anp LEUunG, H. 1995. Performance of a Data-Parallel Concurrent Constraint Program-
ming System. In Proceedings of the Asian Computing Science Conference, K. Kanchanasut and
dJ.-J. Levy, Eds. Springer-Verlag, Heidelberg, 319-334.

Traus, K. 1989. Compilation as Partitioning: A New Approach to Compiling Non-Strict Func-
tional Languages. In Proceedings of the Conference on Functional Programming Languages and
Computer Architecture. ACM Press, New York, 75-88.

Ugba, H. AND MonTELIUS, J. 1996. Dynamic Scheduling in an Implicit Parallel System. In Proceed-
ings of the ISCA 9th International Conference on Parallel and Distributed Computing Systems.
ISCA.

Uepa, K. 1986. Guarded Horn Clauses. Ph.D. thesis, University of Tokyo.

Ueba, K. anD Morita, M. 1993. Moded Flat GHC and its Message-Oriented Implementation
Technique. New Generation Computing 11, 3/4, 323-341.

ULLMman, J. D. 1988. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Maryland.

VaN HENTENRYCK, P. 1989. Parallel Constraint Satisfaction in Logic Programming: Preliminary
Results of CHIP within PEPSys. In Proceedings of the Sixth International Conference on
Logic Programming, G. Levi and M. Martelli, Eds. MIT Press, Cambridge, MA, 165-—
180.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

Parallel Execution of Prolog Programs . 601

VAN HENTENRYCK, P., SARASWAT, V., AND DEvILLE, Y. 1998. Design, Implementation and Evaluation
of the Constraint Language cc(FD). Journal of Logic Programming 37, 1-3, 139-164.

Van Roy, P. 1990. Can Logic Programming Execute as Fast as Imperative Programming? Ph.D.
thesis, U.C. Berkeley.

Van Roy, P. 1994, 1983-1993: The Wonder Years of Sequential Prolog Implementation. Journal
of Logic Programming 19/20, 385-441.

Van Roy, P. anp Despaiy, A. 1992. High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer 25, 1, 54—68.

VaurkL, R., PonTELLL, E., AND GUPTA, G. 1997. Visualization of And/Or-Parallel Execution of Logic
Programs. In Proceedings of the International Conference on Logic Programming, L. Naish, Ed.
MIT Press, Cambridge, MA, 271-285.

VERoON, A., ScHUERMAN, K., REEVE, M., AND L1, L.-L. 1993. Why and How in the ElipSys Or-Parallel
CLP System. In Proceedings of the Conference on Parallel Architectures and Languages Europe,
A. Bode, M. Reeve, and G. Wolf, Eds. Springer-Verlag, Heidelberg, 291-303.

ViLLaverpg, K., Guo, H.-F., PonteLL, E., aND GupTa, G. 2000. Incremental Stack Splitting. In
Proceedings of the Workshop on Parallelism and Implementation Technology for Constraint Logic
Programming, 1. C. Dutra, Ed. Federal University of Rio de Janeiro, London.

VILLAVERDE, K., PoNTELLI, E., GUPTA, G., AND GUo, H. 2001. Incremental Stack Splitting Mecha-
nisms for Efficient Parallel Implementation of Search-Based Systems. In International Confer-
ence on Parallel Processing. IEEE Computer Society, Los Alamitos, CA.

Warrace, M., NoveLLo, S., anD ScHvPF, J. 1997. ECLiPSe: A Platform for Constraint Logic
Programming. Tech. rep., IC-Parc, Imperial College.

Warren, D. H. D. 1980. An Improved Prolog Implementation Which Optimises Tail Recursion.
Research Paper 156, Dept. of Artificial Intelligence, University of Edinburgh.

Warren, D. H. D. 1983. An Abstract Prolog Instruction Set. Technical Report 309, SRI
International.

WarreN, D. H. D. 1987a. The Andorra Principle. Presented at Gigalips workshop, Unpublished.

WarreN, D. H. D. 1987b. OR-Parallel Execution Models of Prolog. In Proceedings of TAP-
SOFT, H. E. et al., Ed. Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 243—
259.

WarreN, D. H. D. 1987c. The SRI Model for OR-Parallel Execution of Prolog—Abstract Design
and Implementation. In Proceedings of the Symposium on Logic Programming. IEEE Computer
Society, Los Alamitos, CA, 92-102.

WAaRReN, D. H. D. anp Harip1, S. 1988. Data Diffusion Machine—A Scalable Shared Virtual Mem-
ory Multiprocessor. In Proceedings of the International Conference on Fifth Generation Computer
Systems. ICOT, Springer-Verlag, Tokyo, Japan, 943-952.

WarreN, D. S. 1984. Efficient Prolog Memory Management for Flexible Control Strategies. In
Proceedings of the Symposium on Logic Programming. IEEE Computer Society, Los Alamitos,
CA, 198-203.

WEEMEEUW, P. AND DEMOEN, B. 1990. Memory Compaction for Shared Memory Multiproces-
sors, Design and Specification. In Proceedings of the North American Conference on Logic
Programming, S. Debray and M. Hermenegildo, Eds. MIT Press, Cambridge, MA, 306—
320.

WestpHAL, H., RoBERT, P., CHASSIN DE KERGOMMEAUX, dJ., AND SYRE, J. 1987. The PEPSys Model:
Combining Backtracking, AND- and OR- Parallelism. In Proceedings of the Symposium on Logic
Programming. IEEE Computer Society, Los Alamitos, CA, 436-448.

WinsBorouGH, W. 1987. Semantically Transparent Reset for And Parallel Interpreters Based on
the Origin of Failure. In Proceedings of the Fourth Symposium on Logic Programming. IEEE
Computer Society, Los Alamitos, CA, 134-152.

WinsBorouGH, W. AND WAERN, A. 1988. Transparent And-Parallelism in the Presence of Shared
Free Variables. In Fifth International Conference and Symposium on Logic Programming.
749-764.

Wisg, D. S. 1986. Prolog Multiprocessors. Prentice-Hall, New Jersey.

Worrson, O. AND SILBERSCHATZ, A. 1988. Distributed Processing of Logic Programs. In Proceedings
of the SIGMOD International Conference on Management of Data, H. Boral and P. Larson, Eds.
ACM, ACM Press, New York, 329-336.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

602 . G. Gupta et al.

Woo, N. anp CHog, K. 1986. Selecting the Backtrack Literal in And/Or Process Model. In Pro-
ceedings of the Symposium on Logic Programming. IEEE, Los Alamitos, CA, 200-210.

Xy, L., Koikg, H., AND Tanaka, H. 1989. Distributed Garbage Collection for the Parallel Inference
Engine PIE64. In Proceedings of the North American Conference on Logic Programming, E. Lusk
and R. Overbeek, Eds. MIT Press, Cambridge, MA, 922-943.

Yang, R. 1987. P-Prolog: A Parallel Logic Programming Language. Ph.D. thesis, Keio University.

Yang, R., BEAUMONT, A., DUTRA, I. C., SaNTOS CosTa, V., AND WARREN, D. H. D. 1993. Performance
of the Compiler-Based Andorra-I System. In Proceedings of the Tenth International Conference
on Logic Programming, D. S. Warren, Ed. MIT Press, Cambridge, MA, 150-166.

ZHONG, X., Tick, E., Duvvury, S., HANSEN, L., SASTRY, A., AND SUNDARARAJAN, R. 1992. Towards an
Efficient Compile-Time Granularity Algorithm. In Proceedings of the International Conference
on Fifth Generation Computer Systems, ICOT Staff, Ed. Ohmsha Ltd., Tokyo, Japan, 809-816.

Zmva, H. anp CHAPMAN, B. 1991. Supercompilers for Parallel and Vector Computers. ACM Press,
New York.

Received June 2000; revised October 2000; accepted March 2001

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 4, July 2001.

